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Topological Realizations of Calkin Algebras on Frechet Domains of-Unboﬁunded
Operator Algebras :

K. SCHMUDGEN

D sei ein dichter linearer Teilraum einés separablen Hilbertraumes und £+() die maximale
Ops-Algebra auf D, versehen mit der gleichméBigen Topologie 9. Wir sefzen voraus, da 2
beziglich der Graphtopologie von £+(D) ein Frechetraum ist. Weiter sei £(D) das zweiseitige
s-Idcal aller Operatoren aus, £+(D), die beschrinkte Teilmengen von D in relativ kompakte
Teilmengen abbilden. Es wird untersucht, wann die Faktoraigebra A(D) := £+(D)/6(D), ver-
sehen mit der Faktorraumtopologie, eine topologische Realisicrung als Ops-Algebra besitzt.

Ilycrs 2 nsnoTHoe muHeliRoe MOANPOCTPAHCTBO cenapabeabHoro ruab0epToBa NPOCTPAHCTBA
‘it nycts £+(D) makcumaapnas Ope-anrefpa Hax D, cHaOEHHAA PABHOMEPHON TONMOTrHeH
7p. Ipeaionaraerca, uro D sapaserca npocTpanctTsom dpelle OTHOCUTEIBHO TOMONOTUH IO~
posaénHolt rpad-Hopmamn oneparopos ua £+(D).. Hepes £(D) 0603HayaeTCA ABYCTOPOHHMIY
+-UZ6AJ TeX OmepaTopos u3 F+(D), KOTOPHE IEPEBONAT OrpaHnyeHHHE MOIMHOMKECTBA
NpPOCTPAHCTBA £ B OTHOCHTENBHO KOMIAKTHHIE [10/IMHOMECTBA. MceienyeTca BOmpoc o Tox,
worna gaxkropaurebpa A(D):= L+(D)/€(D) cnabaénnana Tonoaorueil pakTOPNPoOCTPAHCTBA
. AOIYCKACT TOMOJOTHYECKYIO PEAIH3ANKIO KAK Ops+-anrebpa.

Let D be a dense linear subspa.cc of a separa.ble Hilbert space and let' £+(D) be the maximal
Opt -algebra on 9 endowed with the uniform topology T9. Suppose D is a Frechet space with. .
respect.to the oraph topology of £+(D). Let £(D) denofe the two-sided »-ideal of all operators
in £+(2D) which map bounded subsets of D into relatively compact subsets. We study the
question of when the quotient algebra A(D) := £+(D){6(D), endowed with the quotient topo-
logy, has a topological rea.]lza.t,lon as an Ope-algebra. . .

Introduction ) : ‘ ' .

Let D be a densc linear subspace of a separable comp]ex Hilbert space J endowed
with. the graph.topology ¢ (see Section 1 for precise dcflmtlons) Suppose D[{] is a
Frechet space. Let £(D) denote the set of all operators in £+(D) which map each
bounded subset of D[¢] into a re]atwe]y compact subset of D[¢]. Then 8’(2) is a
7p-closed two-sided *-ideal of £+(D) which contains the finite rank operators in £*(2)
as a dense subset [15, 7). (Note that in [15] the ideal £(D) is denoted by Vol (¢, ¢).)

The quotient algebra™A(D) := £+(D)[€(D) is called the Calkin algebra. on the domain
D. Let ¢ denote the quotient topology on A(D) of £*(D) [z9]. Obviously, £(D) [t]is a
topological x-algebra. If D = J€, then &4(D) = A(H) is the usual Calkin algebra on
the Hilbert space J€. It should be mentioned that if D[t] is a V[ontel space, then
€(D) = £*(D) and hence the Calkin algebra A (D) is trivial.

- In his classical paper [3] CALKTN constructed a class of faithful isometric *-repre- -
sentations of the C*-algebra «(J¢) (see [11] for a modern treatment). In this paper we
investigate the corresponding problem for the Calkin algebra A(D) on the Frechet
domain D[¢] : Does there exist a faithful *-representation n of A£(D) which is a homeo-
morphism of c/l(.@ [%] onto n( (.@)) [zp»]? For the domain I, ® d, d the space of all
finite complex sequences, this problcm has been con51dcrcd in [9]. \Totc that I, Q d[{].

.is not a Frechet space

‘.
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Let us brleﬂy describe our main results concernmg the abovc question.
Given'a free ultrafilter % on N, we define in Section 2a *- -representation sy of A(D)
in a similar way as.in the case D = J€. We show that my is faithful and that 1 is
continuous (Theorem 2.1). Let 7, denote the finest locally’ convex topology on
£*(2D) for which the posmve cone X*{D), is normal [12]. If 7, = 9 on F¥(D), then

. each x-representation sy is continuousand hence a homeomorphlsm (Theorem 2.2).

In Section 3 we obtain a converse of the latter in some sense. Suppose that the
graph topology £ on .‘D is generated by a sequence of strongly commutmg self-adjoint °
operators whose restrictions to D are in .£*(2).-Under this additional assumption we

- prove that if 7, & 19'0on £*(D), then there is no continuous faithful *-representation -
of A(D) [#] (Theorem 3.1). : -

1. Preliminaries -

" In this section we collect some définitions and notations (see e.g. [8, 10]) needed later
and we prove-some preliminary lemmas.

1 1 Let D be a'dense linear subspace of a comp]ex Hilbert space ¥ and let £+(2)
={a € End D: D & D(e*) and a*D & D}. £+(D) is a »-algebra endowed with the

mvolutlon a-—>at:=a*|D. An Op* algebra & on D is a x-subalgebra of £+(D). In

what follows we assume that & is an Ops-algebra on 2. Define D(B) = N {.‘Z)(b)

:b €.B), where b is the closure of the operator b.The graph topology t g isthe locally

convex topology on D defined by the seminorms {lg|l, := |[b<p|| + Ilth[, be B In case

B = £+(D) we simply write ¢ for ¢ g.

- Let (@ :m € N) be a sequence of vectors ¢, € F and’let ¢ € <7€ Suppose ¥is a -

filter on N. We write ¢ = w-lim ¢, if lim, {(p,, ¥) = {p, v) for all y € J and ¢
= w-limy @, if limy {p,, v) = (o, yy forall p € IE .

Lemma 1.1: Suppose ¥ is an ultrafilter on N. Let (Pn:m € N) be a bounded. sequence
-of vectors of D[tg). Let ¢ := w-limy @,. i
(i) Then, ¢ € D(RB) and bp = w-limy be,. In pamcular if 0 = w-limy Pas then
0'= w-limy be, for each b € 7.
( ) If limy {lg,f| = 0, then limy [lbp,|i = O for.each b € A.
i) It P = 0 and if the set {p,} s relatwely compact in D[tgl; then limy ||be;] = 0
for each b € A.

i

~ Proof: (i) Suppose b€ e@ Since the set {bg,} is bounded in the Hilbert space norm -
and ¥ is an ultrafilter, limy {(bg,, -) is a continuous linear functional on . Hence
there is a @, € I such that gy = w-limy bg,. For y € D(b*), this gives

(s ¥) = limy. (boa; y) = limy (pn, b*y) = (@, b¥y), : .
Therefore, @ € D(b**) = D(b) and ¢, = b"f*qz é'bq:. Since b€ .8 is arbitrary, '
@ €N (Db):bE B} = DA). ‘

: (ii) Since {p,} is t(g bounded,. C,, = sup {]]b*bq),,]] n € N} < oo for b e ﬁ \Tow
the assertion follows from . S
(limy 1b@all)? = limy (b*ogn, ¢n) = Cy(limy II%II) =0.

(iii) Let b € 8. Since {g,} is relatively compact in .@[l(g] the set {bp,} is rc]atwely
compact in J. Given ¢ > 0, ‘there is a finite Tank projection F, on J such that
(I — F.) byl <& for n € N.- Since 0 = w-limy bp, because of (i) and hence

limy ||F.be,|| = 0, we have limy ||bg,|| < Limy [|(/ — — F) by, = ¢, thus limy ||b,ll= 0 I

The following corollary is of some interest in itself:
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Corollary 1.2: Suppose ¢ € F. If there 8 a bounded sequence (p,: n € N in D[t 5]
such that ¢ = w-lim ¢,, then ¢ € D(AB). ' ) .

Proof: Take an ultrafilter % on N which contains all sets fneN:in=k}, ke N
Then ¢ = w-limy ¢, and Lemma 1.1 (i) applies I L ) B

" 1.2 Next we briefly discuss the, topologization of the Opx-algebra <8 on D. Let B,
:=1{b € B:b=b}. Supposeb,, b, € By. We write b, = b, if (b,@, ¢) = (b, ) forall -
@€ D. Define B, :={beB:b=0}and [b), by]:= (b€ Bp:b < b= b,}. The unz-
" form topology T3 is the locally convex topology on B defined by the seminorms

! 'pcm(.;c) = sup {Kzg, )| : @, v € M}, M < D[¢5] bounded. B

- It has been intréduced in;[8]. We denote by 7, the finest locally convex-topology on
. & for which the positive cone <8, is normal. (All notions and facts concerning ordered
vector spaces we need can be found in [12].) Since <7, is Top-normal [13], we have-
79 & 7, Let{r; denote the finest locally convex topology on & for which every order
- interval [b,, b,], b,, b, € B4, is bounded. Since B, is 1,-normal, all order intervals are
T,-bounded [12: p. 216] and hence z, & 7. In [1] the topology 7 is called the g-topo-
logy. - i . -

v

. 1.3 Let A be a  algebra with unit element denoted by 1. By a x-representation of A
. on' D we mean a~+-homomorphism = of A into £*(D) satisfying 7(1) = I, where I is
the identity map of D. We then write D(x) for D and ¢, for the graph topology of the
Op=-algebra 72(A) on D(x). Suppose 7 is a *-representation of a topological x-algebra
Alz]. 7 is called weakly continuous if for each ¢ € D(n) the linear functional () g, @)
is continuous on A[z]. If 7 is a continuous raapping of A[z] onto #(A) [t9(] Wé say
7 is continuous. . o : - ' ’ S -
‘As above, let B be an Op#-algebra on D. Let 7 be a *-representation of <8 on D(n). -
. We say 7 is positive if 7(8,) S n(RB),, i.e.,if bec Band b =0 on D always implies
that 7(b) = 0 on D(n) A linear functional f on <7 is.called positive if f(&) = 0 for all
bexg,. ' . a

Lemma 1.3: Each positive *;representat_ion‘ 7t of the Op*-algebra R is a continuous
mapping of B[z,] onto n(RB) [tpm]. - ' '

Proof: By the pblarization formula it is easy to see [13]‘ that the uniform topology
79 on 7(R) is generated by the family of seminorms o

Pin(n(2)) := sup {{(n(z) , @)l : p € W, M  D(m){4] bounded.

~ Fix the bounded set M. Since the set {x € B: p{m(n(x)) =< 1} is absolutely convex and
" B,-saturated, it is a 7,-neighborhood of zero in . This proves the continuity of = 8

Lemma 1.4: Suppose that D[] ts a Frechet space.’ Let ' be a weakly continuous
*-representation of (D) [rp). Then: R ' ’ :
() = s positive. : - : '
(i) If x € £*(D) is bounded, then n(x) is bounded on D(n) and ||n(z)| < l]} .
(iii) Suppose x, € £*(D) for n € N. If {||-fl, : n € N} is a generating family for the
graph topology Lon D, then {||-llxz, : n € N} is a generating family of seminorms
" . for the graph topology t= on D(x). ' S .

Proof: (i) 'S{lppose z € £*(D), and ¢ € D(n). By [6: Theorem 6.1] there is a net
{a;} of orthogonal projections ¢; € £+(D) (that is, ¢; = ;% and ¢; = ¢;%) such that
9,9 < Dforall j and z = 75-lim g;g;. Let «; denote the operator g;zg;on the Hilbert

~
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i

space q;J€. Since x € ¥+(D), z; is closed and hence bounded. Let y; denote the positive
square root of the bounded self- ad101nt operator z; on the Hllbert space g ,3(,’ Then
C Y€ L% (D) and
- l(y4)) Pl = (2l0,970)) 9. ) = (@l (45297) #» @) 2 0.
Since = is weakly contmuous, (n(2) @, ¢) = lim (a(g;xq;) @, ¢) = 0. That is, =(x) =
on D(x).
(u) First let z € .Y’*(.@) Since 7 is positive by (i).and =(I) = I, inf {7 € R: —Al
Salx) S A< inf {Ae R — Al < 2 < A} = ||zf|, which implies that z(x) is bounded
. and [|z(z)|| < |lz||. For arbitrary x € .2‘“‘(.‘2)) the assertion follows from |jz(x)|? = |z (z* )|
< lletal| = ||
(iii): Suppose z € .f*(.?)) By assumptlon there are a posmve constant C and a
natural number s such that S

wglle < € (w +x n;c:q)m) forallpe 2.’
Therefore . ,
y =C (I =+ L x,,*x,,) — xtx 6 .Z’*( )+ and =(y) = 0 on D(n). ~
The latter implies that _
: . 8 : .
() @l = € (II<PII2 + _Zl‘il?t(?cn) <Pllz) for all g € D(x) B

" 1.4 From now on we assume that D[¢] is a Frechet space and that the underlying Hil-

“bert space JC is separable. To simplify the notation we adopt the following notational
convention: We shall denote an operator whose domain contains 9 and its restriction
to D by the same symbol. This will be mainly used in Section 3. Let F (D) denote the

- finite rank operators contained in ¥+ (D). For a hnear subspace .@1 of ¥, let F (¥, D)
be the set of all bounded finite-ranked operators on J€ mappmg ¥ into D,. More-’
over, we let B, := {p €D, |lgj] = 1}.

2. Generalized Calkin rcpresmtatmns of A(D)

2.1 Supposc that % is'an ultrafilter on N. Let D denote the set of all bounded sequen-
ces (g, : m € N) = (@,) in thelocally convex space D[{] satisfying 0 = w-limy ¢,. Let
JYy be the set of all bounded sequences (@,) in J with 0 = w-limy @,. D% and J5 are
vector spaces in the obvious way. Let /3 be the set of all (p,) € %% with limy |ig,||
= 0. We define a scalar product on the quotient space Dy := Dy/D% n Ny by {(@,);
() i = limy (@ns Yu)- Tn the same way, the quotient space Hy := Hu /Ny becomes
a Hilbert space (see e.g. [11: Section 2]). By an abuse of notation we denote the ele-
ments of the quotient spaces again-by (@,). Since D C ¢, Dy can be considered as a
_ linear subspace of Hy. _
Define oy () (@) 1= (ztp,,) for (¢,) € Dy, and z € £*(D). Each opcrator z€ (D)
-maps a bounded sequence in D[¢] into a bounded sequence. By Lemma 1.1, (i) and (ii),
2Ny S Ny and 2Dy S DY. Therefore, the above definition makes sense and defines
.a linear operator gy (x) which maps Dy into Dy. It is straightforward te check that
the mapping x. — oy(x) is a positive *-representation of f*(.‘l)) on Dy.
Let j denote the quotient map of (D) onto A(D) = L+(D)[E(D). Suppose z €
8(D) and (p,) € D. Then the set {x@p,} is relatively compact in D({) and hence
) llmu lle@al] = 0 by Lemma 1.1 (iii). This shows that £(D) & ker oy. Therefore, 'zu(/(x))
= py(x) for z € £*(D) defines a *-representatxon of- the s-algebra (D) on
271 = D(ay). . ’ . '
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2.2 Recall that an ultrafilter on N is said to be /ree 1f the intersection of all its mem-
bers is empty.

Theorem 2.1: Suppose that U is a free ultm/zlter on N. Then sy is @ fazthful *.

- representation of the Calkin algebra A(D). Its inverse nu‘l is @ continuous mamn'ng of _'

u(A(D)) [‘tzu] onto A(D) [t]. A
Proof The quotlent topology t on u’l(.i)) is generated by the seminorms
palj(x)) := inf {pm(z + ¢): ¢ € E(D)}, M <= D[1] bounded.

Fix such a set M. Suppose for a moment we have shown that_there ex1sts a bounded

. subset R (depending on ) of _@u[lgu] such that

¢

panli(z)) < pulo(®)) for all z € £+(2). - Ry
_The latter means that o S . ‘
/ *Pm(a) < palr(a) for all a € A(.‘D) B - : )

Smce €(D) is rg-closed in £*(D) and hence ¢ is Hausdorff, it follows from (2) that
ker iy = {0}, that is, 7y is faithful. Moreover, (2) proves the contmulty of 771‘1 and
the proof would be complete.

It remains to show that there is a bounded set %in .Y)u[tm] such that (1) is satis-
fied. According to [6: Theorem 4.1] there is a bounded self-adjoint operator zon X
such that ker z = {0}, 29 & D and M S 2Bp. If z € £+(D), then 2z is a closed opera-
tor defined on J and hence bounded. \Tow fix an operator z € £*(D). Since F(D) i is:

- 72-d -dense’in (D), we obtam

(i) < inf pm(a + o) -

= inf sup l<(x+c) 2p, 2y}l = inf uz(x+c 2.
ceJ’(.ﬂ) Pp€B gp

Since ker z = {0}, we have {cz:c€ 3’(.‘3)} = F(D). .Moreovelf, {zc:c € J(;’l))} is
norm dense in F(J€). Using these facts, we get i

pae(i(x) S mf Ilzxz + =l

= inf Jjzaz + ¢|]| = mf ]]zxz + c” . . ) . (3)
CeeF () .

On the other hand, let wy denote the *-representation of B(J) on Hy defined by
_wply) (ga) = (y@,) -for (p,) € Hy and y € B(H). Since wy obviously annihilates

£(J); wy defines a *-representation of the Calkin a]gebra A(F) on Hy (see [11: Sec-
tion 2]). Since ¥ is assumed to be free and A(J) is simple, this *-representation of
the C*-algebra A(H) is faithful and hence isometric. Since 2zz € B(JC), this yields
lwy (zz2)l) = inf {Jlzzz + ¢f|: ¢ € 8(8‘6’)} By (3), we obtain

puli(@) < llouleaz)] forall z € £¥(D). @
Now define . ' ) ,
N = wy(z) Baey = {zgn) : () € K and [[(@a)llze,, = 1}
If (@,) € Hu ’and ifxe .Z’*(:‘Z)), then zz is bounded on J¢ and thus '
- sup lazgal] < floz] sup. il < oo |
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This 1mp11es N S Dy. From
Tow(@) @onl = Nzl = limy loegal
' = |lz2] limy [igy]| = flzz] for (@) € By, and z € £+(D),

we see that N is bounded in 2)7,[1
Flnally, by (4), if = € .2’*(.‘0) then

- pali(2)) < llowe2)| = sup [wu(zz) 9, wu(z) v)|
. . w;weiaxu , . .

= sup [((zzg,), (2l
) (®Pn), (Vn)Efou B

= sup- [ou(x) (Z%) (2% ) = P%(eu(x))
(Pa). (w,.)Efﬁggu , .o o \

' whlch proves (1) The proof of Theorem 2.11is complete |

2. 3'From Theorem 2. 1 and Lemma 1.4 we obtain

-y i

Theorem 2.2: Suppose that t, ="t on £*(D). Let U be a free ultrafilter. on N
Then, ny is a fazthful *. representatwn of A(D) and a homeomorphism of A(D) [£] onto
nu(v'l(-@)) [Tsou] :

. 's 1. In general the domain 1)71 is not dense in. Jt’u 2. If the domain is of the form
- D =n{D(T":ne N} for some self-adjoint operabor T on ¥, thent, = 7D on f+($) (see also
Section 3). .

. 3. Existence of continuoué faithful o-represéntations of A(.?)) (] -

3.1 We first recall ‘the setup of [14: Section 4]. However, the notation is shghtly
changed.

Suppose a is' a (bounded or unbounded) self- adjoint operator on the Hilbert space
J with spectral decomposition a = f 2de(2). Let (fu(t) : k € N) be a sequence of real .
measurable functions on the spectrum o(a) of a. All measure-theoretic notions refer
to the spectral measure of . We assume that ) :

iy =1 and fi) = fi¥(t) < fun(t) ~ ae.on o(a) forke N, (1)

Set a, = fi(a) and D = n {D(a;): k € N}. Then, by (1), the operators ak (more pre-
- cisely, their restrictions to D) are in ¥*() and the graph topology ¢ on D is generated
by the seminorms ||. ||,,, & € N.
Tn our next theorem the followmg condition (*) plays an important role:

<.

k = k, € N such that all functions f,, n € N, are bounded on ®,, where
Ro:={t€a(@): L) = y1, --o fall) = ya) for n € N.
The following assertions are equivalent:
(i)  Condition () is fulfilled.
v (i) -, 79 = Tp0n F*(D).
(ili) 7, = 79 on L*(D).
_(iv) Each posmve liiear functional on £*(D) is tp-continuous.

For each sequence y = (y: k € N) of posntlve numbers y, there is a
(*)

~



Topological Realizations of Calkin Algebras 487

This is essentlally [14: Theorem 4: l] The equivalence of (i), (ii) and (iv) has been

stated therein. Since 7, 2 7, =2 79, (ii) = (iii). Since éach positive linear functional

- is-7,-continudus, we have (iii) = (iv). . . .

3.2 The following theorem may be considered as a supplement to [14: Theorem 4. 1].
Among other things it shows that if 7, & 9 on £*(D), then there is no continuous
faithful s-representation of 4(D) [t]. In particular, the *- representa,tlons 7y occuring
in Theorem 2.1 are not continuous.

Theorem 3.1 Let 1) be as above. Then (1) 18 equwalent to each of the followmg con-

ditions: ,

(v)  There exists a fazth/ul *- representauon 7 of 04(..‘2)) which is a homeomorphzsm
of A(D) [t] onto 71(04(2)) [rom].
(v)  There exists a continuous /azth/ul *. representatzon of A(D) [%].
“.(vi) Eachk positive »-representation of £+(D) [t9] 18 continuous. -

(vi)’! Each weakly.continuous positive x-representation of £*(D) [to] is continuous. . '

_Proof: Theorem 2.2 shows that .(iji) = (v). (iii) ﬁ'(‘}i) follows from Lemina 1.3.
Since (v) = (v)’ and (vi) = (vi)’ are trivially fulfilled, it suffices to prove that (v)’

RN (i)and (vi)’ = (i). Both proofs will be indirect (see e.g. the argument in [14: p. 366]).

(v)’ = (i): Suppose that z is a continuous faithful #-representation of £(2)[t]. Then,
o(z) :=n{j (a:)) % € ¥*(D), defines a continuous *- -Tepresentation of ¥*(2) [rp]. To
prove (i), we assume the contrary, that 1s/ condition. (*) is not satisfied. Then there
are a positive sequence y = (y;) and a sequence () of natural numbers such that
fi, is not essentially bounded on the set R; for-each & € N. There is no loss of genera-

lity if we assume that y,.; > y = k and 4, = k for all k¥ € N. Then there are mea-

surable subsets S, 7 € N, of R, of nonzero measure such that f,,,(t) = y, a.e. on

Q. for all k, n € N. Let ¢, be-a unit vector from e(J.,.).D.
Let A denote the family of all sequences 6 = (J;) of natural numbers J, satisfying
6y =k + 2 for k € N. Fix a § € 4. We first show that for 7€ N and ¢ € D(o)

R T
and C ' S : T
le(are) e(e(Sr.s)) @ll = 75, le(e(r.a)) @l . o SR )

For let-y denote the characteristic function of the set U (St k Z/r + 1}. By con-
struction, £,(t) x(£) < v, a.e. on ¢(a). Define a function g on o(a) by g := (y,2 — f,%¢)2.

Obviously, g(a) € 1’*(1)) For ¢ € D(o), {elg(@)?) ¢, #) = [lo(9(a)) #||* = 0 and hence
lpll2 2 = (o(21) @, @) '
= (e(fr(a)2 2(@) ¢, 9) = "e(af) e (e (kg(i-‘l%k"‘,t)).(})“z;

(2) follows by the same argument. :
Let ¢, be the orthogonal projection onto the closure of .‘l),, = Lh. {(pk PR k € N}
Next we prove that g,¢ S D. For let » € N. Each ¢ € D can be wrltten as a finite
sum _ _ v
d

- X K@, Where Ay, .., 2, € C and's €N, s> r.

=1

. \ "
Suppose. k, n- € N n > k Smce Frar(t) = Yo, = Yaiz > Ve &€ 0N 8“, and fi.,(t)
< Vier ON s, 1t follows that %k 6, N Sn,s,- has measure zero. Therefore, ¢y,

=N
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1 @ns, and a,@ps, L a,(;ﬁ,,,‘;;‘. Using the latter, we obtain -

r . . 8
llargl® =k§ 7|? llrp.s,|I? +._Z N

= max (@, -, ”ar(Pré” yr)Z l/kl2 = max( ) liell? | o

\
This lmphca qgc%’ & D(a,). Smce D = ﬂ {D(a,) : » € N} by definition, thisshows that
7.9 & D. .

We define = U{o(gs) B: 0 € 4}, where B:= SBz(e) = {(pé .7)( ) lell = 1},
We prove that 0 is bounded in D(9) [¢,]. For take » € N and d € 4. Let ¢, ; denote the
orthogonal projection on J with range Lh. {4, ..., ¢s)..Since obviously a,c, s
€ 8(D), we have a,c, s € ker 0. From !

s —C-6 = € ( U '\ofk,&,)-(% - er.é)'
kzr+1

and (2) we therefore obtain-
llo(ar) e(gs) @ll = lio(ar) e(gs — ¢r.s) ol

- “g(a,) e (e (kger+1%k'6k>) elas = ro) q)”

¢

= 7r llo(qs — cr6) @ll < y, for each p € B. .

By Lemma‘l .4 (iii) the graph topology ¢, on D(p) is generated‘by the seminorms
I-llotays 7 € N. Therefore, the precedmg proof/shows that M is bounded with respect
to the graph topology /,.

Since the *- reprcsentatlon o of f*(.‘D [tg)] is contmuous there exists a bounded
subset M of D(¢) such that

e

pale(@)) < pm(x) forall =z e f+(D).

Since M is {-bounded, _C,’:=,suvp {l]g(&,) ol : ¢ €M} < oo for each r € N. We choose
natural numbers §, such that §; = k + 2 and ys, = Cy,, 2* for k € N. This is possible
because y, = n for n € N. Definc an operator z by 2 := e(u {Js, : k € N}). Clearly,
z € X*(D). Our aim is to show that for this operator = (4) is not true. By (3), we Have
s, llele(®rs) 1l = {folarn) ele(S:.) oll-
< no(am) ¢l <Cpy for-reN and ¢e9M.

That is, . :
sup lle ( e(Sr.s ))(p” < C,Hy.s for reN.

Usin\g this inequality, we obtain

pm(z) = sup < (U ou, Q,p ). ‘ o
@.peM . ,
= SUP 2, le(Sk.s,) <P|l 2; lm g. 2-% < 1. (5)

.Since a,q; is a- bounded operator on Jf for r € N as shown above -the sequence
((pk s, -k € N) is bounded in D(f). But the set {gspys,} = {@rs,} is certainly notrelatively
compact-in D[(], since (pys,) is an orthonormal sequence in.J¢. This proves that

4 -
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s & (D) = ker o. Consequently,

1 =suplo@) ol . -

= sup
[13.]

<é (e_ (E‘J %ka)) 0(s) 9, e(gs) w)

< pale()).
v

Corﬁparing (5) and (6) with (4), we obtain the desired contradiction.

" (vi)’ = (i): This will be similar as the preceding proof. Again we assume that con-

_dition (*) is not fulfilled. We keep the notation introduced above. Let % be an arbi-
trary free ultrafilter on N. As already mentioned in Section 2, oy is a positive +-re- .
presentation of £*(D). It suffices to show that gy is weakly continuous, but not con-
tinuous. Let ¢ = (@,) € Dy. By definition of Dy, the set M := {(p,,} is bounded in
.7)[!] Ifze .[’*(.‘Z)), then

[ou(x) @, p)| = |limy (2@,, @n)| = SUP I<x%, )l = Pm(2).

That is, oy is weakly continuous. From Thcorem 2.1 we know that ker gy = €(D).
Therefore, the prccedmg proof in the case ¢ = gy shows that o7 is not zp-continuous B

"Results similar to those proved in this paperare true for the t,opologlesrm) and 1° (see also

[14]).

Addendum: After completing the manuscript the author has learned that in the case
D = n{D(T") : ne N}, T a self-adjoint operator, the existence of a topological réalization of -
A(D) (%] has been independently obtained by F. LGFFLER and W. TiperMANY in “The Calkin
representation for a certain cla.ss of algebras of unbounded operators™, Dubna Preprint }L
5-84:807, 1984. , -
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