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Topological Realizations of Calkin Algebras on Frechet Domains of Unbounded 
Operator Algebras 

K. SCKMIJDGEN 

0 seiein dichtèr linearer Teilraum einés separablen Hulbertraumes und .)0+(2)) die maximale 
OpsAlgebra auf 2), versehen mit der gleichmaBigen Topologie . Wir sezen vorau8, daB 2) 
bezuglich der Graphtopologie von 2'+(2) em Frechetraum ist. Weiter sel (2)) das zweiseitige 
*-Ideal aller Operatoren aus . +(2)), die beschrankte Teilmengen' von 2) in relativ kompakte 
Teilmengen abbilden. Es wird untersucht, wann die Faktoralgebra 4(2)) := 1+(2))/e(2)), ver-
sehen mit der Faktorraumtopologie, eine topologische Realisierung als Op*-Algebra besitzt. 
ilycri, 2) njioiioe JuIHeftrloe n01p0cTpaHcTl30 cenapa(5eJlbHOro rHJIb6epTOBa [Ip0CTpaHCTBa 
ii [I3ICTh 1+(2)) MaKcnMaJIbuan Op*-aire6pa iiag 2), cHa6ëllHa g panHoMepliofl ronøy1or11eft 
rD . llpeJuloJIaraeTcH, 'ITO 2) HB.iHeTcn H0CT3HCTC0M (Dpewe OTHOCHTCJIbIIO ronojiorn no-
pO3se1Hoft rpa4)-HopMaMH oneparopon 113 1+(2)).. 54epe3 (2)) o603iia'iaerca AByCT0P0HHHft 
s-itéa;i Tex oneparopon 113 1(2)), KOTOPMC iiepeBOAFIT orpaiiueiiiie nOMHOHeCT8a 
npocTpaHcTBa 0 B orHocwreJIbHo 1-oMnaKTHbIe noLMlJocecTBa. l4CcJ1eyeTcH BO[1OC 0 TOM, 
iora 4aHTopaIre6pa íf(2)) := .2'+(2)/(2)) cHaölKenllan TOflO.'101'Hefl ())aXTOPHPOCTPaIICTBa 
OIIycFcaeT T0no1orn9eci-y10 peaiinaaiuiio HaK Op*-aire6pa. 

Let 2) be a dense linear subspace of a separable Hubert space and let . '+(2)) be the maximal 
Op*-algebra on 2) endowed with f he uniform topology r. Suppose 2) is a Frechet space with 
respect to the graph topology of 1+(2)). Let (2)) denofe the two-sided *-ideal of all operators 
in 1+(2)) which map bounded subsets of 2) into relatively compact subsets. We study the 
question of when the quotient algebra 4(2)) 1'+(2))/(2)), endowed with the quotient topo-
logy, has a topological realization as an Op.-algebra. 

Introduction 

Let 2) be a dense linear subspace of a separable complex Hubert space X endowed 
with, the graph.topology / (see Section 1 for precise definitions). Suppose 2)[1] is a 
Frechet space. Let (2)) 1enote the set of all operators in (2)) which map each 
bounded subset of 2)[/] into a relatively compact subset of 2)[1]. Then (2) is a 
r-closed two-sided *-ideal of	(2)) which contains the finite ra'nk operators in .(2)) 
as a dense subset [15, 7]. (Note that in [15] the ideal C(2)) is denoted by Vol (1, 1).) 
The quotient algebr4(2)) !F(2))/(2)) is called the Calkin algebra on the domain 
2). Let i denote the quotient topology on t(2)) of.r(2)) [r]. Obviously, c4(2)) [fl is a 
topological * -algebra. If 2) = X, then .4(2)) = c.4(X) is the usual Calkin algebra on 
the Hilbert space X. It should be mentioned that if 2)[1] is a Montel space, then 

= .'(2)) and hence the Calkin algebra c4(2)) is trivial. 
In his classical paper [3] CALKTN constructed a class of faithful isometric *-repre-

sentations of the C*.'algebra .4(X) (see [11] for a modern treatment). In this paper we 
investigate the corresponding problem for the Calkin algebra c4(2)) on the Frechet 
domain 2)[1] : Does there exist a faithful *-representation 7t of 4(2)) which is a homeo-
morphism of it(2)) [] onto ji(4(2))) {r,]? For the domain 12 ® d, d the space of all 
finite complex sequences, this problem has been considered in [9]. Note that 12 ® d[1] 
is not a Frechet space ,. -	 . 
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Let us briefly describe our main results concerning the above question: 
Given 'a free ultrafilter 71 on N, we define in Section 2a *-representation rlij of t(2)) 

in a similar way as. in the case 2) = X. We show that T V is faithful and that i' is 
continuous (Theorem 24). Let r, denote the finest locally: convex topology on 
."(2) for which the positive cone ..(2)) + is normal [12]. Ift,, =' 'r, on .t(2)), theh 
each *-representation nu is continuous and hence a homeomorphism (Theorem 2.2). 

In Section 3 we obtain a converse of the latter in some sense. Suppose that the 
graph.topology. Ion 2) is generated by a sequence of strongly commuting self-adjoint 
operators whose restrictions to 2) are in 1'(2)). Under this additional assumption we 
prove that if i,, = r, 'on (2)), then there is no continuous faithful *-representation 
of cit(2) [J (Theorem 3.1). 

1. Preliminaries 

• In this section we collect some definitionsand notations (see e.g. [8, 10]) needed later 
and we prove-some preliminary lemmas. 

1.1 Let 2) bea dense linear subspace of a complex Hubert space X and let .°(.fD) 
{a E End 2): 0 2)(a*) and a*2) 2)). ."(2)) is a *-algebra endowed with the 

involution a -->-a := a* I D. An Op*algbra 2 on 2) is a *-subalgebra of '.°(2)). In 
'what follows we assume that 2 is an Op * -algebra on 2). Define (2) = fl {2)(b) 

b E 2), where b is , the closure of the operator b.-The graph topology / 'is the locally, 
convex topology on 2) defined by the seminorms cIIb := bq'I +	b € I. In case •	2 = .(ui) we simply write I for 1,.	 - 

Let, (çv,,: n E N) be a sequence of vectors q'n C X and let op C X. Suppose U is a 
filter on N. We write 99 = w-lim q',, if lim,,(,,,=(,-v) for all 1p E X and q, 
= w-lim V q,,, if limy (q,,,v) = (,'v)for all  € X. 

Lemma 1.1: Suppose U is an ultra/ilter on N. Let (p,,: n € N) be a bounded. sequence 

of vectors of 21[t]. Let 92 .:= ,v-lim ç,,. 
•

	

	(i) Then, q C 2)(2) and bq = w-limy br,,. in particular, if 0 = w-limu ç,,, then
0'= w-limu btp,, for each b C 2. 

(ii) If lini t I',JI = 0, then limy !bp,,l[ = 0 /oreach b € 2. 

(iii) 1','9
= 0 and i/the set {,,} is-relatively compact in 2)[l,], then limu JjbjI = 0 

/or 'achbE2. 
Proof:(i) Suppose b  2. Since the set {bq,,} is bounded in the Hilbert space norm 

and U is an ultrafilter, lim is a continuous linear functional on X. Hence 
there is a Pb € X such' that q', = w-lim V b9,,. For ip € 2)(b*) , this gives 

= limu, (bç,,; ) = lim ?! (ç',,, b*p) =	b*ø). 

Therefore, 92 C 2)(b**) .=_ 2)(b) and ç, = b**99	Since b € 2 is arbitrary, 
q' Efl {2)(b):b .E 2}	2)(2).	. 

(ii) Since {p,j is ta-bounded,. Gb : = sup { j I b ' bw,,I : n € N} < 00 for b € '2. Now 
the assertion follows from 

(liniu 1bq,,11) 2 = limy (bbq,,, 'n)	Cb (lim7l IJ'II) = 0 

-(iii) Let b €2. Since {,,} is relatively compact in 2)[t,v], the set {bq,,} is relatively 
compact in X. Given e > 0, there is a finite rank projection F on X such that 
11(1 - F) b99,,1[ :^_- e for n C N. Since 0 = w-limu bq,, because of (1) and hence 
lIm ?, IIFb ,,II = 0, we have limu lI b ,,II :!z^ limu 11(1 - Fe) bq,,IL ^5 e, thus limu II b ,,U = 0 I 

The following corollary is of some interest in itself-
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Corollary 1.2: Suppose q' E X. If there is a bounded sequence ( : n E N)' in 
such that q = w-lim p,,, then 97 E 

Proof: Take an ultrafilter U on N which contains all sets {n5 E N: n, ^ k}, k E N. 
Then = w-lirnu q,, and Lemma 1.1 (i) applies I  

1.2 Next we briefly discuss the, topologization of the Op*-algebra a on .7). Let 
{b E c.5: b	b}. Suppose b 1 , b2 E	We write b,	b2 if (b 1 , q) Z^ (b2 , q') for all. 

ç'E D. Define	:= {b E	: b ^t O} and [b 1 , b2] := {b,€	: b1 ^S b :-z^ b2}. The uni-
form topology	is, the locally convex topology on JV defined by the seminorms 

M(x) := sup fl(x92, p) : 9,, ip 'E Jl},'JI	2[l] bounded. 

It has been intródüced inJ8]. We denote by r the finest locally convex-topoidgy on 
for which the positive cone	is'normal. (All notions and facts concerning ordered 

vector spaces we need can be found in [12].) Since	is rm .-normal [13], we have-
'r,,. Let'r0 denote the finest locally convex topology on 2 for which every order 

interval [b,, b2], b1 , b2 E ,f6',,, is bounded. Since ^ is ;1 -normal, all order intervals afe 
T.-bounded [12: p. 216] and hence 'r t0. In [1] the topology r0 is called the -topo-
logy. - 

1.3 Let A be a *-'algebra with unit element de
 , *noted by 1. By a *-representation of A 

on .7) we mean a'*-homomo'rphism 7t of A into ."(.7)) satisfying 71(1) = I, where I is 
the identity map of D. We then write 2.)(7z) for .7) and /,. for the graph topology of the 
Op*-algebra 71(A) on 2(n). Suppose 71 is a *-representation of . a topological *-algebra 
A[r]. 71 is called weakly continuous if for each q' E 2)(n) the linear functional (n( . ) q, q) 
is continuous on A[r]. If 71 is a continuous mapping of A[r] onto 71	,,>] (A) [r.	we say 
71 is continuous.  

As above, let J9 be an Op*-algebra on .7). Let A be a *-representation of V on 
We say n is positive if z(2) 9 r()+, i.e., if b,€ a and b	0 on' 2) always implies 
that n(b)	0 on 2(n) A linear functional I on 5 is called positive if 1(b) 2L 0 for all 
b E cJJ,.	

. 

Lemma 1.3: Each positive -representation' 71 of the Op* -algebra c59 is a continuous 
mapping of 2[r] onto 71(()  

Proof: By the polarization formula it is easy to see [13] that the uniform topology 
TD(,) on 7r((5) is generated by the family of seminorms 

:= sup {(n(x) q, )I :4 E Ul}, 9)?	2 ()[1 ] bounded. 
Fix the bounded set 9J1.. Since the set {x E : p n(71 (x))	1} is absolutely convex and 
c.-saturated, it is a r8-neighborhood of zero in V. This proves the continuity of 71 I 

Lemma 1.4: Suppose that .9')[l] is a Frechet space.' Let 71' be a weakly continuous 
*-representation of !(2)) [r . ]. Then:  

(i) Jt is positive.  
(ii) If x E ."(2)) is bounded, then n(x) is bounded on 2)(n) and IIn(x)lI	liz]!. (iii) Suppose x, E'!(2)) for ii E N. 11 (II•ll: n E N) is a generating family' for the 

graph toplogy 4'on. .7), then {JIIl,(x) : n E NJ is a generating family of seminorms 
for the graph topology L, on 2(n). 

Proof: (i)Suppose x  %(2)) and q, € .7)(n). By [6: Theorem 6.1] there is a net 
{q1} of orthogonal projections qj € .(2)) (that is, q 1 q1 and q1 = gj2) such that 
q1X 9 7) for all  and x = rqj -lim qxq1 . Let x1 denote the operator qxq 1 on the Hilbert 
31*
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space qX. Since x E' %'(2)), x1 is closed and hence bounded. Let yj denote the positive 
square root of the bounded self-adjoint oper&tor x1 on the Hilbert space qX. Then 

• yqEZ(2))and 

(y1q) ,jj2 = (7((qjyj2qj) q', q) = (7z(q1xqj) ç, q)	0. 
Since is weakly contiriuous;((x) 99, ) = lim (2(qjxqj) p, ) 2^ 0: That is, z(x) 2^ 0 
on

(ii): First let x E	Zi)h. Since 7z is positive by (i)and (I) = I, inf 12 E R: —J 
^ n(x) ^SAI}5 ml {) € R - Al	x )J} = 11x , which implies that z(x) is bounded 

• and 11i.(x )li	lx ii . For arbitrary x E .(2)) the assertion follows from I1 z (x )I1 2 = iii(x)ii 
ilxx ii = 1142 .	 .. 

(iii): Suppose x €	By assumption; there are a positive constant C and a 
natural, number s such that 

IixiI2	C ( 	+	iiii) for all 

Therefore,  

,:= ci+i xn +xn) - xx E .(2))+ and 7(y) 0 on 2)(n). - 

The latter implies that 

'Ii(x) Ii 2 ^ C (II112 +E ' J[(Xn) 9911,) for all 99 E 2)()I 

1.4 From now on we assume that [t] is a Frechet space and that the underlying Hi!- 
bert space X is separable. To simplify the notation we adopt the following notational 
convention: We shall denote an operator whose domain contains 2) and its restriction 
to 2) by the same symbol. This will be mainly used in Section 3. Let T(2)) denote the 
finite rank operators contaired in .t3 (2)). For a linear subspace	of	let (X, 
be the set of all bounded finite-ranked operatois 'on X mapping X into 2). More- 
over, we let	:= { E2) : Ilii	1).	 / 

2. Generalized Calkin representations of it(2)) 

2.1 Suppose that?! is an ultrafilter on N. Let 2 denote the set of all bounded sequen-
ces (q' : n E NI) = (q,,) in the locally convex space 2)[1] satisfying 0 = w-lim p,,. Let 
dG be the set of all bounded sequences () in X with 0 = w-limu . 2) and X are 
vector spaces in the obvious way. Let íVe be the set of all () E dt'7t with lin j ii,Ji 
= 0. We define a scalar product on the quotient space ?1 :=	 n iV .y by ((); 

limu (, In the same way, the quotient space jCze := 7CIcJV2t becomes 
a Hubert space (see e.g. [t 1: Section 2]). By an abuse of notation we denote the ele-
ments of the quotient spaces again by (p,,). Since 2) X, 0 2e can be considered as a 
linear subspace of X'zj. 

Define U (x) () := (x) for (q,,) E 2)e, and x E Y(2)). Each operator x E .(2)) 
-maps a bounded sequence in 0[1] into a bounded sequence. By Lemma 1.1, (i) and (ii), 
xAt,j	and xZf	2). Therefore, the above definition makes sense and defines 
a linear operator t(X) which maps 2)7f into 2). It is straightforward to check that 
the mapping x ->- u(x) is a positive *-representation of 1'(2)) on 2)u 

Let j denote the quotient map of 1'(2)) onto it(2)) = 1(2))/(2)). Suppose x E 
(2)) and' () E 2). Then the set {X} is relatively comphct in 2)(/) and hence 

limu jjxpj . = 0 by Lemma 1.1 (iii). Thisshows that (2)) 9 ker o. Therefore, if(j(x)) 
s(x) for x € .(2)) defines a *-representation of- the *-algebra	2)) on

2)u
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2.2 Recall that an ultrafilter on N is said to be free if the intersection of all its mem-
bers is empty. 

Theorem 2.1: Suppose that 2€ is a free ultra/ilter on N. Then	is a faithful.*.- 
• representation of the Galkin algebra .4(2)). Its inverse	is a continuous mapping of

4a(1)) [] onto it(2) [fl.  

Proof: The quotient topology i on 4(2) is generated by the seminorms 

inf {p(x +, -C) : c € (2)}, TZ	D[t] bounded. 

Fix such a set 9R. Suppose for a moment we have shown thatthere exists a bounded 
• subset T (depending on 9R) .of	suOhthat	- 

pu(x)) for all x E	()	 (1) 

• The latter means that	
0 

/ Pa(a)	pn(xu(a)) for all a € c4(2).	 (2) 

Since	is re-closed in	and hence i is Hausdorff, it follows from (2) that 
ker 'ru = {O}, that is, ny is faithful. Moreover, (2) proves the continuity of ru', and - 
the proof would be complete. 

It remains' to show that there is a bounded set 91-in .7J[l] such that (1) is satis-
fied. According to [6: Theorem 4.1] there is a bounded seif-adjoint operator z on 
such that kerz = {O},zX	and TZ 9 zx.IfxE I0f(2), then xzisa closed opera-
tor defined on ie and hence bounded. Now fix an operator xi E	Since Y() is
ri-dense in () we obtain 

inf p(x + c)	 S	 - 

c€Y()  

= inf	sup I((x + c) zq,	-= mi IEz (x + c) zlj. c€Y() 9'.wE8X	 CEY() 

Since ker z	{O}, we have {cz: c € T(2)} = Y(D). Moreover, {zc: c € cT()} is
norm dense in cT(X). Using these facts, we get 

•	(j(x))	mi Ijzxz + zcII 

•	 = inf Jlzxz + dl = inf ljzxz H : cJ.	 •	 (3) 
cEY(X)	 CEC(X) 

On the other hand, let wg denote the *-representation of B(X) on dey defined b' 
wu(y) (9,.) := (yq) for () E Xu and y € B(7C). Since wU obviously annihilates 

coy defines a *-representation of the Calkin algebra A(X) on X (see [ii: Sec-
tion ]). Since 'it is assumed to be free and i((X) is simple, this *-representation of 
the C*algebra c4(X) is faithful and hence isometric. Since zxz E B(X), this yields 
llwu(zxz)ll = inf {zxz + 611: c € (X)}. By (3), we obtain 

Ilwu(zxz)ll for all x €	
•	

•	 (4)

Now define 

= wu(z) 8x11	{(z): (92) E Xy and ll()ll., ^ 1}. 

If (q'n) € X and if x €	then xz is bounded on X and thus 

-	sup llxzq	l!xzll sup lI < 00. 
n€N -	 neN	 •
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This implies 92 9 2) e• From	- 

IIe7z(x) (z,)lJ = IKxzcn)Ix = lim u IIxznlI 

'jIxz limu IInI = iIxz II for (p,,) E 58x2e and x E	(2)), 

we see that 92 is bounded in 
Finally, by (4), if z E Z(2)), then 

sR(j(x))	lIco2e(zxz)1I = sup I(w?t(xz) ç', w?e(z) v'N 

	

= sup K(xz9), (zv))	 - 

=	sup• Kee(x) (z97), (z))I = 

•	which proes '(1). The proof of Theorem 2.1 is complete I 

2.3-From Theorem 2.1 and Lemma 1.4 we obtain 

Theorem 2.2:. Suppoe that	 •+ (2)). Lt U be a tree ultrafilter, on. N. 
Then, ir is a faithful *-r3presentat ion of c4(2)) and a homeoinorphiem of 4(2)) [] onto 

(cA(2))) N.n u] .	 . 
1. In general the domain O U is not dense in X. 2. If the domain is of the form 

2) = n {2(T1 ):nE N) for some self-adjoint operator T on X, then r. =. TM on .t(2)) (see also 
Section 3).	 .	 S 

3. Existence of continuous faithful .-represèntations.of 4(2)) [-i] 

3.1 We first recall the setup of 14: Section 4]. However, the not'ation is slightly 
changed. 
• Suppose a is 'a (bounded or unbounded) self-adjoint operator on the Hilbert space 
X with spectral decomposition a = f2de(2). Let (fk(t ) :• k E N) be a sequence of real 
measurable functions on the spectrum c(a) of a. All measure-theoretic notions refer 
to the spectral measure of a. We assume that 

11 (t) = 1 and /k( t )	fk2(t)fk+1(t)	a.e. on a(a) fork E N.	(1) 
Set ak = tk (a) and D. = n {2)(ak) : k E N). Then, by (1), the operators ak (more pre-
cisely, their restrictions to 2)) are in .Y'(2)) and the graph topology! on 2) is generated 
by the seminorms 1 . , k E N.	. 

In our next theorem the following condition (s)plays an important role: 
For each sequence y = (yk: k E N) of positive numbers Yk there is a 

(*) . k = k E N such that all functions f,, n € N, are bounded on 92k where 
•	 ,	 t92n:	{tEa(a):f1 (t)	 ^5y} for n  N. 

The following assertions areequivalent:	 S	 •	 S •	 - 

(i) Condition (*) is fulfilled.	S 

(ii) ,To = ron 
r,, = -r.D on 

(iv) Each positive linear functional on .(2)) is r-continuous.
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This is essentially [14: Theorem 4:1]. The equivalence of (i),(ii) and (iv) has been 
stated therein. Since r0 r, r, (ii) =' (iii). Since each positive linear functional 
is r,-continuOus, we have (iii) = (iv). 

3.2 The following theorem may be considered as a supplement to [14: Theorem 4.1]. 
Among other things it shows that if r r on 1(2)), then there is no continuous 
faithful *-representation of 4(2) [fl . In particular, the *-representtions z j occuring 
in Theorem 2.1 are not continuous. 

Theorem 3.1:: Let 2) be as above. Them (i) is equivalent to each of the following con-
ditions: 

(v)

	

	There exists a faithful *-representation m of 2)) which is a homeomorphism
Of 4(2)) [f] onto z(4(2))) 

(v)	There exists a continuous jai th/ui s-represeatation of p1(2)) [f]. 
• (vi) Each positive *-representation of .°(2)) [ri] is continuous. 
• (vi)' Each weaklycontin.uous positive *-representation of .°(2)) [r] is continuous. 

Proof: Theorem 2.2 shows that (iii) ==> (v). (iii)	(vi) follows from Lemma 1.3. 
Since (v)	(v)' and (vi) =' (vi)' are trivially fulfilled, it suffices to prove that (v)' 
=> (i) and (vi)' = (i). Both proofs Will be indirect (see e.g. the argument in [14: p. 366]). 

(v)' =' (i) : Suppose thata is a continuous faithful *.representation of u't(2)) [fl. Then, 
(x) :=n(j(x)), x € 1(2)), defines a continuous *representation of 1(2)) [r]. To 

prove (i), we assume the contrary, that is ' condition. (*) is not satisfied. Then there 
are a positive sequence y = (y) and a sequence (k) of natural numbers such that 
fj,, is not essentially bounded on the set 91k for each k € N. There is no loss of genera-
lity if we assume that Yk+1 > y,	k and ik = h for all k € N. Then there are mea-
surable subsets	€ N, of YRk of nonzero measure such that 1k, 1 (t)	y,, a.e. on

k.n for all k, n € N. Let q k . fl be a unit vector from e(k.fl).2). 

Let A denote the family of all sequences 6 = (6,) of natural numbers 6k satisfying 
6. ^! k ± 2 for k E N. Fix a 6 E A. We first show that for r E N and op € 2)() 

•	e(a)	(e ( U	h.o ft \ 9'	Yr IIc'Il	 .	 (2) 
\ 'kr+1.	/1 

and	 . 
•	II(ar±i) O(e(r.o)) c'lI	a, II(e(r.o,)) 9,11.	 (3) 

For let-i denote the characteristiO function of the set U {k.: k "r + 11. By con-
struction, /(t) 7(t)	Yr a.e. on U(a). Define a function g on a(a) by 9 := (yr2 - 

Obviously, g(a) E 1(2)). 1'or 97 € 2)(), ((g(a)2) 9' c') = II(g(a)) 9, 11 2 ^t 0 and hence 

1192112 Yr2 = ((Yr21) 92 9))  

•	 ((frfrn) 7(a)) 9), 92) = Lo (a,. ) (e ( U	k.ökV9' 
2 

\k r+1	/1 

(2) follows by the same argument.	 . 
Let qa be the orthogonal projection onto the closure of .7 := l.h. {cko: k € N}. 

Next we prove that qX 9 D. For let r € N. Each 92 € 2)6 can be written as a finite 
sum	 0 

where 2, ..., 2 € C ands € N, s > r. 
k-1  

Suppose, k, n  N, n> k. Since /k+1(t )	 Y	> Yk+1 a.e. on Jkök and fk+l(t) 

on	it follows that k.ôk r	has measure zero. Therefore, 9 9 k,3"
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I q,o,, and arq'k.a J. arn.o. Using the latter, we obtain 
r.	 8 

-	 11ar92112 = E 14I2 I[ar9)k.6 k 11 2 + 2. kkI 2 Ia?q4,oI[ 
•	 k=-1	 k=r+1 

max (JJarj,ojI, . . .,	Yr) E 14I2 = max (...) I1II2. 
V	

k=1 

This implies qX	.Z(ar). Since ,..1 = fl {2(ar) : r E N} by definition, this shows that 
-:	qX2).	 V	

V 

	

We define 91= U {e(o) 93 O E 4}, wh ere 93 :=	= fg, E .(o) : jj ;5 1}. 
•

	

	We prove that 91 is bounded in	[E1. For take r € 91 and ô E A. Let Cr6 denote the
orthogonal projection on X with range l.h. { q io....., q a,} . - Since obviously arcr.6 
€	we have aAo € ker e. From 

qa — = e ( U 
1	/ 

k..5\-(qo — 
kr+ 	 V	 V 

and (2) we therefore obtain	 V 

II(ar) o(q6 ) 9,11 = lI(ar) e(qo - Cr,6) 911	
V 

= O(ar) e (e ( 
k 

U
r+i	

o(o - Cr.) q 

	

\ \	 / 

V	

VYf II(Q — Cr6) 9, 11	y,. for each q' € 93• 
By Lemma 1.4 (iii) the graph topology E on 2I() is generated by the seminorms 
ii . I!(8,), r € N. Therefore, the preceding proofshows that 91 is bounded with respect 
to the graph topology 1,	 -	

V 

V (

	

	Since the *-representation e of 1(.) [r. ] is continuous, there exists a bounded 
subset 9)1 of .l(1) such that 

ps(x))	p(x) for all x € t+()	
•	 (4) 

Since 9)1 is (-bounded, C. := sup {II(ar) w j ! : T €931) <co for each r € N. We choose 
natural numbers 6k such that ôk k ± 2 and y	k, 2k for k E N. This is possible 

V	

because y,	ii for n € N. Define an operator x by x	e(u (k.ak k € N)). Clearly, 
x €	Our aim is to show that for this operator x (4) is not true. By (3), we have 

•	•Y6, lle (e(lc^r.6,)) 9111 •	 o(a) (e(,.6,)) 91 11 •	V 

11 9 (a, l ) T1 1 ;5; Cr+ i for- r € N and	€ V. 
That is,	 .	V •	

V 

up II o (e(ro))	Cr^i' for r € N.	 V 

Using this inequality, we obtain 
V	

V 

	

1 (x) = sup I (e (U k.ok\ 	 .	 V 

9'.wEIR	\	,k	/ 
00	 00 

sup	Je(k)WII 2 :_5 C iy:	E2	< 1.	 (5) 
V	

QE	k=1	 k=1	•	 k=1	- 

V 
Since ayq, is a,-bounded operator on 7C for r E N as shown above, -the sequence 

(p : k € N) is bounded in (/). But the set {qo,Ô) = {k,ok} is certainly not relatively 
compact in .[E], since (k6,,) is an or,thonormal sequence in- X. This proves that
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q6 4 i'(2) = ker p . Consequently, 

1 = sup lIg (qo) 99111 
9)E23 

	

SUP

=
( (e (U k.o )) (qo)	e(qo) ) L(Q(X )) . 

Comparing (5) and (6) with (4), we obtain the desired contradiction. 

(vi)' -' (i): This will be similar as the preceding proof. Again we assume tha .t con- 
dition (*) is not fulfilled. We keep the notation introduced above. Let 21 be an arbi-
trary free ultrafilter on N. As already mentioned in Section 2, ou is a positive *-re-. 
presentation of .r(2)). It suffices to show that ou is weakly continuous, but not con-
tinuous. Let q = (tp,,) € 2),. By definition of 2)?,, the set 9N:= {q,,} is bounded in 
2)[t]. If x € .(2))', then	 - 

I(eu(x) 99,	 urn?, (x,,. q)l	sup Kxq n ,	) j	p(x). 
nN 

That is, o7t is weakly continuous , . From Theorem- 2.1 we know that ker ou = 
Therefore, the preceding proof in the case 0 0g shows that o 7j . is not t-continuous I 

Results similar to those proved in this paper are true for the topologies r(-2)) and -r0 (see also 
[14]). 

Addendum: After completing the manuscript the author has learned that in the case 
= n {Y(T11 ) : n e N), T  self-adjoint operator, the existence of a topological realization of 

4(.7) [] has been independently obtained by F. LöFFLER and W. TIMMERMANN in "The Calkin 
representation for a certain class of algebras of unbounded operators", Dubna-Preprint E 
5-84-807,1984.	 - 
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