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Contribution to thée Theory of Genéljalized Derivatives

S. GKHLER

Es werdgn untere und obere Ableitungen behandelt und fiir diese eine Reihe von Ausdehnungen -
grundlegender Aussagen der Differentialrechnung (Produktregel, Quotientenregel, Mittelwert-
satz usw.) und als Anwendung eine Verallgemeinerung der Eulerschen Differentialgleichung
gebracht. : -
Paccua'rpnsam'rcn HIKHIE 1T BepXHHe nponauomme M MEITCA MJIA HUX HEKOTOpLIe.pac-
IUHPEHUA OCHOBHBIX YTBepiUeHNIl Au(PepeHUNnaTbHOr0 UCYMCIEHNA (IPABIJIO0 NpousBeie-
HHIi, MPABHJIO YACTHHIX, TCOPEMAa O CpefiHeM I T. X.) I B KayecTBe npumenelmn ob6o6wenne
zu@d;epeuuuanbﬂoro YpaBHeHHA diijiepa.

Lower and upper derivatives are-considered. For them certain extensions of fundamental
assertions of the differential calculus (product rule, quotieht rule, mean value theorem etc.)
and as application a generalization of the Buler differential equation are given.

To avoid unnecessarily strong diffcrentiability assumptions, in optimization theory
several generalizations of the notion of derivative are used. Among them, lower
and upper derivatives are of 'special” importance (see the references additionally
those of [10]). The underlymg paper continues the author’s previous lnvcst,lgatlons
[2—6] on this field, using sometimes slightly more restrictive a.ssumptlons to make

thc considerations more transparent.
\

I Throughout the paper, let R be a separated topological vector space, @ — R be
an open subset and ¢ € @ be a point. Let S denote an ordered topological vector
space, that is a.topologica,l vector space which is equipped with a partial ordering
< given by “s = ¢ iff s’ — s € K where K is a closed proper cone in S with 0
as vertex, the so-called positive cone. K to be proper means that K is convex and
K n(—K) = {0}. 8 is.separated. S'is said to be locally order-convez if there exists
an open base at O consisting of order-convex sets, that is of sets U such that
U+ K)n(U —K)=U.

Let / be a mapping of @ into S. f is said to be lower semicontinuous at ¢ if for every
neighbourhood V of the point 0.in S there is a neighbourhood U of the point O
in B with ¢ + U S @ such that fl¢g + U] € f(g) + V + K.

/ is said to be [-differentiable (lower differentiuble) at g if there is a mapping
¢: R — S which has the following properties:

(i) ¢(ap) — ad(p) € K for every x € (0, 1) and p € R.

(ii) For every point p € R and every neighbourhood V of the point 0 in S there
existsane > 0 and a nexghbourhood U of the point 0in R withg + [0, el(p + U) S @Q
such that

/@+e@+p»—ﬂm

g

€4>( )+V+K

whenever &' € (0, ¢] and p’ € U.
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¢ is called an l-derivative (lower derivative) -of f at ¢. From properties (i) and (ii)
it follows that ¢(0) = 0. The set of all I-derivatives of f at ¢ is denoted by D,f(q).
A mapping ¢: B — 8 with property (i) belongs to Dif(q) if (and only if) there exists
a@ € lD,/( g) with (¢’ — ¢)[R] & K. By [3: Theorem 1] D,f(q) is convex. From [3:
Theorem 2] we know that if D,f(g) # 0, then f is lower senucontmuous at ¢.

If &« = 0, then «D\f(g) & Di(xf) (q)- For every g: Q — S with g(g) = f(¢) for which
there exists a neighbourhood' U of ¢ such that (f — ¢)[U) S K, Dyglg) & Dif(g).
For every ¢:Q — 8, Dif(q) + Diglq) S Di(f +9)(¢). If K =0 and if for every
non-empty finite subset of S there exists the infimum, then f;: @ — S and ¢; € D,fi(q),
1€{1,...,n}, implv that ¢ € D\f(g) where f:Q — S and ¢: R — S are defined by
fp) = int /{(p), p € Q, and $(p) = inf $u(p), p € R.

A mappmg /:Q — 8 is said to be u-differentiable (upper dzf/erentwble) at g if —f
is l-differentiable at ¢. Every ¢ € D,f(g) = —D\(—/) () is called a u-derzvative
(uppcr derivative) of f at g. .

y [3: Theorem 4] we have ( \(g) — Dyf( q))[R] S — K from which it follows
that Df(q) = D\f(q) "D,f(gq) contains at most one element. If ])/(q) % 0, then f is
said to be differentiable at ¢ and the unique mapping ¢ € Df(g) is called a derivative
of f at q. A derivative ¢ is positive homogeneous, but neither homogeneous, nor
additive, nor continuous, in general. Our notion of differentiability is a generalization
of the well-known notion of Michal-Bastiani differentiability.

In applications often S is the set R of all reals which always will be assumed to .
be equipped with the natural ordering (hence K = [0 o)) and with the natural

topology."

II. Now let S be an ordered inner product space and (-, -) be its inner product.
(The fact that the symbol (-, -) is also used to denote the open interval cannot lead
to any confusmn ) Let us write ‘

>k - [S10,00), but + {0}
F@{=x}0 if (/@) K) {=10) :
<k C (—o0,0], but £ {0}

where (/(g), K) = {(f(9), k)/k € K}. Let f(g) =x O if there exists a neighbourhood
U ‘of the point 0 in B with ¢ + U S @ and (fl¢ + U], K) = {0} where (f[¢ + U], K)
= {(s, k)/s € flg + K], k € K}. Morcover lct f(g) >x 0 (<xO0) if not f(¢g) =40,
but if there exists a neighbourhood U of the point 0 in R -with ¢ + U & @ and
(flg + Ul, K) E [0, +00) ((—o0, 0]). For arbitrary g: Q — § let

-

| Dyglg) if g >k0
_ | Dgle) v Dugle) if fi9=xk0 -~
2019 =1 pgt@ if flg) <x 0
o - otherwise
Dif(q) if g(¢) >« 0
. D\f(g) v Dyf(q) if g(g) =k O <o
Di(q) =
/4D =1 s it glg) <x 0
] otherwise. o

Theorem 1: If g ¥s continous ut g, then

~ (1a): Dgr9) + (Dhl9), 9(9)) S Dilf,9) (@)-
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i | . . .
Proof: Assunie Dgig) and Df,(g) are not empty. Let f(g) >« 0 and g(g) >, 0
and for arbitrary y € D!g(q) and ¢ € D\f(q) le§ v = (fq), y) + (¢ g(q)).' Then
v(op) — ap(p) = (f(g), vixp) — ar(p) + ($(ap) — ad(p), 9(9))
€ (f(@), K) + (K, 9(9)) S [0, o0) o,

for every « € (0, 1) and p € K. Hence, y has the property (i) of an l-derivative.
To show that (with respect to (f, g)) v has the property (ii) let a point p € R and
anz > 0 be glven and let V be a nelghbourhood of the point 0 in § such that’

(q),V)+(¢(p VY + (V. 9@) + (V, V) S (—n, ).

Let ¢ bea posmve real number and U be a neighbourhood of the pomt 0 in R with
q+[O e](p +.0) Cquchthat

dle + (0,€)(p + U)|Sglg) + V

an ' ' . N \
(g[q+[0 el (» +.0U)), K) <10, 0) o

aswel]as . :
ﬂ+e@jp)‘”eﬂm+v+x o

a‘md" . l ' ' o
9(9+e(p:rlzf))fy(q)~ ()+V+K | o

~whenever ¢ ¢ (0, €] and p € U For every such e and p’, then N
(/(q +&p +p )) glg + ¢ (P +) = (@, 9@) : L

’

i &

E .

, =ﬂ(/(q‘).’ g(q +&(p 4;}7) )).— g(q)) N (/(q + &(p +’79 )_) — /(q') ol + ¢ + 1)
U@ﬂ)+V+m+( +V+Km—uw+ﬁm
S (fta); v(p) + ($(0), 9(@)) + (K@), V) + (8(0), V) + (V. 9(0)) + (V, V)
+ (fg), K) + (gla + [0, ] (p + D)), K) b
& w(p) + (—n, o).

. Hence we have y € D\(f, g) (g) which proves'the assertion of the theorem Vin the
. case f{g) >x 0 and g(g) > 0. The other cases,can be proved analogously §

- Corollary 1:, Let S be locally order -convex; [ be dz//erentzable at ¢ and g be con-
lmuous at q. Then

(/(9); Dgs(g)) + (4. 9(@) € Dil/h g (q
where ¢ denotes the derivative of f at q.
Proof: Analogous]y to the proof ofJTheorem 11

Co rollary 2: Let S be locally order-convex and f and g be differentiable at q. Then
(f, 9) ¥s differentiable at q with ({(q), y) + (&, g(g)) being the derivative, where ¢ and %
denote the denwtu,es of f and g ut q, respectively.

24 ,Annlysis Bd. 5, Heft 1 (19868) ; .

e . ¢
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’

Proof: Dig(g)' =@ and Dy(—g) (q)’A —Dyg(q) + @ imply the lower semicon-
tinuity of g and —g at ¢ from which because of the local order-convexity of S it

follows that g is continuous at ¢. With that, Corollary 2 can be proved analogously
as Theorem 1 B )

II. Let S = R. For arbitrary mappings / and g of @ into S let

A ‘ D\f(q) : it glg) > 0
™ Dfy(g) = 4 any set of mappings of R 1nto S if g(g) =0

T Dufe) - if g(g) <O.

Theorem 2 If g 7s continuous at ¢ and 2/ g(g) =+ 0, then . , '

g(q Dfyq) + f(q) D(—g); (9) (L) .
g@® - <D @)

Proof: Assume .‘D/g(q) and D(—g); (g) are not cmpty. Let g(9) > O and.
/lg) >0 and for arbitrary ¢ € Diftg) and y € —Di(—g) (@) = Duglq) ety =
(9(@) ¢ — H@) ¥)/9(a)2

“Itis obv1ous that ¢ has the property (i) of an l-derivative. To show that (with
respect to f/g) y has the property (ii) let be given a point p € R and an n > 0. Let

~ % be a positive real number such that x < g(g) /2 and

- 9(9) ($(p) + (—2x, 00)) — flg) (v(p)+ (—o0, x))
(q)2+g<1)( x, ) '

9@ dp) —Ha)vip) |, . 7 .
. 7@ + (—mn, 00). o

Let ¢ be a positive real number and U be a neighbourhood of thc point 0 in R w1th
¢ + 10, ¢l (p + U) S @ such that |
dla + 10,610 + D] 9@ + (=% 7)

‘as well as

'/_(q+b(p+,”) 19 ¢ o) + (=4, 00)

N

’

‘

£
and

gle +v +,p)) _,?(q) €v(p) + (—o0,%) . 7

€
whenever &’ € (0, ¢] and p’ € U. For every such & and p’, then
- L‘(f(q +ep+p) @)
¢ \glg+ '+ ) 9@ ‘ ‘

(@) Ha + e -Jrlp )= Ha) @) glg + ¢(p + p,)) — g(9) .

£ £

-9(q) glg + 7)+p))
Eg‘(q) (¢(p) + (—x, o0)) — /()(y(p) +.(—o0, x))
§(@)* + 9(g) (=, %)

~
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Hence the assertvioﬁ of the theorem is true in the case where f(¢) > 0, g9(g) > 0. In
the other cases the proof can be given analogously § -

Corollary: Let [ and g be differentiable at q and ]ei 9(q) F 0. Then flg ¥s différen-
. tiable at ¢ with (g(q),¢ - /(q)'y)/g(q)2 being the derwative, where ¢ and y denote the
derivatives of f and g at q, respectively. :

Proof: Since § = R is locally order-convex, from the proof of Corollary 2 of
* Theorem 1 we know that g is continuous at g. With that, the corollary becomes a
- consequence of Theorem 211 ‘ '

) . :
IV. Let S be'a locally convex ordered topological vector space (with the positive
cone K). In [3: Theorem 3] there is given'a mean value theorem which in a slightly
weaker form looks as follows. - : . '

Theorem 3: Let p be a point of R such that ¢ + [0, 1] p S Q. Assume that the
mapping [:Q — S is continuous and for every €€ (0, 1) there exists an l-dervvative
$(q + ep) of f at g + ep. Then ‘

fld +p) — /(g) € co {dlg + ep) (p) [ € € (0, 1)} + K,

-wkere.co {-} denotes the convex hull of {-}. S Lo

Corollary: Let f be a continuous mapping of [0, 1] into S. Assume that for every
t € (0, 1) there exists an l-dervvative P(t) of f at t such that ¢(t) (1) € K. Then f(1) — f(0)
€ K, o . S

Proof: Application of Theorem 31 ', e

* Theorem 4; Let S be an ordered Banach space and f be a continuous mapping.of
[0, 1] 2nto S. Assume that for every t € (0, 1) there exist an l-derivative P(t) of f at ¢
and a x = 1 such that ¢(-) (x) ¥s continuous and bounded: Then ’

~7m—ﬂm—f§¢mw@ex
c - 0

Proof: For every t€ (0, 1), let 'y(t) deriote the derivative at ¢ of the mapping
. \ ‘ = * .,
.9:[0,1] - 8 given by g(t) = f x71¢(s) (%) ds. Obviously, this derivative- exists.

0 - : -
x71P(¢) (% ) — p(tw(:) is an 1-derivative of f — g at t. Since % ¢(¢) (x) — p(¢) (1) =0, -
by means of'the ‘Corollary of Theorem 3 we get f(1) — g(1) — (f(0) — 9(0)) € K~
and hence, taking into account that ¢(0) = 0, . ' -

. 1 o - ' \-. o
ﬂn—ﬂm—f§¢@mm=ﬂn—mn—MM—mm€Kl
. Y A . , .

V. Let X and Y be locally order-convex ordered topological vector spaces and f
and g be mappings of @ into X or Y, respectively. Let S be a locally convex ordered
topological vector space (with positive cone K) and let 'L be a‘mapping of an open
subset W X x Y with (/[Q), g[Q]) & W into S. :

The set of all I-derivatives o6f L with respect to the first argunient at a point
(z,y) € W will be denoted by D, ,L(z, y). L is said to be lower senlicontinuously

v . : o
24¢ © | ' . . ,
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l-differentiable with respect to the sécond argument at’(z, y) if there exists a neigh-
bourhood U, of the point z.in X and a neighbourhood U, of the point y in ¥ such
that U, x U, & W and for every (,y)eU,xU, there exists an l-derivative
A2, ¥') () of L with respect to the second argumcnt at (2', y ) where with respect
to all three arguments A, is lower semicontinuous at (z, y, y*) for every y* € Y.
The set of all mappings A,(z, y) of this. kind will be denoted by D, Lz, y) Let
D,L(f, 9) (g) be the set of all l-derivatives of L(f, g) at g.

Theorem 5: If. L s continuous wzth respect to the second argument on a nezgk-
bourhood of (/(q), glq ) then

DMLU@LmqﬁuN@r+D2mU<)(@ﬁdw@ngbmumnwz

Proof: Let x = /'(q)' y =g(g) and ¢ € D/(q) v € Dg(q), A, € Dy, L(z, y). Assume,
U., U, and A, are given as above. Let A, = Ay(z,y). -

Obvxously, A= A;0¢ + A, oy has the property (i) of an l-derivative. To show
that (with respect to L(f, g)) A has the property (ii) let a point p € R and a convex
neighbourhood V of the point Oin S hegiven. Let U, g = U, — zand U, , = U, — ¥.
We may assume 'that U, and U, are choosen so that L is continuous wwh respect
to the second argument on U, X U and

u do(z*, ) (y *)CAzo)’(P + V/3 +K

.

where the union is taken with respect to allzt € U,, y* € U, and y* € vip) + U0
We also may assume that there is.an ¢ € (0, 1) such that [0, s] (d)(p) 4+ U, o) S U,
[0 e] (‘V(p) + Uy 0) S U and \ o
z + &(d(p) + 2%), y) — L (2, ) ' s
Lo + i ,.w yeAmwm+—+A |

£

whenever ¢’ € (0, €] andA xz* € U, o, Moreover we can arrange it so that for a suitable .
. nelghbourhood U of the point 0 in R, ¢ + [0, €] (p + U) E @ and that for arbltrarv

e € (0, €] &nd p’ € U, taking z’ —/(q+e(p+p)) and y' =glg + &(p + P')), w
have .

emm+vma1§ﬁeﬂm+mm‘”. -

Using Theorem 3, for every such ¢’ and p’ we get

(f(q+s(7)+p)g(q+e(p+p) L(/(q 9(9))

.| 8

L‘ (x + g' xr —x , y) - L(x’ y) L(xi 1/') . L(:C, ’I/) <
_ T + 52 : ) 1
J : & - F
€U L(z + .5;(43(27).'*'?*): y)v—bL(x',-y)
Z%€UL, - S

+ co {Az(z’,'y + el’?‘(y’ — ) (y = y) e* € (0, 1)} + K
S dodp) FV2+K ¢ o
-HM&WW)”HIEmME%,“ﬂ)+%d*K\
CA0¢m+Vﬂ+K+Awﬂm+Vﬂ+K mm+V+A-
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Corollary [3: Theorem 5] Let X and f be as above. Let S be an ordered tépologzcal .
vector spuce and [ be a mapping of an open subset Q' of X with f[Q] S @ wnto S. Then |
D/(/(Q))OD/(Q) s D(f olg- . « -

In the case of § beéing locally convéx the corollary is a special case of‘Theorem 5
since for L which is mdependent of the second argument, D, L(z, y) contains the

zero mapping.
»

"VI. Let S bean ordered Banach space (w1bh p051t1ve cone K) and G be a mappmg .
of @ X [0, 1]'into S.

Theorem6: Let G be continuous. Assume, there exists an l-derivative y(p, t) of G
. with respect to the first argument at every pownt (p, t) € @ X'[0, 1] such that the follouring
holds: For arbitrary p € R, y(q, -) (p) ¥s conttnuous and y(-,t) (-) vs lower semicon-
tinuous (with respect to the pair consisting of the first and third argument) at (g, p)

. um/ormlu/orallté [0, 1]'). Let F': Q—>Sand¢ R—>Sbegnenby

1

F(p) = pr,odz PEQ and )= [ g0 @, peR.
_‘ J |

Then ¢ € D F(q)

\

Proof: Obviously ¢ has the property (i) of an l-derivative. To show that (with
. respect to ) ¢ has the property (ii) let a point » € R and a convex ne;ghbourhood
-V of the point 0 in S be given. There exists a neighbourhood U of the point 0 in R
with ¢ + U S @ such that y(¢%, ¢) (p*) S ¥(q, t) (p) + V/2 + K forevery gt € ¢ + U,
te[o0,1] and p*Ep—{— U. Let ¢¢€ (0 1) be such that [O s](p+U)C U. Usmg
Theorem 3, for every & ¢ (0, £] and p’ € U'we get

G(q+e(p+p), 0)— Glg,t)

IE _ i
- € eleo{yfg + e*(p 4+ ). Y ((p + p)) | e¥ € (0, )} + K
Scofylgth, ) (@) |¢g*€q+U,p*€p+ U} + K.

SHGO D+ V2 FKSyg.t)(p) +2V/3+ K

hence

5,

. . . l‘. . :
Flg+ < +9) = Flo)_ f G+ +p)0)—6Ggy
. : . 8,
0

o ., '
gfy(q,t)(p)dt+V+K=¢(p)+ V—}—:K 1

VII. Lower and u pper -derivatives can be used to get very general optimality con-
ditions in vector optimization (see the references). The following considerations deal
with a certain generaluatlon of the Fuler differential equatlon

1). This means that for every neighbourhood ¥ of the point 0 in S there is a ncighbourhood U

“of the point 0 in' R with ¢ 4 U\C @ such that (g%, ¢t) (pt) & / (g,t) (p)y + V + K forevery
q*éq-*—U t€f0,1]andptep+.U. .

\
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For this let p,, p, € Q@ and an open Q' & R be fixed. Let us consider R to be
(trivially) ordered by using {0} as positive cone. Let R denote the set of all mappings.
z: [0, 1] — R with 2(0) = p,, (1) = p,, 2[0, 1] S Q which are differentiable at every
point ¢ € [0, 1]%), where the derivatives dz(¢) are linear and &: [0, 1] — R.given by
&(t) = dz(¢) (1) is continuous and [0, 1] £ Q'. Every z € R is continuous. Assume
R + 0. Let N be equipped with the unique topology being such that for every
x € R, for every natural number » = 1 and for arbitrary open sets U,, ..., U, in R

wit,\h z[(r — 1)/n,¥/n] S U;, v € {1, ..., n}, each subset -

n

[i—=1 3. .
{yEJlly[z ,%]ng for all z’E{l,...,n}}‘

of 7 is an c;pen neighbourhood of.z and the system of all such subsets is a base .

of R. . : \ .
Let S be an ordered Banach space (with positive cone K) and L be a continuous
mapping of @ X Q" into S. Let I be the mapping of & into S given by

, I) = [ Lz(t), (1)) de.
0

I is said to attain at 2 € R a local maximum of the first or second kind_— the latter
_ also being called a local Pareto maximum — if there exists a neighbourhood % of z
such that :

N

I[U] — I(x) S —K or I[U]— Iz) S\ (K\{0}),
respectively. Every local maximum of I of the first kind is a local maximum of I
. of the second kind. If S = R, bothokinds\ of local maxima are identical.

Theorem 7: For every z, € Q and x, € Q' let there exist I-dervvatives d, L(z,, z,) (-)
und dy | L(zy, 2,) (+) of L at (x,, x,) with respect to the first or second argument, respec-
tively, which. are continuous (in all three arguments) where, moreover, d, L(z,, x,)
always is positive homogeneous and subadditive.®) -

Let z€ R. For every t €[0,1] and y € Ry let there exist « wu-derivative
du(da 1 L(z(1), 2(t)) () of danL(2(t), 2(2)) (y) with respect to t which s continuous with
respect to t and y. ‘ ' .

If I attains at x a local maximum of the first or second kind, then

dy 1 L{z(t), (1) (y) — dulda 1 L(2(0), #(0)) () (1) € —K resp.€ S\ K
for ‘every y€ R

\

Y

Proof: The procedure is analogous to the usual proof of the Euler differential
sequation.. .

1. Let us assume_ at first that I at z attains a local maximum of the first kind.
Let %:[0,1] — R bc a mapping with y(0) = y(1) = 0 which is differentiable at
every point ¢ € [0, 1] where the derivatives dy(¢) are linear and g: [0, 1] — R given
by #(t) = dy(¢) (1) is continnous. y is continuous. There exists an % > 0 such that

%) At ¢t = 0, 1 the derivative of z naturally is one-sided, this notion being obvious. One-sided
derivatives and u-derivatives will also appear in the proof of Theorem 7.

%){ A mapping ¢: B —> S ig said to be subadditive if for every p, p" € R, d(p) + d(p") — d(p + P’)
€ K. o . .
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z 4 (—n, ) g)‘g R. For arbitrary ¢ € (—7, 77) let

\

. 1 \ 1
Je) = f L{z(t) + eyj(t), £(t) + eg(?)) de.

It is easﬂy seen [3: Theorem 12] that for every ldenvatlve d.J(O) of J:(—n,n)
— Sat 0, . K

aJO) (e —K. SR (1)
Theorem 5 ensures that™

p(0) = diiL{a®) + (0, 50 + e90) (r0®)
-+ daaL{n(t) + ey, #(0) + 4 ) (w500),

T€ R,, defines an l-derivative y of L(x(t ) + ey(t), x(t) + €9(¢)) with respect to e.
By means of Theorem 6 and (1), . '

-
1

J (k. 50) (v ) + doaL(2(0); 2(0)) () dt € —K. (9)

The assumptions on d, L(x,, xg) yield that for fixed'z, € Q and z, € @', dy | L(2,, z,)
is a u-derivative, of the mapping d, L(z,, 2,): R — S. Theorem 5 ensures that a
u-derivative dy(ds L(z(t), £(2)) (y()) of da1L{x(t), 2(¢)) (y(?)) with respect to ¢ is
given by ‘ . \ .

dy(dea L(2(0), #(0)) (y(1)) () ,
= au(dg_llg(x({), (1) (y(z))) (x) + do L(z(t), %(t)) (z3(2)) ,

) \ .
't € R, where 9y(dp 1 L(2(¢), z(2)) (y(t))) () is the u-derivative of dy, L{=z(t), z(t)) (z/(t)
mth respect to ¢ occuring in x and &, but not in y. By means of Theorem 4

-

doxb(x(l), (1 )(?/(1)) — dy(Lx(0), £(0)) (4(0))

— [ dy(da L(=(2), () )(y(t)))(l)dte —K.

Because of y(0) = y(1) = 0, we have : N
dy 1 L(2(0), #(0)) (y(0) = donL{=(1), #(1)) (y(1)) = 0.
Therefqré ‘ ) BT .
" 1 ' .
[ 8u(den L(x(2), 2(0) (y(1)) (1) d¢ + [ doL{2(t), 2(0) ((t)) dt € K
0 . - 0 ' .

and because of (2) hence
_ v | :
] (@10, #(0) (9(0) = BuldaaLixe), #0)) (v(®) (D) de € =K.

(]
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From this, without difficulty for arbitrag‘yfy € R we get
- diaL{@(t), #0) (v) — du(da i L(x(0), £(0) (¥)) (1) € —K
] .
which proves the assertion of the theorent in the underlying case.
2. If I at z attains a local maximum of the second kind, the assertion of the
theorem. can be proved analogously where (1) is to be repla.ced by d\J(0) (1) ¢ S\ K
(vid. [3 Theorem 12] ' ’

\
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