Zeitschrift für Analysis und ihre Anwendungen Bd. 5 (5) 1986, S. 437-444

On the Stability Property for a General Form of Variational Inequalities

Lê Văn Chóng

Für eine allgemeine Form von Variationsungleichungen in reflexiven Banach-Räumen werden unter Voraussetzungen über die Monotonie, Konkavität, Stetigkeit und Beschränktheit des parameter-abhängigen Problems Stabilitätskriterien angegeben. Einige Spezialfälle werden betrachtet.

Для общей формы вариационных неравенств в рефлексивных банаховых пространствах, при предположениях о монотонности, выпуклости, непрерывности и ограниченности зависящей от параметра проблемы доказываются критерии устойчивости. Обсуждаются некоторые специальные случаи.

Stability criteria for a general form of variational inequalities in reflexive Banach spaces are established under assumptions on the monotonicity, concavity, continuity and boundedness of the parameter-dependent problem. Some special cases are considered.

1. Introduction

For a parameter-dependent Problem (P_t) it is natural to raise the problem: Assume that Problem (P_t) admits a solution, when does a neighbourhood U of t^0 then exist such that for each $t \in U$ Problem (P_t) also admits a solution? What information about the solution set of Problem (P_t) , $t \in U$, can be obtained?

In the case where (P_t) is an optimization problem, the above problem (stability problem) was investigated by many authors, e.g. KIRSCH [7], GOLLAN [5], BANK et al. [1]. For parametric optimization problems there was furthermore a lot of researches devoted to the extremal value function, e.g. GAUVIN and TOLLE [4], LEMPIO and MAURER [9], EKELAND and TEMAM [3], LEVITIN [10]. In the case of generalized equations, the stability problem and related problems were treated by ROBINSON [13], HOANG TUY [6], KUMMER [8]. A survey of parameter-dependent problems can be found in BANK et al. [1].

In this paper we are concerned with the qualitative stability problem in the case of a general form of variational inequalities. Specifically, the Problem (P_i) is here the following:

 $\begin{cases} Find \ x \in C \text{ such that} \\ f(x, y, t) \leq 0 \text{ for all } y \in C; \ t \in T \end{cases}$ (P_t)

where C is a closed convex subset of a reflexive Banach space X, T is a metric space and $f: C \times C \times T \to \mathbf{R}$ is a function with certain properties of monotonicity, concavity and continuity (**R** is the set of all real numbers).

Throughout this paper, we denote by X a reflexive Banach space, by X^* the dual space of X, by $C \subset X$ a closed convex set, by T a metric space, by $t^0 \in T$ an accumulation point and by f a real-valued function on $C \times C \times T$. The compact-

ness, closure, openness of a set in X and the continuity of a real-valued function on C are understood in the sense of the weak topology. The continuity of a realvalued function on $C \times T$ is understood in the sense of the weak topology on X and the metric topology on T.

2. Definitions and main results

In this section, some definitions used for the investigation below and stability criterions established for the parameter-dependent problem

$$\begin{cases} x \in C \\ f(x, y, t) \leq 0 \quad \text{for all } y \in C \end{cases} \quad (\mathbf{P}_t)$$

will be given. The function $g: C \times C \to \mathbb{R}$ is said to be monotone if $g(x, x) \leq 0$ and $g(x, y) + g(y, x) \geq 0$ for all $x, y \in C$. g is said to be hemicontinuous if for arbitrary given $x, y \in C$ the function $g(x + \lambda(y - x), y)$ of the real variable $\lambda \in [0, 1]$ is lower semicontinuous (Mosco [12]). The set-valued mapping $\Gamma: T \to 2^x$ is said to be upper semicontinuous at $t^0 \in T$ if for each open set $\Omega \supseteq \Gamma(t^0)$ there is a neighbourhood V of t^0 such that $\Omega \supseteq \Gamma(t)$ for all $t \in V$ (BERGE [2]). The solution set mapping $S: T \to 2^c$ is defined by

$$S(t) = \{x \in C : f(x, y, t) \leq 0 \text{ for all } y \in C\}.$$

Problem (P_t) is said to be stable at t^0 if there is a neighbourhood U of t^0 such that S(t) is non-empty, convex and compact for each $t \in U$ and the mapping $S: U \to 2^c$ is upper semicontinuous at t^0 .

We introduce now the following assumptions (the topology considered on X is the weak topology, see Introduction).

Assumption 2.1: For each $t \in T$, $f(\cdot, \cdot, t)$ is a monotone and hemicontinuous function; for each $x \in C$, $f(x, \cdot, \cdot)$ is an upper semicontinuous function; for each $(x, t) \in C \times T$, $f(x, \cdot, t)$ is a concave function.

Assumption 2.2: There is a point $y_0 \in C$ such that the image set $N(t^0)$ of the mapping $N: T \to 2^c$ defined by

$$N(t) = \{x \in C : f(y_0, x, t) \ge 0\}$$

is bounded.

In order to formulate and prove the main stability theorem, we need some preliminary considerations.

Theorem 2.1: Under Assumptions 2.1 and 2.2 the following conditions are equivalent:

(i) There is a neighbourhood U of t^0 such that N(U) is bounded in X.

(ii) N is upper semicontinuous at t^0 .

(iii) There is an open set $\Omega \supset N(t^0)$ and a neighbourhood V of t^0 such that $\Omega \cap N(V)$ is bounded in X.

The following lemmas are used for the proof of this theorem.

Lemma 2.1: Let Assumption 2.1 and condition (iii) be satisfied. Then for any sequence $\{t_k\} \subset T$, $t_k \to t^0$, the sequence $\{x_k\} \subset X$, $x_k \in N(t_k) \setminus N(t^0)$, has an accumulation point contained in $N(t^0)$:

Lemma 2.2: Let $\Gamma: T \to 2^X$ be an upper semicontinuous mapping at t^0 with the closed and bounded image set $\Gamma(t^0)$. Then there is a neighbourhood V of t^0 such that $\Gamma(V)$ is bounded in X.

Lemma 2.3 (BANK et al. [1: Lemma 2.2.2]): Let $\Gamma: T \to 2^{x}$ be a mapping with the closed image set $\Gamma(t^{0})$. Then Γ is upper semicontinuous at t^{0} if and only if for any sequence $\{t_{k}\} \subset T$, $t_{k} \to t^{0}$, the sequence $\{x_{k}\} \subset X$, $x_{k} \in \Gamma(t_{k}) \setminus \Gamma(t^{0})$, has an accumulation point contained in $\Gamma(t^{0})$.

Proof of Lemma 2.1: First we show that $\{x_k\}$ is bounded. Assume the contrary. Then there is a subsequence $\{x_{k'}\}$ with $||x_{k'}|| \to \infty$. From $\{x_{k'}\}$ we now construct a bounded sequence $\{x_{k'}^{(d)}\}$,

$$x_{k'}^{(d)} = \frac{d}{\|x_{k'}\|} x_{k'} + \left(1 - \frac{d}{\|x_{k'}\|}\right) y_0$$
(1.1)

where d is an arbitrary fixed number with $||y_0|| < d \leq ||x_k||$ (y_0 is the point given in the assumption). Such a construction of $\{x_k^{(d)}\}$ is always feasible since $||x_k|| \to \infty$. It is easy to check that

$$|l - ||y_0|| \le ||x_{k'}^{(l)}|| \le d + ||y_0||. \tag{1.2}$$

Since $t_{k'} \to t^0$ we have $t_{k'} \in V'$ for all $k' \ge k_0$ enough large (V is the neighbourhood given in (iii)). By $\{t_n\}$ we denote the sequence of $\{t_{k'}\}$ with $k' \ge k_0$. So we get $\{t_n\} \subset V$ and $t_n \to t^0$. Since by the assumption $\Omega \cap N(V)$ is bounded, from (1.2) we can assume that $\{x_n^{(d_0)}\} \subset \Omega$ for d_0 enough large. By (1.2) $\{x_n^{(d_0)}\}$ has a convergent subsequence $\{x_n^{(d_0)}\}$. Let $x_n^{(d_0)} \to \overline{x}$. Since Ω is open and $x_n^{(d_0)} \notin \Omega$ for all $n', \overline{x} \notin \Omega$. Hence, by $N(t^0) \subset \Omega$ follows $\overline{x} \notin N(t^0)$.

On the other hand $f(y_0, y_0, t^0) = 0$ (by the monotonicity of *f*). So we can write $f(y_0, y_0, t^0) > -\varepsilon$ for each $\varepsilon > 0$. Since the function $f(y_0, y_0, \cdot)$ is continuous at t^0 , there is an index $k'(\varepsilon)$ of the index set of the sequence $\{t_{k'}\}$ such that $f(y_0, y_0, t_{k'}) > -\varepsilon$ for all $k' \ge k'(\varepsilon)$. By $x_{k'} \in N(t_{k'})$ we have $f(y_0, x_k, t_{k'}) \ge 0$. From (1.1), the last two inequalities and the concavity of *f* it follows $f(y_0, x_{k'}^{(d_0)}, t_{k'}) > -\varepsilon$. The upper semicontinuity of *f* then implies $f(y_0, \bar{x}, t^0) \ge \varepsilon$ and since $\varepsilon > 0$ is arbitrary we get $f(y_0, \bar{x}, t^0) \ge 0$. By the assumption that means $\bar{x} \in N(t^0)$. This contradicts $\bar{x} \notin N(t^0)$. Hence, the sequence $\{x_k\}$ is bounded.

Because of the boundedness $\{x_k\}$ has a convergent subsequence $\{x_{k'}\}$. Let $x_{k'} \rightarrow \hat{x}$. Since $x_{k'} \in N(t_{k'})$ we have $f(y_0, x_k, t_{k'}) \geq 0$. By the upper semicontinuity of f then follows $f(y_0, \hat{x}, t^0) \geq 0$, i.e. $\hat{x} \in N(t^0)$

Proof of Lemma 2.2: Assume the contrary: that for all neighbourhoods V of t^0 , $\Gamma(V)$ is unbounded. Since $\Gamma(t^0)$ is bounded, we can then construct sequences $\{t_k\}$ and $\{x_k\}$ as follows:

Let $V_1 = B(t^0, r) \subset T$ be the ball with center t^0 and radius r. Since $\Gamma(V_1)$ is unbounded, we can take $x_1 \in \Gamma(V_1) \setminus \Gamma(t^0)$. There is then a point $t_1 \in V_1$ with $x_1 \in \Gamma(t_1)$. So, we have

$$t_1 \in V_1,$$

$$x_1 \in \Gamma(t_1) \searrow \Gamma(t^0).$$

Let $V_2 = \{t \in T : 2d(t, t^0) \leq d(t_1, t^0)\}$ (here $d(\cdot, \cdot)$ denotes the distance function in the metric space T). Since $\Gamma(V_2)$ is unbounded, we can take $x_2 \in \Gamma(V_2) \setminus (\Gamma(t^0), \cup \{x \in C : \|x\| \leq 2 \|x_1\|\})$. There is then a point $t_2 \in V_2$ with $x_2 \in \Gamma(t_2)$. So, we have

$$t_2 \in \{t \in T : 2d(t, t^0) \leq d(t_1, t^0)\},\$$

 $x_2 \in \Gamma(t_2) \setminus \big(\Gamma(t^0) \cup \{x \in C : ||x|| \leq 2 ||x_1||\} \big).$

Continuing this process, we then obtain for k = 1, 2, ...

$$\begin{aligned} t_{k+1} &\in \{t : (k+1) \ d(t, t^0) \leq d(t_k, t^0)\}, \\ x_{k+1} &\in \Gamma(t_{k+1}) \setminus \big(\Gamma(t^0) \cup \{x \in C : \|x\| \leq (k+1) \ \|x_k\|\}\big). \end{aligned}$$

By the above constructed sequences $\{t_k\} \subset T$ and $\{x_k\} \subset X$, $x_k \in \Gamma(t_k) \setminus \Gamma(t^0)$, it is easy to check that $t_k \to t^0$ and $\{x_k\}$ has no accumulation point. Hence, by Lemma 2.3 Γ is not upper semicontinuous at t^0 . But this contradicts the assumption

Proof of Theorem 2.1: (iii) \Rightarrow (ii): Let $\{t_k\} \subset T$ and $\{x_k\} \subset X$ be sequences. with $t_k \to t^0$ and $x_k \in N(t_k) \setminus N(t^0)$. By Lemma 2.1 $\{x_k\}$ has an accumulation point contained in $N(t^0)$. By the upper semicontinuity of f it is easy to see that $N(t^0)$ is closed. Hence, by Lemma 2.3 N is upper semicontinuous at t^0 . (ii) \Rightarrow (i): Since $N(t^0)$ is bounded (Assumption 2.2) and closed, the assertion follows from Lemma 2.2. (i) \Rightarrow (iii) is obvious

Remark 2.1: As seen in the proof of Theorem 2.1, (iii) \Rightarrow (ii) and the proof of Lemmà 2.1, the upper semicontinuity of the set-valued mapping N at t^0 follows from Assumption 2.1 and condition (iii). From this fact it is easy to derive the follow-ing criterion for the upper semicontinuity of a set-valued mapping:

Let φ be a real-valued and upper semicontinuous function on $C \times T$ such that $\varphi(\cdot, t)$ is concave for each $t \in T$. Let the set-valued mapping M be defined by $M(t) = \{x \in C : \varphi(x, t) \ge 0\}$. Suppose that there is an open set $\Omega \subset X$ containing $M(t^0)$ and a neighbourhood V of t^0 such that $\Omega \cap M(V)$ is a bounded set in X. Then M is upper semicontinuous at t^0 .

Using Theorem 2.1 we now establish stability criterions for Problem (P_t) above. We shall prove the following main stability theorem.

Theorem 2.2: Let Assumptions 2.1 and 2.2 and one of the conditions (i)-(iii) of Theorem 2.1 be satisfied. Then Problem (P_t) is stable at t^0 .

The following results of Mosco [12] are used for the proof.

Lemma 2.4 [12: Theorem 3.1]: Let $g: C \times C \to \mathbb{R}$ be a monotone and hemicontinuous junction such that $g(x, \cdot)$ is concave and upper semicontinuous for each $x \in C$. Suppose that there exist a compact set $B \subseteq C$ and a point $y_0 \in B$ such that $f(x, y_0) > 0$ for each $x \in C \setminus B$ (the coerciveness condition). Then the solution set of the problem

$$\begin{cases} x \in C \\ g(x, y) \leq 0 \quad for \ all \ y \in C \end{cases}$$

is non-empty, convex and compact.

Lemma 2.5 [12: Lemma 3.1]: Let $g: C \times C \to \mathbf{R}$ be a monotone and hemicontinu-, ous junction such that $g(x, \cdot)$ is concave and upper semicontinuous for each $x \in C$. Let

$$G(y) = \{x \in C : g(x, y) \leq 0\}$$
 and $H(y) = \{x \in C : g(y, x) \geq 0\}$.

Then $\bigcap_{y \in C} G(y) = \bigcap_{y \in C} H(y).$

Proof of Theorem 2.2: By Theorem 2.1 it is enough to show that Assumptions 2.1 and 2.2 and condition (i) imply the stability of Problem (P_t) at t^0 . Since $N(U) \subset C$ is bounded (condition_(i)), we can assume that C(U) is contained in a compact set $B \subset C$. By the monotonicity of f we have $\{x \in C: f(x, y_0, t) \leq 0\} \subset N(t)$. For each $t \in U$ it is then easy to see that $f(x, y_0, t) > 0$ for all $x \in C \setminus B$, i.e. the coerciveness

condition in Lemma 2.4 is satisfied for Problem (P_t) . By applying this Lemma it implies that the solution set S(t) of (P_t) is non-empty, convex and compact.

We now show the upper semicontinuity of the mapping $S: U \to 2^B$ at t^0 . Let $\{t_k\} \subset U$ and $\{x_k\} \subset B$ be sequences with $t_k \to t^0$ and $x_k \in S(t_k) \setminus S(t^0)$. Since B is compact, $\{x_k\}$ has a convergent subsequence $\{x_{k'}\}$. Let $x_{k'} \to \overline{x}$. Since $x_{k'} \in S(t_{k'})$ we have $f(x_{k'}, y, t_{k'}) \leq 0$ for all $y \in C$ and hence, by the monotonicity of f, $f(y, x_{k'}, t_{k'}) \geq 0$. From the upper semicontinuity of f follows $f(y, \overline{x}, t_0) \geq 0$ and hence, by Lemma 2.5, $f(\overline{x}, y, t^0) \leq 0$ for all $y \in C$, i.e. $\overline{x} \in S(t^0)$. $S(t^0)$ is here closed. Therefore, by Lemma 2.3, S is upper semicontinuous

Remark 2.2: It is easy to see that Assumption 2.2 is contained in condition (iii). Hence, by Theorem 2.2, in the case where this condition is satisfied, Problem (P_t) is stable at t^0 if Assumption 2.1 is satisfied.

As we see in the proofs of Theorems 2.1 and 2.2, the set-valued mapping $N: T \to C$ plays an essential role. We are here interested in the question under which conditions the "level set" N(U) is bounded for a neighbourhood U of t^0 . Let us now consider a case where the set N(U) is bounded.

Let $K \subset X$ be a cone with vertex a. K is said to be *pointed* if $a \notin \overline{co} (K \setminus B(a, 1))$, where B(a, 1) denotes the ball with center a and radius 1. In the following lemma we give a property of the pointed cone, used for the stability consideration below.

Lemma 2.6: If K is a pointed cone with vertex a, then there is a functional $l' \in X^*$ such that l'(x) > l'(a) for all $x \in K \setminus \{a\}$ and the intersection of each hyperplane $(l', \beta) = \{x \in X : l'(x) = \beta, \beta \ge l'(a)\}$ with K is a bounded set.

Proof: Since K is a pointed cone we have $a \notin \overline{\operatorname{co}}(K \setminus B(a, 1))$. Hence, there is a functional $l' \in X^*$ separating a and $\overline{\operatorname{co}}(K \setminus B(a, 1))$ strictly such that with a suitable α we have

$$l'(a) < x < l'(x) \quad \text{for all} \ x \in \overline{\text{co}} \left(K \setminus B(a, 1) \right). \tag{1.3}$$

Now we show that l'(x) > l'(a), for all $x \in K \setminus \{a\}$. It is easy to see that $K \cap \{x \in X : l'(x) < l'(a)\} = \emptyset$. Assume the contrary: there is a point \overline{x} of this intersection. Then, by a property of the cone we have $a + \lambda(\overline{x} - a) \in K \cap \{x \in X : l'(x) < l'(a)\}$, $\lambda > 0$, i.e. there is an $\hat{x} \in K \setminus B(a, 1)$ with $l'(\hat{x}) < l'(a)$. This contradicts (1.3). By an analogous argument we get $(K \setminus \{a\}) \cap (l', l'(a)) = \emptyset$. So, that means: l'(x) > l'(a) for all $x \in K \setminus \{a\}$.

Since, by (1.3), the hyperplane (l', α) separates a and $K \setminus B(a, 1)$ strictly, the , intersection of (l', α) with K cannot be contained in $K \setminus B(a, 1)$; it is contained in $K \cap B(a, 1)$. Hence, $(l', \alpha) \cap K$ is bounded. Now it is not difficult to show that $(l', \beta) \cap K$ for $\beta \ge l'(a)$ is bounded, too. We assume here that $\beta > l'(a)$ (in the case $\beta = l'(a)$ it is easy to see that $(l', \beta) \cap K = \{a\}$ and hence bounded). Let $c = (\beta - l'(a))/(\alpha - l'(a))$, we have c > 0. Since K - a is a cone with vertex 0, it follows then that K - a = c(K - a). Since $(l', \alpha) - a = \{x \in X : l'(x) = \alpha - l'(a)\}$ it is easy to check that $(l', \beta) - a = c[(l', \alpha) - a]$. We then have

$$(l', \beta) \cap K - a = [(l', \beta) - a] \cap (K - a) = c\{[(l', \alpha) - a] \cap (K - a)\} = c[(l', \alpha) \cap K - a].$$

Since $(l', \alpha) \cap K$ is bounded, $(l', \beta) \cap K$ is bounded

Using Lemma 2.6 we can now prove the following theorem for the stability of Problem (P_t) .

441

Theorem 2.3: Let Assumptions 2.1 and 2.2 be satisfied. Suppose that N(U) is contained in a pointed cone K. Then Problem (\mathbf{P}_t) is stable at t^{0} .

Proof: We show that the condition (iii) (given in Theorem 2.1) is here satisfied and hence the assertion follows from Theorem 2.2. Let $l' \in X^*$ be the functional which exists by Lemma 2.6 for the pointed cone K. Since $N(t^0)$ is bounded (Assumption 2.2) we have $\gamma = \sup \{l'(x) : x \in N(t^0)\} < +\infty$. Consider the hyperplane (l', α) with $\alpha > \gamma$. It is then easy to see that $l'(x) < \alpha$ for all $x \in N(t^0) \cup \{a\}$ where a is the vertex of K. By Lemma 2.6 $(l', \alpha) \cap K$ is bounded and hence $Q = \{x \in K : l'(x) < \alpha\}$ is also bounded. Since $N(U) \subset K$, it is then easy to see that $N(U) \cap \{x \in X : l'(x) < \alpha\}$ $< \alpha\} \subset Q$ is also bounded. Thus, condition (iii) is satisfied by taking the open set $\Omega = \{x \in X : l'(x) < \alpha\}$ and the neighbourhood V = U

Remark 2.3: According to Remark 2.1 it is here worth noticing that by using the pointed cone defined above we can derive the following criterion for the upper semicontinuity of a set-valued mapping:

Let φ be a real-valued and upper semicontinuous function on $C \times T$ such that $\varphi(\cdot, t)$ is concave for each $t \in T$. Let the set-valued mapping M be defined by $M(t) = \{x \in C : \varphi(x, t) \ge 0\}$. Suppose that $M(t^0)$ is bounded and there is a neighbourhood V of t^0 such that M(V) is contained in a pointed cone. Then M is upper semicontinuous.

By an argument analogous to that used in the proof of Theorem 2.3 it is easy to see that there is an open set Ω such that $\Omega \cap M(V)$ is bounded Hence, by Remark 2.1, follows the assertion.

The above considered mapping M is a mapping with special structure. About criterions for the upper semicontinuity (and also lower semicontinuity) of general set-valued mappings we refer the reader, for example, to BERCE [2] and BANK et al. [1].

3. Special cases

In this section, stability criterions for some special cases will be given by using Theorems 2.2 and 2.3. Consider the following family of variational inequalities

$$\begin{cases} x \in C \\ \langle A(x,t) - v', x - y \rangle + \varphi(x,t) - \varphi(y,t) \leq 0 \quad \text{for all } y \in C, \end{cases}$$
(3.1)

where A is an operator from $C \times T$ into X^* , φ is a real-valued function on $C \times T$ and $v' \in X^*$, is a given functional.

Proposition 3.1: Let $A(\cdot, t)$ be monotone and hemicontinuous for each $t \in T$, $A(x, \cdot)$ continuous for each $x \in C$, φ lower semi-continuous, $\varphi(\cdot, t)$ convex for each $t \in T$. Suppose that there is a point $y_0 \in C$ such that the image set $N(t^0)$ of the set-valued mapping N defined by

$$N(t) = \{x \in C : \langle A(y_0, t) - v', y_0 - x \rangle + \varphi(y_0, t) - \varphi(x, t) \ge 0 \}$$

is bounded. Moreover, suppose that there is a neighbourhood U of t^0 such that N(U) is contained in a pointed cone.

Then Problem (3.1) is stable at t^0 .

Proof: The assertion follows immediately from Theorem 2.3

Corollary 3.1: Let $A: C \to X^*$ be a monotone and hemicontinuous operator, $\varphi: C \times \overline{T} \to \mathbf{R}$ a lower semicontinuous function such that $\varphi(\cdot, t)$ is convex for each t, and $\alpha: T \to \mathbf{R}$ a continuous function. Suppose that $\varphi(x, t^0) \to +\infty$ as $||x|| \to \infty$ and there is a point $y_0 \in C$ satisfying $Ay_0 = 0$, such that the set $\{x \in C : \varphi(x, t) \leq \varphi(y_0, t)\}$ is contained in a pointed cone for all t in a neighbourhood of t^0 . Then the problem

$$\begin{cases} x \in C & ' \\ \alpha(t) \langle Ax, x - y \rangle + \varphi(x, t) - \varphi(y, t) \leq 0 \quad \text{for all } y \in C \end{cases}$$

is stable at t^o.

Proof: Apply Proposition 3.1 with $N(t) = \{x \in C : \varphi(x, t) \leq \varphi(y_0, t)\}$ and v' = 0. Since $\varphi(x, t^0) \to +\infty$ as $||x|| \to \infty$, $N(t^0)$ is bounded. The other assumptions are satisfied too

Corollary 3.2: Let C be contained in a pointed cone K with vertex 0 and let v' be a functional with $v'(x) \leq 0$ for all $x \in K$. Let the operator A and function φ be given as in Proposition 3.1. Suppose that $\varphi(x, t^0) \to +\infty$ as $||x|| \to \infty$ and there is a point $y_0 \in C$ satisfying $A(y_0, t^0) = 0$.

Then Problem (3.1) is stable at t^o.

Proof: Apply Proposition 3.1 with $N(t) = \{x \in C : \langle v', x - y_0 \rangle + \varphi(y_0, t) - \varphi(x, t) \ge 0\}$. By the property of v' and φ it is easy to see that $N(t^0)$ is bounded. The other assumptions are satisfied too

Let us now consider the following family of optimization problems

$$\min \{\varphi(x, t) : x \in C\},\$$

where as above φ is a real-valued function on $C \times T$. We write this problem in the form

$$\begin{cases} x \in C \\ \varphi(x, t) - \varphi(y, t) \leq 0 & \text{for all } y \in C \end{cases}$$

Problem (3.2) is said to be stable at t^0 if Problem (3.2') is stable at t^0 . From Proposition 3.1 it is easy to derive

Corollary 3.3: Let φ be a lower semicontinuous function such that $\varphi(\cdot, t)$ is convex for each t. Suppose that $\varphi(x, t^0) \to +\infty$ as $||x|| \to \infty$ and there is a point $y_0 \in C$ such that the set

$$N(t) = \{x \in C : \varphi(x, t) \leq \varphi(y_0, t)\}$$

is contained in a pointed cone for all t in a neighbourhood of t⁰. Then Problem (3.2) is stable at t⁰.

The stability criterion in Corollary 3.3 is given only for the solution set mapping of convex optimization problems. A general stability theory for general optimization problems is given in BANK et al. [1], GOLLAN [2] and KIRSCH [7].

Proposition 3.2: Let X be a finite-dimensional space and let Assumptions 2.1 and 2.2 be satisfied. Then Problem (\mathbf{P}_i) is stable at t^0 .

Proof: Since in a finite-dimensional space an open set is weakly open, condition (iii) given in Theorem 2.1 is satisfied by taking $\Omega = \{x \in X : ||x|| < r\} \supset N(t^0)$ for r > 0 enough large and $V \subset T$ to be an arbitrary neighbourhood of t^0 . $\Omega \cap N(V)$ is then bounded. Thus, by Theorem 2.2 Problem (P_t) is stable at $t^0 \blacksquare$

 (Q_i)

Example: Let (Q_t) be the following family of nonlinear complementarity problem

 $\begin{cases} x \in \mathbf{R}^n, & M(x,t) \in \mathbf{R}_+^n \\ x'M(x,t) = 0 \end{cases}$

(3.2)

(3.2')

where $\mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} : x_{t}, x_{2}, ..., x_{n} \geq 0\}$, $M: \mathbf{R}_{+}^{n} \times T \to \mathbf{R}^{n}$ is an operator such that for each $t \in T$, $M(\cdot, t)$ is monotone and hemicontinuous and for each $x \in \mathbf{R}_{+}^{n}$, $M(x, \cdot)$ is continuous (x' is the transposed vector of x). Assume that there is $y_{0} \in \mathbf{R}_{+}^{n}$ such that the set $\{x \in \mathbf{R}_{+}^{n} : x'M(y_{0}, t_{0}) \leq \alpha\}$, $\alpha := y_{0}'M(y_{0}, t_{0})$, is bounded. Then there exists a neighbourhood V of t_{0} such that for each $t \in V$ the complementarity problem (Q_{t}) has a solution. If we denote by $\Gamma(t)$ the solution set of $(Q_{t}), t \in V$, then the set-valued mapping $\Gamma: t \to \Gamma(t)$ is upper semicontinuous at t_{0} .

It is here easy to see that \mathbf{R}_{+}^{n} is a pointed cone. Hence, by applying Proposition 3.2 with $C = \mathbf{R}_{+}^{n}$, f(x, y) = (x' - y') M(x, t) it implies that Problem (\mathbf{P}_{t}) in this case is stable at t_{0} . The assertion follows then by the fact that a point $x \in \mathbf{R}_{+}^{n}$ is a solution of Problem (\mathbf{P}_{t}) (in this case) if and only if it is a solution of the complementarity problem $(\mathbf{Q}_{t}), t \in V$ (see LÜTHI [11]).

Some applications (e.g. to the obstacle problem, the free boundary problem) will be studied in another paper.

LITERATUR

- [1] BANK, B., GUDDAT, J., KLATTE, D., KÚMMER, B., and K. TAMMER: Non-Linear Parametric Optimization. Berlin: Akademic-Verlag 1982.
- [2] BERGE, C.: Topological spaces. Edinburgh-London: Oliver & Boyds 1963.
- [3] EKELAND, I., and R. TEMAM: Convex analysis and variational problems. Amsterdam Oxford: North'-Holland 1978.
- [4] GAUVIN, J., and J. W. TOLLE: Differential Stability in Non-Linear Programming. SIAM J. Control and Optim. 15 (1977), 294-311.
- [5] GOLLAN, B.: Perturbation Theory for Abstract Optimization Problems. J. Optim. Theory and Appl. (JOTA) 35 (1981), 417-441.
- [6] HOANG TUY: Stability property of a system of inequalities. Math. Operationsforsch. Statistik, Ser. Optim. S (1977), 27-39.
- [7] KIRSCH, A.: Continuous Perturbations of Infinite Optimization Problems. J. Optim. Theory and Appl. (JOTA) 32 (1980), 171-182.
- [8] KUMMER, B.: Generalized Equations: Solvability and Regularity. Preprint. Berlin: Sektion Math. der Humboldt-Universität, Preprint 30 (1982).
- [9] LEMPIO, F., and H. MAURER: Differential Stability in Infinite-Dimensional Non-Linear Programming, Applied Math. and Optim. 6 (1980), 139-152.
- [10] LEVITIN, E. S.: On the Local Perturbation Theory of Mathematical Programming in a Banach Space. Soviet Math. Doklady 16 (1975), 1354-1358.
- [11] LÜTHI, H. J.: Komplementaritäts- und Fixpunktalgorithmen in der mathematischen Programmierung, Spieltheorie und Ökonomie (Lect. Notes in Econ. and Math. Systems 129). Berlin: Springer-Verlag 1976.
- [12] Mosco, U.: Implicit Variational Problems and Quasivariational Inequalities. Lect. Notes in Math. 543 (1975), 83-157.
- [13] ROBINSON, S. M.: Stability theory for systems of inequalities, Part II: Differentiable Non-Linear Systems. SIAM J. Num. Anal. 13 (1976), 497-513.

Manuskripteingang: 13. 03. 1984; in revidierter Fassung 27. 08. 1984

VERFASSER:

Dr. LÊ VĂN CHÓNG Institute of Mathematics Nghĩa Đô, Tù Liêm Hà Nội, R.S. Việt Nam