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On the Stabil'gty Property for a General Form of Variaﬁopal Inequalities

" LE VAN CaOxG

Fur eine ullgcmeiné Form von Variationsungleichungen in rcflckivcn Banach-Riumen werden =
unter Voraussetzungen iiber dic Monotonie, Konkavitit, Stetigkeit und Beschrinktheit des .
parameter-abhingigen Problems Stabilitatskriterien angegeben. Einige Spezialfille werden.
betrachtet. ) )

Has obuieit GopMB! BAPHAIIOHHBIX HEPABEGHCTB B peicKCIBHBX GAHAXOBBIX TPOCTPAHCTBAN,
NPH NPEANO0KEHIIANX O MOHOTOHHOCTH, BHNYKIOCTH, HEIPEPHIBHOCTH I OrPAHUYEHHOCTH
saBuCALLell OT mapaMeTpa MpoGieMbl A0KA3bIBAOTCA KpHTepHIt ycmiwunocru O6cyinatorca
HEKOTOPHIE CHeuHasbHLe ‘cayyai.

Stablhty criteria for a general form of variational mcquahtles in reflexive Band(,h spaces are
established under assumptions on the monotonicity, concavity, continuity and boundedness
of the parameter-dependent problem. Some special cases are considered.

1. Introduction *~ - . -
. For a parameter-dependent :Problem (P,) it is na.‘txnfal' to raise the problem: AAssume
that Problem (Ps) admits a solution, when does a neighbourhood U of ¢ then exist
such that for each ¢ € U Problem (P,) also admits a solution% What information
about the solution set of Problem (Py), t € U, can be obtained? v

In the case where (P,) is an optlmudtlon problem; the above problem (smblllty problem)
‘was investigated by many authors, e.g. Kirscw [7], GoLLax [5), Baxk et al. {1]. For para- *
* metric optimization problems there was furthermore a lot of rescarches devoted to the extremal
value function, e¢.g. Gauviy and ToLLE [4], LEMPIo and MaURER [9), ERELAND and TEMAM
(3], LEvITIN [10). In the case of generalized equations, the stability problem and related
- problems were treated by RoBixsox [13]), Hoaxe Tuy [6], KuMMER [8]. A survey of para-
meter- dependent problems can be found in BAxK et al. [1].

In this paper we are concerned with the qualitative stability ploblcm in the case
of a general form of variational inequalities. Specifically, the. Problem (P,) is here
the following:

’

Find z € C such that P . |
/(x"/:t)SOfOI‘allyECtelp (t) . o

where C is a closed convex subset of a reflexive Banach space X; T is a metric space
and /:Cx C X1 — R is a function with certain properties ot monotomclty, con- .
cavity and continuity (R is the set of all real numbers).

Throughout this- paper, we denote by X a reflexive Banach space, by X* the
dual space of X, by C= X a closed convex set, by 7' a metric space, by ¢ € 7" an
accumulation point and by f a real-valued function on C X C X T. The compact-
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ness, closure, opcnness of a set in X and the contmulty of a real valued function
on (' are understood in the sense of the weak topology. The continuity of a real-
valued function on C'X 7 is understood in the sense of the weak topology on X
and the metric topology on 7.

2. Defiuit.ions and main results

In this sectlon some dcfmmons used for the investigation below and stability
criterions cstabllshed for the parameter-dependent problem

xe(C ’
{/(x WEE for all yec (P)

-will be given. The function ¢': €' X C — R is said to be monotone if g(z, z) < 0 and

g(x, y) + g(y,.z) = 0 for all z,y € C. ¢ is said to he hemicontinuous if for arbltrary
given z, y € C the function g(r + Ay — =z), ) of the real variable / ¢ [0, 1] is lower
semicontinuous (Mosco [12]). The set-valued mapping I' : 7' — 22 is said to be upper
semicontinuous at {° € 7' if for each open set Q o I'(¢%) there is a nelghbourhood vV
of ® such that Q > I'(¢) forallé € V (BERGE [2)). The solution set mapping S T — 2¢
is defined by .

S(t)y ={zeC: /(x y,t) < Oforally € C}.

‘Problem (P,) is said to be stable at ° if there is a nelghbourhood U of ¢°® such that
S(¢) is non-empty, convex and compact for'each ¢ € U.and the mapping S: U — 2¢
is upper semicontinuous at £, :
We introduce now the following assumpt,lons (the topology Lon51dcred on X is

the weak topology, see Introduction).’

Assumptlon 2.1: For each’ lE T, /(¢ is a monotone and hemicontinuous
function; for each x ¢ C, [z, - is ‘an upper semicontinuous function; for each
(z, 1) € C XT, f(z,-, ) is a concave function.

Assumptlon 2.2: There is a point y, € C such that the image set N(t“) of the»
ma,ppmg N:T - 2¢ defined by )

N = {z€C: (yo, 2, 8) = 0}

is bonnded “ ) ‘

1

In order to formulate and prove the main Stablllt) theorem, we need some pre-
liminary considerations.

Theorem 2.1: Under Assumptions 2.1 und 2 2 the /ollowmg condations are equi-
valent:

(i) Thereisa nezgkbourkood U oft° such that N(U 8 boumled zn X.
(ii) N s upper semicontinuous at 0.

(iii) T'here is an open set 2 = N(1°) aﬁd a nezgkbourhood V of 0 such that Q n N(V)
s bounded vn X. -

.~ The following lemumas are used for the.proof of this theorem.

Lemma 2.1:. Let Assumption 2.1 and condition (iii) be satisfied. Then for any
sequence {4} = T, 4, — 19, the ‘sequence {r,} = X, =, € N(t,) \ N (), has an accu-

- mulation point contained in Z\’(l°)
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Lemma 2.2: Let I': T — 2% be an uppe\r semicontinuous mappiﬁg at t° with the

closed and bourded zmage set I'(°).. Then there is a neighbourhood V of £ -such that

(V) is bounded in X.
Lemma 2.3 (BANK et al. [1: Lemma 2.2.2]): Let I' : T — 2X be a mapping with

“the closed tmage set I'(t°), Then I' is upper semicontinuous at t® if and only if for any. . '

‘sequence {tt} = T, t, — £, the sequence {z,}— X, z € I'(t) N L'(€), has an accu-
mulation point contamed wm I'(°).

_Proof of Lemma 2.1: First we show that {z,} is bounded. Assume the con-

trary. Then there is a subsequence {z;} with |lz;/|| — co. From {z,;} we now con-

struct a bounded sequence {z{#},

: . d d v . - ,
= E R =) R S a

[z x|l

where d is an arbitrary fixed number with [ly,ll < & < llxll (o Is the pomt glven .
in the assumption). Such a constructlon of {z ““} is &lwavs feasible since ||lzy||.— co.°

]t is.easy to checl\ that. o o
d—lydl < IO S d+ly - - ’ (1.2)

Since ¢ — 0 we have ¢, € V'for all k' = k, enough large (V is the neighbourhood

given in (iii)). By {t,} we denote the sequence of {t,'} with k' = k,. So we get {¢,} =V~

and ¢, - . Since . by the assumption 2 A N(V) is bounded, from (1.2) we can as-
sume that {z,'%} ¢- Q for dy enough large. By (1.2) {z,'%} has'a convergent sub-
- sequence {z!d}. Let z!d) —~ Z. Since 2 is open and 2 ¢ Q for all n’, T ¢ 2. Hence,
“by N(t°) = @ follows Z ¢ N(9).

On the other hand f(y,, ¥, ¢*) = 0 (by the monotomcnt) of.f). So we can write

F(%0s Yo, 1) > —e for each ¢ > 0. Since the function f(y, ¥, -) is continuous at £,
there is an index £'(¢) of the index set of the sequence {t,-} such that f(yo, yo, &) > —¢

for all- ¥ = k'(¢). By 2 € N(4) we have f(y,, 2, t‘.') = 0. From (1.1), the last two

inequalities and the concavity of f it follows f(y,, a,k 4o §) > —e.-The upper semi-

continuity of f then implies f(yo, %, £°) = ¢ and since ¢ > 0 is arbitrary we get .

flyo; T, 8°) = 0. By the assumptlon that means % € N(t°). This contradlcts % § N(0).
Hence, the sequence {z;} is bounded.
Because of the boundedness {z;} has a convergenb subsequence {x,‘} Lct 2y — 4

Since - € N(t) we have f(y,, %, &) = 0. By the upper semicontinuity of f then

follows f(yo, #, & ) >0,ie.2€ N 1 .
Proof of Lemma 2.2: Assume the contrary: that for all neighbourhoods ¥ ‘of

t°, I'(V) is unbounded. Since I'(#) is bounded, we can then construct sequences {f}

and {x,) as follows:

‘Let V, = B({® r)=-T be the ball with center #© and radius 7. Smce I'(V,) is un-
bounded, we can take zy € L(Vy)\ I'(¢%). There is then a point, tl € V, with x, e I'(4,).
So, we have

tl € Vl)
z € T(e) \T(O). . o
Let V, = {t €T 2d(¢, %) < d(ty, t°)} (here d( , ) denotes the distance function in

v

the metric space T'). Since I'(V,) is unbounded, we can take x, € I'(V,) \\ (rqey,

vize C:llz| =2 llxlll}) There is then & pomt t € V2 with z, € I'(ty). So, we have.
€ {teT:2d(, %) < dity, t°) : ‘
L omeT)\ (I uize Cilal = 2||z,1})- !

¢}

. U

4

P2
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Contmumg this process, we then obtam for k =1,2,.
gy €4 (R + 1) d(t, ©) < dt O},
Zeas € Dltnr) \ re)yvizeC: izl < (& + ) l'%lll)

By the above constructed sequences {t} < 7' and {z,) = X, x; € F((k) AN F(t“), it is

easy to check that #, — ¢ and {z;} has no accumulation point. Hence, by Lémma
2.3 I' is not upper semicontinuous at . But this contradicts the assumption 0 .

Proof of Theorem 2.1: (iii) = (ii): lLet {t,..}c 1‘ and {xk}c X be sequences.

with ¢ — £ and z, € N(4) \\ N(¢°).' By Lemma 2.1 {2} has an accumulation point
contained in N(f°). By the upper semicontinuity of / it is easy to see that N{) is
closed. Hence, by Lemma 2.3 N is upper semicontinuous at . (ii) = (i): Since N(£°)
is bounded (Assumptlon22) and. closed, the assertion follows from Lemma 2. 2.
(i)' = (iii) is obvious- B '

Remark 2.1: As seen in the proof of Theorem 2.1, (iii).= (u) and the proof of

Lemma 2.1, the upper semicontinuity of the set- valued mapping N at {® follows =

from Assumptlon 2.1 and condition (iii). From this fact it is easy to derlve the follow-
ing criterion for the upper semicontinuity of a set-valued mapping:
Let @ be « real-valued and upper semicontinuous function on-C X T such 'that
®(-, t) is concave for euch t € T. Let the set-valued mapping M be defined by M(2)
= {z € C: p(x,t) = 0}. Suppose that there is an open set Q2 — X containing M(°) and
« neighbourkood V of 1° such that 2 n M (V) 8 a bounded set m X Then M is upper

- semicontinuous-at 0.

Using Theorem' 2.1 we now establish stability criterions for Problem (P,).above.

We shall prové the following main stability theorem. - ) -

Theorem 2.2: Let Assumptions 2.1 and 2.2 and one of the condztzons (i)— (iii) of

- Theorem 2.1 be satisfied. Then Problem (P,) s stable at & ' Ty

The following results of Mosco [12] are used for the proof.

"T.emma 2.4 [12: Theorem 3.1]): Let g : C X-C — R be a monotone cmd, hemicontin-
ous function such that g(z,-) s concuve und upper semicontinuous for each x € C.
Suppose that.there exist a compact set B C and a point y, € B such that f(x,y,) > 0
for each x € C \ B (the coerciveness condition). Then the solution set of the problem

fzeC h N
g(z, y) = 0. forall yeC
s non-empty, convexr and compact.

Lemma 2.5 [12: Lemma 3.1]: Let g : C X C — R be « monotone and hemicontinu-
ous /unclzon such that g(z; -).is concave and upper semicontinuous for each x 6 C. Let”

(y) {x € C: gz, y) g 0} and ‘H(y) = {x € C:gly, z) = 0}.
Then N Gy) = ﬂﬂw

yec. | yeC

Proof of Theorem 2 2: By Theorem 2.1 lt is enough to show that Assumptions .
2.1and 2.2 and condition (i) imply the stability of Problem (P,) at ¢°. Since N(U)= C .
is bounded (condition _(i)), we can assume that C(U) is contained in a compact set,.
B C. By the monotonicity of / we have {z € C: f(z, y,, t) < 0} = N(t). For each’

t € Uit is then easy to see that [, yo, ) > O for all z.€ C N\ B, i.e. the coerciveness
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condition in Lemma 2.4 is satisfied for Problem (P,). By applying this Lemma it
implies that the solution set S(¢) of (P,) is non-empty, convex and compact.

We now show the upper semicontinuity of the mapping S : U — 28 at (0. Let
{t} = U and {z,} — B be sequences with ¢ — (® and z; € S() \ S(°). Since B is
compact, {z,} has a convergent subsequence {z;:}. Let 2, = Z. Since z,- € S(4)
we have f(@y, y,4) <0 for all y€ C and ‘hence, by the monotonicity -of f,
/(y, 2, t) = 0. From the upper semicontinuity of f follows f(y, Z, ) = 0 and
hence, by Lemma, 2.5, @y, ®) <0forall ye C, ie Z€ S(t°) S(#0) 'is here closed.

. Therefore, by: Lemma 2. 3, S is upper semxcont,muous [ I8 .

Remark 2.2: Tt is easy to see that Assumption 2. 2 is contained in condition (‘iii')
Hence, by Theorem 2.2, in the case where this condition is Qatlsfxed Problem (P,)
is stable at ¢ if Assumptlon 2.1 is satisfied.. -

As we se¢ in the proofs of Theorems 2.1 and 2.2, the set-valued mapping N T — C
playsan essential role. We are here interested in the question under which conditions
the “level set” N(U) is bounded -for a nelghbourhood U of °, Let us now consider
a case where the sct N(U) is bonnded .

Let K < X be a cone with vertex «. K is said to be'pointed if a ¢ co (K \ Bla, 1 ),
where B(a, 1) denotes the ball with center « and radius 1. In the following lemma we

. give a property of the pointed cone, used for the stability consideration below.

L ~ ) . .
~ Lemma 2.6: If K 7s a pointed cone with vertex a, then there is a functional I € X*
such h‘gat U'(x) > l(a) for all z € K\ {a} and tlze tntersection of euch hyperplane
(0, )y ={xec X" =8, 8=l(a)} u,ztk K 15 d bounded set. :

Proof Since A is a pointed cone we have « ¢ To (K \ B(«, 1)) Hence, there is-
a functional ' € X* separatmg « and To (I\ \ Bla, 1)) strictly such that with a

smtable & we ha.ve N
4

I(a) < x <l(z) forall =¢€cs(K \ B(a, 1)). . - (1.3)

Now we show -that {'(z) > l'(a,)', for" all x € K \_{a}. Tt.is easy to see- that
K ni{xz e X:Ul(z) < U(a)} = 0. Assume the contrary: there is a point Z of this inter-
section. Then, ,by a property of the cone we have «.+ AT — ) € K n{x € X:U'(z) ,
< l'{a)}, 2 > 0, i.e. there is an £ € K \ B(g, 1) with l(%) <.U'(«). This contradicts

" (1.3). By an analogous argument we get (K N {e}) n (l’ ) = 0. So, that means:
U'(x) > U(«) for all'z € K \ {a}.

Since, by (1.3), the hyperplane (', «) scparates a and K\, B(a, 1) strict]y the <
mtcrscctlon of (I, «) with K. cannot be contained in K \ B(a, 1); it is contained in .
K n B(a, 1). Hence, (I, o) n K is bounded. Now it is not difficult to show thab
{U,p)nK for ﬂ = I'(«) is bounded, too. We assume here that § > l'(«) (in the case
g = l'(a) is easy to see that (/,8) n K = {«} and hence bounded). I et
c=(8— l(a))/(zx — l(a)) we have ¢ > 0. Since K — « is a cone with vertex 0,
it follows then that K — g = ¢(K — «). Since (I',a) —a = {x € X: U'(z) = o — '(w)}
it is easy to check that (7', ﬂ) — a = c[(l', x) — a]. We then have

)

-(l’,ﬂ)nK—a—[(l' B) —aln(K — a)
A =l &) — el n (K — a)} = [(t’, ) n K —a].
Since (I, x) n K is bounded (', B) n K is bounded I

Uemg Lemma 2.6 we can how prove the fol]owmg theorem for the stability of
‘Problom (P )
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Theorem 2. i Let Assumptzons 2.1 and 2.2 be satzs/zed Suppose thut N(U ) 18
contained mn « pornted cone K. Then Problem (P,) 7s slable at 1,

"Proof: We show that the condition (iii) (given in Theorem 2.1) is here satisfied
and hence the assertion follows from Theorem 2.2. Let I’ € X* be the functional
which exists by Lemma 2.6 for the pointed cone K. Since N(£°) is bounded (Assump-
tion 2.2) we have y = sup {{'(z): z € N(t°)} < +oo. Consider the hyperplane (', )
with & > y. It is then easy to sce that I'(z) < « for all x € N(t°) u {a} where « is the
vertex of K. By Lemma 2.6 (', x) n K is bounded and hence @ = {x € K:l'(z) < «}
is also bounded. Since N(U)<= K, it is then easy to see that N(U) n{xr € X:U'(x) -

. < «} = Q is also bounded. Thus, condition (iii) is satisfied by taking the open set -
Q={reX:l'(z) < «} and the nelghbourhood V= |

Remark 2.3: According to Remark 2.1 it is here worth notlcmg that by using
the pointed cone defined above we can derlvc the following criterion for the upper
semicontinuity of a set-valued mapping:
- Let ¢ be a real-valued and upper semicontinuous /unclzon on CxXT such that
@(-, t) ©s concave for each t € T. Let the set-valued mapping M be defined by M(t)
= {x € C: @(x, t) = 0}). Suppose that M(t°) 7s bounded and there ¥s a neighbourhood
V of t® such that M(V) is contained mapomted cone. Then M s upper semicontinuous.
By an argument analogous to that used.in the proof of Theorem 2.3 it is easy to
see that there is an open set 2 such that 2 n M( V) is bounded Hence, by Remark
2.1, follows the assertion. '

The above-considered mapping M is a mapping with special struct-urc. About criterions
for the upper semicontinuity (and also lower semicontinuity) of general set-valued mappings
we refer the reader, for example, to BERGE [2] and Baxk et al. [1]. N

3. Special cases -

In this section, stability criterions for some special cases will be given by _uSing
Theorems 2.2 and 2.3. Consider the following family of variational inequalities

zeC - . ' ) : 3.1)
N (A=, ) — o, x—y)—i—(pxt—qa(y, <O forall y € C, -

where A4 is an operator from C X T into X*, ¢ is a real va.lued functionon C X T
and v’ € X* is a glven functxonal

Proposition 3.1: Lel AG, Y be monotone and hemacontinuous for each te T,
"A(z, -) continuous for each xz € C, ¢ lower semi-continuous, ¢(-,t) convex for each
t € T. Suppose that there vs a point yo € C such that the zmage set N (t°) of the set- valued
mapping N defined by ,

N(t)y={z¢€ 0'(A(yo,t) — v, % — ) + @Yo, ) — @(x, §) >0}

7s bounded. Moreover, suppose that there 7s a nezgkbowhood U of t© such that N(U)
28 contdined in a povited cone.
. Then Problem (3.1) 7s stable at t°.

Proof: The assertion follows immediately from Theorem 2.3 B -
¢

Corollary 3.1: Let A:C — X* be « monotone and hemicontinuous operator,
@ : O X T — R a lower semicontinuous function suck that ¢(-,t) vs convex for each t,
cand «: T — R a continuous function. Suppose that ¢(z, t%) — 40 as ||z}| - co and

- . - N . . N
\ .
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tkere 28 a point Yo € C satisfying Ay, = 0 such that theset {x € C : p(x, () S (}J(Jo, 0y -
18 contained 1 a pointed cone for all t in a nezghbo'urhood of t°
Then the problem

o fzeC
, . rx(t)<Axx—J>+<pzt) Py, t) =0 forall yeC
" 4s stable at 0. .

Proof: Applv Proposition 3.1 w1bh N@) = {x € C:plz,t) = (Yo, )} and v" = 0.
Since ¢(z, %) — ,+oo as ||zj| - oo, N(to) is bounded. The other assumptions are satis-
fied too l

Corollary 3.2: Let C be contained n « pomted cone K wzth vertex 0 and let ¥’ be
a functional with v'(x) < 0 for all x € K. Let the operator A and function ¢ be given
as in Proposition 3.1. Suppose that @(x, %) — +oo as ||z]| — oo and there 7s a pornt
Yo € C satusfying A(y,, t°) = 0.

Then Problem (3.1) #s stable at {°.

Proof: Apply Proposition 3.1 with Nt)={zeC:{" 2 — z)0> + o( 7}0, t)
— ¢(z, t) = 0}. By the property of »" and p it is easy to sce that N () is bounded '
The other assumptions are satlsflcd too 1

Let us now consider the followmg family of optimization problems
Min { q)(x, t):z€C}, : : ' (3.2)
where as above g is a real-valued function on C X 1T'. We write this problem in- the
form . - . ,
zeC ' - '
A\ . . . R '2'
{(p(.z: l)—tp(y,l)SO forall 1/EC (3.2)

“Problem (3. 2) is said to be stable at £ if Problem 3. 2 ).is stable at . From Propo-
sition 3.1 it is easy to derive R

Corollary 3.3: Let ¢ bea lower semz’conta’nuous Junction such that ¢(-, t) is convex
for each t. Suppose that ¢(z, t°) — 400 as |jz|]] > o cmd there is a point y, € C suck
that.the set -

‘Nt = (z € Cipla, i) < ‘P(yo, 0o

7s contained ™ a poiﬁtelti cone for all t n'a nez’ghbmlrhobd of (. '
Then Problem (3.2) s stable at 10."

"The stability criterion in Corollary 8.3 is given only" for the solution set mapping of convex
optimization problems. A general stability theory for geneml optxmmmon problems is gnven
in Baxx et al. {1], GoLraw [2] and KirscH [7].

. Proposition 3.2: Let X be « finite- dzmenszonal space and let Assumpnons 2 1
‘and 2.2 be salisfied. Then Problem (P,) #s stable at (°.

Proof: Since in a finite-dimensional space an open set is weakly open condmon
(iii) given in Theorem 2.1 is satisfied by taking 2 = {x € X: [lzl| < 7} > N (%) for
. 7> 0 enough large and V< T to be an arbitrary nenghbourhood of £. 2 n N( l/) is

then bounded. Thus, by Theorem 2.2 Problem (P,) is stable at . 1 ’

Examplc: Let (Q,) be the following family of nonlinear complementarity problem

z € R", Mz, t) € R"
{ M. t) =0 (Qp
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where R, " = {z E'R" x Ty .rn, 2, = 0}, M:R.®"x T - R" is an.operator such that
for eacht € T, -,t) is monotone and hcm:oontmuous and for each z € R,%, M(z,-) is
continuous (x I8 the transposed vector of x). Assume that there is y, € R,® such that the set
{z € R.™: ' M(yo, L) = o}, 0 :="yo M (Y, tp), is bounded. Then there exists a neighbourhood
V of ¢, such that for each ¢ € V the complementarity problem (Q,) has a solution. If we
denote by I'(t) the solution set of (Q,), t € ¥, then the set-valued mapping I': ¢t — I‘(t) is
upper semicontinuous at f,. :
It is here easy to see that R, is a pointed cone. Hence, by applying Proposmon 3.2 with
C=R" flz,y) = (" — ) M(a. t)-it implies that Problem (P;) in this case is stable at ¢,
The assertion follows then by the fact that a point'z € R," is a solution of Problem (P;) (in.
this case) if 'md only if it is a solutlon of the complemcntarlty problem (Q Y, t € V (see LiTHr

{11)).

Some apphcatlons (e.g. to. the obstacle prob]em the free houndary problem) will
be studied in another papcr o } )
¢ . . . s
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