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Some Applications of Degree Theory to Bifurcation Problems 

NGUYEN XUAN TAN 

Es werden einige Ergebnisse uber das Verschwinden cines veraligemeinerten Abbildungs-
grades fur rnengenwertige 'Abbildungen bewiesen und auf die Untersuchungen von Bifur-
kationslOsungen der Gleichung F(A, u) = 0 in einen] Banach-Raum angevandt. Als Spezial 
fall wird die Abbildung F(A, u) = — M(u) - N(A; u) — H(A, a) mit dem,Parameter A aus 
einem normierten Raum betrachtet. Als koiikrete Anwendung werdeii Bifurkationslosungen 
einer nichtlinearen elliptischen Differentialgleichung zwoiter Ordnung untersucht. 
HexoToplIe pe3yJIbTaTbI o6 11C4e:-uloneIuIIf o6o6iijëiiuoft cTeneHn 0To6paxeHn gia Miloro-
aHaq Hux oT06paeiiufl oiaawaaiocn H flHMCHHIOTCH j.nn nccJieJoBaHua 6ItypXaIlH0H-

- ilbix peIneHufl ypaiieuwi F(A, a) = 0 B GaIIaxoBou npocTpaHcTee. haH cnet uamHaIfl ciya,i 
paccMapeaec oTo6paeuHe F(A, a) = a — M(u) N(A, a) — I!(A, a) c napa1eTpoM 2. 
113 HOMHOBHHOFO iipocpaiicBa. B Ha4ecTBe fll1J!0}fCIIIIM F1CCJ1C10TCH 6I4 (I ypaw-
oIIHbIe peiueun iieinie4noro a	inuqecoi-o u144epeuIuIaJIbIIoro ypanueircin nTopoI'o 

nopnuca. 
Some results on the vanishing of a generalized degree of mulivalued mappings are proved 
and applied to study bifurcation solutions of the equation F(A, a) = 0 in a Banach space; 
as a special case, F(A, a) = a — M(u) — N(A, u) — If()., u), where the parameter A is from 
a normed space. For concrete application there are considered bifurcation solutions of a non-
linear' elliptic differential equation of second order. 

1. Introduction  

The degree theory for nonlinear multivalued mappings, which plays an important 
role in functional analysis, in theories of ordinary and partial differential equations 
and in some other fields of applied mathematics, has received very much attention 
from nlat. henlaticians.QRANA5 [8] and MA [17] extended the Leray-Sehauder degree 
for compact single-valued fields to the degree for compact multivalued fields in 
locally convex Hausdorff spaces. BROWDER and PETRYSRYN [1, 2] defined the degree 
for a class ofinultivalued mappings between Banach spaces which are approximation 
proper (A-proper) with respect to some approximation scheme. This degree can be 
used to establish a degree theory for some other class of mult .ivalued mappings. - 
KRAUSS'[14] introduced the degree for inultivalued mappings satisfying an extremely 
cveak continuity hypothesis, i.e. for triples (A, Q, p) which are admissible in the 
sense of Definition 2 in [14]. Let X be,a Banaeh space, K X a closed and convex 
cone, T: DK = D n K —* K a mapping such that Id — T is A-proper with the 
projectional 13, complete scheme TO =-{X,,, P5} with P(K) K. FJTZPATRTCK and 
PETRYSIIYN [6] defined the fixed point index of '.'I ' on  D with respect to K, denoted 
by I1 (T, D). Further, some other definitions of degree for more general typesof 
multi valued mappings were constructed by different authors. 

In what follows, by Z we denote the space of all integers and by Z' the set 
Z u {—oo, +oo } . Let X and V he real locally convex Hausdorff spaces, K and D
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non-empty subsets of X with DK = D n K 0. Let K(D) he a family of non-
empty subsets of DK . Suppose that.-S?€ K (D). We write	for the boundary 
of Q relative to K. Further, by	Y) we'denote the class of reultivalued mappings

F from Q into Y such that if'0 4 F(aK Q) then one can define the topological degree 
of F on Qat the zero, dcgK (F, Q, 0)	Z', satisfying the following axioms: 

Axiom I: Tf dcgK (F, Q, 0)	{0} then there exists a point 9 E . with 0 € F(). 
Axiom TI: Let H: [0, 1] x -* 2' be a multivalued flapping such that for any 

fixed t € [0, 1] 11(1, ) € K(Q, Y) and H( . , x) is-upper semicontinuous uniformly to 
'x front any bounded subset oU'aKQ. If 0 q 11(1, u) for all I € [0, 1] and u € Q, 
then

degK(H(l, .),Q,0) =degK (H(0, .),Q, 0).' 

The main purpose of this paper is to show that under sonic necessary additional 
assumptions on the niultivalued mapping F € KW, Y) we have 

degK (F, Q, 0) = {0} provided 0 4 F(aKQ). 

Further, we shall apply the obtained result on the vanishing of the degree of the 
mapping F as above to consider the existence of bifurcation solutions' of the equa-
tion

F(2, u) = 0,	(2, u) € A x DK,  

where A i an open subset of some metric space, D, K are subsets of a Banach space 
X with 0€ mtD and D = D n K 0 and F is a mapping from. Ax DK . into 
another Banach space Y. 

As a special case we consider the mapping F of the form 

F(2, u) =u — M(u) —N(2,u)	Ho., -u),	(2,u)E AXDK,' 
where A is an open subset of some normed space on which a partial ordering - is 
defined. D is a subset of a Banach space X with 0 € mt D, and K is a closed and 
convex cone in X; for, any fixed 2 € A, M,N(A,.) are linear continuous mappings 
from DK into X, and II: A x DK - X is a mapping with 'H(A, 0) = 0 for all 2 E)A' 
and 11HO, u)II = o( uM) as hull -- 0. We shall show that if 2 € A is the smallest eigen-
value of the pair (M, N) with respect to K which is isolated from the right side 
(see the defition below), then (2, 0) 'is a bifurcation solution of the equation 

F(2,u)=0,	(2,v)€AXDK. 
Lastly, , we apply the obtained result to investigate bifurcation solutions of the 

elliptic prtial differential equation of second order in the form' 

L(u) = d(x) u + 2(x) q(x) u + h(#), x, u, Du), 

(2, u) € L2(G)x ( W2 (G) n 9121(G)), 

where L is defined by 

L(u) = - a,(x)
X1
 + E b(x) - + c(x) U. 

j 

Letbe the smallest function from L2 (G) satisfying 

L(u0) = d(x) 'a0 + A0(x)'(x) u0 , for some 'u0 € 

•	us=0,	u0(x)-^>0,	x€O;	,	.	,
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and ; is isolated from the right side (see the definition below). Under some additional 
conditions on the functions d, g, and h, we shall show that the above equation has 
at least two branches from the solution (1, 0). This implies that the above equation 
has (20,0) as a bifurcation solution.	V	 V 

2. Notations and preliminaries 

Throughout this paper, by X and Y we denote real locally convex Hausdorff spaces. 
Given subsets 1), K X with DK = D n K 0, we denote by D, t9K.D and 2D the 
closure of D in X, the frontier of D relative to K and the family of all subsets of D, 
respectively. Further 0 stands for the empty set, N for the set of natural numbers, 
and II for the set of real numbers. In the case that X is a normed space, U(0, r) 
will indicate the open ball with the center at the zero in X and NOth the radius 
r> 0; For any multivalued mapping F from D into Y we write F: D - 2". We 
recall that F is-called upper senticontinuous at a point 'u 0 E D if for everyVôpen set 
Q Y, F(uo 9 Q, there exists a neighborhood U of uo such that F(u) Q holds 
for all u E U n D. The identity mapping is always denoted by Id. 

Let G(D) be some family of non-empty subsets of D n K. For Q E 'K (D) by 
K(Q, Y) we denote the class of multivalued mappings F from Q into Y for which 

one can define deg, (F, Q, 0) (read: the degree of F on Q at the zero), provided 
that 0 q F(aK Q), which atisfies Axiom 1 and Axiom 11 just uLenioned above in 
the Introduction. 	

V 

V Example 1: Let X be a locally convex Haiisdorff space, D	an open subset, K = X, 
let C(D) be a family of non-empty open and bounded subsets of D. For Q E eK (D) let X) 
be the class of all multivalued mappings F from- 62 into X of the form F= id - U, where U 
is an upper semicontinuous compact multivalued mapping fronc 12 into X with G(x), x E Q 
non-empty, convex and compact. Then deg (F, Q, 0) is well-defined by GRANAS [8] and MA 
[17], provided that O. F(M). it satisfies, of course, Axioms I and IL mentioned above. 

Example 2: Let I and Y be Banach spaces. The scheme 1' = (X,, P; Y,,, Q,,} is called 
a projectionally complete scheme for (I, Y) provided that X. X and Y. 1' are se-
quences of monotonically increasing finite-dimensional subspaces with dim X = din Y,, for 
each n, and F: X --> X. and Q: I - Y. are linear projections such that P,,x - x and 
Qy -->yforallxEXandyE Y. We have	

V	 - 

Definition 1 (see [18]): T: .b 9 X V + Y is said to be A-proper with respect to the pro-
jectionally complete 8cheme F if - 

(i) T,, I),,	X, -+ Y, where Vb fl = D n X,,, T = QT/D, is continuous for each ii and 
(ii) if 1Xn, Ix, E D,} is any bounded sequence such that T,(x,) -+ g for some g in Y, 

thenthere exist a subsequence (X,,, ( } and x E D such that XflJ(&) . x and T(x) = g. 
In the case X = Y, X. = Y, and P,, = Q,, we denote the projectionally complete scheme 

{X, P; X, P,,} for (X, X) by f' = {X, P.J. Furthermore, if II P II = 1 we say that X is 
a 7 1 -8pace. n V [18] we can see that:	 .	 V 

(I) if X is a V,-space and F.: D 9 X -* X is ball-condensing (see the definition in [18]), 
then T = id — F is A-proper. 

(ii) Let X be reflexive with a projectionally complete scheme F1 = {X 1 , 1',,; )',,,Q} for 
(1, Xe ), whereX is the dual space of X and Q,, = P,,: X : Y,, = R(Q), with R(Q) 
being the range of Q,. Let T: K . X* be strongly monotone, i.e. (Tx — Ty, x — y)	c lix	yjI 

- for all x, y E X and for some ,c	0, and either continuous,,semicontinuous, or weakly con-




tinuous, then T is A-proper with respect to f's. 
(iii) Let X, X* be as in (ii) and let T: X - X 5 satisfy condition (S), i.e. whenever x,,	x 

and (Tx,,'— Tx, x',, - x)	0 imply that x,,	x; where	and	denote the weak and the

strong convergence, respectively, then  is A-proper with respect to F,.
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Further examples of A-proper mappings can be found in [18]. Now, let D 9 X with 
mtD	0, take K	X and j (D) = ( D), the family of all open and bounded subsets of D, 
and for £2 E '(D),	Y) = £'(Q, Y), the class of all A-proper mappings with respect to 

P = {X,, P; Y,,, Q,,} from £2 into Y. Thus, for any £2 E '(D), F € (Q, Y), 0 
deg (F, £2, 0) is defined by BROWDER and PETRYSHYN [1, 2]. It alwassatisfics Axioms I 
and TE mentioned above. 

	

Example 3: X is supposed to be a real Banach space, K	X is a closed convex cone, 

i.e. K Xis a closed subset and x, Y  K, a > 0 imply x ± y € K and ax € Kand K n (—K) 
= {0}. Suppose that D X with DK = D a K	0, 0 € int 	Let K(D) be a family of - 
non-empty open and bounded subsets of DK. For £2 € K (D) let K(Q, X) be the class of all 
single-valued mappings F from £2 into X of the form F id - T which arc A-proper with 
respect to P0 (see the definition in Example 2) and T(Q)	K. Thus, for £2 E CK(D), 
F € X)_0 F(aK Q) the fixed point index of T on £2 with respect to K, denoted by 
IK (T, Q), is defined by FITZPATRICK and PETRYSHYN [6]. We can put deg (F, £2, 0) = l(T, £2) 
and we can see that Axioms I and II mentioned above are always satisfied. 

Example 4: Let (X, Y) be a pair of dual spaces, D 9 X a subset. Take K = X and 
= (D), the family of all non-empty open subsets £2 of D which are finitely bounded 

(i.e. £2 a X0 are bounded subsets for each finite-dimensional subspace X. of X). For £2 € ( D) 
let'(Q, Y) be the class of all multivalued mappings F from £2 into F such that (F, £2, 0) 
are admissible triples, provided 0 q F(Q), in the sense of Definition 2 in [14]. Then deg (F, £2, 0) 
is defined, provided 0 q F(8Q), for any F € (Q, Y) by KRAUSS in [14] and it satisfies Axioms 
I and II mentioned above. 

We recall that a multivalued mapping F: D - 2' is called of tjpe S, if for any 
sequence {x0} D, x, x and {y,,} Y, y,, € F(x0 ), y,, - y and lini (x0 , y,,) = (x, y), 
where (.,.) denotes the pairing between elements of X and Y, it implies that x, —> x. 
It has been shown in [14] that if F is a niultivalued mapping of type S and £2 € '(D) 
is a- relative weakly compact subset ., then (F, £2, 0) is admissible, provided that 
0 q F(aQ). Thus, deg (F, £2, 0) is defined (see [14: LenIma 2]). 

Definition 2: Let D, K X and let A he a subset of some space. Suppose that 
1W: D — V and N: A x. -. Y are mappings. 

a) A point ;,0 € A is said to be an eigenvalne of the pair (M, N) with respect to K 
if there is a uo € D = D a K, v 0 4 0 such that 

no = M(u0 ) + NO20, Us).	 (1) 

b) Let A bean open subset of some normed space on which a partial ordering - 
is defined. The eigenvalue ).0 of the pair (M, N) with respect to K is called smallest 
if 2 - 2, 2 4 'o, implies that 2. is not an eigenvalueof the pair (M, N) with respect 
to K.

c) Let A be as in Ii). The eigenvalue ). 0 of the pair (M, N) with respect to K is 
called isolated from the right side if for ,any neighborhood V of ;,0 in A there exists 
a 2 € V with 2 -< 2 and 2., is not an cigenvalue of the pair (M, N) with respect 
to K.  

d) The point U 0 € DK satisfying (1) is called an eigenvector of the Aiir (M, N) with 
respect to K associated to	- 

Lt us consider the multivalued equation 1.
{0} c F(2, u),	()., u) € A

	
(2)


where A is a metric space, D 9 X is a subset with 0 E mt D, K X with DK = D n K 
4 0, and F: A x	—* 2' is a multivalued mapping with {0}	F02, 0) for all

2. E A.
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Definiticn 3: a) A point (Ao, 0) - E A XD K is said to be a bifurcation solution of 
equation (2)if for any, neighborhood V of o there is a neighborhood U0 of the zero 
in X such that for each neighborhood U of the zero, U 9 U 0, one can find a solution 

U) of (2) with € V and iE au. 
b) A point ;o € A is said to be an asymptotic bi/urcation. point 0/ . equation (2) if 

for any neighborhood V of .o there is a neighborhood U0 of the zero in X such that 
for each neighborhood U of the zero, U0 G U, one can find a solution (., Z) of (2) 
with-). € l and u € O U.  

The bifurcation problem of equation (2) was studied by many-authors, especially, in [9] 
and [10] KLUGE investigated this problem with a parameter from, in general, a metric space. 

3. The main results 

First of -all we prove the following theorem which shows that under some additional 
assumptions on the mapping F we have degK (F, 9, 0) = {0} for 9 € 'K(D) and 
F E K(Q, Y) with 0 J F(KQ). From this theorem we shall obtain sonic results 
on the existence of cigenvalues of some pairs of niult .ivalued mappings and on the 
existence of bifurcation solutions and of asymptotic points of equations in the 
form (2). But, we consider in this paper only the existence of bifurcation solution. 

Theorem 1: X, Y, K, D, OK(D) and K(Q, Y), for 9 € 'K (D), are supposed to be 
given' as in Section 2. Let F E IIWK(Q, Y) be a multivalued mapping. Suppose that 
there exist an upper semicontinnous multivalued. mapping 0: 9 - 2' and a closed 
neighborhood U of the zero in Y-and a point Yo € 3U such thit the following conditiàn.s 
are satisfied: 

1. —G(aK Q) n U = 0,  
2. Yo J G(aK Q) for all a > 1,' 
3. F - 0 - (Yo} € K(.Q, Y) for all a	0, fi	0, 
4. o(aQ) and F(eKQ) are bounded ubsets in Y and /or any a > 0 there exists 

nn € N such that ny0 J (F — aG) (9), 
5. F(u) ruG(u) = 0 for all It > 0 and u € Q. '/'hen deg (F, 9, 0) = (0), pro-

vided that 0 J F(aKQ)	 — 
Proof: Let p be the Minkowski function of U (see in [20],.for example), i.e. 

.p(x) = inf{a > 0: x  NU). Thus, we have P(Yo) = 1, because of yo € W. Now, we 
claim that there exists an a > 0 such that 

F(u) n (aG(u) + nty0) =.0	 :	 (3) 
holds for all n € N, £ E[0, 1] and u € aK .Q. Indeed, if the assertion were invalid then 
for each rn € N we could find trn € [0, 1], Urn € aKQ and nm such that F(Urn) n (inG(u,) 
+ 1trntniyo) 0. Therefore we can choose y € F(urn ) (mG(n,) + ?irntmyo) such that 
y, can be written in the form y, = mz; + n,ntrnyo, with Zrn € G'(Urn). Thus follows 

/1	\	1	 . 
J) (Zrn + — trnYO) = P	Yrn) = p(ym). 

Since F(aKQ) is a bounded subset, the left sjde convergs to zero for rn ->oo. Further, 
the boundedness of.G(a,Q) implies that P(Zm) < +00 for all m € N. Hence 

O< trn	
mm


- In	trnp(yo) = p (—
M 

^p(Z) (	

rn	 I

+p  

-	 Zni + Inly ;5  
0)

p(z) +	My'.) < +00
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for all m € N greater than sonic m0 E N. Therefore, without loss of generality, we 
may assume that	t ->	m — oc; and then. 

0 ^(z, +Yo) P (n +	tnYo) H 	P(Yo) 0 

as m	oo. This implies that ZIH	—& as in oc. See Zm € G(aK Q) and —G(Q) 
U =0, we then deduce 5 2! I and	YO E G(aK Q), which contradicts the condi-

tion 2 that says --a'0 :G(aQ) for all a	1. Thus, (3) is proved. 
Now, for an y n € N we define 

5' 

I1(t, u) = F(u) — aG(u) — 711y0 ,	(1, u) € [0, 1] x Q, 

where a is taken from (3). rm	(3) implies that 0 q I1(t, u) for all I € [0, 1] and

u € Q. Using Axiom IT yields 

degK (F — aG, Q, 0) = deg (F -	- ny0 , Q, 0)	.	(4) 

for all n € N. Now, we clainil that deg (F — aC, Q, 0) (0. indeed, assume in 
contrary that deg5 (F aG, Q, 0) +. (0). This implies degK (F — aC — ny0 , Q, 0) 
+ (0) for all is € N. We use Axiom 1 to conclude that for any n'€ i's' there exists 
u, € Q such that 0 € (F(v) — aG(u)- ny0). Hence, ny0 € (F — aG) (Q) for all 
n € N. This contradicts the condition 4. Further, we define 

K(t, it)	F(u)	taO(u),	,(t, is) € [0, 1] xQ. 
Using condition-5 gives 0 4 K(t, u) for all t € [0, 11 and is € 8Kg. We use Axiom II 
to conclude that dcg K (F, Q, 0) = degK (F —,xG, Q, 0). As was proved, deg K (F — a 0, 
Q, 0) = (0). Consequently, we obtian degK (F, Q, 0) = (0) I 

For the proofs of sonic corollaries of this theorëtn we need the following lenuna. 
Lemma 1: Let G: -D —> 2' be a multivalved mapping and U be a neighborhood of 

the zero in Y such that	 . 

OU n (.v \CO (G(aKD) u (0)))	0. 

Then there exsts a point y 6 € aU such that ay0 J G(D) for all a	1. 
Proof: Indeed, if the assertion were untrue then for each y € U we could seek 

a(y) , I such that a(y) y.€ 0(D). For arbitrary u E W we have 

is = a(u) -
(
f
u

 — + (i —
	

0 € co (G(aD) u (0)). 
a)	 a(u) 

This implies that a U	co (G(aD) u {0}) and hence a U n (Y' \ Co CG(D) u {0))) = 0,

and we have a contradiction I 

Remark 1: (i) Suppose that Z is a proper closed subspace of Y and 0: D -2' is a multi- 
valued mapping such that G(8D)	Z, then for any neighborhood U of the zero in I' we have 

Indeed, since G(D)	Z it follows that co (G(D) u 10)) c Z.'lf au (i' \ co (G(aD) u (0))) 
= 0.then 8U	Co (G(al)) a (0))	Z and hence J Z. This implies Z = Y, 'and we have
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a contradiction. Consequently, for any neighbohood U of the zero in 1' there is a Yo E U 
such thatay0 i G(aD) for all cc ^! 1. 

(ii) If K is a closed and convex cone in Y and 0: D -+ 2 Y is a multivalued mapping such 
that G(D) K, then fop any neighborhood U of the zero in V we have 

bUn (Y \ co (G(8D) u 1,01)) rlr 0. 

The proof is similar to the previous one. Hence, for any neighborhood U of the zero in V 
there is a Yo E P U such that a	G(D) for all a	1. Moreover, if 0(D)	K then there is 
a	0 such that az0 J 0(D) for all a > 0. 

L em ma 2: Let X. be a quasi-complete barrel space with dim X = + oo and M X 
be . a precompact subset. Denote by Z the smallest closed subspace of X containing the set 
co (M — M), then Z is a proper closed subspace of X. 

Proof: Suppose that Z = X. This implies that (M — M) is an absolutely 
convex closed and symmetric subset which is absorbing in X. But, on the other 
hand, since M is a compact subset, hence ë (M - M) is also a compact subset. 
This contradicts the hypothesis that dim X = +00 I 

Rcmak 2: It follows from Lemma 2 and Remark 1 that if F: D - 2 k', where D is a 
bounded subset of X and Y is a quasi-complete barrel space, dim V = +00, is a compact 
multivalued mapping (i.e. F maps any bounded subset into a precompact subset), thenF(D) 
is contained in one proper closed subspace of V. From this one can conclude that for any 
neighborhood U of the zero in V there exists a Yo E ED U such that , ay0 q F(D) for all (X	1. 

Corollary 1: Let X, Y, K, D, K (D) and 2KA Y) for Q E 'K(D) be the same as 
in Theorem 1 and F E (Q, Y) with F(Q) bounded. In addition, assume that there 
exists a z0 € Y, z0 4 0 such that F — az0 E (53K(Q, Y) for all a 0 and az0 4 F(eKQ) 
for all a > 0. Then degK (F, Q, 0) = {0}, provided that 0 J F(aKQ). 

Proof: Since z0 4 0, there exists a closed symmetric neighborhood U of the 
zero in Y such that z0 q U. Let p be the Minkowski function of U. Choose a0 > 0 
such that p(z0) = I and put Yo = a 0z0 . We can easily verify that Yo € a U. Further, 
set 0(u) = (a + I) z0 , u € Q. It is a simple matter to show that 0, U and Yo satisfy 
all assumptions of Theorem 1. Hence, to complete the proof it remains to apply 
Theorem I I 

Co r o lIar y 2: Let X be a quasi-complete barrel infinite-dimensional space, D X a 
subset, F: D -, 2x a compact upper semicontinuous multivalued mapping on D. Suppose 
that for an open. bounded Q of D there exists a closed symmetric neighborhood U of the 
zero in Xsnch that Q U and F(aQ) n U.= 0. Then 

deg (id — F, Q, 0) = deg (id + F, Q, 0) = (0 

where deg (Id F, 1?, 0) is the Leray-Schander degree of id +F with respect to Q 
at 0 defined by GRANAS [8] or by MA [17]. 

Proof: Let (D) be the family of all open bounded subsets of D and 2(Q, X), 
for Q € (D), be the family of all niultivalued mappings 7' froiii Q into X in the 
foriii 'I' = Id — Ii, where I-I is a completely continuous niult . ivalued mapping on D. 
Thus, for any Q E C(D) and T € J/3(Q, X), deg (7', Q, 0) is defined by MA [17], pro-
vided 0 0 T(eQ). Now, we apply Theorem 1 to show that deg (id - F, Q, 0) (0) 
(the proof for deg (id + F, Q, 0) is analogical). Indeed, according to Remark 2 
there, is a y0 W such that ay0 J--F) for all a	1. Putting 0(u) = F(u), for

n E Q, we can easily verify that F, 0, U and y0 satisfy conditions 1-4 of Theorem 1. 

23 Analysis ll. 5, heft 4 (1986)
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To apply Theorem 1 condition 5 remains to be shown' condition 5. We assume on the 
contrary that there exist i> O,,and l € aQ such that (z - F()) n pF() 0. This 
implies that 11€ (1 + 1i1)F(u). Therefore, we can write 11 = (1 + fl) z, for some z € F(U). 
Let' p be the Minkowski function of U. Since i .€ ,Q	U, F(Q) n U = 0 and' 
z € F(), we get p()	1 andp(z) > 1. We have 1	p() = p((1 + P) z) = (1 + )

X p(z) >1, which is impossible. Consequently, condition 5 is also fulfilled I 

Remark 3: Corollary 2 is an 'extension of Theorem 21-in [21],'which proves for the case 
X is an infinite-dimensional linear normed space and F is a single-valued completely con-, 
tinuous mapping pif D. - 

Now we apply Theorem  to investigate 'the existence of bifurcation solutions Of 
the equation ,(2). For'siinplicityin what follows we consider only the case that the 
mapping F: A XD K -- Y is single-valued, F(2, u) = 0 for all') € A and F( . , u) is 
continuous in 2 uniformly for u from any bounded subset of D. More precisely, we 
consider the existence of a bifurcation solution of the equation 

\	F(?., u) =0,	(A, U) € AXDK,	 (5) 

where A is an open' subset of some normed space, K, D X with DK = D n K == 0, 
0 E mt D and X and Y are supposed to be Banach spaces. We have 

Theorem 2: Let X, Y, D, K, A and F be as just mentioned above and let A O be a 
point such that for any neighborhood V of 2 0 there a neighborhood U0 of the zero in X 
such that for any neighborhood U of the zero, U U 0, UK = U n K € 'K (D) and 
one can find 2, 22 E V and a single-valued mapping A : U K —* K with A € 2K (UK, Y) 
and degK (A, U, 0) == {0}, provided 0 q A(3K UK ), satisfying the following conditions: 

1. tF(21)' . ) + ( 1 — t) A € 2AUK , Y) /or any t E [0, 11. 
2. IIF(2 1, u)— A(u)Jj	IIA (u)Ii for any u E 8KUK. 
3. There exists a z0 € Y, z0 r= 0 such that either az0 4 F022, 9K UK ) for all a > 0 

and F(22 , ' . ) — fl{ z0} € YJK (UK ; Y) for all ft 0 or az0 J A(eKUK) for all a > 0 and 
A - 9z0} E R(UK, Y) for all	0. 

Then (2, 0) is a bifurcation solution of equation (5). 

Proof: Let, V be an arbitrary neighborhood of 2. Without loss of generality we 
may assume that V is' convex. Let U 

0
exist corresponding to V by the hypotheses 

and U c: U0, UK ' = U 'n K € 'K (D). We have . to show that there exists a point 
(A;l)E VXKU with F(,l)= 0. 	- 

Indeed, for U one can find 2, 22 € V and a mapping A: UK - Y satisfying 
conditions 1-3. If F(2, u) = 0 for i = 1 or i = 2 and for some -u € aU we have 
the proof. Therefore in the sequel we assume that F(2 1 , u) 0 for i = 1, 2 and for 
all u E aKU. 

Further, if A(l) = 0 for some U E aK U, then we imply froiti the inequality of 
condition 2 that F(2 1 , ii) = 0, which contradicts the above assumption. Thus, 
degK (A, UK, 0) is defined and by the hypotheses, deg K (A, UK , 0) {0}. Together 
with condition 3 this yields az0 F(22 , aKU) for all a > 0 and F(22 ,.) - 19z0 

€ /JK (UK , Y); otherwise, we use Corollary 1 to obtain degK (A, UK, 0) = (0), which 
is impossible. Now, we use Corollary 1 again to conclude 

-	dégK (F(221 .), U, 0) = (0). 	-	-	(6)


Furhe, letus define - 

H(t, u) = (1 - t) A(u) ± tF(2 1 , u),	(t, u) € [0, 11 X U.	/ ' (7)
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Suppose that H(i, Z)	0 for some 1 € [0, 11 and Z€ aKU. Since F(2, u) + 0, 1	1, 2 and u € aK U we deduce I € (0, 1). (7) implies that A()	i(A(L) - F(2 1 , il)). To-




gether with condition 2 we obtain 
l ilA (Z) - F02 1 , 11)11 = IA (11)11	iiF021, l) - A ()Ji.	 -	(8) 

If 11A (u) - F0. 1 , ;9)H = 0 then (8) implies A(i)= 0 and hence we get from condi-
tion 2 F(2 1, ) 0, which contradicts the assumption that F(2, u) 0 for I = 1, 2 
and for all u € aKU. Therefore we have I1A (il) - F(2 1 , l)H == 0. Consequently, (8) 
implies that 1 ^ 1, and then we havea contradiction Hence, H(t, u) == 0 for all 
1 € [0, 1] and'u € aK U. Further, we uSe Axiom Ti to obtain 

degK (F(211 •) UK , 0) = degK (A, UK, 0) 4, i0j.	 (9)

Finally, we define the mapping M: [0, 1] x U -> Y by 

M(1, u) = F(t2 1 + (1 - 1)22 , u),	(1, u) € [011 x U. 
Cy Suppose that M(t, u) 4 0 for all I € [0, 11 and u € aKU. Using Axiom 11 II gives 

degK (F(211 •) U, 0) = degK (F(22, •) UK , 0). Together with (6) and (9) we obtain 
a contradiction. This implies that M(i, i) = 0 for some 1 € [0, 11 and € 3KU. Setting A =	+ (1 - 1)22 , we infer F(, ) = 0 with 2 € V and TZ € eK U I 

As a special case of (5) we consider the equation 
u = M(u) + N(2, u) + H(2, ii),	(2,lu) E A XDK ,	 (10) 

where A is an open subset of some normed space on which a partial ordering is 
defined that satisfies: if 0 -< 2 then 12 -.< 2 for a] V I € [0, fl, X ig a Banach space 
with a closed and convex cone K, D X is a subset with 0 E mtD and DK = D n K - 
4 0. In the following we need the following assumptions: 

1. 2 € A, 0 -< 2, is the smallest eigenvalue of the pair (M, N) with respect to K 
which is isolated from the right side.	- 

2. M is  linear continuous mapping from D K into X and u 4 tM(u) for all u € K, u 4O and l€[0,1J.	 - 
3. For any fixed 2 € A, N(2,.) is a linear continuous mapping from D K into X and N(0, u) = 0 for all u € D K and if ).0 then (N(2, .) - N(20, •)) (u0) € K, where no is an eigeñvector corresponding to 2. 
4. 11: A XDK .-± X, 11(2,0) = 0 for all 2€ A and 11 11 (2, u)JI = o(ftuii) as 1 1 Y11 0 uniformly for A € iLand, H( . , u) is continuous in 2 € A uniformly for u from any 

bounded subset of DK. 
5. There exist a neighborhood V of 2 and a neighborhood U of the zero in X 

such that M(U)' K, N(2, U K ) K for all 2 € V, 0 - A and H(V, UK) K and either 
a)_ M, N(A, .), 11(2,.) are compact continuous mappings on U K for any fixed 

2€Vor 
b) the mapping F: UK X defined by 

F(u) = u -- (I 1 M(u) + N(2, u) + 1211(2, u)),	u€ UK 
for any fixed 4, 4 € [0, 1] and 2,€ V is A-proper with respect to r0 , iwhere P0 = {X,, P} is the projectionally complete scheme for .(X, X) with P(K) K for all h € N (see the definition in Example 2). 

L em in a 3: Under the assumptzon.g 1-5 /or any 2 € V, 2 -< 2, which is not an 
e?-jenva1ue of the pair (M, N) with respect to K there exists a r 1 > 0 such that U(0, r1) 

U and
u - (M(u) + N(A, u) + 11(2, u)) # 

23*
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0/ar all u E U(0, r 1 ) = U(0, r1 ) n K and u> 0, where u0 E K, u0 0,	an eigen-




vector o/the pair (M, N) with respect to K corresponding to o. 

Proof: Suppose that 2 E V, ;.o - 2, is not an eigenvalue of the pair (M, N) with 
respect to K. If the claim of the lemma were false then for any n E N with U(0, 1/n) 

U one could find u, E U(O, 1/n) and fin> 0 such that 

- (iT'f(u) + N(2, u) + 11(2, u n ))	i,,u0 .	 ( 11) 

Since 11(2,0) = 0, ii,, >0 and u0	0 we deduce from (11) that u,,	0 for all n.

Hence , : by dividipg both sides of (11) with 11u,,11 we obtain 

u	IM (--\ + N (2, _L' +	 =	UO.	 (12) qt`2 11(2, Un))
	

f2n 
IIII	Ilu,I /	1171.11 /	lju,j	lIu,lI 

Because of I1u11 —* 0 as n — 00 and 11HO., 71 )II = o(lv. Il) as 11u.11 -> 0 we infer 

111(2, U n)IJ/IIV nIl	0 as n -+ +00.
	 (13)




Further, we obtain from (12) that - 

	

ltn 0 < -.--	
(L	

—	 — N (2 .L.)II + IIH ( 2 , Un)lI') 
NJ	 II lItnFI	IIUnII	 IlIl	I	Il'tll

(14) 

Now, by the continuity of M, N(2, .)and the boundedness of the sequence {u/JJuJJ} 

one can find a constant c> 0 such that 

— M( ----' — N(2, !!_'	c.	 (15) 
luII	•\ ftu,,IJ /	\	u,,JJ / 

Because of (13) there exists an no E N such that for all n	one has 

11 11 (2, un)Jl!llunll < c.	 (16) 

Finally, combining (14)—(16) yields 0 < fl /JJuJI	2 u 0 !1 - ' c for all n	no. There-
fore, by extracting a subsequence if necessary, we may assume that /L n/JIUnJI -	0.

Now we put 

Q --


	

I' fin	______ 
i ll117t.11' o —




	

,IJ	IJulJ	j ,= i 

then we imply that Q is a compact subset in X. Evidently, it follows from (12) that 

= u/JJuJJ € (d - M — N(, •)) (Q) n K. 

In the case that M, N(2, ) are compact mappings, without loss of generality, 
we may conclude that M(Zn) + N(2, in) converges to some point Yo € X. Hence, 
(12) implies z — z0 = Yo + cu0 E K. Since JJzJJ = 1, we deduce 11z0 JJ = l. 

Now, in the case that the mapping id — M — N(2, •) is A-proper with respect. 
to To weapply Proposition 1.1.0 in [18] to conclude that the set (id — M — 
X (Q) is also compact. Hence, by extracting a subsequence if necessary, we may as-
sunie that z,, — z0 . So, z0 € K and IIZoIl = 1. 

Further, from the continuit y of M, N(2, and froiii (12) and (13) we obtain


zo 
S	

— (M(zo) + N(2, z0 )) = alto.	 (17)
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Since A is not an eigenvalue of the pair (M, N) with respect to K we then conclude 
> 0. Because of M, N(2,.) being linear mappings and M(UK ), N(2, UK) K we 

can easily verify that 

(M +!N(2, .))m (v 0) E K	 (18) 
and

(M ± N(2, .))m (N(A, U O) - NO20, Us)) € K	 (19) 

for an arbitrary integer m € N. 
Froni now on, for the simplicity of the notations, we define the mapping E: 

U K --> X by 

E(u) = (M + N(2, .))(u),	u€ UK. 
Next, we claim that for arbitrary rn 

Em(z0 )	Em(z0) +EEi(N(2, u0) - E(2 0, uo)) + au0 .	 (20) 

We prove this assertion by induction. Indeed, it follows from (17) that 
z0	(M + N(2, .)) (zn) + au 0 . Hence 

E(z0) = E2 (z0 ) + E(u0) = E 2(z0) + (M + N(2, )) (no) 
= E2(z0) + a(M + NO20 , •)) (u0) + a(N(2,.) - N(20, )) (UO) 

= E2 (z0) + (N(A,.) - N(A0 , •)) (u0) + mto. 

This shows that (20) is valid for m = 1. Suppose now that (20) is true for some 
kEN:

k—i 
E"(zo) = E"(z0) + E xE1 (x0) + ouo, 

j=1 

where x0 = (N(1,.) - N 0, •)) (u0). Hence 

= E(E"(zo)) = E (E1c+1(zo) +cE 1(xo) + xUo) 

k—i 
=E k+ '(zo)  + EEi '(xo) + xE(u0).	 (21) 

But E(u0 = (M + NQ, )) (u 0 ) = (M + N(A0, .)) (un) + x0 = U0 + x0. Together 
with (21) we obtain

k—i 
= E+2(z0) + E El+i(xo) + xo + 

-	1=0	 - 
k


= E 2 (z0 ) +	E1(x) + c.u0, 

which shows that (20) is also valid for k + 1. This proves (20)1 
Now we set	 - 

y 	E aE1 (x0) for in = 0, 1.....
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IV follows from (17) and (20) that	 - 

Z =E(z0) ± au, 

E(z0) = E2(z0) + Yo + OCUO, 

-	E(Z) = Em+1(z0) + Yn-i + au0. 

Taking the suni of both sides of this equalities we obtain	 - 
'fl—I .zo=F]m+l(zo)+Eyj+a(n+1)uo,	y_:=O.	 (22) 

It follows from (18) and (19) that Em1(z0), (Yo + Yi + + y.- I ) E K, m € N. 
Therefore, (22) yields z0 E a(rn + 1) u0 + K, m E N. Hence, z0/a(m + 1) — u0 € K, 
m € N. Letting m — oo we obtain — uo E K. Thus, u0 € K n (—K) = {0} and hence = 0, which contradicts n € K, u0 + 0 U	 -	- 

L e ni ni a 4: Under the assumptions 1-5 for any 2 € V which is not an eiienvalve 
of the pair (M, N) with respect to K, there exists a r 2 > 0 such that U(O, r2 )	U and 

11 11(2, u)ll ^ Jju	M(u) -- N(2, 2011 

for all u-€ UK (0, r) = U(0, r2 ) n K.	- 
Proof: Let A E V be no ëigenvalue of the pair (M, N) with respec€ to K. As 

before, for the simplicity of the notations we put	 - 
E(u) = (M,+ N(2, •)) (u),	u EU. 

If the assertion of the lenuiia were invalid, then for any n € N one could find u,, 
€ UK (O, 1/n) with 

-	ll u - E(u)jJ < jJl(2, u )ll .	 (23) 
Since 11(2, 0) = 0 we -then deduce from (23) that ii,,	0 for all n E N. Hence, by

dividing both sides of (23) with 11u.11 we obtain - 

	

B / '	\	Il11(2;u)II	

0 

Ilu !I	\ ju 	<,	IluH 

By 11 11 (2 , ufl)II = o (IIu ll) as n — oo we get 11HO., ufl)II/IluflI! — 0 as n —> c. Therefore, - 
the last inequality gives 

Un	 / u,,	 - 
— El —l--O as n—>-.	 (24) 

0_	 IIuJ1	\.11ull/ 

In the case when M, N(2,.) are compact mappings, B is also a compact ,mapping. - 
Hence, by extracting a subsequence if necessary, we may assume that E(ufl/I!uflhl) z0 € K (because of u,,/ftuIl € K and E(K)	K). Consequently, it follows from 
(24) that ,, = u/llulj — z0 , and then z0 € K and lizoll = 1.	- 

•	In the case that zd — M — N(2,.) is an A-proper mapping with respect to f', weput	 -	 - 

Q un	E ( un 
-	1iuII	llull  

(24) implies that? is a compact subset in X. We apply Proposition l.1.0 in [18] - 
- again to deduce that the set (id — B)- 1 (Q) is also compact in X. We have
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= u,,/Ilu,,II € (Id - E)- 1 (Q) n.K. Hence, by extracting a subsequence if necessary, 
we infer also that z,, --> z0 € K and lizoll = 1.	 - - 

Now, by the continuity of M, N(2,.) and by (24) we obtain Z0 = E(Z0) = M(Z0) 
+ N(2, z0), 11zoll = 1. This shows that 2 is an eigenvalue of the pair (M, N) with 
respect to K, which is a contradiction U 

Now we can prove the following theorem on the existence 9f.0urcation solutions 
of equation (10). 

Theorem -3: Under the assumptions 1-51 (2, 0) is a bifurcation solution of equa-
tion (10). More precisely, for any given s > 0 there is a r0 > Q such that for, each r E (0, r) 
one can find a solution (, Ii) 0/(10) with I - 20IIA < E and l E D K , JIT111 = r, where 

denotes the norm of the norrned space containing A and Il•II denotes the norm o/ X. - 

Proof: Let s > 0 be given. By choosing a' € (0e) if necessary we may ,assume 
that V(20) {2 € A: 11 2 - 2 II, < a) V (we recall that V comes from assump-
tion 5 mentioned above). Choose 1 € [0, 11 such that (1 - 1) II2I < a and put. 

= i2.- We have 2 € V(20) and 2 Ao: Because of the assumption that ;.0 is the 
smallest eigenvalue of the pair (M, N) with respect to K we conclude that 1 has 
not this property. We appl'y Lemma 4 to deduce that there exits ar,1 > 0 such 
that U(0, r 1 )	U (we recall also that U comes from assumption 5) and. 

lI.l1 ( 2 , u)I ;5 1lu - .IW(u) .- .2V'(2 1 , u)lI
	 (25) 

for all u € UK (O, r 1 ).	 .	 .. 
Since ).0 is isolated from the right side there exists 22 € V(20) with 2 - 22 and 22 

is not an eigenvalue of the pair (M, N) with respect to K. We, apply Lemma 3 to 
conclude that there exists a r2 > 0 such that U(0, r2 )	U nd 

It	(M(u) + N(221 u) + 11(221 u))	 . .	.	'(26) 

for all u € UK (O, r2 ) and 1u > 0. 
Now we put r0 = win (r 1 , r2 ), then we prove that for each r € (0, r0) there exists 

a solution (,, ) of equation (10) with I - 2 1I, < a and JIT111 = r. Indeed, let V K (Uo)-
be the family of all UK (O, r) = U(0, *)n K with U(0, r)	U0 = U(0, r0) and 
r € (0, r0 ). Let r € (0, r0), so we have UK = U(0, r) n K € 'K (UO ). We consider the 
two following ctses:	 . 

a) In the case that M; N(2, .), 11(2 k , .) are compact mappings we take ka (UK , X) 
to be the family of all single-valued mappings F from U K into X of the form F 
= id - G,	 nt 

	

where G is a compact continuous mapping from 	into K. Since UK is

• closed convex bounded subset in a Banach space X, it' follows that there exits 
• continuous retraction a: X -* UK such that a(x) = xfor all x  U K . Now, for 
F € K a(UK , X),F = Id - g, we set G(x) = G(a(x)) and F- Id - 0, for.x € U(0,r).' 
It is clear'that 0 is a compact continuous mapping from U(0; r) into K. Thus, the 
Leray-Schauder degree of .P oñU(0, r) at the zero is defined, provided 0 4 .F(eU(0, r)). 
We denote it by deg (F, U, 0). 	 - 

Now suppose. that x € eU(0, r), F(x) = 0, we then have x= 0(x) € K. Froba this 
follows x € U(0, r) n K = aK U(0, r), and hence F(x) = x --- G(x) = x - 0(x) = 
Consequently, x € aK U and F(x) = 0. In other words, if 0 F(aK U), then'O F 
X (U(0, r)). Therefore, we can define degK a (F, U, 0) = deg (F, U, 0), provided 
0 0 F(eK U). This implies that for any F € 2K( UK, X), degKa (F, UK , 0) is defined, 
provided 0 q F(3K U). It is easily to verify that Axioms I and II are always satis-
fied.
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• b) In the case that the mapping Id - (1 1M + N(2,,) + 2 11 0- j , .), for I = 1, 2 
and for any fixed £1 1 t2 E [0, 11 is A-proper with respect to To we take YJK"(UK, X) 
to be the family of all A-proper mappings F with respect to r0 from U K into X of 
-the form F = Id - 0, where 0 is a mapping from U K into K. So, the fixed point 
index, denoted by IK(G, (J) of 0 on U is defined by FITZPATRICK and PETRYSHYN 
[6]. Hence, we can define deg K ' (F, UK, 0) = IK( O, U), provided 0 F(KU). Thus, 
for any F E C K b( UK, X), degK' (F, UK, 0) is defined, provided 0 F(eK U), which 
satisfies of course Axioms I and H. 

In what follows by 2KWK, X) and by degK (F, UK, 0), 1 = a or I = b, we 
denote C K a (UK , X) and degK (F, UK, 0) or K"( UK , X) and degK b (F, UK, 0), 
respectively, according to case a) or case b). Now we claim that 

degK (Id - M - N(2 1 , •) UK , 0) = (1}	 V	 (27)


for I = a, b. Indeed, we define the mapping R: [0, 11 XU K - X by 

1?(t, u) =- u - M(u) - N(t2 1 , u),	(1, u) € [0,1] XUK. 

Since ).0 is the smallest eigenvalue of the pair (M, N) with respect to K and 0 = dAo - 2, we then conclude R(t, u) == 0 for all I € [0, 1] and u € aKU. Hence, 
applying Axiom 11 yields 

degi (Id - M - N(2 1 , .), UK , 0) = degi (Id - M, UK , 0).	' (28)


Further, we define the mapping T: [0, 11 x UK -* X by 
T(t, u) = u - IM(u),	(1, u) € [0, 11 XUK. 

Assumption 2 gives T(t, u) + 0 for all t € [0, 1] and u € aK U. We apply Axiom II 
again to get 

degK' (Id - M, UK , 0) = degK' (Id, UK , 0) = {1}.	 (29) 
(In case i = a, deg' (Id, UK , 0) = deg (Id, U, 0) = 1, it' follows from the prop-
erties of the Leray-Schauder degree, and in case i = b, degK " (Id, UK , 0) = IK(O, U) 

{1}, it follows from the properties of the fixed point index defined by FITZPATRICK 
and PETRYSHYN in [6]). Finally, combining (28) and (29) yields (27). 

Now, to complete the proof of the theorem we apply Theorem 2 with the mapping 
F:AxU0 -*X defined by 

F(2, u) =u - M(u) - N(2, u) - H(2, u),	(2, u) € A x U0, 

-	and the mapping A: UK -^- X define by 

A(u) = u - M(u) - N(1 1 , u),	u € UK. 

It follows from (27) that degK' (A; UK, 0) = {1}. Evidently, for any fixeftt € [0, 1] 

IF(). 1 . ) + (1 - I) A = Id - (M + N(2 1 ,.) + tIJ(2, •)) E K t (UK , X). 

This shows that the condition I of Theorem 2 is satisfied. Further, we have 

IIF ( A i,u) - A(u)ll = ll11 (A , u)Il 5 1ju - 111(u) - N(2 1 , u)lI = IIA(u)ll 

for all u € UK(0, r) (this follows from (25)). Therefore, the condition 2 of Theorem 2 
is also fulfilled. Now, it follows from inequality (26) that ,iu0 q F(221 aK UK ) for all 

> 0. This implies that the condition 3 of Theorem 2 is also true. Consequently, 
the further proof of this theorem follows immediately from Theorem 2 1
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4. Application 

In this section we shall apply Theorem 2 to consider the existence of bifurcation 
solutions of elliptic differential equations of second order. Let C be a smooth bounded 
domain in R' so that the Sobolev embedding theorem can be applied. By L(G) 
we denote the space of all integrable functions / from C into R with the norm 

ll/IIL = (fi/(x)I P dx) P < +00. 

Further, let = (fir, ..., fl,) be a n-tuple of nonnegative integers and 
n 

= ax '	... ax	JI 

be the standard derivative notation. Also let Ck() , k = 0, 1, ... denote the collec-
tion of all functions from C into R having continuous extensions to W. For it € Ck(G) 

we define	 - 
k 

IIulIk =	sup IDu(x). 
jsssl XEG 

Further, let 

W'(G) = {u € L(G): Du € L(G), 0	11. 

with the norm	 . 

IIuII:. = ( .^: IIDPullV'. 
\OIflI1	/ 

Now, denoting by (G) the set of all infinitely many times differentiable functions 
on 0 with compact supports in 0, we define t4'(G) as the closure of .(G) in W'(G). 
Then it is well-known that W'(G), W 1 (G) are separable .Banach spaces, reflexive 
for p> I and Hilbertian for p = 2. 

Let the operator L be defined by 

L(u) = -E a(x)	+ E b,(x) - + c(x) u, 
ax i 	,= axi 

where à, have Holder continuous first partial derivatives and b i and  are HOlder 
continuous and  

a,,(x) ij	e !' 42,	
) E R', 

s.j=1 

for some constant e > 0. Furthermore, we assume that (Lu, u) > 0 for all u 0, 
u € 1V2 '(0), where (.,) is the inner product in W2 3 (0) defined by 

(it, v) =J u(x) v(x) dx +f Du(x) Dv(x) dx. 

In the sequel we study the existence of bifurcation solutions of the elliptic partial 
differential equation 

L(u) = d(x) it + 2(x) g(x) ii + h(#), x, ,u, Du),	 .	(30) 
(); it) € L0(0) x(W2 2 (G) n
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We need the following assumptions: 
1. d and g are nonnegative functions of class CO(G). 
2. The function h is continuos and sati'sfies: 

i) h(s, x, 0;q) = 0 for all s € It, x € G,q € R', 
ii) Ih(s, x, pj, q1 ) - h(s, X, P21 2)I . ( l p - P21-+ 1i1 q2In) for some con- 

stant a > 0 which does not depend on s € R, x € 0, where .,, is tle Euclidean 
norm in It",	 - 

iii) h(s, x, p, q) = O ( I p + II) as lI + JqJ. --> 0 uniformly for s € It, x € G, - 
iv) h( . , x, p, q) is continuous in s e It uniformly for (x, p, q) froiii any bounded 

subset of G x It x It",	 - 
v) ph(s, x, p, q)	0 for all (s, x, p, q) € R x  X It x II". 

3. L(u)	td(x) u for, all I € [0, 11 and u € 14' 2 '(0) with it	0 and u(x)	0 for 
all xEG.	 - 

4. Let A, 22 € L2(G). We define A -. 2 iff A 1 (x)	22 (x) for almost all x E 0. In

the following we assume that 2 0 € L2 (G) is the smallest function which satisfies, the 
equation	 - 

L(u0 ) = d(x) u0 +20(x) g(x) u0 

for some u O E. K = (it € W2 1 (0): u(x) 0 for all x € 0} and it0 0. Furthermore, 
we assume that for any neighborhood V of ;,0 in 112(0) there exists A € V such that 
2 –< A and that the equation 

L(u) =d(x)u + (x)g(x)u 

has no solution it € K, it == 0. 

Theorem 4: Let assumptions 1-4 be satisfied. Then (2, 0) is a bifurcation solution 
of equation (30) in the following sense: for any given e > 0 there is a r0 > 0 such that 
for each r € (0, r0) one can find at least two solutidns ()., u 1 ) and ().2 , u2 ) of equation 
(30) with ). i € L2 (G), tl2 — 20IIL, < e and u i € W2 2(0) n 14' 2'(G) and 114111.2 = r, 
I = 1, 2. Furthermore, u 1 (x)	0 and u2 (x)	0 for all x € G. 

Proof:' Put H0 = W2 2 (G) n J4' 2 1 (0). By Stampacchia's maximum principle (bee 
[22: Theorem 3.6]) there exists a constant Yo > 0 such that for each y> yo the 
operator P = yitl + L is a linear honieomorphism from H0 onto L2 (G) and. there 
exists a constant c > 0 such that 

!' IjDuIl	c IIP,,(u)IIL, for all it' Eli0. 
P1=2 

Take a fixed number > yo large enough so that Stampacchia's maximum prin-
ciple (which states that if, when y is sufficiently large, u € W2 2 (G), u(x) = 0 on 
and L(u) (x) + yu(x)	0 for allntost all x € 0, then u(x) ^ 0 for all x € 0) can be

applied to P = yid + L. We have P: H0 -> L2(0) and hence P 1 : L2(G) - H0, 

-furthermore, this maximum principle implies that P I (K)	K and P1(—K)

c —K. Indeed, let it € K, we have P 1 (u) € 1i = W2 n 14'2' and thus (P'(u)) (x) 
=OoneGand 

L(P 1 (u)) (x) + (P1(u)) (x) = P(P 1 (u)) (x)'= u(x) ^ 0 

for' all x € G. Applying the maximum principle just mentioned above yields 
P'(it) (x) -^> 0 for all x € 0. This shows that P 1 (u) € K and hence 1' 1 (K) c K. 
Analogically, we have P 1 (—K) c: —K.
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Now, we can easily verify, that the equation (10) is equivalent to the equation 

u + L(u) = ( + d(x)) u'+ 2(x) g(x) u + s4(2(x), x, it, Du) 

and then to  
U = P71(( ± d(x)) it + 2(x) g(x) it + h(2(x), x, u, Du)).'	 S 

Further, we define the mappings 

M(u)	P'(( + d(x)) u),	N(, i) = P 1 (2(x) g(x) u) 

I1(2,u) = P 1 (h(2(x) , x, it, Du)),	(2, u) € L2 (G) x W21(G). 

First of all we remark that any bounded subset in W2 2(G) is prècompact in W21(G) 
by the Sobolev embedding theorem. Therefore, P is a compact continuous linear 
mapping from L2 (G) into W2 '(G). Since d, g are nonnegative functions and h has the 
property 2.v) we then 'conclude that M(K), N(A, K), 11(2, K) K and M(—K), 
N(2, —K), 11(2, —K) c —K for all 2 > 0. Further, it is easy to see that for any 
fixed 2, M, N(2, .) are continuous mappings, moreover, the flapping N( . , iL.) is con-
tinuous in 2 E L2 (G) uniformly for u from any bounded subset of W21(G). 

We now prove that for ahy fixed 2 E L2 (G), H(2,.) is continuous and 11(2, iL.) 
= 0 (IIn 1I1,2) as I IU II1.2 -* O'uniformly for A € L 2 (G). Indeed, by the hypotheses in as- 
sumption 2 we have 

I h(2(x), x, u(x), Du(x))I = h(A(x), x, u(x), Du(x)) - h(2(x), x, 0, 0)1 
x (lu (x)l -+ lD'u(x)l).	- 

Hence, 
f h(2(x), x, u(x), Du(x))1 2 dG	2J (l u (x)l + IDU(X)ln)2d0 

2 
f( 2 + Du(x)i 2 '+ 2 lu(x)l lDu(x)l) dO G  

-f- UDu IIL -1- 2 lluilL ll .Du IlL,) . .	 S 

This shows that if u € W2 1 (G), then h(,(x), x, it, Du) € L2 (G). Therefore, we can 
define the mapping R0. 1 .): W2 1 (0) - L2 (0) for any fixed A E L2 (0) by 

R(2, u) (x) = h(2(x), u(x), Du(x)). 

Wehave	 S	 - 

•	IIR(A, Urn) 
—,R(;., u)jft	 S	 S	 - 

-	

f Ih(2(x), X, ?Lm(), DUrn(X)) - h(2(x), X, it(x), 1)u(z))2 dO 

u(x)j + Durn(x) — Du(x)l) 2 dO 
G

	 S - 

	

2(ftU — uII. + IIDUrn - DUIIL. + 2 hUm - UIIL. jDit, - D1IIIL.,	- 

and hence,	 .	S	 ' 
5	 5 

hj.R(2, u,) - /?(2, u)IIL.	 S 

^5 
(hlUrn	III + hlThtm - DUIIL. + 2 hUm - UIIL.hjDUm - DuIIL,)1/2
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for any sequence {Um} in W2 1 (G), u,, -* u. This shows that R(A, •) is a continuous 
mapping. It is also easy to verify that R(2, •) is bounded and IIR(2 , u)lj = 0 0lu111,2) as 
1u111.2 -* 0 uniformly for 2 E L2 (G). We have 11(2, u) = P- 1(R., u)), and thus for 
any fixed 2 E L2 (G), 11(2,.) is a compact continuous mapping and IIH ( 2 , u )Il = 001u111.2) 
as 1 u111.2 - 0 uniformly for 2 E L2 (G). Furthermore, we can easily prove from as-
sumption 2 that H( . , n) is continuous in 2 uniformly for u from any bounded subset 
Of W21(G). 

Further, assumption 4 implies that 20 is the smallest eigenvalue of the pair (M, N) 
with respect to K and also with respect to -K which is isolated from the right 
side: Therefore, for given e > 0 we can choose A j E L2 (G), 112 i - 20 11L, < e, I = 1, 2, 
2 - 2 -< 22 and A j is not an eigenvalue of the pair (M, N) with respect to K (or 
-K, respectively), i = 1, 2. Let tt0 be an cigenvector of the pair (M, N) with respect 
to K corresponding to 2. It is clear that -it0 is an eigenvector of the pair (M, N) 
with respect to -K. Therefore, we can apply Lemma 3 and Lemma 4 to conclude 
that there exists a r0 > 0 such that 

hjU(2, u)1112 ;5; 1lu - .frf(u) - .N(2 1 , 4112 
and

u - M(u) - N(22 , u) - 11(221 u) =1= iuo (+ -zi-t0) 

hold for all uEU0 = U(0,r0)nK, z >0 (or it EU0 = U(0,r0)n(-K), ,u >0, 
respectively). 

Let '( U0I ) ((U0- )) be the family of all subsets of the form U = U(0, r) n K 
(or U = U(0, r) n (-K), respectively) with 0. < r <r0. By K (U, X) (c.f6'K(U,X)) 
with X = W2 1 (G) we denote the class of all functions F from U(0, r) to X of the 
form F = Id - T, where T is a compact continuous mapping and T(U) K (or 
T(U) -K, respectively). Thus, for any F E K(U, X) (F E JK(U, X)) 
degK (F, U+, 0) (or degK (F, U, 0), respectively), is defined as in part a) of the 
proof of Theorem 3. 

We now claim that 

degK (A, U,0) = {1}, -	 (31) 

where the mapping A is defined by 

A(u) = u -M(u) - N(2 1 , u),	u E U(0, r). 

Indeed, we define the mapping B: [0, 1] x U 0 -* X by 

B(1, it) = u - M(u) - N(12 1 , u). 

Since 2 is the smallest eigenvalue of the pair (M, N) with respect to K (-K, re-
spectively), we then conclude that B(t, u) r= 0 for all t E [0, 1] and u E I3K U-. Using 
Axiom II yields	 - 

degK (Id - M - N(2 1 , .), U1, 0) = degK (Id - M, U*, 0).	 (32) 

Further, we define the mapping C: [0, l]x U0 -± X by 

C(€, u) = u - P 1((p + td(x)) u).	- 

Suppoe that C(i, IZ) = 0 for some 1 E [0, 11 and 11 E OK U±, we then imply pi + L(u) 
= 7l + 1d(x) 11 and h'enee L(li) = id(x) l. This contradicts assumption 3. Therefore, 
we conclude C(t, u) == 0 for all I E [0, 1] and u € aKU. Using Axiom 11 again we 
have

'degx (Id - M, U, 0) = degK (Id - P'( .), U, 0).	 (33)
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Finally, we define the mapping D: [0, 1] x U0 - X by 
D(t, u)	u - tP1(u) 

Suppose that D(l, i) = 0 for some 1 € [0, 1] and u E	We infer p + L() 
=	or L()	(1 -	and hence 0 <(L(ii), ii) = (1 - 1)p(ii,	0, which 
isinipossible. This implies D(1, u)	0 for all t € [0 1] and u € aK U-. We use Axiom

II again to get 

degK (Id - P'(p .), U, 0) = degK (id, U, 0) = {1}.	 (34) 

Combining (32)—(34) gives (31). 
Lastly we put X = 1' = W2 1 (G) I D =. Uo and. 

F(2, u) =-v - M(u) - N(2, u) - 11(2, u) I	€ L2 (G), U € U0) .4(u) = u - M(u) - N(2 1 , u) 

Then, to complete the proof it remains to apply two times Theorem 2: with X, Y, 
D, F, .4, K (Uo), 3K (U, X) and K = {u € W2 1 (G): u(x) 0 for all x E O} and with 
X, Y, D, F, A, 'K (Uo) as above, -9K ( U  X) and —K = {u € W2 1 (G): u(x) 0 for 
all xEG} 
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