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Es werden einige Ergebnisse iiber das Verschwinden ecines veraligemeinerten Abbildungs-
grades fiir mengenwertige /Abbildungen bewiesen und auf die Untersuchungen von Bifur. -
kationslésungen der Gleichung F(4, z) = O in einem Banach-Raum angewandt. Als Spezial.
fall wird die Abbildung F(Z, u) = v — M{u) — N(A; w) — H(A, v) mit dem/Parameter 4 aus
einem normierten Raum betrachtet. Als konkrete Anwendung werden Bifurkationslésungen
einer nichtlinearen elliptischen Differentialgleichung zweiter Ordnung untersucht.

Hekrotopuie pesynbrarn 06 ucuesHoeHun 06061éntiolt creneHn oTobpasieHMA NJIA MHOIO0-
3HAUHHIX OTOOpasenuit MOKA3KIBAIOTCA M NPUMEHAIOTCA JA HCCIefloBaHuA GndypKanmoH-
_ HHIX peweHuit ypaBuenun F(4, ») = 0 B 6anaxopom npocTpancTse. Hak cnenuaibHuA cayyai
paccmarpusaeTcs otobpakenne F(A, u) = uw — M(u) — N(A, w) — H(A, ») ¢ mapamerpom 2
113 HOPMMPOBAHHOrO. IIPOCTPAaHCTBA. B kauecTBe npuioxenusa uccaenyiorca Oudypranm-
OHHBIC PEUICHWUH HeJuHeHHOro dmunTudeckoro aupdepennnaabHOro ypaBHeHUs BTOPOro
nopnnxa

Some results on the vamshmg of a generalized degree of mulf,lvalued mappmgs are proved

.and applied to study bifurcation solutions of the equation F(4,u) = 0 in a Banach space;
as a special case, F(4, u) = v — M(u) — N(A, ) — H(2, u), where the parameter 4 is from
a'normed space. For concrete application there are considered bifurcation solutlons of a non-
lmea.r elliptic dxfferentml equation of second order.

. . [
. .

1. Introduection - o ’ A
The degree theory for.nonlinear multivalued mappings, which plays an important _
role in functional analysis, in theories of ordinary and partial differential equations
and in some other fields of applied mathematics, has received very much attention
from mathematicians. GRANAS [8] and Ma [17] extended the Leray-Schauder degree
for compact single- -valued fields to the ‘degree for compact multivalued ficlds in
locally convex Hausdorff spaces. BrowbDER and PETRYSHYN [1, 2] defined the degree
for a class of multivalued mappings between Banach spaces which are approximation
proper (A-proper) with respect to some approximation scheme. This degree can be
used to establish a degree theory for some other class of multivalued mappings..
KRrauss'[14] introduced the dcgrec for multivalued mappings satisfying an e\(tremely
weak continuity hypothesns i.e. for tnples (A4, 2, p) which are admissible in the
sense of Definition 2 in [14]). Let X be .a Banach space, K = X a closed and convex
cone, T: Dy = Dn K — K a mapping such that d — 7' is A-proper with the
projectionally complete scheme I'y =-{X,, P,} with P,(K) & K. FrrzPaTRICK and

" PETrYsnyx [6] defined the fixed point index of 7' on D with respect to K, denoted
by Ix(T, D). Further, some other definitions of degree for more geneml types of
multivalued mappings were constructed by different authors.

In what follows, by Z we denote the space of all integers and by Z’ the set
7 v {—o0, +oo}. Let X and Y be real locally convex Hausdorff spaces, K and D .
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- non-empty subsets of X with Dy =D n K 0. Let. E’K(D) be a family of non-
empty subsets of Dy. Suppose that -Q € 5’,\( ). We write 9,2 for the boundary
of Q relative to K. Further, by Bx(2, ¥') we denote the class of multivalued mappings
F from Q into Y such that if*0 ¢ (9, 2) then one can define the topologlcal degree
of ¥ on 2 at the zero, degy (F, 2, 0) — 7', satisfying the following axioms:

Ax10m I: Tf degy (F, 2, 0) =+ {0} then there exists a point % € 2 with 0 € F(@).

Axiom T1: Let H: [0, 1] X £ — 2¥ be a multivalued mapping such that for any
fixed t € [0, 1] H({i, -) € Bx(R2, Y) and H(-, z) is' upper semicontinuous uniformly to
‘z from any bounded sibset of“0,£2. If 0 ¢ H(t, u) for all te [0, 1] and u € 9,2,
then ,

degy (H ), 2, 0) ="degy (H(0, -), £, 0).

The main purpose of this paper is to show that under sonme necessary addmonal .
assumptions on the multivalued mapping ¥ € Bx(R2, Y) we have

degy (F Q,0) = {0} provxded 0 ¢ F(oxQ).

Further, we shall a.pply the obtained result on the vanishing of the degree of the
mapping ¥ as above to consider the existence of bifurcation solutions of the equa-
“tion

FQ, u) = 0, C (4, u) € AX Dy,

where A4 is an e;)en subset of some metric space, D, K are subsets of a Banach space
X with Ocint D and Dy =D nK %0 and F is'a mapping from. A X Dy into
another Banach space Y. -
As a special case we cons1der the mapping F of the form’
F(). u)_u—M(u)— N(i,uw) — H(2,u), (A u)€ AXDy, .

~

where /1 is an open subset of some normed space on which a partna.l ordering —< is

defined. D is a subset of a Banach space X with 0 € int D, and K is a closed and . .

convex cone in X; for any fixed 2 € A, M, N(4, -) are linear continuous mappings
from Dy into X, and H: A x Dy - X is a ma.pping with-H(2, 0) = 0 for all 7 €A’
and [[H(2, )|l = o(hull) as [lul| — 0. We shall show thatif %, € A is the smallest eigen-
value .of the pair (M, N) with respect to K which is 1solated from the right side
(see the defition below), then (3, 0)is a bifurcation solution of the equatlon

F(/ u) =0, (4, u)EAXDK R

Lastly, we apply the obtained result to investigate bifurcation solutions of the
elliptic partial differential equation of second order in the form- 4

L(u) = d(z) v + A(z) g(x) © + k() x), z, u, Du),
(%, w) € Ly(G) (W22(G) n W, (G))
where L is defined by

“) = - 2 a,,(x)

2 6 3 +2b(x—+c(x)u
i

ox

’

Let 2, be the smallest function from L,(G) satlsfymg
I;(uo) = d(z) uy + Ag(x) g(x) uy, for some w4 € W,l(G),
uy == 0, uo(z) = 0, z€ @G S
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and 4, is isolated from the right side (see the definition below). Under some additional
conditions on the functions d, ¢, and A, we shall show that the above equation has
at least two branches from the solution (2, 0). This implies that the above equation
has (%4,0) as a bif,urcation solution. .

°

2. Notations and preliminaries

’

Throughout this pa}f)ér, by X and Y we denote real locally convex Hausdorff spaces.
Given subsets D, K & X with Dy = D n K = 0, we denote by D, dxD and 20 the
. closure of D in X the frontier of D relative to K and the family of all subsets of D,
respectively. Further @ stands for the empty set, N for the set of natural numbers,
and R for the set of real numbers. In the case that X is a normed space, U(0, )
will indicate the open ball with the center at the zero in X and with the radius
7 > 0. For any multivalued mapping ¥ from D into ¥ we write F: D —2¥. We
recall that F is-called upper semicontinuous at a point uy € D if for every open set
QS Y, Fluy) & Q, there exists a nelghborhood U of u, such that F(u )C @ holds
for all # € U n D. The identity mapping is always denoted by 7d. .

Let €x(D) be some family of non-empty subsets of D n K. For 2 ¢ €4(D) bv
RBr(2, Y) we denote the class of multivalued mappings F from £ into Y for which
one can define degy (F, £2, 0) (read: the degree of F-on Q at the zero), provided
that 0 ¢ F(9x2), which satlsfles Axiom 1 and Axiom II just mentioned above in
the Introduction. -

" Example 1: Let X be a locally convex Hausdorff space, D & X an open subset, K = X,

. let €4 (D) be a family of non-empty open and bounded suibsets of D. For Q € Ex (D) let Bk (2, X)

be the class of all multivalued mappings ¥ from-Q into X of the form F = id — @, where ¢
is an upper semicontinuous compact multivalued mapping from Q into X with G(z), z € 0,

non-empty, convex and compact. Then deg (F, 2, 0) is well-defined by Graxas [8] and Ma
[17), provided that 0.4 F(9£2). It satisfies, of course, Axioms T and Il mentioned ubove. .

Example 2: Let X and Y be Banach spaces. The scheme I' = {X,, P,; Y, Q) is called
a . projectionally complete scheme for (X, Y) provided that X, S X and Y, & Y are se-,
quences of monotonically increasing finite-dimensional subspaces with dim X,, = dim Y, for
. each 7, and P,: X - X, and Q,: ¥ — Y, are linear projections such that P,x -z and
Q,,J—»yforalla,éXahderWchuve . '

Definition 1 (see (18)): T: DS X~ Y is sand to be A-proper with respect to the pro-
jectionally complete scheme I if _

() T,:D, < X, > Y,, where D, = Dn X, T,, = Q,T/D,, is continuous for each # and
(ii) if {zn, [zn, € Dp} is any bounded sequence such that Tp(zp) — g for some g in Y,
“then there exist a subsequence {z,,,,} and z € D such t,ha‘t Zny, = x and T(z) = g.
Inthecase X =Y, X, =Y, and'P = @, we denote the projectionally complete scheme
(X, Pos X, Py} for (X, X) by o = {X,,, P}, Furthermore, if ||P,]| = 1 we say that X is
a 7, -8pace. ln [18] we can see that: .

(i) If X is a 7,-spaceand F: DS X —» X is ball- condensing (see the definition in [18]),
then 7' = @d — F is A-proper.

. (i) Let X be reflexive with a projectionally completc scheme I = {X,, P,; ¥, ,,} for
A{X, X*), where_X* is the dual space of X and' @, = P,*: X* - Y, = R(Q, ), with R(Q,)
being the range of @, Let T: X — X* be strongly monotone ie. (Tx — TJ, T — y) & cllz — il

- for ull z,y € X and for some ¢ = 0, and either continuous,.semicontinuous, or \\eul\ly con-
tinuous, then 7" is A-proper w ith respect to I').

(iii) Let X, X* be as in (ii) and let 7: X — X* satisfy condition (S), i.e. whenever z, — z

,and (Tz, — Tz, x, — z) = 0 imply that z, - z; where -~ and — denote the weak and the
strong convergence, respectively, then T' is A-proper with respect to I',.

'
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Further examples of A-proper mappings can be found in []8] \Iow let DE X with
int D & 0, take K = X and G’K(I)) = (D), the fa.mnly of all open and bounded subsets of D,
and for Q2 € 8(D), Br(2, Y) = RB(Q, Y), the class of all A-proper mappings with respect to
Ir={X,, P, Y,Q,) from Q into Y. Thus, for any Q€ §(D), F € B(2,Y), 04 F(3Q),
deg (#, 2, 0) is defined by BRowper and PeTrRYSHYN [1, 2]. It always satisfies Axioms I
and IT mentioned above. ' |

* . Example3: X is supposed to be a real Banach space, K S X is a closed convexo cone,
.i.e. K & Xisaclosedsubsetand z,y € K, > 0 imply z + y € K and oz € K:and K n (—K)

= {0}. Suppose that D € X with Dy = D n K == 0, 0 ¢ int D. Let 6x(D) be a family of
non-empty open and bounded subsets of Dg. For Q € 84 (D) let By(RQ, X) be the class of all
single-valued mappings ¥ from 2 into X of the form F = id — T which arec A-proper with
respect to I, (see the definition in _Example 2) and ’[‘(.Q) S K. Thus, for € Ex(D),
F € By(2, X), 04 F(0x02); the fixed pomt index of 7 on Q with respect to K, denoted by
1y (T, Q), is defined by FrrzraTrick and PETRYSHEYN [6]. We can put degy (F, 2,0) = Ix(T, 2)
and we can see that Axioms T and II mentioned above are always satisfied.-

Example4: Let (X, Y) be a pair of dual spaces, D S X a subset. Take K = X and
Ex(D) = E(D), the family of all non-empty open subsets 2 of D which are finitely bounded
(i.e. 2 n X, are bounded subsets for each finite-dimensional subspace X, of X). For 2 € &(D)
let B2, Y) be the class of all multivalued mappings F from £ into Y such that (F, 2, 0)
are admissible triples, provided 0 ¢ F(9), in the sense of Definition 2 in [14]. Then deg (F, £2, 0)
is defined, provided 0 § F(892), for any F ¢ J?(Q Y) by Krauss in [14] and it sat,lsfles Axioms
I and II mentioned above. . )

We recall that a multivalued mapping F: D — 2Y is called of type S, if for any
sequence {z,} = D, z, = zand {y,} = Y, y, € F(2,), y» — yand lim (z,, y,) = (, ¥),
where (-, -) denotes the pairing between elements of X and. Y, it implies that z, — 2.
It Has been shown in [14] that if F is a multivalued mapping of type S, and 2 € £(D)
is a-relative weakly compact subset, then (F, 2, 0) is admissible, provided that
0 d F(092). Thus, deg (F, ©2,0) is defmed (see [14: Lemma 2).

" Definition 2: Let D,K S X and let A be a subset of some space. Suppose that
M:D — Y and N: A xD —> Y are mappings.
a) A point i, € A is said to be an eigenvalue of the pazr (M N) with respect to K
if there lsauOEDK=DnK u#y == 0 such that ‘
ug = M(ug) + N(2o, %) : ' (1)

b) Let A be an open subset of some normed space on which a partial ordering <

is defined. The ecigenvalue 2, of the pair (M, N) with respect to K is called smallest,

if 2 < 29, 2 == 7y, implies that 2 is not an eigenvalue of the pair (M, N) with respect

to K.
. ¢) Let A be as in b). The eigenvalue 4, of the pair (M, N)'with respect to K is’
called dsoluted from the nght side if for any neighborhood V of 4; in A there exists

a2 €V with 2y < ) and 4, is not an cigenvalue of the pair (M, N) with respect
to K

vd) The point uy € Dy satisfying (1) is called an eigenvector of the pgz'r (M, N) with
respect to K associuted to 7. - !

Let us consid.er the multivalued equation .
0 = F(2,0), (A u) e AxDg, . @)
where A isa metric space, D & X isasubset withO € int D, K & X withDy = D n K

%0, and F: A X Dy —2¥ is a multivalued mapping wmh {0} = F(2, 0) for all

).E/l.

~

7

\
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. Definition 3: a) A point (4, 0) € 4 XDK is said to be a bifurcation solution of
equation (2) it for any neighborhood ¥ of /, there is a neighborhood U, of the zero
in X such that for each neighborhood U of the zero, U = U,, one can find a solution
(%, %) of (2) with 2 ¢ V and @ € aU.

b) A point /45 € A is said to be an asymptotzc bifurcation point o/ equalzon (2) if
for any neighborhood V of 2, there is a neighborhood U, of the zero in X such that
for each neighborhood U of the zero, U, & U, one can find a solution (7, @) of (2)
with-7 € ¥ and u € ou.

The bifurcation problem of equation (2) was studied by many -authors, especially, in [9]
and [10] KLUGE investigated this problem with a parameter from, in general a metric space.

3. The main results .
First of ‘all we prove the following theorem which shows that under some additional
assumptions on the mapping ¥ we have degk (F, 2, 0) = {0} for Q€ &4(D) and
F e By(Q2,Y) with 04 F(8,2). From this theorem we shall obtain some results
on the existence of eigenvalucs of some pairs of multivalued mappings and on the
existence of bifurcation solutions and of asymptotic points of equations in the
form (2). But, we consider in this paper ‘only the existence of bifurcation solution.

Theorem 1: X, ¥, K, D, Ex(D) and By(2, Y), for Q € Ex(D), are supposed to be
gilven as in Sectzon2 Let F e By(2,Y) be a multivalued mapping. Suppose that
there exist an upper semicontinuous multivalued. mapping G: Q —2Y and a closed
neighborhood U of the zero in Y -and a pomt Yo € 0U such that the /ollowzng conditions
are satisfied:

1. —GEx2) n U = 0, - -

2. —L\’l/o 4 G(0x9Q) forallx = 1,

3. F — &G — Blyo} € Bx(2, Y) foralla 2 0, ﬂ>0

4. G(9xkR2) and F(04x92) are bounded subsets in Y and for any « > 0 there exists
n, € N such that ny, § (F — aG) (2),

5. F(u) nuG(w) = 0 for all p > 0. and u € Oy 0. ’I'hen deg; (F, Q, O) {0}, 7)70-
vided that 0 § F(9xQ): ~
Proof: Let p be the Minkowski function of U (see in 20}, for example), i.c.
p(z) = inf {x > 0: xz € «U}. Thus, we have p(yo) = 1, because of yo € 0U. Now, we

claim that there exists an & > 0 such that .

F(u) n (xG(u) + ntyo) =.0 ‘ ' 3)
holds for all # € N, ¢ €70, 1] and u € 84 ®. Indeed, if th(, assertion were invalid then-
for each-m € N we could find ¢, € [0, 1], %,, € 6,\!2 and n, such that F(u,) n (mG’(u,,,,

+ Npluyo) = ©. Therefore we can choose y,, € F(u,) n (mG(u,,,) + 2mlmyo) such that
Y¥m can be written in the form Ym = M2y, + Nylnye, With 2z, € G'(u,,,) Thus follows

N

tm 1 1 ,
. P zm:!——tm?/o =P |5 Un =—p(ym)-

" Since F(0x£2) is a bounded subset, the left side converges to zero for m — co. l’urther
the boundedness of. G(@KQ ) implies that P(2m) < +oo for all m € N. Hence

. n,
0 < 7’: m = —— 5m27(?/o) =P ( tm?/o)

: 1
é 77(27;1) + P % + ——lng?/o é p(zm) + — p(?/m) < +°°
m ) m

. 4
— .
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'

for all m € N greater than some m, € N. Therefore, without loss of generality, we .

Ny . N .
may assuine that — ¢, -> & 45 m — oo, and then .
m

-
L -

A O é j)(znx + &:I/O) § (Z,,, + tmyo) + m ~ P(Tlo) -> 0

y .
as m —> oo. This implies that z,, — —&g, as m — oo. Since z,, € G(9, Q) and — G’(@AQ)
nU =0, we then deduce & = 1 and —&ay, € G(6,2), which contradicts the condi-

" tion 2 that says —aye §. G(aKQ for all x = 1. Thus, (3) is proved.
- Now, for any n € N we define .

N\ l e ' .
H,(t, v) = F(u) — aG(u) — nly,, (¢, u) € [0, 1] xQ,

where « is taken fron‘1 (3). Then (3) implies that 04 H (L, u) for all 1€ [O 1] and
u € 9. Using Axiom IT yields .

degK (F — G, 2,0) = degg (F — &G — ny,, 2,0) , 4)

for all » € N. Now, we clamﬂ that degK (F — a@, 2,0) = {0}. Indeed, assume in
contrary that deg,\ (F — oG, Q,0) = {0}. This implies degx (F — oG — ny,, 2, 0)
== {0} for all n € N. We usc Axiom I to conclude that for any n ¢ N there exists
u, € .Q such that O € (F(u,) — aG(u,)= ny,). Hence, ny, ¢ (F — «G) (@) for all
n € N. This contradxcts the condmon 4. Further, we define : .

K(t, u) = F(u) tocG(u), At, w) € [0, 1] X Q.

Using condition-5 gives 0 ¢ K(t, u) for all ¢ € [0,1] and u € 6,(.!7 We use Axiom II
to conclude that degy (F,2,0) = degy (¥ — &G, 2,0). As was proved, dégy, (F — & G,
2, 0) = {0}. Consequently, we obtian degy (F, 2, 0) = {0 } | ’

For the proofs of some corollanes of this theorcm we need the following lemma.

Lemma 1: Let G: D — 2Y be a, multivalued mappmg and U be a neighborhood 0/
the zero vn Y such that

<

aUn(Y\co(G(aK ) ui0)) * 0. - o
Then tlzere exwsts a point yy € OU such that ay, § G(@D) /or all x = 1.

Proof: Indeed, if the assertion were untrue: then for each y € 6U we could seck
aly) 2,1 such that a(y) y.€ G(@D). For arbitrary u € 8U we have

u 1 : P
y = a(u) =@ + (1 — m) 0 E co (G(0D) v {O})'.
This implies that 8U = co (G(aD) u {0)) and hence 8U n (¥ \ co {G{aD) u {0})) = @,
and we have a contradiction §

Remark 1: (i) Suppose that Z is a proper closed subspace of ¥ and G: D — 2¥ is a multi. -
valued mapping such that G(9D) S Z, then for any neighborhood U of the zero in ¥ we have

- U n (Y \ co (G(3D) v o)) * @.
Indeed, since G(8D) S Z it follows that co (G(eD) v {0}) & Z.-1f 8U f (Y N\ co (G(2D) u {0}))
= O.then eU S co (G(2D) u {0}) & Z and hence U & Z. This implies Z = ¥, and we have

-
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a contradiction. Consequent,ly, for any nelghbo;hood U of the zero in ¥ there is a y, €U
such that ay, ¢ G(8D) for all & = 1. N

(ii) If K is a closed and convex cone in ¥ and G: D - 2¥ is a multlvalued mapping such
that G(oD) € K, then for any neighborhood U of the zero in ¥ we have

a8l n (Y N co(G@D)v0})) + &

The proof is similar to the previous one. Hence, for any neighborhood U of the zero in Y
there is a y, € 8U such that ay, § G(aD) for all o = 1. Moreover, if G(D) & K then- there is
a 2, &= 0 such that o2y § G(D) for all « > 0.

‘Lemma 2: Let X be a quasi-complete barrel space with dim X = +coand M — X
be a precompact subset. Denote by Z the smallest closed subspace of X containing the set
co (M — M), then Z is a proper closed subspace of X. :

Proof: Suppose that Z = X. This implies that &6 (M M) is an absolutely
convex closed and symmetric subset which is absorbing in X. But, on the other
hand, since M is a compact subset, hence €6 (M — M) is also a compact subset.
This contradicts the hypothe51s that dim X = foo i

Remark2 It follo“s from Lemma 2 and Remark 1 that if F: D — 2Y, where D is a
bounded subset of X and Y is a quasi-complete barrel space, dim ¥ = +o0, is a compact
multivalued mapping (i.e. # maps any bounded subset into a precompact subset), then F(D)
is contained in one proper closed subspace of Y. From this one can conclude that for any
neighborhood U of the zero in ¥ there exists a y, € U such that ay, § F(D) for all & = 1.

Corollary 1: Let X, Y, K, D, 8x(D) and Bg(2, Y) for 2 € Ex(D) be the same as
in Theorem 1 and F € Bx(2, Y) with F(Q) bounded. In addition, assume that there
exists w zg € Y, zg %= 0 such that F — azy € B(2, Y) for all « = 0 and «z, § F(@KQ)
for all « > 0. Then degy (¥, 2,0) = {0}, ;movzded that 0 ¢ F(@KQ)

Proof: Since z, & 0, there exists a closed symmetric neighborhood U of the
zero in 'Y such that z, ¢ U. Let p be the Minkowski function of U. Choose &y > 0
such that Plagzo) = 1 and put y, = gz, We can easily verify that y, € dU. Further,
set G(u) = (&g + 1) 20, u € 2. It isa snnple matter to show that G, U and y, satisfy
all assumptlons of Theorem 1.  Hence, to complete the proof it remains to apply
Theorem 1 1

Corollary 2: Let X be a quasz’-completeAbarrel ih/zbu‘te-dimensz’onal space, D= X «
subset, F: D — 2X g compact upper semicontinuous multivalued mapping on D. Suppose
that for un open bounded Q2 of D there exists a closed symmetric neighborkood U of the

zero in X-such that S U and F(82) n U.= 0. Then
deg (zd_ F, Q, O) = deg (id + F, Q’ 0) =. {0}

where .dcg (1d 3 F, Q,0) is the Leray-Schauder degree of id 4 F with respect to Q
at 0 de/med by GRA\AS [8] or by Ma [17].

Proof: Let E(D) be the famlly of all open bounded subscts of D and B2, X),
for Q € €(D), be the family of all multivalued mappings 7' from £ into X in the
form 1" = id — H, where H is a completely continuous multivalued mapping on D.
Thus, for any 2 € €(D) and 7' € B(2, X), deg (T, 2, 0) is defined by Ma [17], pro-
vided 0 ¢ 7'(002). Now, we apply Theorem 1 to show that deg (id — F, 2, 0) = {0
(the proof for deg (id + F, 2,0) is analogical). Indeed, according to Remark
there.is a y, € 8U such that ay, § —F(aQ ) for all & = 1. Putting G(u) = F(u), for
‘u € 0, we can easily verify that F, G, U and y, satisfy conditions 1—4 of Theorem 1.

v
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To a.pp]y Theorem 1 condition 5 remains to be shown' condition 5. We assume on the .
contrary that there exist & > 0,and % € 22 such that (m — F(@)) n @F(w) % 0. This
implies that % € (1 4 @) F(@). ‘Therefore, we can write %= (1 + B) z, for some z € F(u).
Let p be the Minkowski function of U. Since %€.02 = U, F(02)nU = @ and:
z € F(u), we get p(%) < 1 and p(z) > 1. We have 1 = p(@) = p((l + i) 2) = (1 + &)
X p(z) >"1, which is lmposmble Consequently, condmon 5 is also fulfilled 1

i
"Remark 3: Corollary 2 is an extension of Theorem 2.1.in [21], which proves for the case
X is an infinite-dimensional linear normed spa.ce and F is a single-valued completely con-,
tinuous mapping on’ D.:

Now we apply Theorem 1 to mvestlgate the existence of bifurcation solutions of
. the equation (2). For- smlpllmty in what follows we consider only the case that the
" mapping F: AxDg — Y is single-valued, F(A,u) = 0 for all i € A and F(-, u) is
continuous in 4 uniformly for « from any ‘bounded subset of D. More precisely, we
consnder the éxistence of a bifurcation solution of the equation

N F@,u)=0, (A, u) € AxDyg, : . ‘ (5)

where A is an open subset of some normed space, K, D € X with Dy = Dn K = 0,
0 ¢ int D and X and Y are supposed to be Banach spaces. We have

Theorem2: Let X, Y,D, K, A and F be as just mentioned above aund let iy be «
point such that for any neighborhood V of 2y there is a neighborkood U of the zero vn X.
such that for any neighborhood U of the zero, U = Uy, Uy = U n K € 6x(D) and
. one can find 2, 2 € V and a single-valued mapping A:Uyx — K with A € By(Ug, Y)
-and degk (A, U, 0) + {0}, provided 0 § A(9xUk), satisfying the following conditions:

1 tF(A4y )+ (1 —t) A € Bx(Ug, Y) for any t € [0, 1].

2. ||F (2, w) — A()l| = |14 (w)]| for any u € oxUk. , .
e 3. There exists a 2y € Y, zy &= 0 such that either azy § F(2,, 0xUg) for all x > 0
cand F(iy, -) — Blzg) € Bx(Uy; Y) for all B = 0 or azy § A(3xUy) for all « > 0 and .
A4 — Blzg} € Bx(Ug, Y) forall g = 0.

Then ()0, 0) is a bifurcation solution of equation (5).

Proof: Let. ¥V be an arbitrary neighborhood of 4,. Without loss of generality we
may assume that V is'convex. Let U, exist corresponding to V by the hypotheses
and U= U, Ugy=UnK € ¥€x(D). We have to show that there cxists a point
(A; @) € V X 3 U with F(4, %) = 0.

Indeed, for U one can find 4,7, € V and a mapping 4:Ux — Y satisfying
conditions 1—3. If F(),, u) = 0 for ¢ =1 or 7= 2 and for some u € dxU we have
- the proof. Therefore in the sequel we assume that F(),, u) % 0 for 7 = 1,2 and for
all w € 04 U.

Further, if A(u) = 0 for some % € 9,U, then we imply from the inequality of
condition 2 that F(2,,%) = 0, which contradicts the above assumption. Thus,
degk (A, Uk, 0) is defined and by the hypotheses, degy (4, Uk, 0) == {0}. Together
. with condition 3 this yields &z, § F(4;, 9xU)-~for all « > 0 and F(4, ) — Bz,
"€ Bg(Ugk, Y); otherw1se, we use Corollary 1 to obtain degy (4, Uk, 0) = { }, which
is impossible. Now, we use Corollar} 1 again to conclude - 1

,degx(mz,-),vx,_)—m}.‘ o, . (6)
Furhé’r,_ let us-define '

Hbw) = (1 — § A(u) + B w),  (6u) € [0, XD )

3
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Suppose that H(E, z) = 0 for some i € [0, 1] and Ele oxU.Since F(i;,u) =0,7=1,2¢
and u € oxU we deduce € (0, 1). (7) implies that A@) = i(A(R) — F(4,, E)). To-
gether with condition 2 we obtain .

4@ — F2y, @) = |4@)| = 1F(y, @) — A@). ' T8
If |A(@) — F(Z,, )l = O then (8) implies A(@) = 0 and_hence we get from condi-
tion 2 F(2,, ) = 0, which contradicts-the assumption that F(2;, u) 0 for7=1,2
and for all € 95xU. Therefore we have (|4(%) — F(2y, @)l #+ 0. Consequently, (8)

implies‘that’i = 1, and then we have a contradiction. Hence, H(t, u) == 0 for all
t € [0, 1] and u € 9xU. Further, we use Axiom Il to obtain

degk (F(2y, -), Uk, O) = degk (4, U, 0) + {0}. o (9)
Finally, we define the mapping M: [0, 1] xU — Y by N
M(t,w) = F(tay, + (1 — 8) Jp, %), - (,w) € [071] xT.
Suppose that M(t, u) 4= 0 for Al te [0, 1] and u € 94,U. Using Axiom II gives
degk (F(241, -), Uk, 0) = degy (F(2s, ), Ug, 0). Together with (6) and (9) we obtain
a contradiction. This implies that M(i, %) = 0 for some ¢ € [0,1] and % € 9, U.
Setting 4 = &4, + (1 — &) 4,, we infer F(1,%) = O with 1€ V and 7 € kU 1
As a special casc of (5) we consider the equation : )
w= M)+ N, u) + HZ,v), (i) € AxDy, - (10)
where A is an open subset of some normed space on which a partial ordering < is
defined that satisfies: if 0 < A then ¢2 < 2 for all- ¢ € [0, 1], X is a Banach space

“with a closed and convex cone K,D < Xisasubset withO ¢ int Dand Dy = D n K -
= 0. In the following we need the following assumptions: '

1. 49 € A, 0'< Ay, is the smallest eigenvalue of the pair (M, N) with respect to K
which is isolated from the right side." . B

2. M is a linear continuous mapping from D into X and » =+ tM(u) forall u € K,
u %= 0and ¢ € [0, 1]. : o . '

3. For any fixed 2 € A, N(, -) is a linear continuous mapping from Dy into X
" and N(0,u) =0 for all w€ Dy and if Ay < 2 then (N(l, ) — N(2, -)) (uo) € K,
where u, is an eigenvector corresponding to J,. . .

4. H:AxDy ~ X, H(#,0) =0 for all ;€ A and IH(2, )| = o([l]l) as Ju|| = 0
uniformly for 1 € /1 and, H(, ) is continuous in 2 € A uniformly for » from any
bounded subset of Dy. ~’ : ' '

5. There exist a neighborhood V of 7, and a neighborhood ¥ of the zero in X
such that M(Ux)= K, N(2,Ux)= K for all 2€ 7, 0 < 1 and H(V,Uyx) = K and

" either ’ ‘
a) M,N(4,.), H(,-) are compact continuous mappings on U, for any fixed

. 2€Vor

b) the mapping F: (7,\"—> A defined by
Flu) = u - (6M(u) + N4, u) + LH(3, w),  we Ty

for any fixed ¢, 4 € [0, 1] and A€V is A-proper with respect to I, where T,
= {X,, P,} is the projectionally complete scheme for (X, X) with P, (K)= K for
all 7 € N (see the definition in Example 2) ‘o

Lemma 3: Under the assumplions 1—5 for uny 2 € v, Ao < 2, which ¥s not an

etgenvalue of the pair (M, N) with respect to K there exists a r, > 0 such that U 0, ry)
< U and '

w— (M) + N4 u) + H(, w) + puo
23+ : ‘ !
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o/or all u € UK(O r) = U@©0,n)nK and n >0, where ug € K, ug &= 0, s an eigen-
vector ofthe pair (M, N) with respect lo K corresponding to 4.

Proof: Suppose that 2 € ¥, 7, < /, is not an eigenvalue of the pair (M, N) with
respect to K. If the claim of the lemma were false then for any n € N w1th U(0, 1/n)

< U one could find u, ¢ UK 0, 1/n) and g, > 0 such that
— (M(u,) + N2, u,) + H(, Un)) = alty. (11)

Since H(2,0) =0, u, > 0-and %, 3= 0 we deduce from (11) that u, 3= 0 for all «.
" Hence, by dividing both sides of (11) with flu,l] we obtain

TS u, . Uy H(2, u,,)) ey
— M |— N2, = .. : 12
e~ (2 () + ) ) = oy e (2
Because of [ju,|l = 0 as n — oo and e (2, )il = o({fu,l) as {|u,]| = O we infer
IH (2, wa)|Muall >0 as 7 — 4-o0. (13)

Further, we ob'tain from (12) that

. ‘ * =,

. , U Uy
=~ - M|—=] - N|{(}—

Now, by the continuity of M, N(4, -).and the boundedness of the sequence {u,/||u,|l}
one can find a constant ¢ > O such that

U, u . U
n _ M n L N A‘ n
] '(l!unn) (” nu,,n)

Because of (13) there exists an ny € N such that for all » = 7, one has
1B, wn)lfluall < 0. | (e

Finally, combining (14)—(16) yields 0 < u,/lluall < 2lu!l™ ¢ for all » > 7. There-
fore, by extracting a subsequence if necessary, we mdy assume that /4,,/||u,,|| —-a=0.
Now we put B .

. : : +o
Q — { #n uo _ 1-1()9 /un)} —l’

flecall lleeall

L o< ”” T =l (

I L JHG, wl )

[laeall
(14)

lgc. C(15)

then we imply that @ is a compact subset in X. Evidentiy, it follows from (12) that
' 2 = /| € (1 — M — (%) (@ n K. .

~

- In the case that M, N(/, -) are compact mappings, without loss of generality,
we may conclude that M(z,) + N(2, #,) converges to some point y, € X. Heénce, '
(12) implies z, — zy = ¥y + «uy € K. Since ||z,]| = 1, we deduce ||zg]| = 1.
Now, in the case that the mapping id — M — N(%,-) is A-proper with reqpect
. to Iy we apply Proposition 1.1.Cin [18] to conclude. Lhat the set (zd M — N(7,. ))
X (Q) is also compact. Hence, by extracting a subsequcnce if necessary, we may as-
sume that z, — z,. So, 2, € K and llzo]l = 1.

Further, from the conbmqnty of M, N(%, -) and from (12) and (13) we obtain
— (M(z20) + N(2, 20)) = auq. | : | (17)

\
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Since 4 is not an eigenvalue of the pair (M, N) with respect to K we then conclude
o > 0. Because of M, N(4, -) being linear mappings and MUy), NA, Ug) = K we
can easily verify that

‘ (M + N, -)) (ug) € K ' | (18)
and . ’

(M N, ) (N(R, uo) — Mo, wa)) € K )

for an arbitrary integer m € N.
From now on, for the simplicity of the notations, we defme the ma.ppmg E:
U}\ - X by

= (M +NQ, )@, wely.
Next, we claim that for arbitrary m
) m—1 . - ’
. E™z,) = E™*(zg) + g aE’(N(}., ug) — N (4o, uo)) + aug. (20)
We -prove this assertion by 1nduct10n Indeed, it follows from (17) that
zo = (M + N(2, )) (20) + xuy. Hence » t
E(zo) = E%z0) + aE(ug) = E¥z) + O‘(M + N(2, ')) (o)
= E(z,) + oM + N2, -)) (o) + «(N(2, 2) — N, -)) (o)
= E%*z,) + a(N(i ) — N(d, - )) (o) + xug. .

This shows that (20) is valid for m = 1. Suppose now that (20) is true for some
keN:

k=1
E¥(z) = E**Y(z0) + 2 O‘Ej(xo) + au,,

where 2o = (N(4, -) — N(4,, - )) (o). Hence
Ek“(zo) = E(EXz,)) = (Fk“(zo) + Z “F’(xo) + O‘uo)

= Bz + i SE*a) + aB(u). | (21)
j= N

But  E(ur= (M + N, ) (w) = (M + N(2, -)) (ug) + xo = uo + z.  Together
with (21) we obtain

k—1
6+ (20) = E***(zo) + .Z;“Ei“(xo) + aZg + aug
. 1= .

. :
= E**%(zo) + 3 aB(zo) + au,
j=0

\

"+ which shows that (20) is also valid for & + 1. This proves (20).
Now we set

m
Yn = 2 aFi(zg) for m=0,1,.....
i=o :
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A

s

1t follows from (17) and (20) tha

2 = E(Zo) + auy,
E(z0) = E¥(z) + yo + auy,
E™(zo) = E™(z,) 4 Ym-1 + ou,.

Taking the sum of both sides of this equalities we obtain

m—1 -
2o = E™Nzo) + Y y; + a(m + N uy,  y_,:=0. (22)
1=0
. \ ' ' :

It follows from (18) and (19) that Em+1(z,), (o + 1+ -+ + Ym) € K, m €N.
Therefore, (22) yields 2y € a(m + 1) uy + K, m € N. Hence, zo/a(m + 1) — uy € K,
m € N. Letting m — co we obtain ‘—u, € K. Thus, ug € K n(—K) = {0} and hence
ug = 0, which contradicts g € K, ug =00 ’ )

Lemma 4: Under the aésumptz’ons 1—5 for any 2 € V which is not an eigenvalue
of the pavr (M, N) with respect to K, there exists a re > 0 such that U(0, r,) = U and
M2, )l = flw — M(u)-— N(2, '

for all u€ Ug(0,73) = U(0, r,) n K. }

\

Proof: Let i€ V be no ecigenvalue of the pair (M, N) with respect to K. As
béfo‘re, for the simplicity of the notations we put - ‘

Ew) = (M+ N, ) (@), wel.

If the assertion of the lemma were invalid, then for any = € N one could find u,,'
€ Ug(0, 1/n) with

lhtn = Blun)ll < IHG, wll. (23)

Since. H(2, 0) = 0 we -then deduce frbm (23) that %, == 0 for all » € N. Hence, by
dividing both sides of (23) with [lu,|| we obtain :

K2 b( Uy ) I (2; )l
Tloeall l[aall luall : .

By [H(%, u,)ll = o(jju,ll) as = — oo we get [|H (2, u,)ll/lluql] — 0 as » — co. Therefore, ‘
the last inequality gives '

n —E(&)»O as n-—>o0. ° - . - (24)
llecall luall :

In the case when M, N(%, -) are compact mappings, £ is also a compact mapping.
‘Hence, by extracting a subsequence if necessary, we may assume that E(w,/||u,])
— 2o € K (because of u,/|lu,|| € K and E(K) = K). Consequently, it follows from
(24) that 2, = u,/|ju,|| — z,, and then z, € K and |jzg|| = 1. : . .
In the case that «d — M — N(4,-) is an A-proper mapping with respect to I,

we put
. 400 |
Q= {“_ _E (_“L)} .
”un” ”’IL,,” n=1

(24) implies that Q is a compact suBseﬁ in X. We apply Proposition 1.1.C in [18]"
again to deduce that the set (id — E)™1(Q) is also compact in X. We have

\
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2n = Upfllunll € (2d — E)"1(Q) n.K. Hence, by extract;mg a subsequence if necessary
we infer also that z, — 2z, € K and |[z,|| = 1.

Now, by the continuity of M, N(4, -) and by (24) we obtain z, = F(zo) = M(zo) ’

+ N(4, 2y), ll2¢ll = 1. This shows that % is an elgenvalue of the pair (M, N) with
respect to K, w}uch is a contradiction

Now we can prove the followmg theorem on the exnstence of. blfurcatlon solutions
of equation (10).

Theorem™3: Under the assumptions 1—35, ()0, 0) us a bifurcation soluzzon of equa-
tion (10). More precisely, for any given € > O thereis ary > 0 such that for. eachr € (0,7)
one can find a solution (1,@) of (10) with ||A — Jlla < & and @€ Dy, || = r, where -
1B || 4 denotes the norm of the normed space containing A and [I]| denotés the norm of X.

Proof: Let ¢ > 0 be given. By choosing g € (0,¢) if necessary we may assume

that V(i) ={2€ A:||A — Zlls < ey =V (we recall that V comes from assump— vos

tion 5 mentloned above). Choose f € [0, 1] such that (1 — i) [|2lls < & and put.

2, = i We have 2, € V(j,) and 2, < 4, Betause of the assumption that 2, is-the - -

smallest eigenvalue of the pair (M N) with respect to K we conclude. that 4, has
not this property. We apply Lemma 4 to deduce that there exists a7, > 0 such
that U(0, r,) — U (we recall also that U comes from assumptlon 5) and T

_ 1 (2, )l = e = M) — N 0 ' o (25)
for all u € Ux(0, 7,). - : o

Since 2, is isolated from the nght side there exists 2, € V(4,) w1th o <= g and Jo -
is not an eigenvalue of the pair (M, N) with respect to K. We, apply Lemma 3 to
conclude that there emsts a 72 > 0 such that U(0, r,) = U and

w — (M(w) + Ny, u) + H(Za, w) e e ee)

for all uw € Uk(0, r,) and p > 0. - ’ “ L

Now we put 7y = min (r,, ), then we prove that for each r € (0, ry) there exists
a solution (4, @) of equation (10) with 12 — Zolla < e and |[@|| = 7. Indeed, let Ex(U,) -
be the family of all Ug(0,7) = U(0,#)n K with U(0,r) = U, = U(0, 7o) and

r € (0, o). Let r € (0, 7,), so we have Uyx = U(0,7) n K € §x(U,). We cons1der the ' B

two following cases: :

a) In the case that M; N(2;, -), H(4;, -) are compact mappmgs we take By (UK, x\)
"to be the family of all single-valued mappings F from Uy into X of the form ¥

= id — @, where G is a compact continuous mapping from- Uk into K. Since Uy is
a closed convex bounded subset in a Banach space X, it follows that there exists -
a continuous retraction a:X — Uy such that «(z) = = for all z € Ug. Now, for
F € By Uy, X), F = 1d — G, we set G(z) = ("(oc(x))andF id — G, forx € U(0,7).
It is clear'that G is a compact; continuous mapping from U(0; r) into K. Thus, the
Leray-Schauder degree of F on'U(0, 7) at the zero is defined, provided O ¢ F(aU(O r))
We denote it by deg (F, U, 0).

Now suppose that = € 3U(0, r), Fz) =0, we then have z = G(x) € K. From this
follows z € 8U(0,7) n K = 9 U(0, r), and hence Fo)y=2z—-Gx)=2—G@x) = F(z).
Consequently, 2 € 9xU and F(z) = 0. In other words, if 0 4 F(a,\ ), then'0 ¢ F
X (8U(0, r)). Therefore, we can define degyx® (¥, UK, 0) = deg (F, U, 0), provided
0 ¢ F(9,U). This implies that for any F € Bx*(Ug, X), degx® (P, Uk, 0) is defined,
provided 0 ¢ F(0,U). It is eas1ly to verify that Ax1oms I and II are a.lwavs satis-
fied.

:
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'b) In the case that the mapping id — (¢, + N, -) + LH(2;, -), for t= 1,2
and for any fixed ¢,, 4, € [0, 1] is A-proper with respect to I', we take Bx*(Uy, X)
to be the family of all A-proper mappings F with respect to I'y from Uy into X of
‘the form F = ud — G, where G is a mapping from Uy into K. So, the fixed point
index, denoted by Ix(@, U) of G on U is defined by FrrzraTricK and PETRYSHYN
[6]. Hence, we can define degy® (F, Uy, 0) = Ix(G, U), provided 0 § F(d;U). Thus,
for any F € Bx®(Ug, X), degg® (F, Uy, 0) is defined, provided 0 ¢ F(9,U), which
satisfies of course Axioms I and II. i

In what follows by B Uy, X) and by -degy! (F, Uk, 0), i =a or i = b, we.
denote tﬂxa(UK, X) and degK“ (F, UK, 0) or LﬂKb(UK, X) and deg[(b (F, UK, O),
respectively, according to case a) or case b). Now we claim that = -

degK‘ (Zd - M — N(;‘l’ '): UK: 0) = {1} ' . - (27)
for # = a, b. Indeed, we define the mappihg R:[0,1]xUx - X by
R(t,u) = u — M(u) — N(ti,u),  (t,u)€[0,1)xTg.

Since 2, is the smallest‘eigenvalue of the pair (M, N) with respect to K and ¢,
=iy < 29, we then conclude R(t,u) %= 0 for all ¢ € [0, 1] and u € 9xU. Hence,
. applying Axiom 11 yields A A N

degi®(id — M — N(4y, -), Uk, 0) = degy® (:d — M, U, 0). T (28)
- Further, we define the mapping 7T': [0, 1] x Ux —>X by
Tt u) = uw — tMw), (4 u) € [0, 1] xTg.
Assumption 2 gives T'(¢, u) &= 0 f(/)r all t€ [0, 1] and u € 9, U. We apply Axiom 11
again to get ‘
degi (i — M, Uy, 0) = degyt (id, U, 0) = {1}. S}

. {In case 7= a, degy? (i, Uk, 0) = aeg (d, U, 0) = 1, it* follows from the prop-
erties of the Leray-Schauder degree, and in case © = b, degg® («d, Uk, 0) = I4(0, U)
= {1}, it follows from the properties of the fixed point index defined by FrrzPaTRICK
and PETRYSHYN in [6]). Finally, combining (28) and (29) yields (27). ’

Now, to complete the proof of the theorem we apply Theorem 2 with the mapping
F: A4 X Uy— X defined by :

F(2,u) ='u¥—M(u)—N(l,u)—-H(2,@), (2, u) e AXU,, .
and the mapping 4: Uy — X defined by
A@w) = u — M(u) — NGy w), weDg. ,
It follows from (27) that degx! (4, Ug, 0) = {1). Evidently, for any fixed ¢ € [0, 1]
tF(Ay, ) + (1 — ) A = id — (M + N4, ) + tH(Ay, ) € Bi(Ux, X).
This shows that the condition 1 of Theorem 2 is satisfied. Further, we have
| 1F (21, w) — Al = |H (4, w)ll = lle — M(w) — N(2y, u)ll = (|4 ()]

for all u € Ux(0, 7) (this follows from (25)). Therefore, the condition 2 of Theorem 2
is also fulfilled. Now, it follows from inequality (26) that uw, § F(4,, 9xUx) for all
# > 0. This implies that the condition 3 of Theorem 2 is also true. Consequently,
the further proof of this theorem follows immediately from Theorem 2 i

( .

N\
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4. Application

In this section we shall apply Theorem 2 to consider the existence of bifurcation
solutions of elliptic differential equations of second order. Let @ be a smooth bounded’
domain in R" so that the Sobolev embedding theorem can be applied. By L,(G)
we denote the space of all integrable functions / from G into R with the norm

iz, = ( J i@ s < +oo.
G

~ Further, let 8 = (8, ..., B,) be a n-tuple of nonnegative integers and

Ds L

= 18] = Z Bi,
be thé standard derivative notation. Also let C¥(G), k = 0, 1, ... denote the collec-
tlon of all functions from @ into R having continuous extensnons to 2G. For u € C¥G)
‘we define

ok
lufe = 2 sup ID"u(x)l-

j=1 z¢eG
18l=j

- Further, let
WG = {u€ L(Q): DPuc L(@),0 < |8 <1}
* with the norm ' -

llelly,p = ( IID"uII” )””-

sibl=

Now, denoting by D(G) the set of all infinitely many times differentiable functions
on G with compact supports in G, we geflne 14 »'(@) as the closure of D(G)in W, Q).
. Then it is well-known that W,/(@), W, (@) are separable Banach spaces, reflemve
for p > 1 and Hilbertian for p = 2.

Let the operator L be defined by

L) = —F aye ) aror T zb “. + o) u,

f.j=1
2

where a;; have Holder contmuous first partial dernvat,lves and b; and c are Holder
continuous and . )

za.,(x) EE e 2 £2, (51, ...,6,) € R7,

Hj=1 N

for some constant e > 0. Furthermore, we assume that (Lu, u) > 0 for all « == 0,
u € W,YG), where (-, -) is the inner prod(uct in W, (@) defined by

(e, v) = [ w(z) v(z) dz + szl(x) Du(z) dz.

G

An’the sequel we study the existence of bifurcation solutions of the elliptic pa.rtlal
differential equation

L(u) = d(z) v + A(z) g(x) u + h{A(z), z, u, Du), - {30)
(4 1) € Lo(Q) x{W,3(G) n W,H(@)).
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We need the followmg assumptions:

1. d and ¢ are nonnegative functions of class CYG).
2. The function % is continuos and satisfies:
i) h(s,z,0,q)=O0forallse R,z € G, .2 € R",
1) k(s, 2, P, 1) — k(s 2, po, @)l = 0‘(]7’1 — polt |‘I1 — @als) for some con-
stant « > 0 which does not depend ons€ R,z € G, where |- f,, is the Euclidean
norm in R,
m) k(s, z, p, ¢) = o(|p| + |qla ) as |p| + |gls = O uniformly for s € R, z € G -
1v) h(-, z, p, q) is.continuous in s € R unlformly for (z, p, ¢) from any bounded
subset of G X R x R",
v)ph(s,xp, g) = 0 for all (s, z, p, )ERXGXR)(R" .
3. L(u) = td(x) w for all ¢¢ [0, 1] and u€ Wt G) with u:%:O and u(z) = 0 ior
all z € G.
4. Let 4;, 4, € Ly(@). We define 2, < 2, iff Mz) £ 29(x) for almost all z € G. In
the following we assume that i, € Ly(G) is the smallest function which satisfies the
equation , -

L{ug) = d(x) ug + 24(z) 9() o ” C

_for some uy € K = {u € W,}(Q): d(x) =0 forallz € G} and %, =+ 0. Furthermore,
we assume that for any neighborhood V of 2, in Ly(G) there exists 2 € V such that
%9 < A and that the equation

L) =d@)u + @) glx) u '
has no solution u € K, u & 0. .

Theorem 4: Let assumptions 1—4 be satesfied. Then (Zy, 0) 15 a bifurcation solution
of equation (30) in the following sense: for any given € > 0 there 7s a 7o > 0 such that
for each r € (0, 7y) one can find at least tuso solutions (2,, u,) and (%, u;) of equation
(30) with i, € Ly(G), 11 — Zollz, < ¢ and u; € WG) n W(Q) and |[u,||1 . =T,
1=1,2. Furtlzermore, uy(z) = 0 and u,(x <0 for all x € G.

l’roof Put H0 W,2(G) n W,}(@). By Stampacchia’s maximum principle (see
[22: Theorem 3.6]) there exists a constant y, > 0 such that for each y > y, the
operator P, = yid + L is a linear homeomorphism from H, onto L,(G) and. t,he{e
“exists a constant ¢ > 0 such that y

Y XD < c||Py(w)llz, for all u € 'H,.
18l=2 "~ .

Take a fixed number y > v, large enough so that Stampacchia’s maximum prin-
ciple (which states that if, when y is sufficiently large, » € W,%(Q), u(z) = 0 on oG
and L(u) (z) 4+ yu(z) = 0 for allmost all z € G, then u(x) = 0 for all z € G) can be
applied to P; = yid + L. We have P;: Hy —> Ly(G) and hence P;71: Ly(G) — H,,
.- furthermore, thls maximum prmmple 1mp11es that P;Y(K) — K and P;}(—K)
— —K. Indeed, let u € K, we have P;~ 1(u) € Hy = W,2 n W, and thus (P- (u)) ()
= 0 on oG and

L{P5~ () (2) + (P Y (w) (=) = P3(P57(w) (@) = u(@) 2 0

for  all .z € G. Applying the maximum principle just mentioned above yields
P;7'(u) (z) = O for all z € G. This shows that P;~!(u) € K and hence P;7/(K) < K.
Analoglcally, we have P;71(—K) < —K.
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Now, we can easily verify that the equation (10) is equivalent to the equation

pu + L) = (¥ + d(@)) v+ Xz) g(2) v + h(A(z), z, u, Du)
andthent\o' . S ‘ Se - . h
u = P-“l( (7 +d x)) u 4 Az) g(x) v + h( (x), z, u, Du))
Further we define the mappings -
Mu) = P-“( (¥ + d(z)) u) N, 'u) = P-’l(/(z) g(x u)
H(2, u) P;=Y{h(2 (2), 2, u, Du)) ‘(/ u) € Ly(G) X Wzl(G)

" First of all we remark that any bounded subset in W2 (G) is- precompact in W,Y@G)
by the Sobolev embedding theorem. Therefore, P;~1is a compact continuous linear
mapping from Ly(G) into W,'(G). Since d, g are nonnegative functions and % has the
property 2.v) we then -conclude that M(K), N(A, K), H(Z, K) £ K and M(—K),
N(A, —K), H(2, —K) S —K for all 2 > 0. Further, it is easy to see that for any
fixed 2, M, N(2, ) are continuous mappings, moreover, the mapping N(-, %) is con-
tinuous in 2 € Ly(G) uniformly for  from any bounded subset of W,!(G).

We now prove that for any fixed 2 € L,(G), H(Z, -) is continuous and II(/ u)

= ofllull, ») as |jull;. — O uniformly for 1 € L2(G’) Indeed by the hypothcses in as-
sumption 2 we have

|h() x), x, u(z), Du(z))| = |k(i(z), z, u(z), Du(z)) — h(2 (x), z, 0, 0)|
< alut@)l + 1Du(a)l) ' ‘

Hence,

[ =), =, u( , Du(z))|? dG-< aquu )| + |Du(z)| »)? d@
G

= zx2f(|u(x) + [ Du(=)].2+ 2 |u(z)] |Du(x)|,,) dG
G . .

< o¥(lluliy, + 1Dulll, + 2 Iz, [Dullz,). .

This shows that if u € W,(G), then h().(x), x, u, Du) € L,y(G). Therefore, we can
define the mapping R(2, -): W,(@) — Ly(G) for any fixed 2 € Ly(Q) by =~

R(%, u) () = h(Az), u(z), Du(z)).

We‘have ’
1R(%, um) — R(/ w)ll, ,

= f lh(/(x x, um(x), Du, x)) — hA(z), z, u(=), ])u(,c))l G

< o [ (Jun(@) — w®)| + |Dun(z) — Du(a)|,)? dG
G : )

£ o¥(|lup — ullfs + 1Dy — Dullz, + 2 |lum — L, | Dty — Dully,, ,
"and hence, '

N2, uw) — B(2, ullL, A A

< a(lltm — ul3s + 1D — Dullz, + 2 lttm — ullz, 1Dt — Dz, )12

) ! N
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for any sequence {u,} in W,(G), 1, - u. This shows that R(4,-) is & continuous
mapping. It is also easy to verify that R(4, -) is bounded and ||R(2, w)]] = o{|lull, o) as
llelly,2 = O uniformly for ‘i € Ly(G). We have H(4, u) = P;~}(R(4, w)), and thus for
any fixed 2 € Ly(G), H(4, -) is & compact continuous mapping and [[H (2, u)|} = o(|[«|};.2)
as |lully,,— O uniformly for 2 € Ly(G). Furthermore, we can easily prove from as-
sumption 2 that H(-, u) is continuous in 2 uniformly for » from any bounded subset
of W,Y(@).

Further, assumption 4 implies that 2, is the smallest elgenva]uc of the pair (M, N)
with respect to K and also with respect to —K which is isolated from the right
side. Therefore, for given ¢ > 0 we can choose A; € Ly(G), ||2; — Zollz, <& = 1,2,
A, < 4 < 2, and A; is not an eigenvalue of the pair (M, N) with respect to K (or
— K, respectively), 7 = 1, 2. Let u, be an cigcnvector of the pair (M, N) with respect
to K corresponding to io It is clear that —u, is an eigenvector of the pair (M, N)
with respect to — K. Therefore, we can apply Lemma 3 and Lemma 4 to conclude
that there exists a 7o > 0 such that

IH (A @)l < e — M(u) — N2y, wllye
and
u — M(u) — N(%, u) — H(%p, u) &= puy  (F —puy)

hold for all uw € Uyt = U0, 1) n K, ¢ > 0 (or u € Uy~ = U(0,79) n (—K), 0 > 0,
respectively).

Let €4 (Uy*) (KK(UO )) be the family of all subsets of the form U+ = U(o, r) nK
(or U~ = U(0, ) n (—K), respectively) with 0 < r < ro. By By(U*, X) (Bx(U~, X))
with X = W,1(@) we denote the class of all functions F from U(O r) to X of the
form F'= i — T, where 7' is a compact continuous mapping and 7(U*) — K (or

"T(U )= —K, respectively). Thus, for any F € Bg(U*, X) (F € By(U-, X))
degy (F, U+, 0) (or degy (F, U~ 0), respectively), is defined as in part a) of the
proof of Theorem 3. :

We now claim that

degy (4, U*,0) = {1}, _ \ - (31)
where the mapping 4 is defined By
- A(u) = v — M(u) — N4, ), u € U0, 7).
Indee‘d;wc define the mapping B [0, 1] >< Uy— X by
B(t, u) = w — M(uw) — N(t/y, u). .

Since 4, is the smallest eigenvalue of the pair (M, N) with respect to K (—K, re-
spectively), we then conclude that B(t, ») + Oforallt€[0,1] and u € 0xU=. Usmg
Axiom II ¥ields

. degy (i@ — M — N(4,, ), U+, O) = degK (ul M, U=, 0). (32)
Further, we define the mapping C: [0, 1] X Uy — X by
Clt, w) = w — Py(7 + w(z)) v)- ' )

Suppose that C(i, @) = 0 for some I € [0, 1] and % € 9, U%, we then imply % + L(u)
= yu + ld(x) %@ and hence L(@) = id(z) %. This contradicts assumption 3. Therefore,
we conclude C(¢4, u) 3= 0 for all £ € [0,1] and u € 8KU* Using Axiom Il again we
have

degy (id — M, U%, 0) = degy (id — P;71(7 -), U%, 0). - (33)
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Finally, we define the mapping D: [0, 1] X Uy — X by
D(t, u) = u — tP;7Y(yu).

Suppose that D(i, %) = 0 for some € [0,1] and u € 94xU+. We infer y& + L(%)

= {ym or L(¥) = (I — 1)y, and hence 0 < (L( u), u) = ({ — 1) y(w, @) £ 0, which
is 1111p0551ble This implies .D(¢, u) =#: 0 forall ¢ ¢ [0 1]and u € 9xU%. We use Axiom
IT again to get,

. degy (id — Py 1(7 ), U2, 0) = degy (id, U%, 0) = {1}. (34)

Combining (32)—(34) gives (31). o ‘ .
Lastly we put X = ¥ = W,Y(G), D = U, and: '

F,u)=u — M) — N, u) — H(Z, u) . =

Au) = u — M(u) — N(2, u) (/' € Ln(@), u e UO)'

Then, to corﬁp]ete the proof it remains to apply two times Theorem 2: with X, Y,
D,F, A, E4(Ug), Bx(U*, X) and K = {u € W,}(G): u(x) = 0 forall z ¢ G} and with
X,Y,D, F, 4, €,(U,) as above, Bx(U~, X) and —K = {u € W,1(G): u(zx) < 0 for
allze G} .
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