
Zeltschrift für Analysis 
und ihre Anwendungen 
Bd. 5 (4) 1980, S. 387-376 

Contribution to the Theory of Generalized Derivatives 

S. GAJILER 

Es werdqn untere und obere AbIeitngen behandelt und für these eine Reihe von Ausdehnungen 
grundlegender Aussagen der Differentialrechnung (Produktregel, Quotientenregel, Mitteiwert-
satz usw.) und als Anwendung eine Verailgemeinerung der Eulerschen Differentialgleichung 
gebracht. 

PccMarp11BaIoTcn IIfl)+HIte It eepxmie npou3Bouu1e it galOTCFI AJIR nux HeIoTopue.pac-
wI'lpeHIaH OCHORHaIx yTnepHeHIl11 1(4epeHEHaJth1l0I'o Mcq IacJIeHrla (npaBnio npouaneie-
Hufl, npaniuio 'iacTHwx, Teopea 0 cpejweM ii T.	it a HaqecTBe upaMeHellan o6o6ueiine 
JI14epe1IuIaaJIbHoro ypanenn 3t,aepa.	- 

Lower and upper derivatives are considered. For them certain extensions of fundamental 
assertions of the differential calculus (product rule, quotient rule, mean value theorem etc.) 
ana as appliëation a genralization of the Euler differential equation are given. 

To avoid unnecessarily strong differentiability assumptions, in optimization theory 
several , generalizations of the notion of derivative are used. Among' them, lower 
and upper derivatives are of 'special' importance (see the references additionally 
those of [10]). The underlying paper continues the author's previous investigations 
[2-6] on this field, using sometimes slightly more restrictive assumptions to make 
the considerations more transparent.  

1. Throughout the paper, let .1? be a separated topological vector space, Q R be 
an open subset and q € Q be a point. Let S denotean ordered topological vector 
space, that is a topological vector space which is equipped with a partial . ordering 

given by "s s' iff s' - S E K" where K is a closed proper cone in S with 0 
as vertex, the so-called positive cone. K to be proper means that K is convex and 
K n (—K) = {O}. S is, separated. Sis said to be locally order-convex if there exists 
an open base at 0 consisting of order-convex sets, that is of sets U such that 
(U + K) n (J - K) = U. 

Let / be a mapping of Q into S. / is said to be lower semicontinnows at q if for every 
neighbourhood V of the point 0 in S there is a neighbourhood U of the point 0 
in I? with q + U 9 Q such that /[q + U] 9 /(q) ± V + K. 

/ is said to be l-di//ernliable (lower di//erentiuble) at q if there is a mapping 
4: R —* S which has the following properties: 

(i) 4p) - x4(p) € K for every a € (0, 1) and p € B. 
(ii) For every point p € B and every neighbourhood V of the point 0 in S there 

exists an e> 0 and a neighbourhood U of the point 0 in B with q + [0, e]'(p + U) Q 

such that	 i - 

/(q + e'(p +p')) —1(q) 
€ cb (p) + V + K 

8' 

whenever €' E (0, e] and p' € U.
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4) is called an 1-derivative (lower derivative) of / at q. From properties (i) and (ii) 
it follows that 4)(0) = 0. The set of all 1-derivatives of / at q is denoted by D1/(q). 
A mapping (P: R -- S with property (i) belongs to D(q) if (and only if) there exists 
a 4)' E D 1 /(q) with (4)' - 4)) [R] K. By [3: Theorem 1] D1/(q) is convex. From [3: 
Theorecu2] we know that if D1 /(q) 4 0, then / is lower semieontinuous at q. 

If	0, then aD 1 /(q)	D 1 (/) (q). For every g: Q -* S with g(q) = /(q) for which 
there exists a neighbourhood U of q such that (I - g) [U]	K, D1g(q) D1/(q). 
For every i: Q - 5, D 1 /(q) -}- D 1 g(q)	D1 (/ + g ) (q). If K 4 0 and if for every 
non-empty finite subset of S there exists the infiniuni, then /,: Q Sand 4), E D1/(q), 
i E {l, ..., n}, imply that 4) E D 1 /(q) where /: Q - S and 4): R - S are defined by 
1(v) = inf/(p), p E Q, and 4)(p) = inf4)(p), p E 

A mapping /: Q - S is said to he t-di//ererUiabie (upper differentiable) at q if -! 
is 1-differentiable at q. Every 4) E .D/(q) = —D 1 (—/) (q) is called a it-derivative 
(upper derivative) of / at q. 

By [3: Theorem 4] we have (Di/(q) - D/(q)) [RJ - K from which which it follows 
that D/(q) = D 1 /(q) nD/(q) contains at most one element. If D/(q) 4 0, then / is 
said to be differentiable at q and the unique mapping 4) E D/(q) is called a derivative 
of / at q. A derivative 4) is positive homogeneous, but neither homogeneous, nor 
additive, nor continuous, in general. Our notion of differentiability is a generalization 
of the well-known notion of Michal-Bastiani differentiability. 

In applications often S is the set R of all reals which always will be assumed to 
be equipped with the natural ordering (hence K = [0, oc)) and with the natural 
topology.	 - 

II. Now let S bean ordered inner product space and (., .) be its inner product. 
(The fact that the symbol (, ) is also used to denote the open interval cannot lead 
to any confusion.) Let us write 

>K	 [0, oo), but 4 {0} 
/(q) =K .0 if (1(q), K)	= {0} 

<K	 (—oo,0], but =I=(0[ 

where (1(4), K)	{(/(q), k)/k € K}. Let f(q) =K 0 if there exists a neighbourhood 
Uof the point 0 in]? with q + U Q and (/[q + U], K) = {0} where (/[q + U], K) 
= {(s, k)/s E /[q + K], k E K). Moreover let /(q), >K 0 (<K 0) if not /(q) =K 
but if there exists a neighbourhood U of the point 0 in 1? with q + U Q and 
(/[q + U], K) 9 [0, +oo) ((_oo, 01). For arbitrary g: Q - S let 

I 
D 1 g(q)	 if /(q) >K O	\ 

Vgj(q)- D
1 (q) u Dg(q) if /(q) =K 0	- 

- Dg(q)	 if /(q) <K 0 
0-	 otherwise 

D I /(q)	 if g(q) >K 0 

- 
- I 

D1 /(q) u D/(q) if g(q) K 0 
D./(q)	 if g(q) <K 0 
0	 otherwise. 

Theorem 1: If  is continons at q, then. 

- (1(q), 71g,(q)) + (119 (q), ui(q ))	D1 (/, g) (q).
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Proof: Assume Dgr(q) and ./g(q) are not empty. Let /(q) >K 0 and q(q) >K 0 
and for arbitrary y € Dig(q) and 0 € D1/(q) let ip = (1(q), y) -i-. (4, g(q)) . Then 

.	-	=. (f(q), y(p) - ay(p)) + ( p) — c(p), g(q)) 

€ (/(q), K) + (K, g(q))	[0, co) 
for every. x E (0, 1) and p € K. Hence, ip has the property (i) of an I'-derivative. 

To show that (with respect to (I, g)) tp has the property (ii) let a point p E .1? and 
an 71 > 0 be given and let V be a neighbourhood of the point 0 in S such that' 

(1(q), V) + ((p), V) + (V, g(q)) + (V, V) 9 
Let e be a positive real number and U be a neighbourhood of the point 0 in 1? with 

• q+[0,cJ(p+.U)Q such that 

g[q + [0, e] (p + U)] g(q) ± V 
and

(g[q+[0,e](p+ U)J,K)	[O,00) 

as well as

/(q + e'(p ± p')) f(q) € (p) ± V + K	 I 

and
g(q ± e'(p ±')) g(q)	

+ v K 

whenever €' € (0, e] and p' € U. For every such e' , and p', then	 S 

(I( q + '(p + p')), g(q + '(p + r'))) - (1(q), g()), 

I	g(q + '(p + p')) — g(q)\	//(q + s'(p + p')) — /(q) 
=	 ,	

) +
	 ,	,g(q+e(p + p)) 

€ (1(q), y(p) + V + :K) + ((p) + V + K, g(q ± e'(p + p'))) 

(I(q) y(p)) ± (41(p), g(q)) ± (1(q)', V) + (41(p), V) + (V, g( q)) + (I', V) 

+ (1(q), K) + (gq ± [0, eJ (p + U)], K)5	 S 

	

(p) + (-m CO ) .	 . 

Hence we have tp € D 1 (f, g) (q) which proves the assertion of the theorem in the 
case f(q) >K 0 and g(q) >1 K 0. The other cases can be proved analogously U 

Corollary 1: Let S be locally order-convex, / be di//erentiable at q and g be con-
tinnoiis at q. Then	 .	 S 

Q(q) 1- g (q)) + ((k, g(q) 9 D 1 (/, g) (q), 
where 41 denotes the derivative of I at q. 

Proof: Analogously to the proof of  Theorem 1 I 

Corollar'y' 2: Let S be locally 'order-convx and I and g be di//erentiable at q. Then 
(/, g)is di/fereñtiable at q with (1(q), y) + ( (k, g(q )) being the derivative, where 41 and y 
denote thd derivatives of. / and g at q, respectively. 

24 Analysk lId. 5, Heft 1(1988)
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Proof: D1g(q) + 0 and Dl (— y) (q)'= —Dg(q) == .O imply the, lower semicon-
tinuity of g and —g at q from which because of the local order-convexity of S it 
follows that g is continuous at q. With that, Corollary 2 can he proved analogously 
as Theorem I I 

III. Let S = R. Forarbitrary mappings / and g of Q into S let 

	

-	 D1/(q)	 if g(q) >0 
2/g(q) = any set of mappings of 1? into 9 if g(q) = 0 

D/(q)	 if g(q) <0. 

Theoreni2: If  is continuous at q and i/g(q) == 0, then 

gq	 (—g)í (q)	
D g(q)2 1 (L) (q). 

Proof: Assume /9(q) and	(—g) (q) are not empty. Lot g(q)	0 and 
/(q) > 0 and for arbitrary 4, € D1/(q) and y € —D1 (—g) (q) = Dg(q) ' let	= 
(g(q) 4,	/(q) 4/(q)2. 

1t is obvious, that tp has the property (i) of an 1-derivative. To show that (with 
respect to //g) vp has the property (ii) let be given a point p E 1? and an ?7> 0. Let 

be a positive real number such that x <g(q)/2 and 

g(q) (4'(p) + (—x, 00))	/(q) (y(p)+ (-00, 'i)) 
g(q)2+g(q)(—x,x) 

•

 

g(q) 4,p -	
+ - - '	g(q)2	 77,	1 

Let e be a positive real number and U be a neighbourhood of the point 0 in R with 
•	 q + [0, eJ (p + U) Q such that	 S 

g[q + [0, e] (p + U)]g(q) +(—	) 
as Well as ,	 I 

/(q+e'(p+p'))—/(q)
E4,(p)+(—x,00) 

and
g(q +e'(p + p')) — g(q)	 -	 - 

•	 Ey(p)+(—oo,x) 
C 

whenever e' E (0, eJ and p' € U. For every such e' and P', then 

/(q+e'(p+p))/(q)\ 
e' g(q + e'(p'+ p'))	g(q)/ 

g(q)
/(q + --, (p + p')) —/(q) — /(q) g(q + s'(p + n')) • g(q) 

—	
-	 / 

-	
q(q) g(q ± e'(p + p'))	 -' 

j(q) ((p)+ (—x, )) — .1(q) (y (p) +.(- 00, x))	 - 

-	S 

"-	
,(p) + (—m 

00).	 -
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Hence the assertion of the theorem is true in the case where f(q) > 0, g(q) > 0. In 
the other cases the proof can be given analogously I 

Corollary: Let f and g be differentiable at q and let g(q) == 0. Then //g is dif/eren-
Liable at q with (g(q) f(q) y)/g(q)2 being the derivative, where 4 and y denote the 
derivatives of / and g at q, respectively. 

Proof: Since S = R is locally order-convex, from the proof of Corollary 2 of 
Theorem 1 we know that g is continuous at q. With that, the corollary becomes a 
consequence of Theorem 21 

IV. Let $ be a locally convex ordered topological vector space (with the positive 
cone K). In [3:.Theorern3] there is given 'a mean value theorem which in a slightly 
weaker form looks as follows.	 - 

Theorem 3: Let p be a point of 1? such that q + [0, l I p Q. Assume that the 
mapping f: Q is continuous and for every e E (0, 1) there exists an I-derivative 
cb(q+ep)b/;/atqep.Then 

f(+ p) - f(q) E co W(q + EP) (p) I e € (0, l)} + K, 
where co {.} denotes the convex hull of {.}.  

Corollary: Let / be a continuous mappthg of [0, 11 into S. Assume that for every 
E (0, 1) there exists an i-derivative (t)o/ at t such that 41(t) (1) € K. Then f(l) - f(0) 

€ K. 

Proof: Application of Theorem 3 I 

- Theorem 4: Let S be an ordered Banach space and f be a continuous mapping of 
[0, F] into S. Assume that for every t € (0, 1) there exist an I-derivative 41(1) of / at. and ax L^1 such that 41( . ) (x) is continuous and bounded;Then 

f(i)_/(0)_f!41(t)(x)dt€ K.  

Proof: For every t € (0, 1), let '(t) denote the derivative at t of the mapping 
,g: [0, 1]	S given by g(t) 

= f c141(s) (x) ds. Obviously, this derivative- exists. 
r'41(t) (x .) - y(4( • ) is an ]-derivative of - g at t. Since c 141(t) (,i) - y(L) (1) =, 0, 
by means of' the 'Corollary of Theorem 3 we get f(1) - 9(1) - (f(0) - g(0)) € K 
and hence, taking into account that g(0) = 0,  

A l l _/(0)_f41(t)(x)dtf(1)_g(I)_(f(o)_g(o))€ K I 

V. Let X and Y be locally order-convex ordered topological vector spaces and 
and g be mappings of Q into X or Y, respectively. Let S be a locally cdnvex ordered 

-	topological vector space (with positive cone K) and let -L bea'mapping of an open 
- subset W c: X x Y with (f[QJ, g[Q])	W into S. 

The set of all ]-derivatives of L with- respect to the first argument at a point - 
(x, y) € W will be denoted by D1 1 L(x, y). .L is said to be lower semicontinuously 
24*	-
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1-differentiable with respect to thescond argument at(x, y) if there exists a neigh-
bourhood , Ux of the point x. in X and a neighbourhood U of the point y in V such 
that Ux x U W and for every (x', y') € U x U there exists an 1-derivative 
42 (x', y') (.) of L with respect Lo the second argument at (x',y') where with-respect
to all three arguments A2 is lower seinicontinuous at (x, y, y*) for every y' E V. 
The set of all mappings .A 2 (x, y) of this. kind will be denoted by D21L(x, y). Let. 
D 1 I(/,g) (q) be the set of all 1-derivatives of L(/, g) at q. 

Theorem 5: If L is continuous with respect to the second . argument on a neigh-
bourhood 01(1(q), g(q)), then. 

D11 L(1(q), g (q )) o D/(q) + JJ2,1 L(f(q), g(q)) o Dg(q)	D1 L(1, g) (q)' 

Proof: Let x = /(q), y = g(q) and 0 € Df(q, y€ Dg(q),:A 1 € Dj1L(x, y). Assume, 
U2, U. and A2 are given as above. Let A2 = A2 (x, y). 

Obviously, A = A 1 o 4 + A2 o y has the property (i) of an l-derivative To show 
that (with respect to ,t(/, g)) A has the property (ii) let a point p € R and a eonvex 
neighbourhood V of.the point 0 in S he given. Let U1,0 = U2 - x and U,0 = U,, - y. 
We may assume that U1 and U,, are choosen so that L is continuous with respect 
to the second argument on U2 x U,, and	 . 

u A 2 (x, y) (y*) A2 o y (p ) + V/3 + K,	- 

where the union is taken with respect to all x E U1, y € U. and y" € y(p) ± U,,,0. 
We also may assume that there is,an E E (0, 1) such that [O,.E] ( (p) ± U10) U2, 
[0, e] (v() + U,,o) 9 U,, ,0 and 

L(x +() +x*),y) - L(x,y) E 
A 1 oi) + - + K 

2 

whenever e' E (0, e] and x E' U10 . Moreover we can arrange it so that for a suitable 
neighbourhood U of the point 0 in R, q + [0, eJ (p + U) Q and that for arbitrary 
' € (0, s] and p' € U, taking x' = f(q + e'(p ± p')) and y' = g(q + e'(p + p')), we 

have	. 
X	X	

(pY+	
,	

€ y(p) + U,,. 

Using Theorem 3, for every such ' and p' we get 

-	L(/(q ± e'(p + p')), g(q ±e'(p + p'))) - L(/(q), g(q)) 
El 

= 
L. (
	

X'	
- L(x, y) + L(x', y ' )	L(x', y) 

€ U L(x 
+ E' ( cI(p) + x*), y) - L(x,.y) 

{A2(x' Y.+ *(— y)) ('
	

Y) e*E (01 1)} 

A 1 0 q(p) + V/2. + K 

•+ Co	y) (y*)I x+ € U2, y € U11, y € y(p) + U,, 0} ± K. 
c A, o (p) + V/2 + K + A2 0 y(p) P/2 '+ K = A(p) + V + K U
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Corollary [3: Theorem ]: Let X acid / be as above. Let S be an ordered topological 
vector space and I' be a, mapping 0/ an open subset 'Q' of X with f[Q] 9 Q' into S. Then 
Dj /'(/(q)) o D/(q)	D1 (/' o f)(q). 

In the case of S being locally convex, the corollary is a special case of Theorem 5 
since for L which is independent of the second argument, D21 L(x, y) contains the 
zero mapping.	 - 

VI. Let S be an ordered Banach space (with positive cone K) and G be a mapping 
of Q x [0, ijinto S. 

Theorem  6: Let 0 be continuous. Assume, there ests an I-derivative y (p, t) of 0 
with respect to the first argument at every point (p, t) E Q x [0, 1] such that the following 
holds:. For arbitrary p € R, y(q, .) (p) zs continuous and (., t) (.) is lower semicon-
tinuous (with respect to the pair consisting o/ the first and third argument) at (q, p) 
uni(ormly /or all tE [0,1]'). Let F: Q -> S and 4): R -± S be given by 

F(p) = f G(p, t) dt, p € Q, and 4)(p)	f y(q, t) (p) dt, p E R.

Thençb € D1F(q). 

Proof: Obviously 4) has the property(i) of an I .-derivativ e' . To show that (with 
respect to F) 4) has the property (ii) let a point p E 1? and a convex neighbourhood 
V of the point 0 in S be given. There exists a neighbourhood U of the point 0 in 11 
with q + U Q such that y(q, t) (p) 9 y(q, t) (p) + V12 +,K for every q € q + U, 
t . E [0_1 j and pf E p + U. ...Let e € (0, 1) be such that [0, E] (p + U) U. Using 
Theorem 3, for every e' € (O e] and p' € U , we get 

•	 0q +e'(p +p'), t) . — G(q, t)	 - 

• € c Co y(q + e*s'(p + p'), t) ('(p + p')) I e* € (0, 1)} + K 

co {y(q, t), (p+) I q € q + U, p+ € p + U) + K 

y(q, t) (p) ± V12 + K y(q, t)(p) + 2V/3+ K 
hence

F(q + s'(p ± p;))	F(q) f G(q + c'(p + p'), t)	G(q, t) dt EI 

f y(q,t) (p) dt + V + K = 4)(p) + V ± K I 
VII. Lower and upper derivatives can be used to get' very general optimality con-

ditions in vector optinuzation (see the references). The following considerations deal 
with a certain generalization of the Euler differential equation. 

'). This means that for every neighbourhood V of the point 0 in S there is a neighbourhood U 
of the point 0 in R with q + U^g Q such that y(q 4-, t) (p) y(q, £) ( p) + V + K forevery 
qEq+U,tE[0,1]andp+Ep+U.
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For this let Po ' Pi E Q and an open Q' R be fixed. Let us consider R to be 
(trivially) ordered by using {O} as positive cone. Let 81 denote the set of all mappings 
x: [0, 1] -* R with x(0) = p, x(1) = pi, x[0, 11 Q which are differentiable at every 
point I E [0, 1] 2), where the derivatives dx(t) are linear and : [0, 1] --*1l.given by 
(t) = de(t) (1) is continuous and [0, 1] 9 Q'. Every x € 81 is continuous. Assume 

81 + 0. Let 81 be equipped with the unique topology being such that for every 
x E 31, for every natural number n	1 and for arbitrary open sets U1 , ..., U in R 
with x[(i - 1)/n, i/nj	U, i€ {l, ..., n}, each subset 

{y €81 I /	
,	

U1 for all iE (1, 

	

71	n 

of 31 is an open neighbourhood of, x and the systeni of all such subsets is a base 
of 	 ..	 - 

Let S be an ordered Banach space (with positive cone K) and L he a continuous 
mapping of Q x Q' inth S. Let I be the mapping of 81 into S given by 

I(x)= f L(x(t), ± ( t )) dl. 

I is said to attain at x € 81 a local maximum of the first or second kind— the latter 
also being called a local Pareto maximum - if there exists a neighbourhood 'ii of x 
such that

I[U] - 1(x) 9 —K or 1[7E]— 1(x) c S \ (K \.{0}), 

respectively. Every local maximum of I of the first kind is a local maximum of I 
of the second kind, if S = B, both-kinds of local maxima are identical. 

Theorem 7: For every x 1 € Q and x2 € Q' let there exist 1-derivatives d11L(x1 , x2 ) (') 
and d2 . 1 L(x1 , x2 ) (.) of ii at (x 1 , x0) with respect to the first or second argument, respec-
tively, which are continuous (in all three arguments) where, moreover, d 2 1L(x1, 
always is positive homogeneous and subadditive. 3) 

Let x € R. For every t E [0, 1] and y € R1 let there exist a u-derivative 
d(d21L(x(t), x(t)) (y)) of d2 1 L(x(t), x(t)) (y) with respect to £ which is continuous with 
respect to I and y. 

If I attains at x a local maximum of the first jr second kind, then 

djiL(x(t),(t)) (j) - d(d2 1 L(x(t), (t)) (y)) (1) € —K resp.' E S \ K 
for every y  R. 

Proof: The procedure is analogous to the usual proof of the Euler differential 
equation. 

1. Let us assume at first that I at x attains a local maxiniuni of the first kind, 
- Let y: [0, 1] --R be a mapping with y(0) = y(l) = 0 which is differentiable at 

every point I E [0, 11 where the derivatives dy(t) are linear and ': [0, 1] -- B given 
by g,i(t) = dy(t) (1) is continuous. y is continuous. There exists an > 0 such that 

2) At I = 0, 1 the derivative of x naturally is one-sided, this notion being obvious. One-sided 
derivatives and u-derivatives will also appear in the proof of Theorem 7. 
3) A mapping q): B - S is said to be subadditive if for every p, p' E B, (p) + 4(p') - (p + p') 
E K.
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x -{-- (—'i i) y'	7I. For arbitrary E  (-7), 7)) let 

J(6) =-f L(x(t) ± i(t), ±t) +	(t)) dt. 

It is easily seen [3: Theorem 12] that for every 1-derivative d1 J(0) of J:,(-77, j) 
 -

 
^SatO,	 . 

d1J(0)(1) E —K.,	 .'	.	 (1) 

Theorem 5 ensures that' 

= diiL(x(t) + ey(l), (t) + Ey(t)) (iy(t)) 

-+- d2 1 L(x(t)-l- ey(E), ( t) -f-	t)) (Ti(t)),	 . 

r E R., defines an 1-derivative irp of L(x(t) + ey(t), (t) + e()) with respect to e. 
By means of Theorem 6 and (1),  

I	 •1 

f (d1 L(x(t), k(1)) (y(t)) -4-- d2iL(x(t)±(t)) ('(t))) dt E —K.	'	 (2) 
0 

The assumptions on d0 1 L(x 1 , x2 ) yield that for fixedx 1 E Q and x2 -E Q', d2 1 L(x 1 , x2) 
is a u-derivativeof the mapping d2,1L(x 1 , x2 ): R -+8. TheoremS ensures that a 
ti-derivative d(d21 L(x(t), 1(t)) (y(t))) of d2iL(x(t), t(t)) (y(t)) with respect to I is 
given _by	 . 

d(d21 L(x(I), (€)) (y(I))) (t) 

= a(d2 i t(x(t), (t)) (y(I))) ('r -I- d2iL(x(t),t(I)) (r'(I)) 

T € R, where a(d21L(x(t), X(0) (y(t))) (r) is the ii-derivative of d2iL(z(I), x(t)) (y(I))' 
with respect to t occuring in x and t, but not in y. By means of Theorem 4, 

d21 L(x(1), (1)) (,(1)) - d2 i (Lx(0), ±(0)) (Y(0)) 

- 
f d(d21L(x(t),(I)) (y(I))) (1) dl E —K.	 - 

Because of y(0) = y(I) = 0, we have 

d2iL(x(0), i(0)) (y(0)) = d2 1 L(x(1), t(1)) (y(1)) = 0.' 

Therefore  

I e(d2.1 L(x(t), ±(t)) (y(l))) (1) d€ +f d j L(x(t), (t)) ((I)) dl € K 

and because of (2) hence 

±(l)) (y(t)) - e(d2 1L(x(l), (t)) ( y(t))) (1)) dl € —K.
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From this, without difficult for arbitrary y € I? we get 
d i1 L(x(t), ±(t)) (y)	d(d2 L(x(1), t(t)) (y)) (1) € —jc 

which proves the assertion of the theorerf in the underlying case. 
2. If I at x attains a local niaximuni of the second kind, the assertion of the 

theorem. can be proved analogously where (1) is to be replaced by d1J(0) (1) € S \ K - 
(vid. [3: Theorem 12]) I 
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