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A Variational Principle for Equations and Inequalities with Maximal 
Monotone Operators	 S 

E. KRAUSS	
S	 S 

Gegeben sei eine Variationsungleichung mit einem monotonen Operator. \Vir beschreiben die 
Losungsnsenge durchein modifiziertes Variationsprinzip. Dieses bleibt audi dann gultig, wenn 
der Operator nicht Subdifferential einer konvexen Funktion ist. Es gestattet eine physikalische 
Interpretation mid zeigt, in welchem Sinne die Monotonie des Operators zu ,,global stabilen" 
Lossingen der Variationsungleichung führt.	 S	 S 

liyCTh 3aJa H o BapuauHoliHoe llepaeencTno C MOIIOTOSIIIbIM onepaTopoM. Onnd11Bae1 MHO-
,seCTHO pemeHufi M0n4M11HpoHaHHb1M BapilaunollilbiM npflH[HnoM, HOTOpHfI ocTaeTcn Bep- 

• IlbIM aae ec.'m OflepaTop He aBJIHeTcH cyeilI14)epelfIwaJ1oM BblflyH.flOfl yHHuHH. ,3TOT 

I3ap Il auuollHblfl HPIIIIWIfl \1Oal10 uuTepnpeTllponaTb 113114e6Kl1. On nOIa3MBaeT, B KaFCoM 
• CMbIC.TIeM0HOTOHHOCTI, OflepaTopa neëT H ,,rJ1O6aJ1lHo CTa6llJlblIblM'' peuieiiii	Bapual.uou- 

HOl'O IlepaBelicTud. 

• Let be givena variational inequality with monotone operator. We describe the set of solu-
tioñs by a modified variational principle. This still remains valid if the operator is not a sub-

• differential of a convex function. It allows a physical interpretation and shows in which sense 
the monotonicity of the operator leads to. "globally stable" solutions of the variational in-
equality.	 . S 

I. Introduction  

Let E be a real locally convex Hausdorff space ,with dual space E*. pairing. be-

tween E.and E* is denoted by (., .). Throughout this paper we shall assume that A is 
a possibly niultivalued mapping from E into E* which is monotone, i.e. 

•	.	(Ax - Ay, x—y) > 0' for all AxE Ax, 	E Ay. . 

Moreover, M will alwa3is stand for a convex subset of the domain D(4) := {xE K Ax 
+ O} .	.	 /	 .	 •	.	. 

The object of our investigation is the sariationa1 inequality	-.	- 

XEM,AXEAx,	 ,. 
5	

1 
(Ax, x - v)	0 for all v E M	.	S	 • 

By using the subdifferential ai 1 of the indicator function of M, the inequality (1).can 

be written as	.	 S	 .	 S ••	 - 

Ax + aI.,x 0.	.	
5	

(2) 

A jiotherformulation of (1) is  

xEM,AxEAx,	 1 •	 ..	.. 
(Ax, w)	0 for all	w ETXM J	.	.•	- S	

•
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Here TM denotes the tangential cone of the convex set iW at the point x E M, i.e. 
TM	(0, ) {M - {x}}. Note that (3) furnishes a description of a local equilibrium 
in the presence of a constraint Al (principle of d'Alenibert-Fourier).	- 

The aim of this paper is to describe the solutions to (1) by a variational principle. 
We do not suppose here A to be a subdifferential of a convex function. This variati-
onal principle admits a physical interpretation. Moreover, it shows in which sense 
the nionotonicity of A legds to ,,globally stable" solutions of the variational in- 
equality (1).	/	 '	 - 

2. A saddle function associated to the operator 4 

In this section we attach a hivariate function JA : MX M —> R- to the monotone 
operator A and study its properties. 

Definition: We define the function J A : MX ill -- II by 

JA(x,y):=f(A(x+t(y —x)),g —x)d!,
	 / 

where A is an arbitrary single-valued section of A. 

This definition is justified b y the following 

L e in ni a: For each x, y E 1W and each section A of A, the function 

[0,1]? t(A(x+ t(y—x)),y_x) 

is Lebesque-integrable. Moreover, the values Of "A do not depend on the choice Of the 
section A. 

Before proving this lemma we state some further results. 

•	Theorem 1: The function JA has the following properties: 
1. JA is a skew-symmetric saddle function, i.e. 

•	 JA(x, y) = —JAY, x) for all x, Y  M.	 - 

. The /ollowimj estimate holds: 

slip {(/,y—x):/E Ax)	JA(x,y)^inf{(g,y—x:gEAy}	'	(4) - 

for all x, y E M.	 S	
0 

3. We have 

- JA(X,AX+(1—A)Y)4JA(X,X)+(11.)JA(X,Y) 

•	
= (1 — ,.) JA (x, y) for A E [0, 11,	-x, Y  M.	 (5) 

In general, the function JA is not concave-convex. This is shown by the following 
example, which is due to 1). TIBA: 

Let E = R2 be the Euclidean space and define 

A(x j ,x2 ) = [xe, —x 1 2 + x2] On D(A) = [-1,-i] X II.
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- Here the operator A is monotone hut, for example, the function 

R2 	Ft	 JA(0, y)	I/2(y 2 ± Y22) - 113(Y12-Y2)  

is not convex.
 

Proof of the Lemma and of Theorem 1: Let x, Y  M be arbitrarily fixed 
and define, for I E [0, 11,	 S	 - 

A(t)	inf{(f	y —y) :/j E A(	+ t(y — x))}, 

(A (X*  ± t(y — x) 	y — x),	 -	-S 

)i(1)	 sup {(qg, y —	qj € A(x +'(y --

Obviously we have	. 

h(1)	(1) 5-: h(t)	for	I € [0, 1]. ..	(6). - 

On the other, hand, we, -get	 .	 .	. 

ii(1) ^- h(1 1 )	for	0	11 . < 1	< 13	I 

Indeed, in view of (6), the inequality (7) reduces to  

•	'h(s) ^ h(t)-	for	0 5:t <s < 1.	 5 (7') 

But due to the mdnotonicity of A we have

y	x) — ((J,,y	X) = (s . 
(j3_g,(x + s(j —x)) — (x + 1( — x))) ^E! 0 

for all / € A(x ± s( — x)) and g1 € A(x-+ 1(y —X)).  
This proves (7'). The inequalities (6) and (7) imply that h,h and hare monotone in-
creasing functions which are finite on (0, 1). Hence all t.hesefunctionsare Lebesgiie-
integrable. Moreover, (6) and (7) give rise to  

lint h(s) = him h(s) = lint )i(e) for all s € (0, 1).	 S 

8I	8t 

Hence, we obtain -	 .. 

(0)	f h(t)di.='fh(i)di = fh(t)dt ^h(i)	 S 

(cf. R. T. ROCKAFELLER [8]). -This proves the Lemma and the estimate (4). The skew-
symmetry of JA is obvious. Thus it remains to check (5). For this purpose let x, y E M 
and A € [0, 1]be fixed. By the ntoriotonieit-y of h we can conclude—.S 

(A(x ± t(Ax + (1 — 2) y — x)), (Ax ± (1 — 2) y) — 

- = (1 —2) (A( + ((1 —2) (y	x)); Y - 

= (1 _2)h(t(1 —	(1 —A)h(1).	 S 

Integrating here over [0, 1] yields .	. .	 . 

- JA(x,+ (1 —A)y)	(1 —2)JA(x,ij).	
5, 

The skew-synituetry of JA implies JA(x, x) = 0, so we get (5) as desired I 

'28 Analysis Rd. 1, Heft- (1986)	 - 

	

I	 .	 S 
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3. A variational principle 

Now, we can state the announced variational principle for the solutions to (I). 

Theorem 2: Let A +	be naxinial monotone. Then the following conditions are 
equivalent:	 .	 - 

(i) x E Al solves the variational inequality (1). 
(ii) [x, x] E M X 	is a saddle point of the skew-symmetric saddle function J4 , i.e., 

we have	 . 
: 0, <.JA(X, v) /01 all V E M.	 . 

(iii) There exists a neighbourhood U(x) of x. with 
0	JA(x, v) for all, V E M  U(x). 

(iv) There exists an element Y  M such that [x, y] is a saddle point of JA, i.e., we have 
JA(v,y) ^ J(x, y) < JA (X, w) /01 all vwE M. 

Remarks: a) One can interpret JA(x; y), as the work (resp. the aet. ibn) during a 
movement from the state x to the state y along the trajectory y(t) = x + t(y - 

€ [0, 11 (compare also Theorem 3). 
b) The equivalence (ii) <- (iii) shows that we can describe the solutions to (1) both 

by a local and a global criterion.	 . 
c) The maximality of ' A + elM enters only into the proof of the implication 

(ii) -* (i). The other implications of Theorem 2 remain true if one drops this assump-
tion. Note that A -F- elM is maximal monotone if B is a Banach space, Mis closed, 
and the restriction of A to Al , is aradially.continuous mapping having convex closed 
bounded values (Ax) (cf. F. KRAUSS [2] and, for a single-valued mapping A, also 
R. T. ROCKAFELLAR [6, 7]).  

Proof of Theorem 2: (i)–> (ii): Let x  M be a solution to the variational in-
•	equality (I). According to the estimate (4), we obtain 

Oup{(/,v'—x):/E Ax)	JA(x,v) for vEM, 
as desired. 

-	(ii) - (iii): This implication is evident.	 - 

(iii) -> (iv): Let us suppose 

•	 0 ^ JA(X, v) for all v € Al n U(x)'. 
We show that one can set y = x in (iv). Because of the skew-svniuetry of J4 it' 
remains to check 0 ':5^ JA(x, v) for all V E M. For this purpose we assume JA(X, v0 ) < 0 
for some v0 € Al. if 2 € . (0,'l] is small enough we get (1 - A) x + 2y0 € U(x) n 
and in connection with (5)  

•	
. J(x, (1 - 2) x ± ),y0) ^2JA (x, v0 ) < 0, 

which is a contradiction to our assumption. 
(iv)	(ii): Let [x, y] € M x M be a saddle point of JA. This means 

JA(V, y)	JA(X, y)	JA(X, w) for all v, 'w € M.

Choosing here especially v = y yields (compare Theorem 1) 

O=JA(y,y)JA (x,y)JA(x,w) for all wEM. 

-
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(ii) -* (i): Let x  ill satisfy 0	JA(X, v) for all V E M. As a consequence of (4)
we get

o !^-, inf {(g, v - x) : g € Av} for all v € M. 
• By the definition of aIM this inequality implies 

O(/,v—x) .foi"all vEM,/EAV+aIMV. 
Since A	aIM was supposed to be maximal monotone, we can conclude 0 E A.
+ aJAfX, i.e., xsolves (1) 

Instead of the function JA one can consider more generally a function 

•JA : M x 	R;	JA(X, y) = f KAy(t), (t) dl, 

where	 . 
[0, 1]	M,	y(0)=x,	y(l)y 

is a sufficiently. regular trajectory joining the points x and y. In order to avoid 
additional regularity assumptions on the operator .4 it is convenient to confine one-
self to polygonal trajectories in M. These can he defined by 

yz,y: [0, 1]	M;	y(t) = x + n(t - i/n) x11 for 

i/n f-, I	(1 ± 1)1n,	I = 0, 1, ...,n, 
where x = x0 , x1 , x, ..., x = y is a finite subset of Al. Hence 

1	 fl-i 

•	A'(, y) = f (Ay(t), i(t)) (It =	'JA (t, x+1), 

1A is well defined and does not depend on the choice of the section A of A (corn-
pare the lemma in Section 2).	 . 

Now we show that in Theorem 2 it is not possible to rephce the condition (8) by 
0	JAI'(X, v) for all v € M and for all polygonal 

•	trajectories y from x to y. 
Theorem 3: Let E be.a Banach space and s 5uppose that the restriction Al,,[ of A is 

• not contained in the .subdi//erential c9p of a convex function p : E - R u {+oo}, 
p Then, for each x, y E M and for each natural number a, there exists a poly-
gonal trajectory y : [0, 1] --3,. M between x and y with SJA'(X, y) < —a. 

Proof: By assumption Alm is not cyclically monotone, i.e. there exist a cycik 

	

• sequence z0 , z 1 , ..., z,= Z0 in M	D(A) and a sequence A; E A; (I = 1, ..., a) with 

' (A;,; - z_ 1 ) <0 

(cf. R. T. ROCKAFELLAR [5, 9]). As a consequence of the estimate (4) we get 

JA(;_I,z) := — e'< 0.	 (10) 

Now we choose a natural number Ic with 

a + JA(X, z0) ± JA(ZO, y).	 (11)	. 

28*	
iuw

 •
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Let the polygonal trajectory y : [0, 1] - M be defined by y =	u k . Y2 U , with 
= [x, z011 y = [z0 , y] and a polygonal trajectory Y2 with the vertices 

z01 z 1 , ..., ; = z0 . According to (10) and (11) we get 

JA(X,Y) = JA(X, z) + (
	

JA(Z1I, z 1 )) ± JA( zo,.y) < — fl I 

The skew-symmetric function JA MXM - it is not the only one allowing a 
characterization of the solutions to (1). In [3, 4] we showed that for each maximal 
monotone operator A from E into E* there exists a skew-symmetric concave-convex 
closed saddle function L: Ex E - Wu {±°°} such that / E Ax is equivalent to 
[-1 I] E 3L(x, x). The -concept/of a closed saddle function which is used here is due 
to R. T. ROCKAFELLAR [10, 11]— compare also V. BARBU and Tti. PRCUPANU [1]. 
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