
Zeitschrift für Analysis und Ihre Anwendungen Bd. 5 (5) 1088, S. 409-417 

Boundedness of Anisotropic Pseudo-Differential Operators - 
in Function Spaces of Besov-HardySobolev Type 

H.-G. LEOPOLD 

Es werden Pseudodifferentia loperatoren in anisotropen Funk tioncnräurnen vorn Besov-Hardy-
Sobolev-Typ B, q und F q betrachtet. Dazu wird eine Veillgemeinerung der klassischen 
Hörnianderschen Pseudodifferentiloperatoren für den anisotropen Fall eingefUhrt und em 
Satz über die Beschränktheit dieser anisotropen Pseudodifferentia lope ratoren in den ent-
sreehenden anisotropen Funktmonenräu men bewiesen. 

P'ace1aTpJl3al0Tcn oflepaTopbl B aH'li30TpOflhlwX yIIEu11oIIaJIb-
HIIX npocTpaHc'rBax TUna- Bec0na-Xapw-Co6oJIeBa BI it F, 0 . )] jia aToro o6oG[IaIoTCfl 

P,q
kjiaccii qecxue nceBouI)epeHEuIanhHble.onepaToph1 Xepiaiigepa na aun3oTponhIaIli civafi 
it goKa3bxBaCTCFI npeJio . eHue o5 T11X aI1I130TOflHbIX nce 13 101L 1a( )epeI1-

.unajIbHblx 0HCST00B B COOTBCTCTBYLOEUHX allH3OTP0nHbIX (JyHliluoHaJlhubix fIpocTpafI-
cTBax. 

This paper is concerned with pseudo-differential operators in the anisotropic function spaces 
of Bèsov-Hardy-Sobolev type B q and .F Q .An anisotropie generalization of the classical 
Hörmander class of pseudo-differential operators is..introduced and a theorcin about the 
boundedness of these anisotropic pseudo-differential operators in associated anisotropie func-
tion spaces is proved. 

There are several results concerning the houndedness of pseudo-differential Opera- 
tors in function spaces. From the results of HöRMAIDER [12], CALDERON and VAu.-' 
LANCOIJRT [6] and CHING [7] it follows that pseudo-differential operators of Hör- 
mander class SO . , are bounded in L 2 (R') if and only if 0	6	1 and. (, 6) 

(1, 1). The problem of boundedness of pseudo-differential operators of class S 
in L(R") has been studied-by KAGAN [15], KM.- IAN0-Go and NAGASE [18], 1LLNER 
[14], FEFFERMAN [8] and others. Then there was a development in two directions. 
On the one hand there were defined more general classes of pseudo-differential 
operators - see for example BEALS [1], HORMANDER [13] - and results were proved 
on the boundedness of these pseudo-differential operators in L2 (J1') and L(R"), 
respectively '[2-4]. On the other hand, the classical pseudo-differential*?perators 

were considered in more complicated function spaces, as by GOLDBERG [9], 
Bur Huy Qui [5], NmssoN [20] in local Hardy spaces and Hardy-Triebel spaces 
A relatively final result was obtained by PArVARINTA [21] in the case of isotropic 
Hardy-Triebel spaces and Sobolev-Besov spaces: The pseudo-differential operators 
of class SO,., are bounded in F q and B, if 0 6 < 1 and 0 <p, q < 00. 

This paper is concerned with pseudo-differential operators in anisotropie function 
spaces of Besov-Hardy-Sobolev type. These spaces. are a general 'scale of anisotropic 
function spaces (like their isotropic "counterpart"), containing for example the 
anisotropic Bessel-potential spaces and the anisotropic Soholev spaces - see [26],
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Of course an anisotropic structure in the function space requires an adequate aniso-
tropic structure in the definition of the pseudo-differential operators. The symbol 
classes defined in the following, are a natural generalization of the symbol 
class 81, introduced by HöBMANDER [10, 111 and K0RN and NrRENBERG [16]. 

The results obtained here are related to those in [21]. 

1. Definition and basic properties of anisotropie pseudo-differential operators 

Let a = (a 1, . ., a) be a fixed n-tuple of positive numbers and a 1 +	+ a = 
The anisotropic distance of x = (x1 , ..., x) E R' from the origin is defined by 

1 x10 = ( I x iI 2 ' + ... + lxI2Ian)1I2. 

Now, fixing an anisotropy a, let us define an associated class of pseudo-differential 
operators as follows. 

Definition: We say that a C-function p(x, ) defined on 112" = R° x R. " is 
a symbol of class S (—co <m < oc; 0 1, ô < 1) if for any multi-
indices a, 9 there exists a constant c 5 such that 

p(x, )j	c 5(1 +	ia)m_111P+l1fl1I6 

in R2n, where 

p(x, ) = "Dp(x, ), 

H a ll = E a1a 1,	Hall =.Ea1/i1. 

From the definition of the anisotropic distance we obtain 
1.	 1 

c(1 +	1 + kI0	02 (1 + lI)"''	 (1) 

•	and as a consequence of min a1 > 0 there exists the imbedding 
-	 •	 mm a1
S• for ö max a1 

rn	 mm a ,	wax a1 where m =	, ' =	,ô =	and 8 6, denotes the Horman- nun a1	max a1	min a1 
der class of pseudo-differential operators. 

As usual, the pseudo-differential operator P(x, D) with the symbol p(x, ) is defined 
by

•	P(x, D) u(x) = f eEp(x, ) 'i2() d	for 'it E S(R"), 
where

= fe- 1uEu(y)dy and d= (2)"d. 

Because of (1), this operator maps S(R) continuously into itself and we may extend 
it to a continuous operator from S'(R") into S'(R"). The mapping p(x, ) - P(x, D) 
is a bijection. We shall represent the symbol p(x, ) of P(x, D) also by a(P) (x, ). 

For 'p E	and I = a 1 y1 ± + ay where  is an arbitrary multi-index, we
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define the semi-norms p11(m) by 
IpI i ( m) = max sup { I p (x, 01 (1 +	10)-(m-IIIIe+I!PiIa)}


lI+POl R' 

Then SQ is a Frechetspace with these senii-nortns and we have for any p(x, ) E 

p(x, )I ^ J pIrsii ( 1 -f-	I o n1_ 1Ifle+Hfl11 b and	E si.- 11- 11e+11011 6  

The symbols - - 

In	\sI 
(	(1 ± 12)/2a, 

C	 \y1 

are an interesting example, since these symbols defiiie'lifting operators in the nisotropic 
function spaces, which will be defined in the second seétion. It is not hard to show that for 
any S E R the symbolsbelong to 

the class S. 10 , provided that k € R is such that k/2a EN 
(j = 1, 2..... . n). To get this result only for n-tuples a =. (a1 , a2 . .... a) with rational compo-
nents is unnatural. But it follows by theabove kind of definition of the symbols - there are 
only integer derivatives, and this is not compatible with an irrational anisotropy in some 
direction. We get some simple but non-trivial examples if we consider R 2 withthe anisotropy 
a =(a 1 , a2 ) and a 1 = 1/2, a2 = 3/2. Then (6 + 22)/((t ±	± (1 +	)) E S2, 1,0 and 

DD)( 1° + 2 + 2m(x) 26 ) . (1 t16 ± 22. + 21(x) 26 ) 1 e 
for all multi-indices a and , if rn > 2 is an integer, ô = 2/rn and o is a function belonging to. 
B(R2)= {: sup jD/(x)J	c for.-every multi-index y}. 

Theorem 1: Assume that  ó < :5; 1. Le(P 1 (x, D) E S;andP2 (x,Dx) E 
Then P(x, D) = P 1 (x, Dr) P2 (x, D) belongs to Sç m2 and the symbol a(P) (x, ) is 
expressed by	 -	S 

(P) (x, ) = Os-ff e 1Y p 1 (x 1 + ) p2 (x + y, ) dy d.	- 
(Os-f f denotes an oscillatory integral in the sense of KUMANO-GO [171.) Moreover, ,# 
we set	 -	 - 

= vi(, ) 2(3)(X, ) E Sçm._(e_o)lIll 

and	 - 
rro(x, ) = Os_f f e- iyqp,l y)(x, + O) p2() (x +- y, ) d d12, 

then for any N we have the expansion /ormvla	 - - 

1 •I' ( l	O-' (P)(x, ) = ' - p(x, ) + N E j '	,'	r 8 (x, ) dO, 
•	 y(=NJ 

•	 -	 -	 550'	 --

where {r,o} 1 isjoranyy and anyreal number >0 abounded set in 
Furthermore, for any I and any c > 0 there exist constants c, c' and a positive number 
L(l, a, ,, n) independent of 0 such that 

vI,(m,+m,_1lI_) -^ c pJ:1 1)2I1ii	-_	
(2) 

and.  
r 9 f,('n i+ rn.+'-Ilyjl(Q-o))	C' Im 710 P2	 5	 (3) 

hold /or all 1'	L.
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This theorem contains the fundamental properties of anisotropic pseudo-differential opera-
tors which will be needed in this paper. It should be remarked that the number in (3) will 
be zero if we have an anisotropy a = (a 1 ,..., a8 ) with rational components. We need the 
number x > 0 in the general case only for technical reasons *---' see also the first example. Hence 
(3) is not the best possible result, but it is sufficient for the proof of our main result in Sec-
tion 3. In the isotropic case, which means a1 = a8 = 1, allresults (with - = 0) may be 
found in KuMAo-GO [17; Chapter 2]. The proof of the theorem in the anisotropic case 
turns out to be analogous to the proof in [17] for the isotropic ease and therefore it is omit-
ted. There are only some technical complications - especially in proving (3).	 - 

	

The following lemma, which gives estimates of the kernels of pseudo-differential	- - 
operators with hounded support in , will be useful later on in the proof of the 
theorem in Section 3. 

Lemma: Let q(x, ) E S° n SO, 1.6 and 6 < 1. Then the associated kernel K(x, y) 
= f e'Yq(x, ) (t belongs to GC. ( R8 x R') and we can write 

Q(x, D) u(x) = f K(x, x - y) u(y) dy for u E S(R).	- 

If in addition. supp k q (: 2k- j kI0 2"+i} for arbitrary fixed j and k, then for 
every M> 0 and 1 with 21> M ± n/mm a1 + 2 max aj ± 1 th&c exists a constant 
c which isindependent of q(x, ) and k such that 

f IK(x, x - y) (1 + 2' Ix - yP a ) M dy	c jqj 1 (0) .	 (4) 

	

Proof' 21' > Al + n/min a1 , then-it is easy to show that	 . 

fIK (x , xy)l( 1 + 2k I x	yIa)thJ	 . 
ç(l', n) 2-k,, sup J.K(x, 2-kay)j (1 + y1,,21) 

•	 y 

holds. Now we have 

Iy21' :^-_	 -)_ . . . -f- l y.I'"')	 S. 

and	 S 

I y,V" K(x, 2-11aiy) = f e 1 ( 2	.O2k8YpDq(x, ) d	- 

• for every y E N and p= 1, 2, ..., u. Setting y, = [(2/ar) 1'] ± 2 we get 

f I K(x, x - y) 1 (1 +21 Ix	y011 dy 

c2	,!, (sun 2 JK(x,2'°'y 1 )I + sup K(x2'y)	
S S 

P= 1 Vp^l,	 ^1 

•	c	(28 sup 2f q(x,	±	sup f 2kapDq(x,	d) 
V	 'u 

• :E^ c22	f q(x, )J d + c f 2_kn+k0PVP\ f	j Dv,q(x,	(ta. 
p= 1 2'<II,<2'	 S	 S 

Moreover we notice that	 - 

jDq(x,	^ q,(1 ± IL)"9 and f d 

This proves that	 S	
.	 S 

S	 f K(x, x - y)J (1+ 2k I X - y0)1 dy	c(l, j, n) q,(')	
S 

holds if. 1 > 21' + 2 max a1 + 1, 21' >.M + n/nun aJ where c(l, j, n) is a constant 
which is independent, of q(x, ) and k I
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CQrollary: Let q(x, ) = q 1(x, ) q2 (x 1 01 q1 E S-°° n S m I ., q2 € S'', 6 and supp4 q1  
2k-'j IL 2k}. K(x, y) denotes again the associated kernel-/unction. Then 

for every M> 0 and 1> M + n/mm a5 + 2 max a1 + 1 there exists a constant c 
whzh is independent of q(x, ) and k such that /or all.m € B with —m 

f IK(x, x - )I (1 ± 2k Ix - y0)M dy	c q11 (m) q2fj(_tn).	 (5)


This is a consequence of (4) and (2) U

0 

2. Definition and basic properties of anisotropic function spaces 

Let 0(R?l) be the collection of all systems = (k}_o	8(11.") with 

(i) SUPç,Oc {: k!a :5: 2},	
6) 

SU PP Tk	{: 2k-1	II	2'}	if k = 1, 2,..., 

(ii) for every mult.iindex a = (a 1 , ..., a,,) there exists a positive number c such 
that  
21I I11 D k()I	if Ic = 0, 1, ... and	€ R",	 (7) 

CO

(iii) =ZI if'	€ R.". 
k=O  

This is a smooth anisotropic resolution of unity adapted to the given anisotropy 
a = (a 1 , ..., an ). For simplicity one may assume that 

= p(2(- k+ Wa^ , , ..., 2(-	I)a,) if Ic = 1 ) 2, ..., 

where q' is an appropriate C°°-function with SUP1)9	{.: 22 < kIa < l. 
Now the anisotropic Junction spaces will be defined as follows: 
Let —oo<s<oo and =(s1,..:,s,,) with s 1 =s/a,,...,s =s/a.. 

If 0 < p, q	oo, then,  

B ,q(R) = {/ €	: j/ B	= II{2k(D) /11 1 

Tf0<p<co and 0<qoo,then 

F(R) = {/ S':1 1/ I F' .,11 = 1(2klwk (D) /} I L(l, 

where {k()}-o	and (D)/ = F- 1pk (^) 11, F denotes the Fourier'transform in 
8'(R"). The spaces	arid F q are quasi-Banach spaces (Banach. spaces if 1 

co). They are independent of the chosen system 99 € °(R"); different systems 
and qq lead to .equivalent quasi-norms. If 0 <p, q < oc, then 8(lt") is dense in 

them - see [26: Chapter10.11. In particular we have 

F' 2 =	if 1 <p < oo	 -

and

F2 =H= Wpi if 1 <p<oo and s=(s;...,$)	. 

is an n-tuple of natural numbers. Hpi and 
'
WP5 denote the classical anisotropic Bessel- 

potential spaces and the anisotropic Sobolev spaces, respectively - see [19, 241.
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We have the following maximal inequality. Suppose that 

• *

	

	 8

(F 19v) F/) ()I 1k (x) - 

yER" (' + 2k IX - y10)M 
Then'

I{2 8Ik*(x)} I Lp (lq )IJ	If. 1 1 . q lI	 (9) 

holds for M > n/mm (p, g) and all E F,This is 'a consequence of [25: Sections 
2.3.2 and 2.5.21. 

We recall the interpolation theorem: 
- D8 _IL'8o	8, \ 

-	 - .L p,q,'	p)O,q 

if 0 <p < cx, 0 < q, q 0 , q 1 oc and s = (1 - 0)8 + 08 with so = s and 0< 0< 1 
- see [24].  

The functions pk(D) are pseudo-differential operators of' order —oo, and from 
(6) and (7) we obtain for any m € R 

•	ID92k()I :!E^ c m2 m(1 + IIa ) m_ I1I,	k	0, 1, 


where the constant. C.m is independent of k. Therefore we have 
kPk I l (m)	Cim2m for k = 0, 1, ...,	 (10)


where Cj,rn does not depend on k. 
Let as consider function systems	'	 I 

= {V'k)o ' with (7), i.e. 24IL I D,fr()l !!9 c,, 
and

0supp0 c:.{ : II < 211,	SUPPYk C { 2i < I	< 2k+jj 

for a fixed real number j 1 instead of (6). Then we have the same estimates of the semi-
norms of k(D) as in (10). The constant Cj.rn depends now on j, too, but is indenpendent of k. 
Moreover, the quasi-norm {2k8pk(D) /1 I L(l)II defined by use of the system V is anequivalent 

- quasi-norm in 
2

3. The main result 

We are now in the position to prove a theorem about boundedness of pseudo-
differential operators in anisotropic function spaces. 

Theorem 2: Let P(x,D) €	and ô 1. Then for c.  p, q and s with 0 <p

<oo,0<qoo and —oo<s<oo 

P(x, D1) :' F(R) --> F•q(Rfl) 

- is a, linear and continuous operator. Moreover, there exist real numbers I and . c > 0, 
both independent of P(x, Di), such that /or € F(R')	 . 

• . - IIP(x, D tJ FqIJ_^	p,() Ilf I 1II.  

•	Pro6f:Let {c'k}.o € )"(It'). Then we have 

IIP(x, D) / I 1.qII' = 12189(D) P(x, D)	Lp(Iq)II.
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As a consequence of the composition rule of pseudo-differential operators we see• 
that

p(D) P(x, D) = P(x, D) Pk(D) + Rk(x, D) 

= P(x, D) 9)k(D) ipk(D) +	Rk(x, D) 1 (D) ip1 (D).	(11) 
j=O 

Rk(x, D1) denotes the pseudo-differential operator which equals the "commutator" 
of 'k(D) and P(x, Di), {VJ} ) Ø is the function system with ') = j—() + () 
+ +) if 1	0, 1,	= 0). In particular, tp,() = 1 if E supp q,. We have

also used

E	= 1 and i(F(x, D) (D)) = c(P(x, D2)). 

• Now we consider the first term on the right-hand side of (11). Let / E F q and 
Ik = 'k(D) I. Then we obtain 

P(x,D) (Pk(D)IkI = J' K(x, x - Y)Ik(y) dyl, where
Kk(x, x - y) = f c' 1` 111 -tp(x, ).Pk() 

Hence, by the lemma and the corollary proved in Section 1 and by (10) we have the 
estimate.	 - 

(P(x, D) k(') 1k) (x) 

•	f IK,.(x, x .— y)l (I + 2k IX - YIO)TM(1 +2kJX_yIa)M 
C pJ(o)/(x)	 (12 

for M >. n/mm (p, q) and I large enough, where /k *(X) denotes the maximal func-
tion defined by (8). From (12) and (9) we deduce that 

II12k81)(X, D .c ) 9 k (D) I}o 1 L(I)IJ  
^ cpj(°) II12 Ic81k *} o L(I)IJ _^c'pJ,(0) J/ I FqIl'P, 

where the constant c'> 0 does not depend on P(x, Di). 
Now we estimate the second pseudo-differential operator in (11). Again lie set 

/1=(D)/and

x — y) = f e1(V rk(x, )99i M d. 

Then by (5) we have the inequality 
I( Rk x, D) q(D) I) (x)j	- 

fK(x, X - y)P (1 + 2 J Ix — YIa)TM (I +	y10)M 
dy 

^ c IrkI(8 t) Il,(_S + 1 ) I*(x)	
•	 (13) 

for M > m/min (p. q), I large enough and arbitrary E'E R. To estimate the semi-
norm rkli(8 e) we apply Theorem 1 to Rk(x, D) = k(D) P(x, D) - P(x, D) k(D) 
and get by (2) and (3) the estimate I rkP: c p9 !kI' with ,c < (1 - 6) min a1 
and 2e = (1 - O)niin a - x > 0. In view of this estimate we obtain from (13) 
and (10) that 
- 1(2"Rk (x, D) 971 (D) I') (x)J	C22i(– IpIP) /1*(x).
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it is easy to verify that. 

	

00 /oo	\1/q 
2-i'2 i /(x)	c, ( E 2i8/1*(x))	if q < 00 

1 = 0	 \j0	 I 
and	-

' 221(x) ;5 c, sup 2P j/.*(x) if q = 
J. 

This is obvious if 0	q :E^ 1; if q> 1 it follows from Holder's inequality. Thus we 
obtain by use of the maximal inequality (9) that 

•	
D)c2(D)	I Lp (lq )	- 

C 1 p l,1 9 1 1{2/}°° I Lp(1q)I	C' lI	lit I F8 Ill, -	- 

The 'constant c' >.O again does not depend on P(x,D). 
The proof will be finished by the remark that the quasi-norm 11-11 W defined by the 

function system	is equivalent to the .quasi-norm	defined by the system I 
Remarks: 1. By theinterpolation theorem for anisotropic spaces [24], we have immediately 

II P(x,	/ 'j B qII 5 c I p I° t 1/ I B". 11	 (14) 

ifO<p <oo, 0<qooand —oo<s<oo.. In. the case p=co and 0< (14) is. 
also true. This follows immediately by the proOf of the thorem, using the maximal inequality 
for the space B q(R'B ) [25: Sections 2.3.2 and 2.5.2]. 

2. The theorem contains the results about . Fourier multipliers for non-homogeneous aniso-
tropic spaces in [23, 25]. Indeed, the constant 1 in the theorem is larger than necessary in this 
special case.	- 

3. We have F9(J0)	L(R-) if 1 < p < CO. Therefore we obtain fron the theorem some 
extensions of the results in [8. 14, 15, 18]. For example the pseudo-differential operator 

E + 2m (x) 26	 80 
1 +	+ 22 + pm(x) 26 

E G • LS	 - 

is bounded in L(R 2) if 2 <.m € N. = 2/rn and o € B(R). In the sense of the isotropic 
Hormander class of pseudo-differential operators it belongs at most to S with	1/3. 

4. The use of maximal functions in the proof goes back to PATvARINTA [211. He proved the 
b6undedness of pseudo-differential operators of ( < 1) in' the isotropic function spaces 
F, q (Rh1) and B, q(R"). But in contrast to the previous results we have now an explicit, esti- 
mate of the operator-norm )I P(x, D) : L(F,	' ', .q )II by semi-norms of the symbol p(x, ) and 
a constant c which is independent of P(z, Dz). This is very usefil in order to deal with other 
questions, for example results about convergence. It was possible to get this result-by an esti-
mate of KUMAN0-oo [17: Chapter 2, Lemma 2:4] for the remainder term which is obtained by 
the composition of pseudo-differential operators and a generalization of it to the anisotropic 
case - inequality (3). 

5. Similar results were meanwhile obtained also by M. YAMAZtKI (see J. Fac. Sci. Univ. 
Tokyo,.Sect. IA Math., 33 (1986), 131-174).	 . . 
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