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The Green Matrix for Strongly Elliptic Systems of Second Order
with Continuous Coefficients o

M. Focrs ®

Wir untersuchen eine Verallgemeinerung des bekannten Konzepts der Green- Funktion fir

elliptische Gleichungen auf den Fall elliptischer Systeme zweiter Ordnung mit stetigen Koeffi-

zienten. Wir beweisen Existenz und Eindeutigkeit ciner solchen Green-Matrix G und disku-

tieren mit potentialtheoretischen Methoden das Wachstumsverhalten in der Niahe der singu-

liren Diagonalen. Als eine mdégliche Anwendung betrachten wir Systeme nrit vektorwertxgen

MaBen als rechter Seite und leiten Darstellungsformeln fiir die Lésung ab, aus.denen sich unter
" geeigneten Voraussetzungen neue Informationen gewinnen lassen.

Uccaenyerca oGobmenne n3apecTHON KoHnenuuu ¢yuxuun CpuHa Qa8 aNIHNTHYECKUX ypaB-
" HEHNM HA CIyYall SIUIMNTHYECKIX CHCTEM BTOPOTO MOPAAKA C HENPEPHBHEMU KoadduumMeH- -
Tamit. JLOKa3LIBAIOTCA CYmeCcTBOBAHNE I CAITHCTBEHHOCTb TaKOl Marpuikl I'piHa i TeopeTHko-
MOTEHUUATLHEIMU METONIAMH 0GCYIAETCA ee THO pOCTa BOJAN3M CHHTYJNAPHON AMaroHaju.
Hak B0o3MOHOE NMpUMEHeHNEe PACcCMATPUBAIOTCA CHCTEMB ¢ NPaBOlt YACTHIO B BHJE BEKTOP-

3HAYHON MEPH U BRIBOXATCA POPMYJIH NMPEXCTABIEHUA JJIA PelleHUs, N3 KOTOPHX NPH MOf--

" XoasImux npennonomemmx MOHO NMONYYHTH NONOJHNUTEIbHYIO uH(I)opmaumo.

We study a generalization of the Green function for elliptic equa.tlons to elliptic systems of
" second order with continuous coefficients. The existence and uniqueness of such a Green matrix
as well as various estimates concerning the growth properties near the singular diagonal are "
proved. Moreover, one can derive representation formulas for solutions of elliptic systems and

deduce from these furtherinformation about the solution even in the case when the right-hand - '

side of the system is a vector-valued measure of bounded variation.

0. Introduction : . o S S,

" In this paper we are concerned w1th the Green matrix for uniformly elhptlc systems
of the type

Ly = =D(dhDa), i=1,.., N, : (Y

on a boundcd domam Qc R, 2 2 3 We a,ssumc that the coeffxclents are conti-
nuous functions on 0.

For & single elliptic operator (N = 1) the existence and the properties of a Green function
have been completely analysed in a recent paper of GRUTER and WipmaN [9], where also various
applications are-treated. Their main result is: There always exists a umque Green function g

. which satisfies o )
: olz — " < gz 9) < C lx = yp-n N < T o)

thh posutlve constants ¢, C. In the case of clliptic systems (N > 1) very little is known By
means of Fourier transforms it is easy to show that for operators (0.1) with constant coeffi-
cients there exists at least a fundamental matrix which ishomogeneous of degree 2 — # (com-
pare {13, 15,.17]). Apart from this, only the case of C®-coefficients is treated: Jomx [13], for

v . .



508 M. Fucas

example, shows the existence of a local fundamental solution and his proof uses the smoothness

. of the coefficients in a very essential way so that his method cannot be applied to operators
with continuous coefficients. Global constructions of abstract Green operators @ associated-
with a boundary value problem can be found in the book of HORMANDER [12], where one also
finds the remark that G is related to a “kernel function”, but the properties of the kernel are
not examined in detail. ‘ :

One ‘could ask if it is worthwhile considering the case of continuous coefficients
since we only deal with linear elliptic systems. This question has a very natural ans-
wer in the settmg of nonlmear problems Let u:2 — RN be a minimum of the func-
tional '

F):= f a¥, 'u) DDyt dx

with coefficients in C°(2 x R¥) satisfying the strong ellipticity condition. The Euler.
operator associated with ¥ has the form (0.1) with A(z):= a(:z: u x)) Since % is a
" minimum point of the functional F' (defined on the Sobolev space H'-?) the regularity
‘theory for variational mtegrals implies » € C%* at least on a great portion of £, com-
pare [7], so that we arrive at an elliptic system with continuous coefficients. Despite
of this fact it would be desirable to prove existence of Green’s matrix for systems
with bounded measurable coefficients. But the experience in elhptxc regularity theory
shows that the existence of a Green function (with estimates) is equivalent to regu- .
larity theorems for weak solutions to the homogencous equation. Since such ‘regula-
~ rity results fail to hold in the vector-valued case (compare the counter examples in- -
[7]) we have to restrict ourselves to continuous. coefficients.

In Section 1 of.our papor we collect known regula,rlty results for weak solutions of
the system .

L; w' —D,F,} on 9 i = . N, F e LP(Qy~. , A(0.3)

" The basic statement is: For p>n the unique H2(2)¥ -solution of-(0.3) is continuous

up to the boundary. Moreover, Section 1 contains various local estimates in L? for - '

~ weak solutions of (0:3) which will be useful later. Using the global regularity theorem
we solve in Section 2 the boundary value problem

T Ljul = ut on Q, =1, Nuwo—-o ) (04)

where uis a vector-valued sngned Radon measure of bounded total variation. Here
we follow an idea of LirtmAY, Stanpacciia and WEINBERGER [14] which can roughly
be described as “duality method”. By choosing special measures u we conclude ex-
istence (and uniqueness) of a Green matrix @ to the operator (Lig)1=ijsn on the domain
Q. Simple properties of G such as certain symmetry relations and continuity on
T R2X 2N\ {(x,z):x € 02} are mvesblgated in Section 3. Here we make use of the pre-
cise local results summarized in Section 1. .
Finally we show that the solution % to problem (0.4) can be ertt;en as the convolu-
‘tion u = G u. In Section 4 we discuss the growth properties of @ near the singular
diagonal. Assuming a Hélder condition for the coefficients we show by a perturba-
tion argument ‘that @ satisfies the'standard estimate (compare (0.2))

16, y)l £ C |z — gyl ‘ " o (0.5)
at least locally in the interior of Q, i.e.'on small balls compactly cortained in Q. By
Campanato type arguments we mfer from (0.5) the local gradient bound |8G(z, ¥) /62:]
< C'lz — y|**. In the final chapter we give two applications of -Green’s matrix:
First we describe the behaviour of a weak solution % to the homogeneous system with

. zero boundary values having an isolated singularity at y € 2, where u grows of order

.\
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less than |z — y|=*. Then either » vanishes or grows exactly of order [r — y|2". Asa
. second apphcatlon we show that the weak solution of (0.4) has certain regu]anty pro-
 perties if the measure u satisfies the condxtlon - :

sup [le —ylrdjul <oo. : T
veR 2 ’ o o o )
Here we use the estimates from Section 4.
‘Notqti\o“n—s: We make the following general assumplions (GA)\:
- L  Qisa bounded Lipschitz domain in R®, » = 3.
-II. Let N e ‘I be fixed and consider functlons A'p € L°°(.Q), 1, 7 =1, 4N
&, =1;...,n. We define
(Li) =\(—_D.( ﬁDﬁ)) and (L.,) = (—D (4 Dp))
III. We assume that there are numbers 4,4 > 0 suqh that
’ a) max {|A%llzw: i, j =1,:.., N;a, f=1,...,m} 4,
b) A" s(x) PotPy = 4 |P|2 for alz € 2,P¢ R"N (strong elhptlclty)
Obviously I1Ib) implies the weaker Legendre Hadamard cond_ltlon .
IV, Aly(x) wwinas = 2 [w|? |n)? for ‘=z € Q, n € R", € Rr.

Here and in the sequel we use summation convention: Greek (La.tm) indices repea,ted ,
twice are summed from 1 ton(N). If D is an open subset of 2, we denote by L., (D), .
HEP (D)M, HeP(D)™ the standard Lebesgue and Sobolev spaces of measurable’ fune-
“tions D — R¥, which we norm in thewusual way [1]. For balls B = B,(x,) and func-
tions u € H* "(B)M we 1ntroduce the welghted norm - - ) .

||u||u*-v(8) 27" V¥~ | 1o ) -

- Iffe LIOC(Q)N Fe Ll ()™, we call u € HEL(Q)¥ & weak solution of the systeﬂ L;ul
=ff—~DJF,i=1,...,N,on Qif A . , L

" Ai’aD@‘DW' dz = [ (D + FAD0Y) dx
2 % .

.

for all @ € C°°‘5(Q) - For the adjoint 6perator we have obvious modifications. In the
sequel we will denote all constants by the symbol C and it will be clear from the con-
text on which: parameters C depends :

1 Regulaljity results for linear elliptic systems B

The purpose of this section is twofold: We firstly collect well-known global regula.ljity results -
- (compare {2, 15, 17]) for linear elliptic systems which play an essential role in proving the exis-
" tence and uniqueness of a Green matrix G' to the system under consideration. Secondly we
establish local L” estimates for weuk solutions from: whlch we'derive vanous propertles of G.

* We look at weak solutions u:Q > R¥ of the- system :

Ll = f¢ — DF,  i=1.,N, ‘ @y’
“Tunder the. conditions _ ' T ,
(6A), 45.€CD), Gj=1,.,N;a,f=1,..,n. . (1.2)
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With the exception of Corollary 2 to Theorem 1 all results of this section remain true if we
drop the strong ellipticity condition (GA) IITb).

Theorem 1 (MorrEY [15: Thm. 6.4.8)): For 1 < p, ¢ < oo let u € H'»(Q)¥ be a
weak solution of the system (1.1) with f € LY(Q)¥, F € LYQy"¥, Moreover assume that

(1.2) kolds and that w € H O(Q)N satisfies u — w € H'?(Q)¥. Then u € H'9(Q)¥ and
the7e is a constant C = C(n, N, i, A, p, q, w, Q) such that

elrracer = Ollwllnraa + Wfllzeer + IPllzaiar + lallzvan). (1.3)

' The symbol w denotes the modulus of continuity of the coefficients. If for example the A"
. satisfy a uniform Holder condition thh exponent  and Holder constant I, then w is determmed
by L and é. .

Corollary 1: For anJ 1 < p < oo the homogeneous sy ajstem associated wnh (1.1) kas
only the trivial solution in the space H'P(Q)¥ , provided condition (1.2) is satisfied.

Here and in Theorem 1 the continuity assumption on the coefficients cannot be dropped
since there are counter-examples of SERRIN [16] even in the case of a single equation.

Corollary 2: Suppose that n < p < co.is given and that u € IIl 2 ()Y s the umque
Hilbert space solution to (1.1) with (1.2), where f € LP(Q)N F e LP(QyN, Then u € CO(02)¥.
“n HYP(Q)¥ and we have the _estimate

Ilulle(O)r el iy < C(”F”L’(Q) + Ilfllmm), - oL

where the constant C depends on the same parameters as in. Theorem 1 Moreover, u has -
boundary values zero in the classical sense.

-Next we denve local versions of Theorem 1: Cons1der an arbltrary pomt Z € 2,
for simplicity we write O instead of z, in the sequel We define fori,j = 1,..., N and
e R

Lw==—AzwuLDmLm@>%-wqymcxm‘
Ly(¢) = det (Lo;i(c))lgs isn, L(8) = cofactor of Ly;(2).

Lo:5(2), Ly(L), L#(l) are homogeneous polynomials of dogrce 2, 2N, and 2N — 2 re-
- spectively. Finally denote by Ly(D), L(D) the differential operators associated with
" the polynomials Ly(¢), -Ly{(). By means of Fourier transforms one easily produces
a fundamental solution K to the operator Ly(D) which has the following properties
(compare [13: p. 69/70] and [15: p. 216/217]).

‘Lemma 1.1: Under the assumptions (1.2) K is an analytic function on R"\ {0},
essentially homogeneous of degree 2N — n. For allv € No*, |v] > 2N — n, the estimate

DK (@y)| < C(n, N, 7,4, ) [y2¥=n=1, € R*\ (0}, (1.5)
holds. Moreover, K is an even function and satisfies Ly(D) K = 6, (j)irac measure in 0) -
in the sense of distributions on " :

. The following lemma contains all the needed mappmg properties of the potentlal
, operator- related to the kernel K.

" Lemma . 2 [15: Thm. 6.2.1]: Suppos'e that (1.2) s satzs/zed .

a) We defme forr > 0, f:B,(0) — R the potential operator Q,(f) = fK(x — ) f(y) dy,
x 6 B (0) _ ' : B;t0)
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(i) @,:L?(B,(0)) — H?Y»(B,(0)) is continuous /or 1 <p<oo.
(ii) For all 1 < p < o005 f € L?(B,(0)) and v € No» with [v| = 2N — 2 we ha@e

* ”]) (er ”ll° ”(B (0)) S c ”/”L’(B (0))> C:.= O(n: N) /1A: p)'

(m) Lo(D) (@f) = [ almost everywhere on B,(0).
b) Set Ej = Lyj*(D) K. Then E 13 a fundamental matriz j'or the constant coef/wzent

 operator (Lgij)igijen, i€ -

LogBg = bude, ik =1,.5, N ' | Le)

For y € R*\ {0} and v € V we have the estimate
IDE@) £ O, N, A4, pl) ypeel. R ¢ %)
l\ow we define potential solutlons to the system s
Lo,,-u’_f_‘ — ' D,F.5, t=1,..,N. . “(1.1)g
'Definition: Under the assumptions of the preceding lemma for f € L»(B,(0))7,
F € LP(B,(0))"Y, 1 < p < o0, r > 0, we define for k = 1, ..., Nand z € B,(0) -
(PP )= LMD (@) (@) = [ BMw— ) o) dy, '

B,(0)

(PP (@) := Lo“(D){ o (@ F. )} (@) = [(D.EF) (z — y) Fl(y) dy
' B,(0) )
11r0m Lemma 1.2 we conclude

Lemma 1.3: If condztzon (1. ‘) is satzs‘/zed then for all 1 < 'p < oo and r.> 0 the -

following statements hold :
(i) The linear operators P,: L?(B,(0))¥ — H>#(B,(0))¥, P,: L?(B ( ) idad —+H1 P(B ()
are continuous with bounds depending only on n, N, p, 2 and A, promded the spaces
_H (B0 )¥ are normed by *||.||yes, k = 1, 2. :
(ii) For any | € L?(B,(0))".and F € L”(B (0))’“‘ the function U= P(f) — P(F) €
H ”(B )” s a weak solution of (1.1) on the ball B,(0). Moreover, if f and F have compact

support in B,(0) and if u belongs to the class H' and 18 a weak solutwn of (1.1)g on

B,(0) with compact support, then w = U.

Before stating the local regularity theorem for weak solutions of (1.1) ive introduce
a class of operators which measure the deviation from the constant coefficient case.-

Definition: Assume (1.‘2) and define for 1 < < o0, 0 < r < dist (0, a.Q),»

i'=1,..., N, « =1,..., n the perturbation operators TP :'Hl'p(B,'(O))N - H‘J’(B,(O))”,' )

Trp(u)’= P,(F), Fai = (A:,}ﬁ - A:]ﬂ(O)) Dﬂu'
- Introducing the *-norm on H""(B (0))'” we get from Lemma 1.3 . .

HITP| < Cn, N, p; 4, A) ose A, osc 4 := |4 — A(0)l|zoo(5,0)- (1.8)

. B.{0) . B(0) ,

and moreover
vi= 1T, ”u is a weak solutlon to the system

Lo = Da(43) — 4% (O)) Dgd),  i=1, - N, on B (0) - (1.9)

In view of the uniform contmmty of the coefflclents on 2 we conclude from (1. 8) that the
*||-l-norm of the perturbation operators 7,7 is smaller than some given ¢ uniformly for all base-
pomts 0€ 2, provided 0 < r < dist (0, 39) and.r does not exceed acertain bound T, depend-

t



~

.

512 ‘M. Fucas . ) .

ing on n, N P, 4, A, £ and the modu]us of contlnulty of the cocfflclents, i.e. we ha.ve
"||T Sl = € for all 06 02,0 < r <'min (r,, dist (0, 3.Q)) -~ (1.10)
We now summarize our local regularity results '

- Theorem 2 (compare [15: Thm. 6.4. 3)): Let1 < p,q < oo, f € LE(2)¥ and Fe
Li (¥ and suppose that u € HIR(Q)Y isa weak solutwn o/ (1. 1) under the condmon (1.2).
Then U belongs to the space HYJ ()Y for ‘

np(n —p)-  ifp<n -
00 : cifp=n.
From-the- proof of Theorem 2 we will deduce the followmg

r = Iﬁin {g, s(p)}, s(p) ={

Corolla.ry Let 1.< p <mnf(n —1), assume that (1. 2) holds and de/me q= np/»»'

(n —(n—1) p) Then there exist constants C depending on n, N, p, 4, A and R, deter-
méned by the same parameters and tn addition by the modulus of contznuzty of the coefft-
cients such that .

Hellgoaio) < O lulluia(a,m) . : (L

*|lul| . N Bu2) = Ornizp=nip® ]|u||”1 B(Bat2)) L S (112)

for all balls B(z), x € 2,0 < 2r < min (2Ro, dist (=, 6!?)) and for all w € HY p(Bg,(x))
ball B, (z) \ {x} (1.11) becomes

- satisfying Lu = 0 on By, (x). If u satisfies the-homogeneous system only on the punctured

1 ] 1,p ‘ B . ) :
Rt ”u”L"(’I‘) + ”V'“”LW(T) S 0"1 ||l | H 2 Bur) | : ' (1-13)\'

where T=B8 (x) N B,/z(x)

Proof of Theorem 2: (i) p < 7 and p < s(p) S q: We have to show that u €
CHY *’(B (x)) 8 := §(p), for x € Q and sufficiently small values of 7. To this purpose we

may assume z.= 0 € 2 ‘and take 2r < dist (0, 92). Furthermore let”@:= nu €
H! "(32 (0))” , where 7 € C°°(B2,) is an-arbitrary cut-off functlon 4 is a weak solu-
tion of the systcm -

Lyt = ¢ — D(F.t — G i‘) i=1,..,N,on B2,(0),

where we déﬁned fore=1,...,N,a = 1,..,n

Ji = uff + FD.y — A“’;;DmDﬂu’ Fi=A5Dgym + nF

Gt = (48, — A%(0)) Dyt , |
‘Since f F, G have compact. support in B,,(0), we infer from Lemma 1.3 (iii)- _

@ — Thi = Pz,,(/) — Py (F) = p: . o (1.14)
Observmg ' : : . '
" Pully € EBLO) = HA{BL0 ) o) € H{BLO)

we get @ € H- ’(Bz,(O))N Accordmg to (l 10) there ex1sts Ro depending on the stated
parameters such that

*|TEN, ¥T4) < 1/2 for 27 Smm (2Ro, dlst (, 6!2))

Fixing such a radius 7, we see that the operators Id — T2,, Id — T4, are one-to-one
and onto. Consequently we fmd w € H“(Bz,(O))N with the property (Id — T%)4

—
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= (Id — T%,) w. Using the fact that Id — T, is an isomorphism of the spece H'? we

- see @ = w, since T, = T, on the space H"’ Choosing n =1 on B,(0) we arriye

-at u € H'#(B,(0))".
(i) » < p < q: Define t = ng/(n + q) € (1 n) a.nd observe
~u€ Hloc(Q)N F € Lloc(Q)nN f € L oc(-Q)N

Since ¢ is thé Sobolev exponent corresponding to ¢ the assertlon of the theorem fol-
lows as in case (i), replacmg p by ¢t and s by q '
(ii1) p = q: This case is trivial i

Proofofthe corolla.ry Again assume 0 € Q; accordmg to (1:10) we find R, such
that fork=0,...,n —1 =

*\T3 || <1/2 for 0 < 2r < min (2Ro, dist (0 92), s =mnp/(n — kp)

Now let u € H "(Bz,(O )N satlsfy Lu = 0 on the ball B,,(0). Using the notations from
the proof of Theorem 2 we get according to (1.14) that

@ = T%a = Py(f) — P, AF)  (k=0,..,n—1), : (1.15)

where we suppose that » satisfies the above-stated smallness condition. Now choos-
ing 7 = 1 on By, ;5(0), {Vy| < cfr, (1.15) immediately implies the inequality

: *"u”l 8133r/2 = =0rs1 *”unl p;ers

: where *|.llk,p;» denotes the *-norm in H"P(B,(O)) Incquallty (1 11) now follows by

a simple iteration araumcnt (1.12) is an easy consequence of (1.11) (use Holder’s.
inequality). To prove' the last statement of the corollary we proceed as above, the

only”difference is that we use cut-off functions 5 with compact supports on rings
ccntered at 01l :

2. Systems with vectbr-valued measures on the right-hand side
In this section we use the results of the preceding paragraph to prove existence and uniqueness -
of a weak solutlon to the boundary value problem

L,i‘uJ-—/l.' 1=1,.., N, on.Q uIao\e—O ; . * ' (2 1)
whenever ut, i =1, ..., N, are prescribed signed Ra.don measures with finite variation. We will
show that (2.1) a-dmlts a unique weak solution in the space

~  H={u:2->RV¥|ue HI7(@Q)¥ forall 1 <7 < nj(n — 1)}...

The idea of the proof follows arguments of LirTMa¥, STAMPACCHTA and WEINBERGER [14]. _

In’the sequel- we denote by M(£2) the $pace of all signed Radon measures & on £
with finite total variation |u| (2); M(2)¥ is the space of all g = (g, ...; u¥) with com-
ponents u* € M(Q). Obviously Co%(@2, R¥)*. (dual space) is isomorphic to M(Q)¥
[4: Thm. 2.5. o] From now on we will use the norms - )

iy = IVullirey, 1TN-1p = mf {1 Xl o0 : X € LF(Q)""V re’presents' T)

on’ the spa,ces‘ R and H- l7’(.Q) , respectively. Then there exists a natural
isometric isomorphism . : .

ﬁ‘ﬂ (2, Rh) — H-Lr(Q)¥ é}f =p/lp —1).

~

T.33  Aualysis Bd. 5, Helt 6 (1086)
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We therefore agree to 1dent1fy the spaces Hur(Q, R”) and H~-1?(2)¥! In conclusion
“e ‘can consider any function » € H'?'(2)¥ as an element ofH Lp(Q, R”)* by defin-
ing (w, U) = (U, u) for U ¢ H-1»(Q)¥.

For solving the boundary value problem (2.1) we assume

(GA) and Ayﬂ e D). (15 =1,. N oc,ﬂ-_ 1. ;n) ) T (22)

Then by the Lax-I \Illgmm theorem the solution opcrator S H L 2(.Q) — H 2(!2
S(T) bemg the unique M. solutnou to the ad]omt system Liv = T4 =1,

N on £, is well-defined and continuous. The * ‘duality’ method” introduced in [14] )
is.based on the following principle: Corollary 2 to Theorem 1 implies that for values
n < p < oo the solution operator S maps-H-17(Q)¥ into the space C,%(2)¥ of func-
tions v: 2 — R¥ which are continuous on £ with boundary values zero. Therefore
S* (dual operator) maps linear functionals x defined on a certain space of continuous
.functions on functions u, € Hl P(2)¥, and we will show that u,, is the natural solution

" to the system (2.1).

To be prccxse we consider for numbus l=s = r < oo, p > n the embeddmgs
g BV Q)N S B, HM(Q)F > H- @), '
. hy B9 s CQY

and define the linear operators

U Sy H- LP(@)N —>C°(.Q)N Sp=hy0Z,

with norms dependmg only onn, N, P, i, A, 2and bhe modulus of contmmty of the
coefficients. I‘or exponents p > n we look at the dual operator

S.%: 002, R¥)* - H-'2(Q, R¥)*,  p—pos,.

~. Recalling the 1somorph1sm mentioned_above we have a continuous linear: operator

S . M(Q)YY - HU p(.Q) which satlsfles ‘
‘ 18 Wy < C l/tl @) for all IS M(Q)”

* for some posmve constant C which only depends on n, N P, 2, A Q and the modulus

~of contmulty of the coefficients. "~ -

"It is now easy to show that S *(u), u 6 M(2)¥, induces the same element in H‘ I(Q)N
for all values p >n. Let ¢ > p > n be arbltrary and observe the relations

2, qup = z,", o Zq—, hpoig=hy, Sp=h,0Z%,, §,= hq oZ,,
. ~}.;p:1’Pq’ ' ' .« -.,', | »
from which we-get S¢* = iy 0 Sy*. This relation has the following intérpretation

Lcmma21 If (22 is satisfied, then for arbztmry real p, ¢ > n and measures
€ M(2)Y we have S*(u) = S,*(u) in HIT(@Q)N /orr—- min p/p—l ) qllg — 1)},
Therefore S *(,u) mduces a Sobolev /unctwn Uy € HYy Q) ‘which is contained m the

space H.

We can now state- the main resu]t of this section v L -

Theorem 3: Suppose that (2 2) holds and that u € M(Q)N is gwen
(i) The functzon u, defined in Lemma 2.1 is a weak solution of problem-(2. 1)

.
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(u) Forr € [1 n/(n — 1)) there ts a constant C dependmg on n, N r, A, 4, 0 and lhe
modulus of continuity of the coefficients such that

llinay = C |u] (2).

(iii) If v belongs to the space Av ‘*‘(Q)“" forsomee > O0and isa weak solutzon o/ problem
o (2.1), then v = u,.

Definition: Undér the assumptlon (2. 2) we call the funcmon u, defined in ‘the '
preceding theorem the weak solution of the boundary value problem (2.1).

As a sxmple consequence of Theorem 3 we have the following approximation lemma. _
Lemma 2.2: If By ,u, m-€ N, belong to the space JII(.Q)N with'the property
lim [ st = f 14 dut for all / €CRQYN S

m—oo £

and if (2.2) is satisfied, then we have weak convergence u,,,ﬁu for m —> 0o m H L P,
1<y < nf(n — 1), for the corresponding solutzons of the boundary value problem (2. 1)

-3. Defihition: and first properties of the Green métrix

_First we apply Theorem 3 to show existence and uniqueness of a  Green matrix @ of the system
under consideration. Elementary properties of G such as continuity on domains that do not’
meet the singular dmgonal follow directly from the local regularity theory stated in Section 1.
_Moreover, we prove a represcntatxon formula for the weak solution Uy to problem (2. 1): u,
equals the oonvolutlon G ey Lae. on 2 (L” means thc n- dlmcnsnonal Lebesgue measure
on R#%), : -

Defmltlon Assume that (2 2) holds. (i) For y€ Q, k = 1 N denote by‘
CG(.,y)€ H the unique sohmon of Lijpi = 6,6, ¢ =1,...,N, on Q 1)|aa = 0.

G: Qx 02— RY, (x y) —> (Gk'(x ?/))1gi kSN

is called the Green matriz for the operator (L;;)1<ijsy on the domain 2.
*(ii) For y € 2, 0 > 0 we define the Radon measures

W= INByy) n )8y - TP L By(y) n 2, i=1,..., N,
*(cf. [4: p. 54]) and denote the associated solution of (2.1) by the symbol G,,QO(..', y). We

“call Ge-the mollified Green matriz to (L;;)15ij<y on the domain Q.
(iii) If the deferentlal operator Lis replaced by L, we use the notations 'G, tGe.

. The results from Soctlon 2 are summarwed in

~

" Lemma 3.1: If (2.2) is satisfied, lhen forallye 2,0 >0 the /ollowmg statements are
true:

(i) G(-, y) € mc(.Q\ })N' for all 1 <7 < oo; in particular G(., y) € C°
X(@N
(ii) Ge(-, y) € fI“(.Q)”' for all 1 <7 < oo} in partzcular Ge(-, Y€ CO ()Y for all -
O0<a< 1.
. (iii) For each p € [1, n/(n — 1)) there exists a constant C. dependmg onn, N, p, ). A 2
and the. modulus of continuity of lhe coefficients such tkat _ ,

_ ||G( Wlarsa, 16, Pllmnog = C. _ A
(iv) G(-, y) = 6(-, ) for ¢ — 0 in H'P(Q) for 1 < p < mjn — 1). >
- 33. ) * . . ) : ’ : . -—
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The mtegra,blllty propertles of G(-,y) as stat{ed in part (i) of the lemma can be
improved. ' '

" Lemma 3.2: Assume (2 2) and let Br(y) be a ball compactly contained in 2. Then
G(-, y).€ H" '(Q N\ Br(y) ) for any exponent r < oo and '
' NG, Do) = 0 ; ’ - ' (3.1)

for some.constant C dependmg onn, N, 2, A, .Q 7, Br(y) and the modulus of continuity Y
of the coefficients. (3.1) holds (with the same C) tf G(-, y) is replaced by Ge(-, y), promded :
o <R

Corollary For 0 < Eand 0 <o <1 the OO norm of Ge(-, ) on Q N\ Br(y) s
estimated mdependent of o.

We omit the simple proof of this lemma. The corollary prov1des a useful tool in
proving certain symmetry properties of Green’s matrnx

"~ Theorem 4: Under the a.ssumptzons (2. 2) we }uwe for all pomts z, y € Q. and inte-
gers k, l =1, N
Gz, y) = (G, x))T ie. G, y) =Gy, 2). (3.2)
Corollaries: 1. If the coefficients are symmetrw A‘i = A}, then Gz, y) = G(y, )T
for all z, y € Q. 2. Forany x,y € Q, O<g<dlst(y,6.Q) . ,
G?(z, y) = ]C(‘G(z x) Tdz = )C Gz, 2) dz. ’ ' ' (3.3) .
C By " Byly) SR ’

Since ‘G(., 2), for fixed z,is a contmuous function on 2\ {z},formula’(3.2) shows continuity
- of G(z, ) as a function of the second argument, which is'not a direct consequence of the defini-
tion. Corollary 2 justifies the name mollz/zed Green's matriz for Ge.

Proof of Theorem 4: Let z 3§ € Q and choose sequences (o ), (a,‘ tendmg to
zero such that - .

p=— ‘G'( z) ate. on Q. . ' (3.4)

Abbreviating . = Go(, y), *G* ='G°(., x), B, = B,(y), B = B (a,) we get
from the definition of the mollified Green matrix |
al = £ G dz = fa,;f de, - kl=1,. N B (3.5)
. 5 ,

‘We know 'G* — *(/(., x)=: ‘G for u — o in Hl PN < p < n/(n — 1) and

Gl ) > 6o ), 1670, 2) e

JC G dz = G (x) by the continuity of G* at z,

50 that (3 5) llIlpllOS the relation . , .
Gk'l(z) = j’thk dz. - ) . . (3.6)
B, .
0 Since ‘G is continuous at the point y we may pass to the limit » — oo in (3.6) to get”

tGk(y) = lim ( lim a’“) and  Gyl(e) = lim ( lim as;). (3.7)

¥—00 \ g—o0 #—>00 \ ¥—>00

Now (3.2) follo“s from (3.7) since a] converges uniformly in » as x4 tends to mfmlty »
To prove this fix 0 < B < | — y|. Then, by the corollary of Lemma 3.2, there is-a

constant C' independent of » such that for any glven 0 <& <1 the CO" norm of
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G on the ba,u Bg() is estimated by C. Arzela’s theorem in combination with (3.4)
implies ‘

6" — Gllzoo(Brjai) — 0, therefore — 0

JCG-'dz—fcfdz
B“ B By

uniformly with respect to x 1 N
Proof of the corollaries: G(z, y) = G(y, x)7 is trivial since ¢ = 'G in ‘the-symi
metric case. (3.3) follows from (3.6) by replacing o, by o < dist (y, 02) 1

-

. As already remarked, the symmetry relation (3.2) implies certain continuity
propertics of Green’s matrix. Now we are intcrested in the rcgulanty of G asa function
- of two variables. ' : .

Theorem 5: If (2.2) holds, then G is loca.lly Holder contmuous on Q X Q N {(=, x)
iz € 2} with any exponent 0<a<l.

Proof: Let 0 < a < 1 and dofme p = nf/(n — «), ¢ =n[(1 —«). Consider two
points x == ¥ in 2 and choose r > 0 so small that z

()r<lz—ylfd, 'Bulx)u Buly) = @

According to Theorem 4 ‘and the;corollaries, we have for-points (z’, y ) € B ( ) X B,(y),
o = max (|Jz. = z'|, [y — ¥'|) the estimate .

AGe( ') — Gela, )] S (6o, ) — Gela, )] + |Ge(w, ') —Ge(z, y)]
< f G (u, x') — *G(u, z)|.du + f WG(u, x) du — f tQ(u, x) du|

Boly) ' By ' Byiw)
s S £166E W) — 6@, w) du + f G, 2) — Gy, @) du
Boiv) ' B .
+ f ltGu, ) — Gy, z)|du:=a 4+ b+ c. -
Boly) : . ; s

‘In addition to (i) we requrre N
 (ii) r = Ry, R, defined in the corollary to Theorem 2. LT TN
Applying estimate (1.11) to each function G(-, u), u € By(s ( ), we gét by the Sobolev
Embedding Theorem and Lemma 3.1 (Co = Con, N, 2, A oc)) _

NG (s w)llgra(s,2) = Cor' = *”G( u)ll,,: v(s.,(z))
\ .
‘ = Cor™® ||C( )|, v(m = 01’”1 ",

_ where C also depends on 2 and the modulus of contmurty of the coeffrcrents This
implies & < Cyr'~ "% Replacmg (’( u) by 'G(-, ) in the above argument we get the -
. same bound. for b and ¢: . A : |

1Ge(a’, y') — Ge(z, 1 )| = Gyl : _ . (3.8)
To prove 3. 8) for G we observe ' . . '
1G(z', y') — Gz, 3 )I G,y ) = Ge(', y')| + IG‘-’(w ) = Gz, y)|
. + [Ge(z, y) — Gz, ). I

The first and the last term ‘on the right-hand side-are estlmated as above, for the
second term we use (3.8), so that

6z, 9) — G, ¥ < Ci=nge forall (&g )éBHxBUH

A\
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- As a first apphca,tlon of Green s matrix we defive a representatlon formula, for the
weak solution of the boundary value problem

L = uf, " 4 =1,..,N, _ on.Q u,ag—O (,uEM(.Q)N) .(39)

Theorem 6: If (2.2) holds n € M) is a vector 'valued signed Radon measure of

 finite total variation and if w € H denotes tke umque weak solution of (.3 9), then for
Lr-almost all points y € 2 :

u"(y): f 'Gii(=, y) d/ﬁ(x) f Gy, x) dut (x), k;1,...,N. N (3:10)
Q. 2 : - : o

For the proof we need

Lemma-3.3: Assume that (2.2) is satzsﬁed and tkat v = 0isa finite Radon measure on,
2. Then .

(1)-G is (v XL”)-measumble on- 2 x 2.

(W) f 16| dxL") is fmzte, especzallg/ the functwn Q39— f GQ(z, y) dv(z) belongs
_ oo
_ to the space LY(Q)», '

Proof of the lemma: (1) By Theorem 5 the statement - follows if we show that'
(v XL (D) = 0 for the diagonal D = {(z, ): z € ). To this purpose we choose a
sequence of disjoint Borel sets (A; ).EN such that Q = A, U A2 . L*A4,;) < &, where
£ > 0 is given. Weget : . o

v xL..) (D) < 2 @'xm (dix 4) = 2 " 4)Ln(4,) < ev(!)), :
. and by the finiteness of ¥ we-conclude (» x L") (D) = 0.

. (ii) Since. |G| is a non- -negative (v XL") measurable functlon Fub1m s theorem im-
phes

- 6,y y)id(vxL") wn=f(f 6o, J)ldL”(y)) a

Q

N

= f ( f [‘Gly, = | dL”(y)) dv(x)

and by Lemma, 3.1 the inner mtegral is bounded by a constant mdependent ofz i

Proof of Theorem 6: We may assume that Wi =1, N are positive Radon
measures of finite mass, otherwise we decompose ut = ,u Choose y € Q,.

"1 =k=N and 0 < p < dist (y, 092). Testmg the weak. form of (3 9) w1th G-, y) -

€C%n ﬁ‘ HN we get. - . . .
v fua= f*G&(x Y duite) = [ ( f‘Gk‘,(x, 2) dL_"(z)) d(z)

Byiy Q -Q Be(y)

- = (f 0o 2) o)) arnG).

o Bow\ 2 \

, Here we used Lemma 3,3 with @ repla.ced by 'G. Observmg that L"-almost all pomts'

are Lebesgue points of u" and the function .

/k:g 3z — f ‘G’k‘(x,.z) d,u‘(:t:), . - : . —_— / |

'”we define 2, to be the common set.of Lebesgue points-of »* and f, k =1,..,N. -
A Ob\nous]y, L2\ 2,) = 0 and (3.10) i 1s valld for all € Q, 1 .

]
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4. Growth properties of Green’s matrix

" In the scalar case N = 1 most apphcatlons of Green’s function g depend essentlally on the

- growth_properties of g near the smgular diagonal, compare [9—11, 14]. The purpose of this

section is to prove at least a local version of the standard estimate, i.e. we want bo show

.

NGz, y)] =€z — y|*. - . ' - : (4.1)

 for points z, y in small balls compactly contained in Q. This behavnour of Gis suggested by. the
growth properties of the fundamental matrix ¥ for systems with constant coefficients (see Lem-
ma 1.2). For technical reasons (compare Lemma 4.3) the proof of (4.1) only works in the case of

_ Hélder continuous coefficients so that we.assume for the rest of.this section

4(GA) and there exist constants 0 < « < 1,L=0 such that _ )
sup {|4(z) — AWz — ylrrz +F ye Q= L '; . - (4 2) ‘

Under this assumptlon the basic local estlmate (4.1) is proven in Theorem 7. Asa consequence
of. this theorem we derive mequalltxes concerning the behaviour of the first derivatives of -
Green’s matrix near the diagonal. * -

The method of our proof is based on a pertubatlon argument: We freeze the coefflclents at
an arbitrary point y € 2 ‘and write G(z, y) = E(x — y) + H(z), where E denotes the funda- -
mental matrix for the opemtor with constant coefficients* A(y). Using the Holder cond.mon'
(4.2) it is possible to control the size of the perturbation H, at least locally near y. We hope to
be able to extend our technique to derive global estxma.tes for G up to the bounda.ry

Theorem 7: Suppose that (4.2) holds and let 0 < f.< 1 be. gwen Then there are .
constants C, depending on n; N L, 4,4, «, Ryalso dependmg on B and C, also dependmg
on ﬂ and 2 such that ’ »

|Gz, y)|sctx—y|2-"+0R*+ﬂ" L @y
/or all x € B.m(y) N { J €92,0<R<min (Ro, dist (y, 082)/4). .
 Corollary: Let y E Q be given. Then"there exists R, dependmg on n, N L A, o«

" and dist (y, 092) such that

Gz, 2)| < C, |z — 2" + CpR, -n+e - o  (4.4)
" forall z,% € By (y) = Q. Here Cl, C, are as in Theorem T with f = «.

. (4.4) is the precise formulutlon of the local estimate (4. l) Since R, — 0 when y approaches
~the boundary 202 we see that mequahty (4 4) essentially depends on the locamon of the ball‘
BR (3/) TN -

Since the proof of the theorem is lcngthy we found it useful to proceed in severa,l i
steps summarized as Lemma 4.1'—4.3. From'now on we assume that the assumptions
of Theorem 7 are satlsfled Define p = nf(n — B), ¢ = nJ(1 = B), P = nf(n — &) .
and assume that y:= 0 is contained in £2. According to (1.10) thére exists Ry such
that

T <12, s=po and s=npl(n — kp),  k=0,..,m—1,
- ’ g @5y

for all 0 < R < min n (Ry, dist (0, 82 /4) Fix R with (4.5) and for 1 <k < N let
G:.= Gk( 0) = Ek and . : -

e T2,6 — EeH‘P(BM(O))N I 46

(E is defined in Lemma 1.2b)). Obviously, w belongs to the space N {H‘ '(BoR(O )” 1
sr<nf(n—1) and from (4.6) we infer.Ly;;u! = 0 on Byz(0). In conclusion; w is
analytic on Byg(0), especially bounded on any ball B,(0) with radius » < 2R. The
following lemma shows boundedness of w on the Wwholg ball Bm(O)

~
\
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Lemma 4.1: The function w is contained in the space H' ‘I(B2 R(O)) and satisfies the
estimate Hwllger = C.R¥". '
Here and in the sequel we abbreviate *|.|,, = *||. llm' '(0,)

Proof of the lemma: The corollary of Theor. 2 implies *lwllg.r < < C,Rt- "*||w|| 2R
To estlmate the norm on the right-hand’side we use the defining equation (4. 6)

~

HlGlp.2r = E'{L"(an(ol) “GllL'(D)(Bm(O))} + IVGllzna)

‘ : 1L on—p : np e
= \Y » = -:— —— y p)i= ——, .
» ‘ _.02‘ IVGlloy < Cp, 6 » pynal .S(P) — ,
»by'Ilemma 3.1 (iii) 'From (4.5) and (1.7) we infer ’
\ , 1 _ ' )
*“T ROllp2r < — *llG"p °r = Oy, *llEllp.’zR < CoRVF,

in conclusion, _ . .
Hwlr < G, o @
To complete the proof of the lemma we havé to show o

nuumm, -+ nVuuW.R, sGR- . . (4.8)
for the functions u:=Gq, T% RG E where T,p denotes the ring BzR(O) AN BR(O) For

u:=FE (4.8) is already contained in (1.7), for u:= G we ‘use estimate (1.13). Drop-
pmg all indices we let w(y) = A(y) — A(O) and write for x e B,5(0)

Tialle) = [ V'K (@ — y) “) VG(y) dy S
B2r(0) : .
=[.dy+[..dy=: %(x)wz(x).‘
BR/2(0? an\Bn/o P

Obviously, @, = P,p(F) for F(J) =0 on BR,2(O) Fy):= (y) VG’(y) on B,g(0)
N\ Bg/,(0). Lemma 1.3 implies

*ll%llq :r = O |lF|lLv(m =< C, llVG”Lw(D) < Cle " D:= -B2R(0) \ Bng(O)

by a version of mequality (1.13). Since ¢, is of class C* on Tyr we get (4.8) for @1 by
direct calculation Combining (4.7) and (4.8), the assertion of the lemma follows l

Usmg w € H ‘I(BM(O))N we can rewrlte (4.6) in the form

=E+ 2 T B + ): (T$e)won Bua(0), C(49)
. N _ .
wherc the last term on the right- hand 51de satisfies (use (4.5))
: . _ _
) Z(Tgn) w = *llwllq.fm < GoRY1,
1=0 ¢.2R . Lo .

and by the Sobolev Embedding Theorem we get

© . . ..
sup Z (T3g)' w =0, N _ (4.10)
. B2r(0) : ; . -

Estimate (1.7) 1mplies |E(x)| =C |x|2 # for all ' & 0, so that (4.3) follows from (4.9)
- and (4.10), provided. the sum over [ of all (T23)' £ has the correct growth. Thc cal-

cula.tlon of the growth order of tlns remaining term is contained in

’
A\ ‘

~
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Lemma 4.2: Suppose that 0,7 are real numbers satzsfymg 0<r, o<no + T > n.
Then for all x,y € R® ‘ ) »

Jlz =z ly —z"dz < Cln, 7, 0) |x — yrro. (4.11) .
R™ 3 . . . ) ) .

Lemma 4.3 Let ;L, = (T5%) E, L € No. Then there exists a constant C, = C,(n, N,
- L, A, A, o) such that for all balls B4R(O) < Q and all pomts z, Ty, Ty € Bm(O) AN {0},
R < 1, the following estimates hold:

- (i) |Vul(x )N < CIHRla |z]t-n,
(i) lvul(’cl) - Vu,(x2)| = CIHRl“ |1:1 - x2| max (lxlll R 2 Lt 8

The proof of Lemma 4.2 is an easy calcu]atlon _whereas the proof. of Lemma 4.3

is somewhat more involved. We therefore fu'st flmsh the proof of Theorem 7: For

leN,z¢ Bm(O) \ {0} we have

|<T"° ) B(z)| = J VEV-1K (2 — y) aly) Vu, Wy )
P B"n(O) .
<O [ |z — yfi- CyRU-Ds e ndy <.C\IRE e,
Bar(0) . . . . oo

accordihg to (4:11‘), (4.12). Frorﬁ this we infer

|2<Tﬂ° ) B sc,zw,m apen, -

* Requiring C,Ry* < 1/2 (€, from Lemma 4. 3) we. arrlve at (4 3)N

Before proceeding further let us glve some comment on Lemma 4.3: In stundard potentlal
. theory it is shown that Lebesgue, Sobolev and Hélder classes are reproduced by certain smgular
" integral operators (compare for example [15]). Here we extend this reproduction property to'a’
_class of fu.nctlons having an 1solated singularity with prescnbed growth order.

Proof of Lemma 4.3: We write for BM(O) and functions » € H" z’°(B2R(O )
. droppmg all indices , - A

Tf;gu(x) [ var- ‘K(x—y) (1/) Vu(J) dJ B )
Bor(0) .

“and proceed by induction. For 1 =0 (4.12) 1mmed1ately follows from (1.7). Now

"assume that lis a posmve mteger and that for some constant D,_, the estimates.

Ivutl(x”SDlllxll”,' - . ‘ -

lvui—l(xl) - Vu, 1(932)| =D,z — 1‘2|“ max (|x,|1 A= Jag |t "0) (4 13) /

: ‘hold for all pomts Z, 2y, Ty in Byg(0). Abbrev1at1ng Aly) = V2¥K(y), y € R*\\ {0}, w
have' the followmg formula for.the derivative of % (compare [15: Thm. 3.4. 2b)]
here and. in the sequel C, denotes constants depending on the parameters stated in
Lemma 4.3) .

Vue)'= Co) Vu@) + lim [ A —'y) aly) Vu Wy

9—»’08»,;(0)\39(:)

(4.12) . |

L =@t W, e BumONO (e
o—>0 ) . ’

~
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a) We discuss W(x) := lim W ,(z) (¢ — 0) for fixed z € Bm( ) {0}: Choose 0 < 0. <
e < [#|/2 and apply [14:-Thm. 2 6.5] to get.

W) — Wo(z) = f A — ) {ely) — @) dy, = wVuy_js
. Bola\Bg(z) . . L L . N
(4: 13) gives the mequahty )
I<P(?/) = ¢(@)] < CD{lal & —yl“ max (|z|'~"=* I?/l1 ") o
, + lyi" 2 — g} ' : - (4.15)
" By-this we can estimate the above integral as follows: I
W) — We(2)] ‘é‘C’xD:-x( [ Iz —y]“l"max (lﬂcll gl dy

By(\ By(2)

+ [ Iw—yl““"lyl“"dy)

. By(2\ By(2) N - k
= CiDpy(Jl® |2t =+ |z [ |z — yI*= "dy
By(z) °

) ) = C1D, fzft " et ,
Consequently, (W,(x)).>0 is a Cauchy sequence, the limit W(z) exists and satisfies for .
z € Byp(0)\ {0}, ¢ < |2/2, 0 < 2R — || the inequality - '

AWe(e) — W(@)| < C\Dpig® lem. A (4.16)
quthéfmpre ‘we have for z a.bnd o as abovev u-si'ng (4.11).and (4.15), -

W)l = [ 1AEz—y) lply) = - (@) dy = C, D B2 J2f'7".
- Bar(ON By(2)-
\If we combme this result with (4. 16) we arrive at-

W) 'S ODLE e, @€ B0 {01 - " 417y

By (4.13), estimate (4 17 ) holds for the function. f deflned in (4.14). We thus have .
proven o , N

V()| = C’{D: 1 lxl“" E* : S . (4.18)
for-all pomts zin the punctured ball B,z(0) \ {0}. . S '

“b) We now denve the Holder condltlon for Vu, Let z,, x2 € BzR(O)\ } be given
a.nd assume .

0= |x1—xz| < tain (e, s~ S (419)

One would like to argue as follows: By calcula.tmg VW, one gets a bound for. IWe(xl)

— Wy(z,)| and the Holder condition for W is aconsequence of (4.16). Unfortunately, (4.16) is -
restncted to the case ¢ < 2R —|z;|, i = 1, 2, and this condition is obviously violated for
2;, % near 8B, g(0). To overcome this technical difficulty we extend the function Va,_, to the "
punctured ball B;x(0) \ {0}, assuming that (4.13) continues to hold for the extended function,
- ~ which we also denote by Vu,_,. The constant D;_, appearing in (4.13) has to. be replaced by a
consta,nt of the form C 1011, but this does not change the argument

On ‘Byr(0) \ {0} we define the functions _ o
Wm( )= [ Az —y) o) V- (y) dy, | L
BynO\Byl2) - ) '
Wi(z) = hm W,e(x), - ‘ -

- Wsiz) = f A(x ~9) 0() Vu: 1(y) dy. o
‘ . Ton(O) ) - . A !
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Obviously, W(z) = Wy(z) — W,(x) on BzR(O) and the mequahtles (4. 16) (4.17)
hold with W replaced by W, and 2R replaced by 4R. Now a snmple calculatlon shows
(H"‘1 denotes the (n — 1)- dlmensmnal Hausdorff measure) .

VW o(z) = — f Az — y) (w(y) — sv(x)) y; th"(y) . ‘ -

880(::)

[ VAE — ) (ely) — <p( z)) dy

B4R(0)\ Bo(2)

-

. for points z€ Bm( 0) \ B,,(0). The result;mg terms satlsfy the esblmates
IR ‘(y)l '

9B,(2)

S C\D,., |95|“f lx —y|*~ "max(lx[‘ n-a [y}l n— “)dB" 1(y)
2B,z

'A - -+ [z =yl i ® dH" 1(y)} = CIDI 1R“ |t =nme ge i

2By(x) - -

' where we used (4.15) and the fact that |y| = |x|/2 on 8B (). Let-us write -
- Byr(0) \ By(z) = {(Bir(0) \ Bzy12(0)) N\ By(z)} v Biaye(0) = .Q, v,

Observmg |J| = |z|/20n 2y, [x — y| = 1%|/2 on 2, we get '
| f VA — J) (2(y) = p(z)) dy

.= CIDI 1f lx — yl"“" ([x]" max (|x|‘—"-“ ly|t—n-e) 4+ |y|1-«) dy
- = ClDl 1R |2’|l ne f |z —y[“ 1- "dy— O’lD, (R |z|t—n— o ge-1

R™\ BP(Z) L4

- and the same estlmatc holds for the mtegraJ over 2,. We have thus shown for pomts
z € B,R(O) N Bzg(O) that . ;

V(@) S G\ DR gt mrme et - - @20

. By 1ntegrat1ng (4.20) over the path x,x2 (whlch is contained in-B,g(0) N Bze(O)) we
conclude .

|W19(x,) ng(x2)| = CIDI 1R“ |x1 - x2|°‘ max (|z, |l BT |zt (_4~21)

Applymg (4.16) in the version for W, on the ball B5(0), (4 21) holds for the function
W, itself. It therefore remains to provc (4 21) for W,. For z € Bm(O) we have by defi-
nition

VWy(2) = [ VA@ —y) ¢ ©(y) Var, () dy.

T"’R(O) )
From (4. 13) we infer - . ;"

< VW@ SGDLRI 57), o) i= 2R — faf.

5 .
‘This estimate shows that’ VW2 behaves. well in'the interior of the ba]l B,r(0). Intro-_
ducmg w(x) Vay_, () in the expression for VW, and using (4.15), we see

IVWi@)l S CiDRob(z) =t [efi=n=e ' (4.22)
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and consider the following cases (coinpa-ré ‘[15; Thm. 2.6. 6])'
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for a € Byg(0) \ {0}. (4.22) has the advantage that VW, increases of lower order when
x — 0B,g(0). As before let z,, z, satisfy (4.19). We want to show i

lW'z(xxl) — Wilz,)| = C\ DR |z, - 2,|* max (|z,[1 77, |zt —7) (4.23), ’

N

1. |z = 2R — ¢: Integration of (4. 22) over the path x,x2 implies (4.23).
2. lz,| > 2R — g, |x;] < 2R — o: Consider the path z,z3x,, where z; is on the ray
Ox, w1t,h |z5] = 2R — . Observmg ' . .
|2y — 23| S 0, |7 — 2 < 20, |72+ tay — z)] 2 3 |%|f5, 0S¢ = 1,

\ . -

we get the éstimates

[Wz(xz) — Wy(ag)] < C\DyRe oy =m0 o°,
1

|W2(x,) - Wz(xs)l C\D R [z, — Talf 0 —t |x1 = ag|)* 7 di fag|t

) < C\D, R |z, — fl’al“ EX

This proves (4.23) in the second case. - A ' ' .

CB00m) > 2R — o, 2] > 2R — o: Choose z; on 0z,, , on Ox, with |z = |z,|

= 2R — p. We have , ’ .
lor — 25 S 0, |72 = @l S0, 75 — @l = 30, I + Uz — 1) Z 4 nlf5,
122 o ta — 22)| Z 4 |%lf5, Iz + tze — z)] Z 2R — 40 = Iml/5
for0<t<1.. '

Similiar calculations as in the cases 1, 2 yicld (4.23).
Collecting our results we have shown

IW(xx) W(x)| = CiD_,B® |2, — 2,|* max (Il =", Iz o) (4.24)

for points z,, z, with (4 19) By (4 15), inequality (4.24) holds for thc function f defined
in (4.14). So it remains to consider the case |z, — x,| = min (|z,], |2,|)/5. But under
this assumption the Hélder condition for Vu, is a trivial consequence of.(4.18)

In the scalar case Green’s function g can be estimated from below in terms.of |z — y|-—"
compa.re [8]. We mention the following weaker result which is valid for N > 1.

Proposn blon Under the assumptions of Theorem.7 we have for all y € Q and k=1,...,.N-

lim sup [Gy(z, )] |& — y|"-2 > 0. ; . (4.25) :

=y

Proof: We use the notations from the proof of Theorem 7. Since E is homogeneous ¢ of degree
2 —n, hm sup |E(z)] |z|*2 =0 would imply E = 0. Therefore
—0

.

|E(z)] |z,I2=C, wveN, . - - o (4.26)

for some constant C >. 0 and a suitable sequence z, — 0. R.ecallmg (4. 9) we obtain the in.
equality .

16 = B — ;_21 (T E(z,) |

- Z (Tgn)’w(z.)’
=1 .

= |E(z,)| —C, X (CyRe) |z,|>" — C,R *b=n,
. NI=1

1

[

s
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and by (4.26) we get,
lim sup |z,|%2 |G(z,)] = C — C, Z (C,R%)},

which proves the proposxtlon if Ris chosen small enough |

Neéxt we use the well-known Campanato technique (see [3 ) together \Vlth Theo-
rem 7 to derive gradlcnt, bounds for Green’s matrix. .

Theorem 8: Suppose that (4 2) holds and let 0< ﬂ <L be gwen Then
|66 (=, y)éx] < C |z — Yl + Cs |z — I Ri+#=n L@ 27)

forall x € BR(y)\ lyh, y€ 2,0 < R < min (Ro, dlst (¥ 69)/4) Here C,, C,, Ro are the”
constants appearing in Theorem 7.

Proof: As before we may assume y = 0 € Q and use the notations from the proof
of the preceding theorem. Let R satisfy the above hypothesis and choose z € Bg(0).
Define D = B, 5(2); for 2, € D and 0 < ¢ <7 < diam (D) = ]z|/4 let the func-
tion » € H 1"*’(B,(:w:o)) be the solution of

—D,(A (%o) Dﬁf’) =0 on B,(z,), 'UOB,(z.) = GloB,iza >
which satisfies the Campanato estlmate [(7 Thm 2 1 /p 80)) .
[1Vojzdz < Cl(g[r)" J IVol2dz © (4.28)
. Bgl®) By(zo) . . ’
with C’1 = C\(n, N y3 A) The function w = G’ — v is a Solution of

[ Afiwo) D@Dyt dx = — [ (4]} — Al}(z0)) D,P' DG dic

y  By(zo) Bz -
fopall D e H1'2(B,(:r0))”. Inserting @ = w, a simple ca-lculation shows - |~ _
I 1Vw12 dz < Cp® [ VG dz. - S ' (4.19)' '
/:l r(-"«'of - Blze) - . :

Here C, has the former meaning. Combmmg (4. 28) and (4. 29) we get the following
" growth condition for .

pl) = [ 161 dz: glo) < 01((@/7)” 1) g0),
. Bulzo) - .

and a well-known iteration lemma due to Giusti [7: Lemma 2.1/p. 87] nnphes for all
0<n$’r<dlam(D) :
gl) S Cilel o), . g (4.30)

provided Ry is sufﬁmently small. Since this smallness condition on R, involves the
parameters #, N, L, 2, A, « we may assume that in the beginning R, has been chosen

in the right way. Let .
' (o) := [ IVG — (VO of* dz, (V)= £ VG d;

' Bo(l‘o) Bg(ro)
" according to [7: Thm 2.1/p. 80] the function v ‘satisfies A
J 190 = (Voo of dz < Co(@fr)™ [ [V — (Vo)a,,|* da. (4.31)
By(Zo) . Bzo) - )
" Comparing G and v as above, we get from (4. 29)—(4 31) S '5 .

plo)  Cille/r)™? pir) + *p(r)) S Ci(o/ry™*2 p(r) + r7+ed==" p(d)),
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= diam (D) From.the itemtion lemma, cited above we infer

o) S Gt ) + ), 0<e<r=d.

Choosing 7 := d we finally arrive'at,. - -

0T S Ot [ VGRdz, L ep)
Bjzyj2(2) ' : :

for all 2y € D and 0 < 0 S d. Thus VG belongs to the Carnpanato space Lz "“(D)"”

(compare [7]) and from (4. 32) we get the bound

sup |VG| < C’l |z| n/2 HVG”L‘(BIzuz(z)) o L

The Dmchlet mtegral of G over .B[z“g(z) is controlled by ‘
C, Izl 1 ”G“L'(Bamu(z)) '
Estlmatmg the L*-norm of G‘ with the help of Theorem 7 we get 427)1

We just showed that VG be]ongs to the space L "+°‘(D) ie. V@G € ¢ “2(Dy*¥ | but
the proof of Theorem 8 contains racre information: Take two points 2, z € Bgj,(0) \ {0},
|2 S 12|. Defining M = sup (IVG(z)|:z € Bup(z)} we et #0) = Cilgh)™*® )
4+ ) 2) and by the iteration lemma

Cyle) < 010n+2a{d—n—2a (d) + Mz} S Cyerteed- 2“M2

This implies ) . ST e T : _

' sup {|V6(@) — V6®)l/la — b]“ a+be Dy < oM. L 433

Case 1:z € D Then (4.27) and (4.33).give . | . . .
IVG(z) — VGG < |2 — 2 (G, [o'57~* + C [o| 1= Ri+o-nmy o

Case 2 z¢ D. Observirig [z — z| = [z|/8 the above estimatc is a trivial ‘conse-

) quence of (4.27).
We state these facts in

" Theorem 9» If 4. 2) is satisfied and if0 < B <lis gwen then
IV2G(z, y) — V G(x Y| = {C, max (|z —?/l‘ e —yl‘ ")
+ Gy max (g = 4|12, |7 '— y|=1=°) R +6-n) ¢ — z| -

V}‘ori all z, % € Bpjy(y) N{y,y€82 0<R<min (Ro,_dlst (y, 6!2)/4). Here ,C;, ,C'z'(md‘v
R, are as. in Theorem 7. . h . '

Accordmg to this estimate the «- Holder constant for 9G(-,y)/0x on rings B, (y) -
N\ B,(y) with sufflclently small radius grows of order y1—%—¢ when 7 becomes smaller. -
5. Some applications - S o ’

As Green’s funct,lon fora single elliptic operator has become a useful tool in various flelds (com- -
pare[9—11, 14]) we want to give two applications of Green’s matrix. We start with the descrip-
tion of the behaviour of a week solution to a homogeneous elliptic system having an isolated
singularity of préscribed growth. Thén either the singularity is removable or of order 2 — n
Our result corresponds to a well known fact for harmonic functions.
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Theorem 10: Suppose that (GA) holds and that the coe//zczents A s satisfy a Lipschitz .
condition on Q. Let 92 be of class C* and let u € HIL(Q2 \ {y})¥, y E 02, be a.weak solu- -
tion to the system L,,u’ = 0 on Q2 \ {y} having the following properties" :

(i There are constants C, & } 0 such that ju(z) = C’ lz — yl'+l " for
points x near y.

(ii) For some 6 > 0 and all balls B o(y) with su/jzczently small radius u
belongs to the space H'! r"(Q N\ B,(3 _/))” having boundary values zero on 99.

Then u = CiG(-,.y) on Q with suitable constants C; € R

61

Proof: We may assume y = 0 € Q2. Tt is easy to see (compare Lemma 3. 2) that
% € HY '(Q\B (0))¥ for all 1 < r <-co and small radii g, and the difference quotient
: ~method glves u€ H{"oﬁ(.Q N\ {0})¥. Since u vanishes atithe boundary we have the stronger
result € H> 2(.(? \B (0)) (compare [8: proof of Ths. 8. 12]; the tcchmque described
“there also applics to elliptic systems). Moreover, (i) lmplles the’ gradlent bound (Qee
proof of Theorem 8) .

Vu@)| S Clafr o e 6y

for all points x near the origin, where C is mdcpendent of z. Now choose O < Ry
< dist (0, 99), 0 < ¢ < R < Ry and z € Bg,(0) \ Bg(0). Let w = 'Gy(-, z). Then the
relation f A;{,Daw‘Dﬁ(D’ dz = ®*(z) holds for all @ € C,®(Q)¥. Take a cut-off function

e cow(o) such that 7 = 1 on T = Bg(0 )\BR(O), n =0 on Brp»(0) and insert
b = 17u in the above 1dcnt1ty to get = - A

u"(z f A:],,Daw‘Dﬂu’ dx 4+ f AY D w‘D,,(mu) da'= (1) +’(2)
N : 1Y

Since L;jui = O on.T we see that (v is the outer normal to 6T)

(1) = [ Aiw'Dgutv, dHT.
- aT . N

'Ok.)serv"inng € H2(Q N T)¥ and Lijuw! = O"'on QN T we go't
= —f Al D.w‘u’v, dH"-1 -

" For functions f, g'aB (0) - R¥ we let
Mt 9 A%y(g*Dftve. — Dag'fivg),-  #(z) = =fr..
Obwously, the above re]a.tlons can be rewritten as

Cuk(z) = jM(u w) dH™? — [ Ma, w) dHe-1, .

oBﬂ © o 8BR(0) )

Since uja0 = wlag =0 the first mtegral vamshes and mtegratxon by parts shows the :
ldentlty . A . -

f]l!(u w)dl{" 1 —fM(u w) dH""
R:2: 10) R 9B,y(0) : . , >

and we &rrive at the formula

) = — [ M, w) B! o o (53)

28,(0) . - ’ S .
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for all sufficiently small values of o. By definition we-have
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[ M(u, w) dH"* = wh(0 0) [ A D,;u’va dH"-1
aap(m ’ © 3By(0)
fA"( —w‘(O)) Dgutv, dH"1 fAi{,Daw‘ufvﬂ dH"-1 . _
639(0) 2B,(0) ' ' )
—'w‘(O)-a‘-—}—b—c ‘
_Since Liwi = 0 on Bg(0), m = sup {|Vw(z)|: z € BR/2(O)} is finite and we infer from
(5.1), (5.2) |b] = CAmgo™19*~" = const ¢, |c| < const e Moreover, :
a; —fA 1D guty, dH" l=:(;. )
2B R () /’/‘ ,
Now passing to the limit 0—0, (5. 3) becomes u*(z) = C; G"(z 0) for all 2 E BR (0).
Corol]ary 1 of Theorem 1 implies u = C;G,(-, 0) all over 21

1. According to Theorem 10 the column vectors of Green’s matrix G(-, y) form a basis of the
space X of all non-trivial solutions with,zero boundary values to the system L;w/ = 0 on
2\ {y} satisfying the growth condition (5.1) whichrequires a growth order less than [z — y[*-",
‘when z € .Q approaches the point y. After Theorem 7 we remarked llm sup |Gz, y)| |z — y|"?

> 0 and in Theorem 7 we proved an inequality of the form |G(z, y)[ S C |z — y|>-". On the

- other hand, u€ X \ {0} cannot satisfy a local growth condition of the form |u(z)| < C lx — y|3*e="
. for some positive ¢ (this would imply Vu € Ln/tn—1 nedr y.and therefore u = 0, compare the

following remark), so that the statement of Theorem 10 can be reformulated as follows: If u is
a non trivial solution of the system L;jui = 0 on 2{y} with zero boundary values which in-
creases of order less than |z — y|1~%, when 2 > y, then the growth order of u is exactly |z — y[2-%.

2. Let us replace condition (5.1) by
u€ fll-l“(Q)N f_qr somc'(S >0. ~ o - k:’).l)'

For 6 = 1/(n_— 1) an éasy calculation shows that u is a weak solution on the whole domain
and therefore vanishes identically. Consider the case p:= 1 + ¢¢ (1, n/(n — 1)). For suffi-
.ciently small values of |2 — y| we get the inequalities (asmmo y = 0)

(Vale)| < € 2|~ | Vall 28, ) (Proof of Theorem 8),
el sy grry S C 1172 1208 Hdllgp gy

« from which we get |Vu(z | < C =2 |l »2). Thus u. _satisfies a local growth condition of
-the form (5.2) and by integration we get (5.1) (i). Let us state this observation as

’ ; Corollary: The statement of Theorem 10 continues to hold if the local growth condition in (o 1)

8 replaced by (5.1)".

We finally return to the representation formula proved in Theorem 6 and want to
show that the solution to the boundary value problem:(2.1) has certain regularity
™ properties if the measure 4 does not behave too bad. :

. Theorem 11: Assume that (4. 2) holds and that w € H is the unique weak solutwn
of 2.1) with p € MY, ut = put — put, sa(zsfymg

5 [ le =yl A+ p) @) <eoforally e - (85)
i=1 Q .
Then the following statements hold:
(i) Each point y € Q is a Lebesgue point of u, i.e. the limit
%(y) := lim f u'dx
=0 Byly) -

of
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.. ~
exists for all y. Identifying u 'with the representative @ we get . Lo ¢
) = ka(y,x)dmz) WeRk=1,..,N). -

Q

(i) Fo'r all € > 0 and all balls BR(yo) = Q there ea:zsts a ball B,(y) = BR(yo) such that
the oscillation o/ u on B,(y) is controlled by . :
(ii1) If (5.5) vs replaced by the stronger oondmon

s . | .
i 'S“P{ flx—yl“d(m +ﬂ')(x)y€Q} ©, 1. (5.6)

o li-1 0
then u is looally bounded. A : ' ‘

Let £  denote a compact (n — 1)-dimensional manifold and defme, for A c Q, ,u‘(A)
= H"Y 4 nZX),i=1,..., N. Obviously, (5.6) is satisfied, so that all statements of Theorem
11 hold. Such propertles as local boundedness and generic continuity are not contained in Sec-
tion 1: Theorem 2 for example only describes the behaviour of » on 2\ Z, sothat u(z) could
behave most ifregularly in the limit 2 N\ 23z - z,€ Z. .

. . . o \

The proof\of Theorem 11 is based on ideas from [11: Thm. 2.3, 2.6], which we com-
bine with our previous results For further details we refer to [5: Section 5, Thm. 12].
Theorem 11 1mmed1ately apphes to elhptxc systems with quadratic growth; whlch
are studied for example in [7, 10, 11]. .

Theorem 12: Assume that (4.2) kolds and let u € Hl »2 nL°°(Q)N be a weak solutzon
of the system Lgu! = fi(-,u, Vu), i = 1,...,N, where { i3 a Caratheodory /unctzon
. sa,tzsfymg Ij(z Y, p | S a |p]2 + b with- posztwe constants a, b. I f

f |Va(z))? [x — Jl2 " dz is /zmte forall y € !2,

“then each, pomt 18 a'Lebesgue pomt and u is of class C? on'a dense open 'subset of 2.

“In [6] we had described another app]lcatlon of Green ] matrlx Suppose tha.t u’is a. weak
minimum of the quadra,t,lc functional .

AN

Fv= [ A%D, viD,,vf dz
Q

in a class-of functions described by a side condition of the form v - ¢ = vy for a fixed vector.e and '
a smooth real-valued function y. If the ‘coefficients satisfy (4.2), we hadshown that u is regular
in . The arguments rest on a careful analysis of the sign propertles of @ combined with poten-

* tial theoretic considerations. . . :

~ 6. Final reniarks :

.\
\

“Up to now we only considered the case n = 3 and nssumed the cosfficients of the system to be
continuous functions. Intwodimensions theexistence of Green’s matrix can be proved for bound-
ed measurable coefficients sutlsfymg the strong ellipticity condmon This follows from the

fact that for » = 2 the unique H-%.solution to the system L"uf —D,Et,i=1,..,N,on
- Q with Fe LP(.Q)"N for some p > 2 is continuous with vanishing boundary values, 8o tha.t the
method of Section 2 applies (compare [5] for details). In general it is possible to construct’
Green’s matrix by duality whenever regularity theorems are available. In higher dimensions
such regularity results for systems with L®-coefficientsare only true under additional smallness
condltlons Thus for provmg the existence of @ the continuity hypothesis can be dropped in

\

34 Analysis Bd. 5, Heft 6 (1988) |
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two dimensions and has to be replaced by a smallnéss condition in higher dimensions, respe¢-
tively. But it seems to be impossible to derive the standard estimate for G(x, ) in the more
general situation: the technique used in this paper does not apply since Lemma 4.3 essentially -
rests on the Hélder continuity of the coefficient matrix. For continuous coefficients the corol-
lary of Theorem 2 gives the information |G(z, y)] < C(e) |x — y[¢*1~" for all 0 < £ < 1, but the
right growth order can not be achieved by this simple argument. - -

We wish to remark that in the case n'= 2 Theorem 7 has the analogue

.

Gz, y)| = C)log(l/|z — yl) + C,RE-'log (R7Y) - *).
for all 2 € Bygly), y€ 2, 0'< R < min (R, dist (3, 92)/4) (notations as in Theorem 7). The
proof uses ideas -from Section 4 combined with an appropriate modification of the local esti-
mates in Section 1. From (*) one easily obtains gradient bounds and estimates for the Holder
norm of the first.derivatives. For details we again refer to {5]. .

“In this paper we studied Green’s matrix for strongly elliptic operators of the form L

=" (—D,(A42sDp)). By a suitabl€ extension of the method it is also possible to prove the exis-
tence of a Green matrix with the correct growth order for more general operators L = L
"4 (BYD, + aY), provided the leading part L satisfies the Legendre:Hadamard condition
and some mild regularity properties arc imposed on the lower, order terms. Since the details
are somewhqt technical, this gencrahmtlon is discussed in a- scpamte paper.
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Manuskripteingang: 10. 12. 1984
VERFASSER: -
‘ ‘Dr. Martry Fuchs

Mathematisches InsAtitut der Uhiversitéa’._t )
. Dr4QOO Diisseldorf, UniversititsstraBe 1

LY

. Buehbesprechung -

.~ G Hﬁixrﬁ and K. RosT: Algebréié Methods for Toeplitz-like Matrices and .Operators‘
- (Math. Forschung: Bd. 19). Berlin: Akademie-Verlag 1984, p. 212. S

The book under review is divided into two parts: Part I — *“Toeplitz and Hankel matrices” -
contains 9-chapters (sections, according to the authors’ terminology) and Part II — “Toeplitz.-
like operators” — contains 7 chapters. The book is supplied with a list of references.(117 titles),

" subject and notation indices. - : .o o
"Many characteristic properties of Toeplitz matrices can be deduced from. the fact. that
» AU, — U, A has at most rank two; here 4 is an m x n.Toeplitz matrix and U, is the matrix
of forward shift in the space . This leads the authors to consider such operators 4 for which
..rank AU — VA'is small compared to rank 4; U and V being some fixed operators. The authors

'_call such operators 4 'l‘ocplitz‘-likcAopcra_torfs. Let us explain the contents of the book under
review in more detail. : -
. T .

Part I is devoted to the algebraic- theory. of. finite*Toeplitz and Hankel matrices (7- and
H-matrices). The main problems are the following: ’ '
1. Fast inversion algorithms: ‘ o ) :
- 2. Structure of 7- and /-matrices, their rank and signature and the relation between 7':
“and H-matrices. . - R , s
3. Application to some.problems of Wiener-Hopf equations theory. ~
Chapter 0 contains some facts which"nre utilized on the full length of the book; in parti-
cular the notions of 7- and H-matrices are formulated and some special matrices of these
classes are described. o . ‘ : .
In Chapter 1 the problem of“inversion of 7'- and H-matrices is investigated. It is shown

that one can reduce the last problem to the problem’of the solution of two special linear alge-
‘braic. systems, which the authors call “fundamental equations”. Tf the fundamental equations
are solvable then the given matrix is inVertible and one receives a simple inversion formula.
The right-hand side of the second fundamental equation depends on the. given matrix. If
this matrix satisfics some complementary. conditions then it is possible to change the right-
hand side of the equation by a certain fixed vector. Fur’thcr, operators A and V.are intro-
duded, each of which transforms any m X » matrix into an (m 4 1} X (n 4+ 1) matrix.
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