Topological Realizations of Calkin Algebras on Frechet Domains of Unbounded Operator Algebras

K. Schmüdgen

 \mathcal{D} sei ein dichter linearer Teilraum eines separablen Hilbertraumes und $\mathcal{L}^+(\mathcal{D})$ die maximale Op•-Algebra auf \mathcal{D} , verschen mit der gleichmäßigen Topologie $\tau_{\mathcal{D}}$. Wir setzen voraus, daß \mathcal{D} bezüglich der Graphtopologie von $\mathcal{L}^+(\mathcal{D})$ ein Frechetraum ist. Weiter sei $\mathcal{E}(\mathcal{D})$ das zweiscitige •-Ideal aller Operatoren aus $\mathcal{L}^+(\mathcal{D})$, die beschränkte Teilmengen von \mathcal{D} in relativ kompakte Teilmengen abbilden. Es wird untersucht, wann die Faktoralgebra $\mathcal{A}(\mathcal{D}) := \mathcal{L}^+(\mathcal{D})/\mathcal{E}(\mathcal{D})$, verschen mit der Faktorraumtopologie, eine topologische Realisierung als Op•-Algebra besitzt.

Пусть \mathcal{D} плотное линейное подпространство сепарабельного гильбертова пространства и пусть $\mathcal{L}^+(\mathcal{D})$ максимальная Ор*-алгебра над \mathcal{D} , снабжённая равномерной топологией τ_D . Предполагается, что \mathcal{D} является пространством Фреше относительно топологии порождённой граф-нормами операторов из $\mathcal{L}^+(\mathcal{D})$. Через $\mathcal{B}(\mathcal{D})$ обозначается двусторонний *-идеал тех операторов из $\mathcal{L}^+(\mathcal{D})$, которые переводят ограниченные подмножества пространства \mathcal{D} в относительно компактные подмножества. Исследуется вопрос о том, когда факторалгебра $\mathcal{A}(\mathcal{D}) := \mathcal{L}^+(\mathcal{D})/\mathcal{B}(\mathcal{D})$ снабжённая топологией факторпространства допускает топологическую реализацию как Ор*-алгебра.

Let \mathcal{D} be a dense linear subspace of a separable Hilbert space and let $\mathscr{L}^+(\mathcal{D})$ be the maximal Op*-algebra on \mathcal{D} endowed with the uniform topology $\tau_{\mathcal{D}}$. Suppose \mathcal{D} is a Frechet space with respect to the graph topology of $\mathscr{L}^+(\mathcal{D})$. Let $\mathscr{C}(\mathcal{D})$ denote the two-sided *-ideal of all operators in $\mathscr{L}^+(\mathcal{D})$ which map bounded subsets of \mathcal{D} into relatively compact subsets. We study the question of when the quotient algebra $\mathscr{A}(\mathcal{D}) := \mathscr{L}^+(\mathcal{D})/\mathscr{C}(\mathcal{D})$, endowed with the quotient topology, has a topological realization as an Op*-algebra.

Introduction

Let \mathcal{D} be a dense linear subspace of a separable complex Hilbert space \mathcal{H} endowed with the graph topology t (see Section 1 for precise definitions). Suppose $\mathcal{D}[t]$ is a Frechet space. Let $\mathcal{C}(\mathcal{D})$ denote the set of all operators in $\mathcal{L}^+(\mathcal{D})$ which map each bounded subset of $\mathcal{D}[t]$ into a relatively compact subset of $\mathcal{D}[t]$. Then $\mathcal{C}(\mathcal{D})$ is a $\tau_{\mathcal{D}}$ -closed two-sided *-ideal of $\mathcal{L}^+(\mathcal{D})$ which contains the finite rank operators in $\mathcal{L}^+(\mathcal{D})$ as a dense subset [15, 7]. (Note that in [15] the ideal $\mathcal{C}(\mathcal{D})$ is denoted by Vol (t, t).) The quotient algebra $\mathcal{A}(\mathcal{D}) := \mathcal{L}^+(\mathcal{D})/\mathcal{C}(\mathcal{D})$ is called the Calkin algebra on the domain \mathcal{D} . Let $\hat{\tau}$ denote the quotient topology on $\mathcal{A}(\mathcal{D})$ of $\mathcal{L}^+(\mathcal{D})[\tau_{\mathcal{D}}]$. Obviously, $\mathcal{A}(\mathcal{D})[\hat{\tau}]$ is a topological *-algebra. If $\mathcal{D} = \mathcal{H}$, then $\mathcal{A}(\mathcal{D}) = \mathcal{A}(\mathcal{H})$ is the usual Calkin algebra on the Hilbert space \mathcal{H} . It should be mentioned that if $\mathcal{D}[t]$ is a Montel space, then $\mathcal{C}(\mathcal{D}) = \mathcal{L}^+(\mathcal{D})$ and hence the Calkin algebra $\mathcal{A}(\mathcal{D})$ is trivial.

In his classical paper [3] CALKIN constructed a class of faithful isometric * representations of the C*-algebra $\mathcal{A}(\mathcal{H})$ (see [11] for a modern treatment). In this paper we investigate the corresponding problem for the Calkin algebra $\mathcal{A}(\mathcal{D})$ on the Frechet domain $\mathcal{D}[t]$: Does there exist a faithful *-representation π of $\mathcal{A}(\mathcal{D})$ which is a homeomorphism of $\mathcal{A}(\mathcal{D})$ [$\hat{\tau}$] onto $\pi(\mathcal{A}(\mathcal{D}))$ [$\tau_{\mathcal{D}(\pi)}$]? For the domain $l_2 \otimes d$, d the space of all finite complex sequences, this problem has been considered in [9]. Note that $l_2 \otimes d[t]$ is not a Frechet space.

31 Analysis Bd. 5, Heft 6 (1986)

Let us briefly describe our main results concerning the above question.

Given a free ultrafilter \mathcal{U} on N, we define in Section 2a *-representation $\pi_{\mathcal{U}}$ of $\mathcal{A}(\mathcal{D})$ in a similar way as in the case $\mathcal{D} = \mathcal{H}$. We show that $\pi_{\mathcal{U}}$ is faithful and that $\pi_{\mathcal{U}}^{-1}$ is continuous (Theorem 2.1). Let τ_n denote the finest locally convex topology on $\mathcal{L}^+(\mathcal{D})$ for which the positive cone $\mathcal{L}^+(\mathcal{D})_+$ is normal [12]. If $\tau_n = \tau_{\mathcal{D}}$ on $\mathcal{L}^+(\mathcal{D})$, then each *-representation $\pi_{\mathcal{U}}$ is continuous and hence a homeomorphism (Theorem 2.2).

In Section 3 we obtain a converse of the latter in some sense. Suppose that the graph topology t on \mathcal{D} is generated by a sequence of strongly commuting self-adjoint operators whose restrictions to \mathcal{D} are in $\mathcal{L}^+(\mathcal{D})$. Under this additional assumption we prove that if $\tau_n \neq \tau_{\mathcal{D}}$ on $\mathcal{L}^+(\mathcal{D})$, then there is no continuous faithful *-representation of $\mathcal{A}(\mathcal{D})$ [$\hat{\tau}$] (Theorem 3.1).

1. Preliminaries

In this section we collect some definitions and notations (see e.g. [8, 10]) needed later and we prove some preliminary lemmas.

1.1 Let \mathcal{D} be a dense linear subspace of a complex Hilbert space \mathcal{H} and let $\mathcal{L}^+(\mathcal{D})$:={ $a \in \operatorname{End} \mathcal{D}: \mathcal{D} \subseteq \mathcal{D}(a^*)$ and $a^*\mathcal{D} \subseteq \mathcal{D}$ }. $\mathcal{L}^+(\mathcal{D})$ is a *-algebra endowed with the involution $a \to a^+ := a^* \mid \mathcal{D}$. An Op*-algebra \mathcal{B} on \mathcal{D} is a *-subalgebra of $\mathcal{L}^+(\mathcal{D})$. In what follows we assume that \mathcal{B} is an Op*-algebra on \mathcal{D} . Define $\mathcal{D}(\mathcal{B}) = \cap \{\mathcal{D}(\bar{b}) : b \in \mathcal{B}\}$, where \bar{b} is the closure of the operator b. The graph topology $t_{\mathcal{B}}$ is the locally convex topology on \mathcal{D} defined by the seminorms $\|\varphi\|_b := \|b\varphi\| + \|\varphi\|$, $b \in \mathcal{B}$. In case $\mathcal{B} = \mathcal{L}^+(\mathcal{D})$ we simply write t for $t_{\mathcal{B}}$.

Let $(\varphi_n : n \in \mathbb{N})$ be a sequence of vectors $\varphi_n \in \mathcal{H}$ and let $\varphi \in \mathcal{H}$. Suppose \mathcal{U} is a filter on \mathbb{N} . We write $\varphi = \text{w-lim } \varphi_n$ if $\lim_n \langle \varphi_n, \psi \rangle = \langle \varphi, \psi \rangle$ for all $\psi \in \mathcal{H}$ and $\varphi = \text{w-lim}_{\mathcal{U}} \varphi_n$ if $\lim_{\mathcal{U}} \langle \varphi_n, \psi \rangle = \langle \varphi, \psi \rangle$ for all $\psi \in \mathcal{H}$.

Lemma 1.1: Suppose \mathcal{U} is an ultrafilter on N. Let $(\varphi_n : n \in \mathbb{N})$ be a bounded sequence of vectors of $\mathcal{D}[t_{\mathcal{B}}]$. Let $\varphi := \operatorname{w-lim}_{\mathcal{U}} \varphi_n$.

- (i) Then, $\varphi \in \mathcal{D}(\mathcal{B})$ and $\bar{b}\varphi = \text{w-lim}_{\mathcal{U}} b\varphi_n$. In particular, if $0 = \text{w-lim}_{\mathcal{U}} \varphi_n$, then $0' = \text{w-lim}_{\mathcal{U}} b\varphi_n$ for each $b \in \mathcal{B}$.
- (ii) If $\lim_{\mathcal{U}} ||\varphi_n|| = 0$, then $\lim_{\mathcal{U}} ||b\varphi_n|| = 0$ for each $b \in \mathcal{B}$.
- (iii) If $\varphi = 0$ and if the set $\{\varphi_n\}$ is relatively compact in $\mathcal{D}[t_{\mathscr{B}}]$, then $\lim_{\mathcal{U}} ||b\varphi_n|| = 0$ for each $b \in \mathcal{B}$.

Proof: (i) Suppose $b \in \mathcal{B}$. Since the set $\{b\varphi_n\}$ is bounded in the Hilbert space norm and \mathcal{U} is an ultrafilter, $\lim_{\mathcal{U}} \langle b\varphi_n, \rangle$ is a continuous linear functional on \mathcal{H} . Hence there is a $\varphi_b \in \mathcal{H}$ such that $\varphi_b = \text{w-lim}_{\mathcal{U}} b\varphi_n$. For $\psi \in \mathcal{D}(b^*)$, this gives

$$\langle \varphi_b, \psi \rangle = \lim_{\mathcal{U}} \langle b\varphi_n, \psi \rangle = \lim_{\mathcal{U}} \langle \varphi_n, b^*\psi \rangle = \langle \varphi, b^*\psi \rangle.$$

Therefore, $\varphi \in \mathcal{D}(b^{**}) \equiv \mathcal{D}(\bar{b})$ and $\varphi_b = b^{**}\varphi \equiv \bar{b}\varphi$. Since $b \in \mathcal{B}$ is arbitrary, $\varphi \in \bigcap \{\mathcal{D}(\bar{b}) : b \in \mathcal{B}\} \equiv \mathcal{D}(\mathcal{B})$.

(ii) Since $\{\varphi_n\}$ is $t_{\mathscr{B}}$ -bounded, $C_b := \sup \{ ||b^+b\varphi_n|| : n \in \mathbb{N} \} < \infty$ for $b \in \mathscr{B}$. Now the assertion follows from

$$(\lim_{\mathcal{U}} ||b\varphi_n||)^2 = \lim_{\mathcal{U}} \langle b^+ b\varphi_n, \varphi_n \rangle \leq C_b(\lim_{\mathcal{U}} ||\varphi_n||) = 0.$$

(iii) Let $b \in \mathcal{B}$. Since $\{\varphi_n\}$ is relatively compact in $\mathcal{D}[t_{\mathcal{B}}]$, the set $\{b\varphi_n\}$ is relatively compact in \mathcal{H} . Given $\varepsilon > 0$, there is a finite rank projection F_{ε} on \mathcal{H} such that $||(I - F_{\varepsilon}) b\varphi_n|| \leq \varepsilon$ for $n \in \mathbb{N}$. Since $0 = \text{w-lim}_{\mathcal{U}} b\varphi_n$ because of (i) and hence $\lim_{\mathcal{U}} ||F_{\varepsilon}b\varphi_n|| = 0$, we have $\lim_{\mathcal{U}} ||b\varphi_n|| \leq \lim_{\mathcal{U}} ||(I - F_{\varepsilon}) b\varphi_n|| \leq \varepsilon$, thus $\lim_{\mathcal{U}} ||b\varphi_n|| = 0$

The following corollary is of some interest in itself:

Corollary 1.2: Suppose $\varphi \in \mathcal{H}$. If there is a bounded sequence $(\varphi_n : n \in \mathbb{N})$ in $\mathcal{D}[t_{\mathcal{B}}]$ such that $\varphi = \text{w-lim } \varphi_n$, then $\varphi \in \mathcal{D}(\mathcal{B})$.

Proof: Take an ultrafilter \mathcal{U} on N which contains all sets $\{n \in \mathbb{N} : n \geq k\}, k \in \mathbb{N}$. Then $\varphi = \text{w-lim}_{\mathcal{U}} \varphi_n$ and Lemma 1.1 (i) applies

1.2 Next we briefly discuss the topologization of the Op*-algebra \mathscr{B} on \mathscr{D} . Let \mathscr{B}_h := $\{b \in \mathscr{B} : b = b^+\}$. Suppose $b_1, b_2 \in \mathscr{B}_h$. We write $b_1 \geq b_2$ if $\langle b_1 \varphi, \varphi \rangle \geq \langle b_2 \varphi, \varphi \rangle$ for all $\varphi \in \mathscr{D}$. Define $\mathscr{B}_+ := \{b \in \mathscr{B} : b \geq 0\}$ and $[b_1, b_2] := \{b \in \mathscr{B}_h : b_1 \leq b \leq b_2\}$. The uniform topology $\tau_{\mathscr{D}}$ is the locally convex topology on \mathscr{B} defined by the seminorms

 $p_{\mathfrak{M}}(x) := \sup \{ |\langle x\varphi, \psi \rangle| : \varphi, \psi \in \mathfrak{M} \}, \mathfrak{M} \subset \mathcal{D}[t_{\mathscr{B}}] \text{ bounded.}$

It has been introduced in [8]. We denote by τ_n the finest locally convex-topology on \mathscr{B} for which the positive cone \mathscr{B}_+ is normal. (All notions and facts concerning ordered vector spaces we need can be found in [12].) Since \mathscr{B}_+ is $\tau_{\mathscr{D}}$ -normal [13], we have $\tau_{\mathscr{D}} \subseteq \tau_n$. Let τ_0 denote the finest locally convex topology on \mathscr{B} for which every order interval $[b_1, b_2], b_1, b_2 \in \mathscr{B}_h$, is bounded. Since \mathscr{B}_+ is τ_n -normal, all order intervals are τ_n -bounded [12: p. 216] and hence $\tau_n \subseteq \tau_0$. In [1] the topology τ_0 is called the *q*-topology.

1.3 Let A be a *-algebra with unit element denoted by 1. By a *-representation of A on \mathcal{D} we mean a *-homomorphism π of A into $\mathcal{L}^+(\mathcal{D})$ satisfying $\pi(1) = I$, where I is the identity map of \mathcal{D} . We then write $\mathcal{D}(\pi)$ for \mathcal{D} and t_{π} for the graph topology of the Op*-algebra $\pi(A)$ on $\mathcal{D}(\pi)$. Suppose π is a *-representation of a topological *-algebra $A[\tau]$. π is called weakly continuous if for each $\varphi \in \mathcal{D}(\pi)$ the linear functional $\langle \pi(\cdot) \varphi, \varphi \rangle$ is continuous on $A[\tau]$. If π is a continuous mapping of $A[\tau]$ onto $\pi(A) [\tau_{\mathcal{D}(\pi)}]$ we say π is continuous.

As above, let \mathscr{B} be an Op*-algebra on \mathscr{D} . Let π be a *-representation of \mathscr{B} on $\mathscr{D}(\pi)$. We say π is *positive* if $\pi(\mathscr{B}_+) \subseteq \pi(\mathscr{B})_+$, i.e., if $b \in \mathscr{B}$ and $b \geq 0$ on \mathscr{D} always implies that $\pi(b) \geq 0$ on $\mathscr{D}(\pi)$. A linear functional f on \mathscr{B} is called positive if $f(b) \geq 0$ for all $b \in \mathscr{B}_+$.

Lemma 1.3: Each positive *-representation π of the Op*-algebra \mathcal{B} is a continuous mapping of $\mathcal{B}[\tau_n]$ onto $\pi(\mathcal{B})[\tau_{\mathcal{D}(\pi)}]$.

Proof: By the polarization formula it is easy to see [13] that the uniform topology $\tau_{\mathfrak{D}(\pi)}$ on $\pi(\mathcal{B})$ is generated by the family of seminorms

$$p'_{\mathfrak{M}}(\pi(x)) := \sup \{ | \langle \pi(x) \varphi, \varphi \rangle | : \varphi \in \mathfrak{M} \}, \mathfrak{M} \subset \mathcal{D}(\pi) [t_{\pi}] \text{ bounded.}$$

Fix the bounded set \mathfrak{M} . Since the set $\{x \in \mathscr{B} : p'_{\mathfrak{M}}(\pi(x)) \leq 1\}$ is absolutely convex and \mathscr{B}_+ -saturated, it is a τ_n -neighborhood of zero in \mathscr{B} . This proves the continuity of π

Lemma 1.4: Suppose that $\mathcal{D}[t]$ is a Frechet space. Let π' be a weakly continuous *-representation of $\mathcal{L}^+(\mathcal{D})[\tau_{\mathcal{D}}]$. Then:

- (i) π is positive.
- (ii) If $x \in \mathcal{I}^+(\mathcal{D})$ is bounded, then $\pi(x)$ is bounded on $\mathcal{D}(\pi)$ and $\|\pi(x)\| \leq \|x\|$.
- (iii) Suppose $x_n \in \mathcal{L}^+(\mathcal{D})$ for $n \in \mathbb{N}$. If $\{\|\cdot\|_{x_n} : n \in \mathbb{N}\}$ is a generating family for the graph topology t, on \mathcal{D} , then $\{\|\cdot\|_{\pi(x_n)} : n \in \mathbb{N}\}$ is a generating family of seminorms for the graph topology t_n on $\mathcal{D}(\pi)$.

Proof: (i) Suppose $x \in \mathcal{L}^+(\mathcal{D})_+$ and $\varphi \in \mathcal{D}(\pi)$. By [6: Theorem 6.1] there is a net $\{q_j\}$ of orthogonal projections $q_j \in \mathcal{L}^+(\mathcal{D})$ (that is, $q_j = q_j^+$, and $q_j = q_j^2$) such that $q_j \mathcal{H} \subseteq \mathcal{D}$ for all j and $x = \tau_{\mathcal{D}}$ -lim $q_j x q_j$. Let x_j denote the operator $q_j x q_j$ on the Hilbert

space $q_j \mathcal{H}$. Since $x \in \mathcal{L}^+(\mathcal{D})$, x_j is closed and hence bounded. Let y_j denote the positive square root of the bounded self-adjoint operator x_j on the Hilbert space $q_j \mathcal{H}$. Then $y_j q_j \in \mathcal{L}^+(\mathcal{D})$ and

$$\|\pi(y_jq_j)\,\varphi\|^2 = \langle \pi(q_jy_j^2q_j)\,\varphi,\,\varphi\rangle = \langle \pi(q_jxq_j)\,\varphi,\,\varphi\rangle \ge 0\,.$$

Since π is weakly continuous, $\langle \pi(x) \varphi, \varphi \rangle = \lim \langle \pi(q_j x q_j) \varphi, \varphi \rangle \ge 0$. That is, $\pi(x) \ge 0$ on $\mathcal{D}(\pi)$.

(ii): First let $x \in \mathcal{L}^+(\mathcal{D})_h$. Since π is positive by (i) and $\pi(I) = I$, inf $\{\lambda \in \mathbb{R} : -\lambda I \leq \pi(x) \leq \lambda I\} \leq \inf \{\lambda \in \mathbb{R} - \lambda I \leq x \leq \lambda I\} = ||x||$, which implies that $\pi(x)$ is bounded and $||\pi(x)|| \leq ||x||$. For arbitrary $x \in \mathcal{L}^+(\mathcal{D})$ the assertion follows from $||\pi(x)||^2 = ||\pi(x^+x)||_{\mathcal{L}} \leq ||x^+x|| = ||x||^2$.

(iii): Suppose $x \in \mathscr{L}^+(\mathscr{D})$, By assumption; there are a positive constant C and a natural number s such that

$$||x\varphi||^2 \leq C\left(||\varphi||^2 + \sum_{n=1}^{s} ||x_n\varphi||^2\right)$$
 for all $\varphi \in \mathcal{D}$.

Therefore,

$$y := C\left(I + \sum_{n=1}^{\delta} x_n^+ x_n\right) - x^+ x \in \mathscr{L}^+(\mathscr{D})_+ \text{ and } \pi(y) \ge 0 \text{ on } \mathscr{D}(\pi).$$

The latter implies that

$$\|\pi(x) \varphi\|^2 \leq C \left(\|\varphi\|^2 + \sum_{n=1}^s \|\pi(x_n) \varphi\|^2 \right)$$
 for all $\varphi \in \mathcal{D}(\pi)$

1.4 From now on we assume that $\mathcal{D}[l]$ is a Frechet space and that the underlying Hilbert space \mathcal{H} is separable. To simplify the notation we adopt the following notational convention: We shall denote an operator whose domain contains \mathcal{D} and its restriction to \mathcal{D} by the same symbol. This will be mainly used in Section 3. Let $\mathcal{F}(\mathcal{D})$ denote the finite rank operators contained in $\mathcal{L}^+(\mathcal{D})$. For a linear subspace \mathcal{D}_1 of \mathcal{H} , let $\mathcal{F}(\mathcal{H}, \mathcal{D}_1)$ be the set of all bounded finite-ranked operators on \mathcal{H} mapping \mathcal{H} into \mathcal{D}_1 . Moreover, we let $\mathfrak{B}_{\mathcal{D}_1} := \{\varphi \in \mathcal{D}_1 : ||\varphi|| \leq 1\}$.

2. Generalized Calkin representations of $\mathcal{A}(\mathcal{D})$

2.1 Suppose that \mathcal{U} is an ultrafilter on N. Let $\mathcal{D}_{\mathcal{U}}^{\infty}$ denote the set of all bounded sequences $(\varphi_n : n \in \mathbb{N}) = (\varphi_n)$ in the locally convex space $\mathcal{D}[l]$ satisfying $0 = \text{w-lim}_{\mathcal{U}} \varphi_n$. Let $\mathcal{H}_{\mathcal{U}}^{\infty}$ be the set of all bounded sequences (φ_n) in \mathcal{H} with $0 = \text{w-lim}_{\mathcal{U}} \varphi_n$. $\mathcal{D}_{\mathcal{U}}^{\infty}$ and $\mathcal{H}_{\mathcal{U}}^{\infty}$ are vector spaces in the obvious way. Let $\mathcal{N}_{\mathcal{U}}$ be the set of all $(\varphi_n) \in \mathcal{H}_{\mathcal{U}}^{\infty}$ with $\lim_{\mathcal{U}} ||\varphi_n|| = 0$. We define a scalar product on the quotient space $\mathcal{D}_{\mathcal{U}} := \mathcal{D}_{\mathcal{U}}^{\infty}/\mathcal{D}_{\mathcal{U}}^{\infty} \cap \mathcal{N}_{\mathcal{U}}$ by $\langle (\varphi_n), (\psi_n) \rangle := \lim_{\mathcal{U}} \langle \varphi_n, \psi_n \rangle$. In the same way, the quotient space $\mathcal{H}_{\mathcal{U}} := \mathcal{H}_{\mathcal{U}}^{\infty}/\mathcal{N}_{\mathcal{U}}$ becomes a Hilbert space (see e.g. [11: Section 2]). By an abuse of notation we denote the elements of the quotient spaces again by (φ_n) . Since $\mathcal{D} \subseteq \mathcal{H}$, $\mathcal{D}_{\mathcal{U}}$ can be considered as a linear subspace of $\mathcal{H}_{\mathcal{U}}$.

Define $\varrho_{\mathcal{U}}(x)(\varphi_n) := (x\varphi_n)$ for $(\varphi_n) \in \mathcal{D}_{\mathcal{U}}$ and $x \in \mathcal{I}^+(\mathcal{D})$. Each operator $x \in \mathcal{I}^+(\mathcal{D})$ maps a bounded sequence in $\mathcal{D}[l]$ into a bounded sequence. By Lemma 1.1, (i) and (ii), $x\mathcal{N}_{\mathcal{U}} \subseteq \mathfrak{N}_{\mathcal{U}}$ and $x\mathcal{D}_{\mathcal{U}}^{\infty} \subseteq \mathcal{D}_{\mathcal{U}}^{\infty}$. Therefore, the above definition makes sense and defines a linear operator $\varrho_{\mathcal{U}}(x)$ which maps $\mathcal{D}_{\mathcal{U}}$ into $\mathcal{D}_{\mathcal{U}}$. It is straightforward to check that the mapping $x \to \varrho_{\mathcal{U}}(x)$ is a positive *-representation of $\mathcal{I}^+(\mathcal{D})$ on $\mathcal{D}_{\mathcal{U}}$.

Let j denote the quotient map of $\mathcal{L}^+(\mathcal{D})$ onto $\mathcal{A}(\mathcal{D}) = \mathcal{L}^+(\mathcal{D})/\mathcal{C}(\mathcal{D})$. Suppose $x \in \mathcal{E}(\mathcal{D})$ and $(\varphi_n) \in \mathcal{D}^{\infty}$. Then the set $\{x\varphi_n\}$ is relatively compact in $\mathcal{D}(t)$ and hence $\lim_{\mathcal{U}} ||x\varphi_n|| = 0$ by Lemina 1.1 (iii). This shows that $\mathcal{E}(\mathcal{D}) \subseteq \ker \varrho_{\mathcal{U}}$. Therefore, $\pi_{\mathcal{U}}(f(x))$:= $\varrho_{\mathcal{U}}(x)$ for $x \in \mathcal{L}^+(\mathcal{D})$ defines a *-representation of the *-algebra $\mathcal{A}(\mathcal{D})$ on $\mathcal{D}_{\mathcal{U}} \equiv \mathcal{D}(\pi_{\mathcal{U}})$. 2.2 Recall that an ultrafilter on N is said to be *free* if the intersection of all its members is empty.

Theorem 2.1: Suppose that \mathcal{U} is a free ultrafilter on N. Then $\pi_{\mathcal{U}}$ is a faithful *representation of the Calkin algebra $\mathcal{A}(\mathcal{D})$. Its inverse $\pi_{\mathcal{U}}^{-1}$ is a continuous mapping of $\pi_{\mathcal{U}}(\mathcal{A}(\mathcal{D}))[\tau_{\mathcal{D}_{\mathcal{U}}}]$ onto $\mathcal{A}(\mathcal{D})[\hat{\tau}]$.

Proof: The quotient topology $\hat{\tau}$ on $\mathcal{A}(\mathcal{D})$ is generated by the seminorms

$$p_{\mathfrak{M}}(\mathfrak{j}(x)) := \inf \{ p_{\mathfrak{M}}(x+c) : c \in \mathscr{C}(\mathcal{D}) \}, \mathfrak{M} \subset \mathcal{D}[t] \text{ bounded.}$$

Fix such a set \mathfrak{M} . Suppose for a moment we have shown that there exists a bounded subset \mathfrak{N} (depending on \mathfrak{M}) of $\mathcal{D}_{\mathcal{U}}[l_{e_{\mathcal{U}}}]$ such that

$$p_{\mathfrak{M}}(\mathbf{i}(x)) \leq p_{\mathfrak{M}}(\varrho_{\mathcal{U}}(x)) \text{ for all } x \in \mathcal{L}^+(\mathcal{D}).$$
(1)

The latter means that

$$\hat{p}_{\mathfrak{M}}(a) \leq p_{\mathfrak{R}}(\pi_{\mathcal{U}}(a))$$
 for all $a \in \mathcal{A}(\mathcal{D})$.

Since $\mathscr{C}(\mathcal{D})$ is $\tau_{\mathcal{D}}$ -closed in $\mathscr{L}^+(\mathcal{D})$ and hence $\hat{\tau}$ is Hausdorff, it follows from (2) that ker $\pi_{\mathcal{U}} = \{0\}$, that is, $\pi_{\mathcal{U}}$ is faithful. Moreover, (2) proves the continuity of $\pi_{\mathcal{U}}^{-1}$, and the proof would be complete.

It remains to show that there is a bounded set \mathfrak{N} in $\mathcal{D}_{\mathcal{U}}[t_{e\mathcal{U}}]$ such that (1) is satisfied. According to [6: Theorem 4.1] there is a bounded self-adjoint operator z on \mathcal{H} such that ker $z = \{0\}, z\mathcal{H} \subseteq \mathcal{D}$ and $\mathfrak{M} \subseteq z\mathfrak{B}_{\mathcal{H}}$. If $x \in \mathcal{L}^+(\mathcal{D})$, then xz is a closed operator defined on \mathcal{H} and hence bounded. Now fix an operator $x \in \mathcal{L}^+(\mathcal{D})$. Since $\mathcal{F}(\mathcal{D})$ is $\tau_{\mathcal{D}}$ -dense in $\mathcal{E}(\mathcal{D})$, we obtain

$$\begin{split} \hat{p}_{\mathfrak{M}}(\mathbf{j}(x)) &\leq \inf_{c \in \mathcal{F}(\mathcal{D})} p_{\mathfrak{M}}(x+c) \bullet \\ &= \inf_{c \in \mathcal{F}(\mathcal{D})} \sup_{\varphi, \psi \in \mathfrak{B}_{\mathscr{H}}} |\langle (x+c) \, z\varphi, \, z\psi \rangle| = \inf_{c \in \mathcal{F}(\mathcal{D})} ||z(x+c) \, z||. \end{split}$$

Since ker $z = \{0\}$, we have $\{cz: c \in \mathcal{F}(\mathcal{D})\} = \mathcal{F}(\mathcal{D})$. Moreover, $\{zc: c \in \mathcal{F}(\mathcal{D})\}$ is norm dense in $\mathcal{F}(\mathcal{H})$. Using these facts, we get

$$p_{\mathfrak{M}}(\mathbf{j}(x)) \stackrel{i}{\leq} \inf_{c \in \mathcal{F}(\mathcal{D})} ||zxz + zc|| = \inf_{c \in \mathcal{F}(\mathcal{H})} ||zxz + c||.$$

$$(3)$$

On the other hand, let $\omega_{\mathcal{U}}$ denote the *-representation of $\mathbf{B}(\mathcal{H})$ on $\mathcal{H}_{\mathcal{U}}$ defined by $\omega_{\mathcal{U}}(y)(\varphi_n) := (y\varphi_n)$ for $(\varphi_n) \in \mathcal{H}_{\mathcal{U}}$ and $y \in \mathbf{B}(\mathcal{H})$. Since $\omega_{\mathcal{U}}$ obviously annihilates $\mathcal{E}(\mathcal{H})$, $\omega_{\mathcal{U}}$ defines a *-representation of the Calkin algebra $\mathcal{A}(\mathcal{H})$ on $\mathcal{H}_{\mathcal{U}}$ (see [11: Section 2]). Since \mathcal{U} is assumed to be free and $\mathcal{A}(\mathcal{H})$ is simple, this *-representation of the C*-algebra $\mathcal{A}(\mathcal{H})$ is faithful and hence isometric. Since $zxz \in \mathbf{B}(\mathcal{H})$, this yields $||\omega_{\mathcal{U}}(zxz)|| = \inf \{||zxz + c|| : c \in \mathcal{E}(\mathcal{H})\}$. By (3), we obtain

$$p_{\mathfrak{M}}(\mathfrak{j}(x)) \leq ||\omega_{\mathfrak{U}}(zxz)|| \text{ for all } x \in \mathscr{L}^+(\mathscr{D}).$$

Now define

$$\Re := \omega_{\mathcal{U}}(z) \ \mathfrak{B}_{\mathcal{H}_{\mathcal{U}}} \equiv \{(z\varphi_n) : (\varphi_n) \in \mathcal{H}_{\mathcal{U}} \text{ and } \|(\varphi_n)\|_{\mathcal{H}_{\mathcal{U}}} \leq 1\}.$$

If $(\varphi_n) \in \mathcal{H}_{\mathcal{U}}$ and if $x \in \mathcal{L}^+(\mathcal{D})$, then xz is bounded on \mathcal{H} and thus

$$\sup_{n\in\mathbb{N}}\|xz\varphi_n\|\leq \|xz\|\sup_{n\in\mathbb{N}}\|\varphi_n\|<\infty.$$

(2)

(4)

This implies $\mathfrak{N} \subseteq \mathfrak{D}_{\mathcal{U}}$. From

 $\|\varrho_{\mathcal{U}}(x) (z\varphi_n)\| = \|(xz\varphi_n')\|_{\mathcal{H}_{\mathcal{U}}} = \lim_{\mathcal{U}} \|xz\varphi_n\|$

$$\leq ||xz|| \lim_{\mathcal{U}} ||\varphi_n|| = ||xz||$$
 for $(\varphi_n) \in \mathfrak{B}_{\mathcal{H}_{\mathcal{U}}}$ and $x \in \mathcal{L}^+(\mathcal{D})$,

we see that \mathfrak{N} is bounded in $\mathcal{D}_{\mathcal{U}}[t_{e\mathcal{U}}]$.

Finally, by (4), if $x \in \mathcal{L}^+(\mathcal{D})$, then

$$p_{\mathfrak{M}}(\mathbf{i}(x)) \leq ||\omega_{\mathfrak{U}}(zxz)|| = \sup_{\varphi, \psi \in \mathfrak{B}_{\mathcal{X}_{\mathfrak{U}}}} |\langle \omega_{\mathfrak{U}}(xz) \varphi, \omega_{\mathfrak{U}}(z) \psi \rangle|$$

 $= \sup_{(\varphi_n), (\varphi_n) \in \mathfrak{B}_{\mathcal{H}_{\mathcal{H}}}} |\langle (xz\varphi_n), (z\psi_n) \rangle|$

$$= \sup_{(\varphi_n), (\varphi_n) \in \mathfrak{B}_{\mathcal{X}_{\mathcal{U}}}} |\langle \varrho_{\mathcal{U}}(x) (z\varphi_n), (z\psi_n) \rangle| = p_{\mathfrak{R}}(\varrho_{\mathcal{U}}(x))$$

which proves (1). The proof of Theorem 2.1 is complete

2.3 From Theorem 2.1 and Lemma 1.4 we obtain

Theorem 2.2: Suppose that $\tau_n = \tau_{\mathcal{D}}$ on $\mathcal{L}^+(\mathcal{D})$. Let \mathcal{U} be a free ultrafilter on N. Then, $\pi_{\mathcal{U}}$ is a faithful *-representation of $\mathcal{A}(\mathcal{D})$ and a homeomorphism of $\mathcal{A}(\mathcal{D})$ [$\hat{\tau}$] onto $\pi_{\mathcal{U}}(\mathcal{A}(\mathcal{D})) [\tau_{\mathcal{D}_{\mathcal{U}}}]$.

1. In general the domain $\mathcal{D}_{\mathcal{U}}$ is not dense in $\mathcal{H}_{\mathcal{U}}$. 2. If the domain is of the form $\mathcal{D} = \cap \{\mathcal{D}(T^n): n \in \mathbb{N}\}$ for some self-adjoint operator T on \mathcal{H} , then $\tau_n = \tau_{\mathcal{D}}$ on $\mathcal{L}^+(\mathcal{D})$ (see also Section 3).

3. Existence of continuous faithful *-representations of $\mathcal{A}(\mathcal{D})$ $[\hat{\tau}]$

3.1 We first recall the setup of [14: Section 4]. However, the notation is slightly changed.

Suppose a is a (bounded or unbounded) self-adjoint operator on the Hilbert space \mathcal{H} with spectral decomposition $a = \int \lambda de(\lambda)$. Let $(f_k(t) : k \in \mathbb{N})$ be a sequence of real measurable functions on the spectrum $\sigma(a)$ of a. All measure theoretic notions refer to the spectral measure of a. We assume that

$$f_1(t) = 1 \text{ and } f_k(t) \le f_k^2(t) \le f_{k+1}(t) \quad \text{a.e. on } \sigma(a) \text{ for } k \in \mathbb{N}.$$
(1)

Set $a_k = f_k(a)$ and $\mathcal{D} = \cap \{\mathcal{D}(a_k) : k \in \mathbb{N}\}$. Then, by (1), the operators a_k (more precisely, their restrictions to \mathcal{D}) are in $\mathcal{L}^+(\mathcal{D})$ and the graph topology t on \mathcal{D} is generated by the seminorms $\|.\|_{a_k}, k \in \mathbb{N}$.

In our next theorem the following condition (*) plays an important role:

(*) $\begin{cases}
For each sequence \gamma = (\gamma_k : k \in \mathbb{N}) \text{ of positive numbers } \gamma_k \text{ there is a} \\
k = k_r \in \mathbb{N} \text{ such that all functions } f_n, n \in \mathbb{N}, \text{ are bounded on } \Re_k, \text{ where} \\
\Re_n := \{t \in \sigma(a) : f_1(t) \leq \gamma_1, \dots, f_n(t) \leq \gamma_n\} \text{ for } n \in \mathbb{N}.
\end{cases}$

The following assertions are equivalent:

(i) Condition (*) is fulfilled.

(ii) $\tau_0 = \tau_{\mathcal{D}} \text{ on } \mathcal{L}^+(\mathcal{D}).$

(iii) $\tau_n = \tau_{\mathcal{D}}$ on $\mathcal{L}^+(\mathcal{D})$.

(iv) Each positive linear functional on $\mathcal{L}^+(\mathcal{D})$ is $\tau_{\mathcal{D}}$ -continuous.

This is essentially [14: Theorem 4.1]. The equivalence of (i), (ii) and (iv) has been stated therein. Since $\tau_0 \supseteq \tau_n \supseteq \tau_D$, (ii) \Rightarrow (iii). Since each positive linear functional is τ_n -continuous, we have (iii) \Rightarrow (iv).

3.2 The following theorem may be considered as a supplement to [14: Theorem 4.1]. Among other things it shows that if $\tau_n \neq \tau_{\mathcal{D}}$ on $\mathcal{L}^+(\mathcal{D})$, then there is no continuous faithful *-representation of $\mathcal{A}(\mathcal{D})$ [$\hat{\tau}$]. In particular, the *-representations $\pi_{\mathcal{U}}$ occuring in Theorem 2.1 are not continuous.

Theorem 3.1: Let \mathcal{D} be as above. Then (i) is equivalent to each of the following conditions:

- (v) There exists a faithful *-representation π of $\mathcal{A}(\mathcal{D})$ which is a homeomorphism of $\mathcal{A}(\mathcal{D})[\hat{\tau}]$ onto $\pi(\mathcal{A}(\mathcal{D}))[\tau_{\mathcal{D}(\pi)}]$.
- (v) There exists a continuous faithful *-representation of $\mathcal{A}(\mathcal{D})[\hat{\tau}]$.
- (vi) Each positive *-representation of $\mathcal{I}^+(\mathcal{D})[\tau_{\mathcal{D}}]$ is continuous.
- (vi)' Each weakly continuous positive *-representation of $\mathcal{L}^+(\mathcal{D})[\tau_{\mathcal{D}}]$ is continuous.

Proof: Theorem 2.2 shows that (iii) \Rightarrow (v). (iii) \Rightarrow (vi) follows from Lemma 1.3. Since (v) \Rightarrow (v)' and (vi) \Rightarrow (vi)' are trivially fulfilled, it suffices to prove that (v)' \Rightarrow (i) and (vi)' \Rightarrow (i). Both proofs will be indirect (see e.g. the argument in [14: p. 366]). (v)' \Rightarrow (i): Suppose that π is a continuous faithful * representation of $\mathcal{A}(\mathcal{D})$ [$\hat{\tau}$]. Then, $\varrho(x) := \pi(i(x)), x \in \mathcal{I}^+(\mathcal{D})$, defines a continuous * representation of $\mathcal{I}^+(\mathcal{D})$ [$\tau_{\mathcal{D}}$]. To prove (i), we assume the contrary, that is, condition (*) is not satisfied. Then there are a positive sequence $\gamma = (\gamma_k)$ and a sequence (i_k) of natural numbers such that f_{i_k} is not essentially bounded on the set \Re_k for each $k \in \mathbb{N}$. There is no loss of generality if we assume that $\gamma_{k+1} > \gamma_k \geq k$ and $i_k = k$ for all $k \in \mathbb{N}$. Then there are measurable subsets $\Im_{k,n}, n \in \mathbb{N}$, of \Re_k of non-zero measure such that $f_{k+1}(t) \geq \gamma_n$ a.e. on $\Im_{k,n}$ for all $k, n \in \mathbb{N}$. Let $\varphi_{k,n}$ be a unit vector from $e(\Im_{k,n}) \mathcal{D}$.

Let Δ denote the family of all sequences $\delta = (\delta_k)$ of natural numbers δ_k satisfying $\delta_k \ge k + 2$ for $k \in \mathbb{N}$. Fix a $\delta \in \Delta$. We first show that for $r \in \mathbb{N}$ and $\varphi \in \mathcal{D}(\varrho)$

$$\left\|\varrho(a_r)\,\varrho\left(e\left(\bigcup_{k\geq r+1}\mathfrak{F}_{k,\delta_k}\right)\right)\varphi\right\|\leq \gamma_r\,\|\varphi\|$$
(2)

and

 $\|\varrho(a_{r+1})\,\varrho(e(\mathfrak{F}_{r,\delta_r}))\,\varphi\| \geq \gamma_{\delta_r}\,\|\varrho(e(\mathfrak{F}_{r,\delta_r}))\,\varphi\|$ (3)

For let χ denote the characteristic function of the set $\cup \{\mathfrak{J}_{k,\delta_k} : k \geq r+1\}$. By construction, $f_r(t) \chi(t) \leq \gamma_r$ a.e. on $\sigma(a)$. Define a function g on $\sigma(a)$ by $g := (\gamma_r^2 - f_r^2 \chi)^{1/2}$. Obviously, $g(a) \in \mathscr{L}^+(\mathscr{D})$. For $\varphi \in \mathscr{D}(\varrho)$, $\langle \varrho(g(a)^2) \varphi, \varphi \rangle = ||\varrho(g(a)) \varphi||^2 \geq 0$ and hence

$$\|\varphi\|^{2} \gamma_{r}^{2} = \langle \varrho(\gamma_{r}^{2}I) \varphi, \varphi \rangle$$

$$\geq \left\langle \varrho(f_{r}(a)^{2} \chi(a)) \varphi, \varphi \right\rangle = \left\| \varrho(a_{r}) \varrho\left(e\left(\bigcup_{k \geq r+1} \mathfrak{V}_{k,\delta_{k}} \right) \right) \varphi \right\|^{2}$$

(2) follows by the same argument.

Let q_{δ} be the orthogonal projection onto the closure of $\mathcal{D}_{\delta} := l.h. \{\varphi_{k,\delta_k} : k \in \mathbb{N}\}.$ Next we prove that $q_{\delta}\mathcal{H} \subseteq \mathcal{D}$. For let $r \in \mathbb{N}$. Each $\varphi \in \mathcal{D}_{\delta}$ can be written as a finite sum

$$\sum_{i=1}^{s} \lambda_{k}^{i} \varphi_{k,\delta_{k}}, \text{ where } \lambda_{1}, \ldots, \lambda_{s} \in \mathbb{C} \text{ and } s \in \mathbb{N}, s > r.$$

Suppose $k, n \in \mathbb{N}, n > k$. Since $f_{k+1}(t) \ge \gamma_{\delta_k} \ge \gamma_{k+2} > \gamma_{k+1}$ a.e. on $\mathfrak{F}_{k,\delta_k}$ and $f_{k+1}(t) \le \gamma_{k+1}$ on $\mathfrak{F}_{n,\delta_n}$, it follows that $\mathfrak{F}_{k,\delta_k} \cap \mathfrak{F}_{n,\delta_n}$ has measure zero. Therefore, φ_{k,δ_k}

 $\perp \varphi_{n,\delta_n}$ and $a_r \varphi_{k,\delta_k} \perp a_r \varphi_{n,\delta_n}$. Using the latter, we obtain

$$\begin{aligned} \|a_{r}\varphi\|^{2} &= \sum_{k=1}^{r} |\lambda_{k}|^{2} \|a_{r}\varphi_{k,\delta_{k}}\|^{2} + \sum_{k=r+1}^{s} |\lambda_{k}|^{2} \|a_{r}\varphi_{k,\delta_{k}}\|^{2} \\ &\leq \max \left(\|a_{r}\varphi_{1,\delta_{1}}\|, \ldots, \|a_{r}\varphi_{r,\delta_{r}}\|, \gamma_{r} \right) \sum_{k=1}^{s} |\lambda_{k}|^{2} = \max \left(\ldots \right) \|\varphi\|^{2}. \end{aligned}$$

This implies $q_e \mathcal{H} \subseteq \mathcal{D}(a_r)$. Since $\mathcal{D} = \bigcap \{\mathcal{D}(a_r) : r \in \mathbb{N}\}$ by definition, this shows that $q_e \mathcal{H} \subseteq \mathcal{D}$.

We define $\mathfrak{N} := \bigcup \{\varrho(q_{\delta}) \mathfrak{B} : \delta \in \Delta\}$, where $\mathfrak{B} := \mathfrak{B}_{\mathcal{D}(\varrho)} \equiv \{\varphi \in \mathcal{D}(\varrho) : ||\varphi|| \leq 1\}$. We prove that \mathfrak{N} is bounded in $\mathcal{D}(\varrho)$ $[t_{\varrho}]$. For take $r \in \mathfrak{N}$ and $\delta \in \Delta$. Let $c_{r,\delta}$ denote the orthogonal projection on \mathscr{H} with range l.h. $\{\varphi_{1,\delta_1}, \ldots, \varphi_{r,\delta_r}\}$. Since obviously $a_r c_{r,\delta} \in \mathscr{C}(\mathcal{D})$, we have $a_r c_{r,\delta} \in \ker \varrho$. From

$$q_{\delta} - c_{r,\delta} = e \left(\bigcup_{k \ge r+1} \mathfrak{F}_{k,\delta_k} \right) (q_{\delta} - e_{r,\delta})$$

and (2) we therefore obtain

$$\begin{split} \|\varrho(a_r) \, \varrho(q_\delta) \, \varphi\| &= \|\varrho(a_r) \, \varrho(q_\delta - c_{r,\delta}) \, \varphi\| \\ &= \left\| \varrho(a_r) \, \varrho \left(e \left(\bigcup_{k \ge r+1} \mathfrak{F}_{k,\delta_k} \right) \right) \varrho(q_\delta - c_{r,\delta}) \, \varphi \right\| \\ &\leq \gamma_r \, \|\varrho(q_\delta - c_{r,\delta}) \, \varphi\| \le \gamma_r \text{ for each } \varphi \in \mathfrak{B} \,. \end{split}$$

By Lemma 1.4 (iii) the graph topology t_{ϱ} on $\mathcal{D}(\varrho)$ is generated by the seminorms $\|.\|_{\varrho(a_r)}, r \in \mathbb{N}$. Therefore, the preceding proof shows that \mathfrak{N} is bounded with respect to the graph topology t_{ϱ} .

Since the *-representation ϱ of $\mathscr{I}^+(\mathscr{D})[\tau_{\mathscr{D}}]$ is continuous, there exists a bounded subset \mathfrak{M} of $\mathscr{D}(t)$ such that

(4)

$$p_{\mathfrak{M}}(\varrho(x)) \leq p_{\mathfrak{M}}(x) \text{ for all } x \in \mathcal{L}^+(\mathcal{D}).$$

Since \mathfrak{M} is *i*-bounded, $C_r := \sup \{ \| \varrho(a_r) \varphi \| : \varphi \in \mathfrak{M} \} < \infty$ for each $r \in \mathbb{N}$. We choose natural numbers δ_k such that $\delta_k \geq k + 2$ and $\gamma_{\delta_k} \geq C_{k+1} 2^k$ for $k \in \mathbb{N}$. This is possible because $\gamma_n \geq n$ for $n \in \mathbb{N}$. Define an operator x by $x := e(\cup \{\mathfrak{J}_{k,\delta_k} : k \in \mathbb{N}\})$. Clearly, $x \in \mathscr{L}^+(\mathcal{D})$. Our aim is to show that for this operator x (4) is not true. By (3), we have

$$\begin{split} \left\| \varphi(e(\mathfrak{F}_{r,\delta_r})) \varphi \right\| &\leq \left\| \varrho(a_{r+1}) \varrho(e(\mathfrak{F}_{r,\delta_r})) \varphi \right\| \\ &\leq \left\| \varrho(a_{r+1}) \varphi \right\| \leq C_{r+1} \quad \text{for} \quad r \in \mathsf{N} \quad \text{and} \quad \varphi \in \mathfrak{M}. \end{split}$$

That is,

$$\sup_{\varphi \in \mathfrak{M}} \left\| \varrho \left(e(\mathfrak{F}_{r, \delta_r}) \right) \varphi \right\| \leq C_{r+1} \gamma_{\delta_r}^{-1} \quad \text{for} \quad r \in \mathsf{N} \,.$$

Using this inequality, we obtain

$$p_{\mathfrak{M}}(x) = \sup_{\varphi, \psi \in \mathfrak{M}} \left| \left\langle e\left(\bigcup_{k} \mathfrak{S}_{k, \delta_{k}}\right) \varphi, \psi \right\rangle \right|$$
$$\leq \sup_{\varrho \in \mathfrak{M}} \sum_{k=1}^{\infty} ||e(\mathfrak{S}_{k, \delta_{k}}) \varphi||^{2} \leq \sum_{k=1}^{\infty} C_{k+1}^{2} \gamma_{\delta_{k}}^{-2} \leq \sum_{k=1}^{\infty} 2^{-2k} < 1.$$
(5)

Since $a_r q_\delta$ is a bounded operator on \mathscr{H} for $r \in \mathbb{N}$ as shown above, the sequence $(\varphi_{k,\delta_k}: k \in \mathbb{N})$ is bounded in $\mathcal{D}(t)$. But the set $\{q_\delta \varphi_{k,\delta_k}\} = \{\varphi_{k,\delta_k}\}$ is certainly not relatively compact-in $\mathcal{D}[t]$, since (φ_{k,δ_k}) is an orthonormal sequence in \mathscr{H} . This proves that

 $q_{\delta} \notin \mathscr{C}(\mathcal{D}) = \ker \varrho.$ Consequently,

$$\begin{split} 1 &= \sup_{\varphi \in \mathfrak{B}} \|\varrho(q_{\delta}) \varphi\|^{2} \\ &= \sup_{\varphi \in \mathfrak{B}} \left| \left\langle \varrho \left(e \left(\bigcup_{k} \mathfrak{F}_{k,\delta_{k}} \right) \right) \varrho(q_{\delta}) \varphi, \varrho(q_{\delta}) \varphi \right\rangle \right|_{s} \leq p_{\mathfrak{R}}(\varrho(x)). \end{split}$$

Comparing (5) and (6) with (4), we obtain the desired contradiction.

 $(vi)' \rightarrow (i)$: This will be similar as the preceding proof. Again we assume that condition (*) is not fulfilled. We keep the notation introduced above. Let \mathcal{U} be an arbitrary free ultrafilter on N. As already mentioned in Section 2, $\varrho_{\mathcal{U}}$ is a positive *-representation of $\mathcal{L}^+(\mathcal{D})$. It suffices to show that $\varrho_{\mathcal{U}}$ is weakly continuous, but not continuous. Let $\varphi = (\varphi_n) \in \mathcal{D}_{\mathcal{U}}$. By definition of $\mathcal{D}_{\mathcal{U}}$, the set $\mathfrak{M} := \{\varphi_n\}$ is bounded in $\mathcal{D}[l]$. If $x \in \mathcal{L}^+(\mathcal{D})$, then

$$|\langle \varrho_{\mathcal{U}}(x) \varphi, \varphi \rangle| = |\lim_{\mathcal{U}} \langle x \varphi_n, \varphi_n \rangle| \leq \sup_{n \in \mathbb{N}} |\langle x \varphi_n, \varphi_n \rangle| \leq p_{\mathfrak{M}}(x).$$

That is, $\varrho_{\mathcal{U}}$ is weakly continuous. From Theorem 2.1 we know that ker $\varrho_{\mathcal{U}} = \mathscr{C}(\mathcal{D})$. Therefore, the preceding proof in the case $\varrho = \varrho_{\mathcal{U}}$ shows that $\varrho_{\mathcal{U}}$ is not $\tau_{\mathcal{D}}$ -continuous

Results similar to those proved in this paper are true for the topologies $\tau^{(\mathcal{D})}$ and τ^0 (see also [14]).

Addendum: After completing the manuscript the author has learned that in the case $\mathcal{D} = \cap \{\mathcal{D}(T^n) : n \in \mathbb{N}\}, T$ a self-adjoint operator, the existence of a topological realization of $\mathcal{A}(\mathcal{D})$ [$\hat{\tau}$] has been independently obtained by F. Löffler and W. TIMMERMANN in "The Calkin representation for a certain class of algebras of unbounded operators", Dubna-Preprint E 5-84-807, 1984.

REFERENCES

- ARNAL, D., and J. P. JURZAK: Topological aspects of algebras of unbounded operators J. Funct. Anal. 24 (1977), 397-425.
- [2] BOURBARI, N.: Topologie générale. Paris: Hermann 1961.
- [3] CALKIN, J. W.: Two sided ideals and congruences in the ring of bounded operators in Hilbert space. Ann. Math. 42 (1941), 839-873.
- [4] HEINRICH, S.: Ultrapowers of locally convex spaces and applications. Preprint. Berlin: Akad. Wiss. DDR, Preprints 10, 11 (1983).
- [5] JUNEK, H. J.: Locally Convex Spaces and Operators Ideals (Teubner-Texte zur Mathematik: Vol. 56). Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1983.
- [6] KÜRSTEN, K.-D.: The completion of the maximal Op* algebra on a Frechet domain. Publ. RIMS Kyoto Univ. 22 (1986), 151-175.
- [7] KÜRSTEN, K. D.: Two-sided ideals of certain algebras of unbounded operators. To appear.
- [8] LASSNER, G.: Topological algebras of operators. Reports Math. Phys. 3 (1972), 279-293.
- [9] Лёффлер, Ф.: Свойства алгебр неограниченных операторов заданных на плотном множестве и замкнутые идеалы в них. Дипломная работа. Харьков: Государственный университет 1983.
- [10] POWERS, R. T.: Self adjoint algebras of unbounded operators. Commun. Math. Phys. 21 (1971), 85-124.
- [11] REID, G. A.: On the Calkin representations. Proc. London Math. Soc. 23 (1971), 547-564.
- [12] SCHÄFER, H. H.: Topological vector spaces. New York: Mac Millan Comp. 1966.

- [13] SCHMÜDGEN, K.: The order structure of topological •-algebras of unbounded operators. Report Math. Phys. 7 (1975), 215-227.
- [14] SOHMÜDGEN, K.: On topologization of unbounded operator algebras. Reports Math. Phys. 17 (1980), 359-371.
- [15] TIMMERMANN, W.: Simple properties of some ideals of compact operators in algebras of unbounded operators. Math. Nachr. 90 (1979), 189-196.

Manuskripteingang: 16.01.1985

VERFASSER:

Prof. Dr. KONBAD SCHMÜDGEN Sektion Mathematik der Karl-Marx-Universität DDR-7010 Leipzig, Karl-Marx-Platz