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The Green Matrix for Strongly Elliptic System's of Second Order 
with Continuous Coefficients	 - 

M. Fucns	4-. 

Wir untersuchen eine Verailgemeinerung des bekannten Konzepts der Green-Funktion für 
ell iptische Gleichungen auf den Fall ell iptischerSystemezweiterOrdnung mit stetigen Koeffi. 
zienten. Wir beweisen Existenz und Eindeutigkeit einer solchen Green-Matrix G und disku. 
tieren mit potentialtheoretischen Methoden das Wachstumsverhalten in der Nähe der singu-
lären Diagonalen. Als eine rnogliche Anwendung betrachten wir Système mit voktorwèrtigen 
Mal3en als rechter Seite und leiten Darstellungsformeln für die Losung ab, ausdenen sich unter 
geeigneten Voraussetzungen neue Inlormationen gewinnen lassen. 

HccJiejyeTcH oo611AeHne 113BecTH01 110II1flu1l14 ysiiini I'puiia itim HnTHmecKm1x ypan-
HCHHII Ha cjiy5aft aJlJfl111TM4ecHIIx CHCTeM BTOpOI'O nopnga C HCflpepHBHLIMH RoB 11L11H-
raMu. goica3blBalOTCH CIICTB0BH14C It eI!HCBeHhIocTh TaRoti MTHLbI 1'p11}Ia 11 TeopeT14140
n0Ten111a3n,HMMH MCTOJ5M11 o6cymAaeTcFi ee Till poca B63111311 ciHryJrnpHoft gHar0flaini. 
RaK B03M0?+moe npeieiue PCCMTPHBIOTCH CHCTCMS! C npaBoft qacTbIO B DHe Bewrop-	- 
311a'iuoti Niepm H 131,1130HTCH l0MJIb! HpegCT3BJIeHHH AJIR pewenuii, 113 H0T0HX fl11 n0-. 
X0WHX npenoJ10ReHI1Rx MO+{HO flOJ!MTb 0fl0J1HI1TJ!bfl1O HHopMaumo. 

We study a generalization of the Green function for elliptic equations to elliptiè systems of 
second order with continuous coefficients. The existence and uniqueness of such a Green matrix 
as well as various estimates concerning the growth properties near the singular diagonal are 
proved. Moreover, one can derive representation formulas for solutions of elliptic systems and 
deduce from these further information about the solution even in the case when the right-hand 
side of the system is mi vector-valued measure of bounded variation. 

0. Introduction 

- In this paper we are concerned with the Green matrix for uniformly elliptic systems 
of the type	 - 

• i . = 1, ..., N,	 (0.1) 

on a bounded domain Q R', n 3. We assume that the coefficient are conti-
nuous functions on Q. 

For A single elliptic operator (N = 1) the existence and the properties of a Green function 
have been completely analysed in a recent paper of GROTER and WIDMAN [9], where also various 
applications are-treated. Their main result is: There always exists a unique Green function '9 
which satisfies 

c Ix -	g(x, y)	C Ix - y I 2	S	
(0.2) 

with positive constants c, C. In the case of elliptic systems (N > 1) very little is known. By 
means of Fourier transforms it is easy to show that for operators (0.1) with constant coeffi-
cients there exists at least a fundamental matrix which is homogeneous of degree 2 - ( com-
pare [13, 15, 17]). Apart from this, only the case of COO-coefficients . is treated: Joins [13], for
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example, shows the existence of a local fundamental solution and his proof uses the smoothness 
- of the cefficionts in a very essential way so that his method cannot be applied to operators 

with continuous coefficients. Global constructions of abstract Green operators 0 associated 
with a boundary value problem can be found in the book of HöRMANDER [12], where one also 
finds the remark that 0 is related to a "kernel function", but the properties of the kernel are 
not examined in detail. 

One could ask if it is worthwhile considering the case of continuous coefficients 
since we only deal with linear elliptic systems. This question has a very natural ans-
wer in the setting of nonlinear problems: Let u: S2  -+ RN be a minimum of the func-
tional

.F(v):=fa(.,v)Dv(Dpv J dx	 S 

with coefficients in C(Q x RN) satisfying the strong ellipticity condition. The Euler, 
operator associated with F has the form (0.1) with A() := a(x, u(x)). Since u is a 
minimum point of the functional F (defined on the Sobolev space 111.2) the regularity 
theory for variational integrals implies u E CO -, at least on a great portion of Q, com-
pare [7], so that we arrive at an elliptic system with continuous coefficients. Despite 
of this fact it would be desirable to prove existence of Green's matrix for systems 
with bounded measurable coefficients. But the experience in elliptic regularity theory 
shows that the existence of a Green function (with estimates) is equivalent to regu-
larity theorems for weak solutions to the homogeneous equation. Since such regula-
rity results fail to hold in the vector-valued case (compare the counter examples in 

we have to restrict ourselves to continuous coefficients. 
In Section 1 oLour paper we collect known regularity results for weak solutions of 

the system 

'L11u = —Dj.i on Q,	i = 1, ..., N, F E L' (Q)'.	.	(0.3) 

The basic statement is: For p> n the unique JJ.2(Q)Nsolution of (0.3) is continuous 
up to the boundary. Moreover, Section 1 contains various local estimates in LP for 
weak solutions of (0:3) which will be useful later. Using the global regularity theorem, 
we solve in Sèctioñ 2 the boundary value problem 

-	=yi on Q,	i = 1, ..:, N, u1 , =0,	 .	 (0.4) 

where u is a vector-valued signed Radon measure of bounded total variation. Here 
we follow an idea of LITTMAN, ST&1pAccHr.& and WErNEERGER [14] which can roughly 
be described as "duality, method". By choosing special measures t we conclude ex-
istenèe (and uniqueness) of a Green matrix 0 to the operator (L j;)j ;5QgN on the domain 
Q. Simple properties of 0 such as certain symmetry relations and continuity on 
.Q x Q \ {(x, x) : x E Q} are investigated in Section 3. Here we make use of the pre-
cise loCal results summarized in Section 1.  

Finally we show that the solution u to problem (0.4) can be written as-the convolu-
tion u = 0 * ,u. In Section 4 we discuss the growth properties of 0 near the singular 
diagonal. Assuming a HOlder condition for the coefficients we show by a perturba-
tion argument that 0 satisfies the - standard estimate (compare (0.2)) 

IG(x, y)I	C Ix - yI2	5	
(0.5) 

at least locally in the interior of Q, i.e. on small .balls compaCtly contained in .Q. By
Campanato type arguments we infer from 0.5) the local gradient bound laG(x, y)/3xI

C Ix - y''. In the' final chapter we give two applications of -Green's matrix: 
First we describe the behaviour of a weak solution u to the homogeneous system with
zero boundary values having an isolated singularity at y E Q, whereu grows of order 

PAI
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less than Ix -.	Then either u vanishes or grows exactly of order .x - y I 2 '• Asa 
second application we show that the weak solution of (0.4) has certain regularity pro-
perties if the measuie 4u satisfies the condition - 

sup fix —yI 2 dI 1uI,< cc.	- 
vEQ 

Here we use the estimates from Section 4. 

Notations: We make the following general assumptions (GA): 
- L	Q is a , bounded Lipschitz domain in R', n 3. 

11.	Let N EN be fixed and consider functions A E L°°(Q), i, j='i, ...;'N; 
= 1; .:., n. We define	 . 

(L,,) = (_Da(AipDp)) and (L,) = (—D(AD)) 
III. We assume that there are numbers ),, A > 0 such that 

•	a) max {jAIIoo:i,j='1,;..,N;cx,/9= 1, ...,n}	A, 
b) A(x) PP 	I P12 for all x E Q, P E RUN (strong ellipticity). 

--	'
 

Obviously III b) implies the. weaker LegendreIadamard condition 

IV. ' A(x) 	Iw12 Il 2 for x € S2, ,q € R', 4v € B?. 
• Here and in the sequel we use summation convention: Greek (Latin) indices repeated 

twice are summed from 1 ton(N).'IfD is an open subset of Q, we denote by Lf OC) (D), .	'S 

.11(10C)(D), H k.P(D) M the standard Lebesgue and Sobolev spaces of measurable func--
tionsD - RM , which we norm in the , usual ,way [1]. For balls B = Br(Xo) aiid func-
tions u E .Wc P(B)M we introduce thv weighted norm  

k	, 

IIUIIHk.P (B) =	r lIVk_iuIILp(..  
•	 i=O 

If  € L110 (Q)N , l' € L1l0 0 (Q)n N , we call u € B11 - 1 (92)' a weak solution of the system L.,i' 
=f—DF,i=1,...,N,onQif	 ' •	- 

-' f ADJi'DuI dx =f ('/' + F'D,'Ji') dx  

for all 0 € C000 (Q)9 . For the adjoint operator we have obvious modifications. In the 
sequel we will denote all constants by the symbol C and it will be clear from the con-
text on which- parameters C depends.  

1. Regularity results for linear elliptic systems	 • 

The purpose of this section is twofold: We firstly collect well-known global regularity results 
(compare [2, 15,17]) for linear elliptic systems which play an essential role in proving the exis-
tence and uniqueness of a Green matrix C to the system under consideration. Secondly we 
establish local LP-estimates for weak soluti6ns from which we derive various properties of 0. 

We look at weak solutions u:Q -- R' of the-system 

Liluf = f -	 = 1, ..., N,	 •	(1.1) 
• under the conditions	 •	. .	 • 

(GA),A.EC°(Q),	i,j= 1,...,N;a,fl=1,...,n.	•	 (1.2)
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With the' exception of Corollary 2 to Theorem 1 all results of this section remain true if we 
drop the strong ellipticity condition (GA) III b). 

Theorem 1 (MORREY [15: Thm. 6.4.8]): For 1 <p, q < cc let 'u E H I - P (-Q) ,' be a 
weak solution of the system (1.1) with / E L(Q)N, F € LQ(Q) N . Moreover assume that 
(1.2holds and that w € .W.(Q)N satisfies u - w E H1P(Q)' . Then u E H 1 (Q)' and 
there is a constant C = C(n, N, 2, A, p , q, co, Q) such that 

IUII Jf 1.q (Q) ^ C ( w llHi.Q(Q) T' I/IIL(Q) '+" IIFII Lg(Q) -f- IIU IIL(0)) .	.	(1.3) 

The symbol to denotes the modulus of continuity of the coefficients'. If for example the 
satisfy a uniform Holder condition with exponent ô and Hälder constant L, then to is determined 
by L and 6.	.: 

Corollary 1: For any 1 <p	cc the homogeneous system associated with (1.1) has 
only the trivial solution in the space H i.P(Q)N, provided condition (1.2) is satisfied. 

Hero and inTheorem 1 the continuity assumption on the coefficients -cannot be dropped 
since there are counter-examples of SERRIN [16] even in the case of a single equation. 

Corollary 2: Suppose that n. < p < co is given and that u € I1.2(Q)N is the unique 
Hilbert space solution to (1.1) with (1.2), where f  LP(S2)N, FE LP(Q)N. Then u € C0(Q)N. 
n H 1 .P(Q)N and we have the estimate 

IJU III OO (Q), IkIIHl,P( Q )	C(IIF IILP(n) + IttLP ( Q ) ),	.	.	 .	(14) 

where the constant C depends on the same parameters as in Theorem 1. Moreover, u 
boun'dary values zero in the classical sense. 

-Next we derive local versions of Theorem 1: consider an arbitrary point x 0 E Q, 
for simplicity we write 0 instead of x0 in the sequel. We define for i, j = 1, ..., N and 

€ Rn

Lou = —A(0) 1)1),, L 1 ()	—A(0) 

= det (Lo J ())Ij^5N , L01 () = cofactor of L01(). 

L0 (), L0 (), L0f'() are homogeneous polynomials of degree 2, 2N, and 2N - 2 re-
spectively. Finally denote by L0 (D), L0i'(D) the differential operators associated with 
the polynomials L0 (4), .L0i (). By means of Fourier transforms one easily produces 
a fundamental solution K to the operator L0(D) which has the following properties 
(compare [13: p. 69/701 and [15: p. 216/217]). 

Lemma 1.1: Under the assumptions (1.2) K is an analytic function on W \ {0}, 
essentially homogeneous of degree 21V - n. For all v E N0",jv j > 2N - n, the estimate 

ID'K(y) :!E^ C(n, N, ;.,A, vDIyl 21_nH,	E It" \ {0},	 (1.5) 

holds. Moreover, K is an even /unction and satisfies L0(D) K = 6 (Dirac measure 'in 0) 
in the sense of distributions on It". 

The following lemma contains all the needed mapping properties of the potential 
operator related to the kernel K.	- 

Lemma 1.2 [15: Thm. 6.2.1]: Suppose that (1.2) is satisfied.	. 
a) Wedefine for r > 0, f: B(0) --* It the potential operator Qr(f) (x) = f K(x - y) f(y) dy, 
x E B(0)'	 .	 B,(o)
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(i) Qr : LP(Br(0)) ± .H2 (Br(0)) is continuous for 1 < p < 00. 
(ii) For all I < p < 00/ E L1'(Br(0)) and v E N0' with jvj = 2N - 2 we have 

* F1 (Qr1)II!12.P(B,(0))	C	 C := C(n, N, 2, A, 1). 

(iii) Lo(D) (Q,/) = / almost everywhere on Br(0). 
b) Set Ek' = L01k ( D) K. Then £ is a fundamental matrix for the constant coefficient 

-	operator (Lof)j^-,,A', i.e. 

Lo I Ek'	öjL'OO,	- i, k = 1, .:., N.	 (1.6)
For y E It" \ {O} and v E N" we have the estimate 

ID'E(y)j E^ C(n, N, ;.,A, I v !) I y I 2 " .	 (1.7) 

	

Now we define potential solutions to the system	 - 
L0'1u = / —DF',	i = 1, ... N.  

• Definition: Under the assumptions of the preceding lemma for '/ E 
F E Ll)(Br(0))N, 1 :E^ p < oo, r > 0, we define for k = 1, . ., N and x E Br(0) 

(Prf)k (x) := L0k1(D) (QT/') (x) = f E(x - y) f(y) dy,	-:
B,(0) 

(PrF)" (x) 	L0 "(D) {D(Q rF')} (x) = f(DE1") ( - y) F'(y) dy. 
Br(0) 

From Lemma 1.2 we conclude 
LeTmma 1.3: If condition (1.2) is satisfied, then for-all 1,< p <oo and r.> 0 the - •	following statehents'hold:	 . 
(i) The linear operators P r :LP(Br (0)) W * .112 P(B(0) ) Y , Pr:L1'(Br(0))"'' _*H14(Br(0))N 

are continuous with bounds depending only on n, N, p, 2 and A, provided the spaces' 
ilk "(Br(0))' are normed by *fi . JlHk.1, k = 1, 2. 

(ii) For any f E LP(Br(0))'. and F € LP(B(0) ) rN the function U := Pr(f) - .Pr(F) E 111 P(B(0)) N is a weak solution of (1.1)0 on the ball Br(0). Moreover, i/f andF have compact 
support in B(0) and if u belongs to the class 11L1 and 'is a weak sol-ution. of (11) on 

•	Br(0) with compact support, then u = U. 
Before stating the local regularity theorem for eak solutions of (1.1) ive introduce 

a class of operators which measure the deviation from the constant coefficient case. 

Definition: Assume (1.2) and define for 1 < < cc, 0 < r < dist (0, EQ), - 
i= 1, ..., N, a = 1..... n the perturbation. operators T r 11(Br(0))	- H'P(B(0)); 

T(u) .= P(F), F = (A.00 - A(0)) Dflu. 
Introducing the *norm on Ii 1P(B(0) ) N , we get from Lemma 1.3 

*11T P11	C(n, N, p, ;,A) osc A, osc A	1 1A - A(0)IIL(s,()).	(1.8) •	 Br(0)	B,(0) 
and moreover  

	

v := ' Tr U.iS a weak solution to the system	 S..	 •'	-. 

L, ijv i = D((A '- A(0)) Dpuf),	? = 1, ...,N, Ofl Br(0).	(1.9) 

	

In vic'.v of the uniform continuity of the coefficients on	we conclude from (1.8) that the 
*Ij.IInorin of the perturbation operators	is smaller than somegiven e uniformly for all base'
points 0€ Q, provided 0 < r < dist (0, Q) and .r does not exceed a, certain bound r depend-
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ing on n, N, p, A, A, e and the modulus of continuity of the coefficients, i.e. we have 
*IIT,.vII	a for all QE £1, 0< r	min (re , diet (0, aQ)).	 - (1.10) 

We now sgrnmarize our local regularity results. 

- Theorem2 (compare [15: Thm 6.4.3]): Let 1 <p, q <oo, I  L c (Q)N and FE 
L(Q) and suppose that u E H/](Q) isa weak solution o/(1.!) under the condition (1.2). 
Then u belongs to the space H(Q)N br 

-.	 (np/(n - p) .	if p < n. 

	

= mm {q, s(p)}, s(p) 
= 100	if p ^! n.  

From-the. próof of Theorem 2 we willdeduèe the following 

Corollary: Let 1 <p <n/(n - 1) , assume that (1.2) holds and define q = np/V 

(n - (n - 1) p). Then there exist constants C depending on n, N, p, A, A and R 0 deter-
mined by the same parameters and in addition by the modulus of continuity of the coeffi-
cients such that	 V	 V 

*IIU II H1 q(B())	Cr'	IUIIH1.P(B,(x))	
V	 -	

(1.11) 
V• 

-	

*11111JfI,I())	Cr' I2r'IP' IIUIIHI .P(B.,(x))	 .	 (112)	V 

for all balls Br(X), x E Q, 0 < 2r <mm (2R0 , dist (x, aQ)) and for all it E H''(B2r(X)) 
•	 -

 

satisfying Lu = 0 on B2r(X). If u satisfies the homogeneous system only on the punctured 
ball B r(x) \ {x}; . (I. 11)  becomes	

V 

•	V -	IIuIILQ(T) + lIVuiILan ^5 Cr1_n*IIuI.,(z)),	V	

(1.13)' 

where T = B(x) \ B 12 (x).	
V V

	

•V 

Proof of Theorem 2: (i) p <n and p s(p) q: We have to show that u E 
Bh.8(B,(x)), s: s(p), for x E Qand sufficiently smallvalues of r. To this purpose we 
may assume x. = 0 E £2'and take 2r < dist (0, eQ). Furthermore, let' ii: =77u E 

where 97 E C°(B21) VS an arbitrary cut-off function. fi is a weak solu-
tion of the system -	 - 
V 

L,j,fil 	7' - D0(F' -	= 1, ..., N, on B2(0), 
where we defined for i= 1,...,'N,a=1,...,n	

V 

± FaD -, AD , rjDfiu ,	P' = A/Dflj + 
G= (A 40 - A. (0)) Dflü.  

Since .7, , G have compact.supportin B21 (0) 1 we infer from Lemma 1.3 (iii) 

ü - Ti& = P21-(1)_P21(F)=:	 (1.14) 

Observing	 V	

V	 V	

V	

V 

	

V 

P2(1) E H2.P(B2T(o)) &	llh .8(B2;(o)) w ,	P2r(1') E H18(B2r(0))5  

•	we get (p € H18(B20))N. According to (1.10) there exists R0 depending on the stated 
parameters such that	 V	

- V 

*IlT r Il	1/2 for 2r	mm (2R0, dist (0, aQ)).	
V V 

Fixing such a radius i, we see that the operators Id - T, Id - Tr are one-to-one 
and 'onto: Consequently we find w € if 1.8(B2,(0))N with the property (Id - T) (
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= (Id - T 1) w. Using the fact that Id - T,. is an isOmorphism of the space H"P we 
see ü = w, since T2., = Tr on the space 111,8. Choosing 77= 1 on Br(0) we arrive 

at u E Bh.8(B,(0))N.	 -	 - 
(ii) n	p	q: Define t.= nq/(n + q) € (1, n) and observe 

u € Hj(Q)', F € L 00 (Q)'', / € L0(Q)N. 

Since q is the Sobolev exponent corresponding to t the assertion df the theorem fol. -. 
lows as in case (i), replacing p by t and s by q. 

(iii) p	q: This case is trivial I	- 
Proof of the corollary: Again assume 0 E Q; according ..to (1:10) we find B0 such 

t. thafork=0,...,n-1 	' 

*lITII ^5 1/2 for 0< 2r < min(2R0, dist (0, 3Q)),	8k = n.p/(n — kp). 

Now let u € Hh .P(B2 .(0)) N satisfy Lu =0 on the ball 'B2 ,(0). Using the notations from 
the proof of Theorem 2 we get according to (1.14) that	 - 

u —T	= P27(1) - P2 (F)	(k '0, ..., n—i),	 (1.15) 

where we suppose that r satisfies the above-stated smallness condition. Now choos 
ing 71= 1 on B3 r12 (0), I V	c/r, (1.15) immediately implies the inequality 

*11u11 13/2	._Cr'' *IIuIh 2 ,	 .	-. 
where *II.lIkp ; r denotes the *norm in H' P(Br(0)) Inequality (1.11) now follows by 
a simple' iteration argument, (1.12) as an easy consequence of (1.11) (use HOlder's 
inequality). To prove the last statement of the corollary we proceed as above, the 
only difference is that we use cut-off functions 77 with compact supports on rings 
centered at 0 I 
2. Systems with vector-valued measures on the right-hand side 

In this section we use the results of the preceding paragraph to prove existence and uniqueness 
of a weak solution to the boundary value' problem 

L1ui = zt, i = 1.... . N, onQ	-., uja	0,	'	,	 (2.1) 
whenever	i = 1.... . N, are'prescribed signed Radon measures with finite variation. We will
show that (2.1) admits a unique weak solution in the space 

I! = fu: Q —* RN I u E H1.T(Q) N for all 1	r < n/(n - 1)). 
The idea of the proof follows arguments of LITTMAN, STAMPACCHIA and WTEINBEROER [14]. 

In the sequel we denote by M(Q) the space of all signed Radon measures u on Q 
with finite total variation l,ul (Q); M(Q)" is the space of all u = (it', ...'N) with corn- 
ponents ui € M(Q). Obviously G'O°(Q, RN)*. (dual space) is isomorphic to 1lf(Q)1V 

[4: Thm. 2.5.5]. From now on we will use the norms  

Ullr = II VU IILr(Q), ITII_ 1. =inl {11X11I5v(Q): X €

	

	represents'



epresent T} 

on' the spaces J!1T(p)N and H— '-P(Q)Y , respectively. Then there exists a natural 
isometric isomorphism  

KP -.	: fJ1.P(Q, RN )*	H_ 1 .P('Q) ,	7): = p/(p  

:33 Analysis lid. a l heft 6 (1986)

I
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We therefore agree to identify tIe spaces 11 1 P ' (Q , R')* and H- I.P(.Q)N ., In conclusion 
we can consider any functidn u  H1P'(Q)N as an element of H_ 1 P(Q, R)* by defin-
irg (u; U) =(U, u) for U E H_1.P(Q)N. 

For solving the boundary value problem (2.1) we assume	- 

(GA) and A' .1*0. E C0()	(i,j	1,..., N;	= 1, ...,n).	(2.2) 

-	Then by the LaxMilgram theorem the solution operator 8: _1.2(Q)1 .. 
v = 5(T) being the unique fj1.2_S.ojutiojj to the adjoint system Lv = T, i = 1, . 
N, on Q, is well-defined and continuous. The"duality method" introduced in [14] 
is based on the following principle: Corollary 2 to Theorem 1 implies that for values 
n <p < oc the solution operator  maps H- 1.r(Q)N into the space c00(Q) N of func-
tions v : Q - RN which' are continuous on Q with boundary values zero. Therefore 
5* (dual operator) maps linear functionals i defined on ' a certain space of continuous 

Junctions on functions u,. E H1.P(Q)N, and we will show that u, is te natural solution 
to the system (211). 

To be precise.we consider for numbers 1 s r < 00, p> n the embeddings 

irs: h1.T(Q)N * H18(2)N,	)r8 H_ 1 . r (Q)N ^ JJ-1.e(Q)N, 

-	lip : J1.P(Q)N. C00(Q)N	 S 

and define the linear operators' 

Z,: H_ 1 .P(Q) N .- J1.P(Q)N,	(T).	Soj2(T),  
SP : H .P (Q)Y -c00 (Q)N ,	S=hoL' -	 - 

with norms depending only on n, N, p, A, A, Q and the modulus of continuity of the 
coefficients. For exponents p> n we look at the dual operator 

Sp*: C0o(Q , RN )*	H_1.P(Q,RN)*,	u-,uoS,. 

Recalling the isomorphism' mentioned above we have a continuous linear . Operator' 5* : M(Q)N . J-I1.P(Q)N which satisfies 
•	

- 
j$p*(L)p	C j I (Q)	for all'/2 E M(Q)N 

for some positive constant C which only depends on n, N, p, 2, A, Q and the modulus 
of continuity of the coefficients.	.	 . 

It is now easy to show thatsp*(,u), u E M(Q)N, induces the same element in H l-'(.Q ) N. 

for all values p >n. Let q> p > n be arbitrary and observe the relations 

• Ep 0 j,p = iqp 0 Eq', - h o iqp = hq , Sp: lip 0 L', - 8q = h, 'o Eq, 
- S	 - 

•)qp - 
ipq, 

from which we get Sq* =	0 5,*. This relation-has the following interpretation. 

Lemma 2.1: If (2.2) is satisfied, then for arbitrary real p, q > n and masures 
,u E M(Q) we have Sq*(1u) = 5*() I H1.r(Q)N for r =min {p/(p 1), q/(q —.1)}. 
There/ore Sp*(u) induces a Sobolev function u E H ''(Q)' which is contained in the 
space H.	 . 

	

We an now state-the main result of this section	 -	- 

	

Theorem 3: Suppose that (2.2) holds and that E M(Q)N is given..	 • 

(i)The function u, de/ined in Lemma 2.1 is a weak sbution of problem-(2.1).
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(ii) For r € [1 n/(n - 1)) there is a constant C depending on n, N; r, A, , Q and the 
modulus of continuity of the coefficients such that	 - 

J!UpJIH .r(Q ^ C Lu! (Q). 

(iii) I/v belongs to the space J11(Q)N for some s > 0 and is a weak solution of problem - 
(2.1), then v = u. 

Definition: Under the assumption (2.2) we call the function u defined in th 
preceding theorem the weak solution of the boundary value problem (2.1). 

As a simple consequence of Theorem 3 we have the following approximation 1eñma. 
Le min a2.2: I/m,zm EN, belong to the space M(Q)'' withthe property 

urn f / d/Am = f /' d	for all -/ € C00(Q)N 
m—*ooQ	 (2 

• and if (2.2) is satisfied, then we have weak convergence	for m 00 

1 <p <n/(n - 1), for the correspaiding solutions of he boundary value problem (2.1). 

3. Definition and first properties of the Green matrix 

- First we apply Theorem 3 to sho'w existence and uniqueness of a Green matrix .G of the system 
under consideration. Elementary properties of 0 such as continuity on domains that do not 
meet the singular diagonal follow directly from the local regularity theory stated in Section 1. 

• Moreover, we prove a representation formula for the weak solution u to problem (2.1): u 
equals the convolution U * ,u L-a.e. on Q (L means the n-dimensional Lebesgue measure 
onit"). 

Definition: Assume that (2.2) holds. (i) For , y € Q, k = 1,..., N, denote by 
Gk( . , y)€ H the unique solution of L 1 v i = &k,, i = 1, ..., N, on Q, v 1 = 0. 

G: Qx Q * Ru', (x, y) -* (Gk (x, y))1i.k,^N;	 - 

is called the Green matrix for the operator (L I ) l1.N on the domain Q. 
(ii) For y € Q, lo > 0 we define the Radon measures	 •-

L"(B(y) n 12)1
	 L B(y) n Q,	i = . 1, i.., N, 

(cf. [4: p. 54]) and denote the associated solution of (2.1) by the symbol Gk( . , y). We 
call Ge -the mollified Green matrix to	 on the domain Q. 

(iii) If the differential operator Ii is replaced by Lt, we use the notations tQ , tOe. 

•	The resultsfrom Section 2 are summarizedin 

• Le nfm a 3.1: If (2.2) is satis/ied;then for ally E Q, Q > 0 the followingslatements are 
true:	 - 

•

	

	(i) G( . , y) € B(Q \S{y))	for ,all 1	r. < oo; in particular G( . , y) € CO -X (Q\ {y})N. 
(ii) Ge(., y) € 

J1(Q)N for all 1	r < oc; in particular Ge ( . , y) ECOa(Q) for all 
0<a<1.	 -	 - 

(iii) For each p E [1, n/(n — 1)) there exists a constant C.depending on n, N, p, A, A, Q 
and the modulus of continuity of the coefficients such that 

II G (, y)II,1'.v(Q), l! G , y)I!l,'.,(D) !!^: C.	 - 
(iv) G( . , y) -- G( . , y) for 	0 in H I - P (Q) N ' for 1 <p <n/(n - 1).	• 

33*
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The integrability properties of G( . , y) as stated in part (i) of the lemma can be 
improved. 

Lemma 3.2: Assume 2.2) and let B(y) be a ball compactly contained in Q; Then 
G( . , y). E ll 1 (Q \ BR (y)) for any exponent r < oc and 

II G (-, Y)IIn'.'(Q\BR(y) :5 C	..	-	 '-	 (3.1) 
for sorne.con.stant C depending on n, N, ,., A, Q, r, BR (y) and the modulu.s of continuity 
0/ the coefficients. (3.1) holds (with the same C) if G( . , y) is replaced by G( . , y), provided 
e<R. 

Corollary: For g <R and 0< x< 1 . the CO-'-norm- of Ge ( . , y) on Q \ BR (y) is 
estimated independent of o. 

We omit the simple proof of this lemma. The corollary provides a useful tool in 
proving certain symmetry properties of Green's matrix. 

Theorem 4: Under the a.ssumptions(2.2) we have for all points x, y E Q and inte-
gers k,l==1,...,N	 . 

G(x, y) = ( tC(y, x))T,	i.e. Gk'(x, y)	tojk(y, x).	 (3.2) 
Co io 11 aries: 1. 1/ the coeflicients are symmetric, A/ = A,, then G(x, y) = G (y, x)" 

for all x,y EQ. 2. For5any x, .y E Q, 0< g <dist(y, EQ), 
O(x, y) = ( tG(z , x))T dz =	G(x, z) dz.'	 (3.3) - 

	

Be(y)	 .. ..	. 

Since 'G(., x), for fixed x,'is a continuous function on 12 \ {x}, formula (3.2) shows continuity 
- of G(x, .) as a function of the second argument, which is not a direct consequence of the-defini-

tion. Corollary 2 justifies the name nolli/ied Green's matrix for G. 

Proof of Theorem 4: Let x j EQ and choose sequences (p,), () tending to 
zero such that  

G(' , y)	G( . . y), tG(, x)	to(., x) ate. on Q.	 (3.4) 
Abbreviating 0'	y, t(P = tG( x), B, = B ,(y), Bu 	B(x), we get 
from the definition of the mollified Green matrix\ 

a+ t0, M dz=f Gk" dz,,	k,l=1,...,N.	 (3.5) 
B,	 B  

We know tOU ta( . , x) =: IG fOr j - 	in fJ1.P(Q)N' 1 <p <n/(n — 1), and 

C' dz_,	0'(x) by the continuity of 0' at x, 

so that (3.5) implies the relation 

-	0k1(x)=Jt0lkdz.	 .	.	-	 (3M) 

Since'tO is continuous at the pointy we may pass to the limit i' –* oc in (3.6) to get 
tk(,) = Jim (lima)	and	Gk'(x) =hm (lim a).	 (3.7) 

Now (3.2) follows from (3.7) since a kI converges uniformly in v as u tends to infinity. 
To prove this fix 0 <1? < Ix — y l . Then, by the corollary of Leihma 3.2, there is -a 
constant C independent of v such that for any giveI 0 < a < 1 the C°-norm of
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0' on the ball BR (i) is estimated by C. Arzela's theorem in combination with (3.4) 
implies

JIG,- GlILoo(fi,o ( X ) ) -_-+ 0, therefore :f 0' dz - :f 0 dz	0 
-	B,	 B 

uniformly with respect to y I 
Proof of the . corollaries: 0(x, y) = G(y, x)T is trivial since 0 = tQ inthe.sym 

metric case. (3.3) follows from (3.6) by replacing p, by Lo< dist (y, Q)I 
As already remarked, the symmetry relation (3.2) implies' certain continuity 

properties of Green's matrix. Now we are interested in the regularity of 0 as a function 
of two variables. 

Theorem 5: 1/(2.2) holds, then 0 is locally Holder continuous on Q x Q \ {(x, x) 
x € Q} with any exponent 0 <cx < 1. 

Proof: Let 0 <cx < 1 and define p = n/(n - cx), q =n/(l - cx). Consider two 
points x + y in Q and choose r > + 0 so small that	. 

(i) r < Ix - y I/4 ,	'B27 (x) u B21(y)	17. 

Accoiding to Theorem 4 and the; corollaries, we have for-points (x', y') € B(x) x B(y), 
= max (Ix	x'I, ly - y') the estimate 

y') - Ge(x, y) :!E^ G(x', y') - G''(x, y')I ± IG(x, y') - G(x, )I 

• 0

	

+ tG(u, x') - tG(u, x) I du ±	x) du - f G(u, x) du 
-	 B(y)	 -	Be(y) 

--	 O(x', u) - G(x, u)J du +	x) - tG(y , x)j du 
B(y)	 B(y)  

•	+ f I tG(u, x)'- tG(y , x)l du := a ± b+ c.	- 
- Bp(y) 

In addition to (i) we require 
(ii) r :E^ R0 , R0 defined in the corollary to Theorem 2.•  

Applying estimate (1.11) to each function O( . , u), u € BQ (y'), we get by the Soolev

	

- Embedding Theorem and Lemma 3.1 (co = C0 (n, N, 2. A, cx))	-	-' 

*JIG( . , u)IIHI.Q(B,(X)) 	Car'	*J I G( . , u)Ij,(1.v(B,)	- 

r1	II G(, u)IIJll.(0) < C1r',	- 

where C 1 also depends on 17 and the modulus ofcontinuity of the coefficients. This T 
implies a	C1r'. Replacing G( . , u) by ta(., x) in the above argument we get the
same bound, for b and C:  

G'e (x', y') - G Q (x, y) :E-, C1 r' 0 .	 (3.8) 

To prove (3.8) for 0 we observe	'	 S 

	

G(x', y') - G'(x, y)	G(x',y')	GQ (x', y')I + IG', y') - G°(x, )I 

'	 -	+'I&(x, y) —G(x,y)j.	,	'	'	0 

The-first and the last term on the right-hand side-are estimated as above, for the 
second term we use (18), so that	 0 

I0(x, y) - G(x', y')J	C1r'"" for 	(x', y') E Br(X) x B;(y) I	-
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As a first application of Green's matrix we detive.a representation formula for the 
weak solution of the boundary value problem.- 

Lijul = 1u,	i = 1, ..., N, on Q, ujac =0 	(u E M(Q)N).	(3.9) 
Theorem 6: 1/(2.2) holds, duE M(Q)N is a vector valued signed Radon measure of 

finite total variation and if U E H denotes the unique weak solution of (3.9), then fr 
L'-almost all points y E. I?	 . 

uk(y) = f tGki(x,y)ddui(x)fG.k(yx)d(z)	k=1,...,N.	(310)

For the proof we heed  
Lemma-3.3: Assume that (2.2) is satisfied and that  ^ Oisa/inite'Radon measure on 

Q. Then	.	•. 

(i) . G is (v xL")-measurable on Q X Q. 
(ii) Jot d(v xL") is finite; especially the function 'S? y -* f G(x, y) dv(x) belongs 

•	 QXQ	
'.	

'	 Q	- 
to the space L1(Q)N'. 

Proof of the lem'ina:..(i) By Theorem 5 the statement follows if we show that' 
(v'xL) (D) = 0 for the diagonal D = {(x, x): x E Q}. To this purpose we choose a 
sequence of disjoint Bore! sets (A 1) such that Q = A 1 u A 2 u ..., L"(A 1 ) :5: e, where 
s > 0 is given. We get  

(vxL") (D) ^!'(vxL") (A,xA,) =.^Jv(A,)JJ'(A,) 

'and by the finiteness of v we -conclude (v xL") . (D.) = 0.	 - 
(ii) Since, I GI is a non-negative (v x L')-measurable function, Fubini's theorem im-

plies  

I I G(x,y) I d(v x L) (x, y) = f (f I G(x, )J dLn(y)\ dv çx	 - '	- 
QX O	 92  

	

S	 ,	 '	

Q(Q 

ItG(Yx)IdLn(y))dv(x)  

and by Lemma 3.1 the inner integral is bounded by a constant independent of x I 

	

Proof of Theorem 6: We may assume that	i = 1.... . N, are positive Radon
measures of finite mass, otherwise we decompose y i = u+1 - /-Z-i. Choose y € Q,. 
1	k N and 0 < Q <dist (y, aQ). Testing 'the weak form of (3.9) with tQe(.,y) 
€ Co n J1.2(Q)N we get .	 .	 . - .

	u! d; = f 'Gk,	y) d(x)	f (	z) dL(z)) ddu'(x) 
•	 B(y)	 Q 	B(y) 

	

(f tG(x, z) ddu'(x)\ dL).	--

Be(y)\2  

Here we used Lemma 33 with 0 replaced by W. Observing that L"-almost all points' - 
are Lebesgue points of u' and the function  

/k Q 3 z -f t Gk'(X z) d1u(x)  

we define Q0 tobe the common set-of Lebesgue points-of ut' and /k, k = 1, ..., N. 
Obviously, L"(Q,\ Q0 ) = 0 and (310) is valid fof all y E Q0 1 --	 .	- - - -
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4. .Growth properties or Green's matrix 

In the scalar case N = 1 most applications of Green's function g depend essentially on the 
growth 

'
properties of g near the singular diagonal, compare [9-11, 14]. The purpose of this 

section is to prove at least a local version of the standard estimate, i.e. we want to show. 
•	 •IG(x,y)I	.ClxyI-	

0	 '

	 (4.1) 

for points x, y in small balls compactly contained in Q. This behaviour of C is suggested by the 
• growth properties of the fundamental matrix B for systems with constant coefficients (see Lem. 

ma 1.2). For technical reasons (compare Lemma 4.3) the proof of (4.1) only works in the case of 
Holder continuous coefficients so that we assume for the rest of.this 'section 

(GA) and there exist constants 0 < a < 1, L 0 such that 

sup {I A (x) - A (y)I/Ix - y I : x +Y E 01	.	'_ '..	 (4.2) 

Under this -assumption the basic local estimate (4.1)' is proven'in Theorem 7. As a consequence 
of. this theorem we derive ineqáalities-concerning the Irehaviour of the first derivatives of 
Green's matrix near the diagonal.  

The method of our proof is based on a pertubation argument: We freeze the coefficients at 
an arbitr.ry point y E Q 'and write G(x, y) = E(x - i) + H (x), where E denotes the funda-. 
mental matrix for the operator with constant coefficients . A(y). Using the Holder condition' 

•

	

	(4.2) it is possible to control the size of the perturbation Ii at least locally near y. We h6pe to 
be able to extend our technique to derive global estimates for U up to the boundary. 

Theorem 7: Suppose that (4.2) holds and let 0 <,< 1 be.given.. Then there are 
constants C1 depending on n, N, L, A, A, a, R 0 also depending on j9and C2 also depending 
on j9 and Q such that  

- •,	 IG(x, y)	C1 JX - y 2 ± C2R'+	 •	 (.3) 

/or all x € BIR (y) \ {y}, y € 'Q, 0 <B	mm (.Rc, dist (y,-aQ)14). 
Corollafy: Let y  Q be given. Then ,-there exists R depending on n, N, L; 2, A, a 

and dist (y, Q) such'that  

IG(x, z)I	C1 jx - z 2 " .+ C2R', - 	"	(4.4)

/o, all x, z € BR (y) Q. Here C 1 C2 are as in Theorem 7 with i = a. 
• (4.4) is the precise formulation of the local estimate (4.1): Since R -*. 0 when y approaches 
the boundary OQ we see that inequality. (4.4) essentially depends on the location of the ball' 
BR(y). ,	 -	..	 , 

Since the proof of the theorem is lengthy we found it useful to proceed in several - 
steps summarized as Lemma 4.1'—'4.3. From' now on we assume that the assumptions 
of Theorem 7 are satisfied. Define p '= n/(n — ), q = n/(t — ),	= n/(n. - a)
and assume that y := 0 is contained in Q. According to (1.10) thre exists B0 such 
that	•	 ••	'	 - 

*IIT R]I ;5^ 1/2,	.s = po , and s = np/(n - kp),	k- 0, ..., n — 1, 
(4.5)' 

for all ' 0 <B	mm (Ro,' dist (0, Q)14). Fix B with (4.5) and' for 1 5- k 5. N let 
G:= Gk(-, 0), E := Ek and,	 • 

w := C — T'RG — E € H1P(B2 R(0)) N' .	r . '	 •	(4.6)' 

(E is defined in Lemma 1.2b)). Obviously, w belongs to the space fl {H1T(B2R(0)) N  1 
r < n/(n — 1)} and from, (4.6) we infer'L 1w = 0 on B2R (0). I conclusion, w is 

analytic on BSR(0), especially bounded on any ball BT (0) with radius r <2R. The 
following lemma shows boundedness of w on the vhole ball BIR(0).
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Lemma 4.1: The function w is contained in the space Hl,q (BIR(0 ))N and satisfies-the 
estimate *IIWIIq.2R 

Here and in the sequel we abbreviate j•	= II. Jfi.(fi,(Ø)). 

Proof of the lemma: The corollary of Theor. 2 implies *IIW jIqR	C2R1_t8 *IIwIIp.2R. - 
To estimate the norm on the right-hand side we use the defining equation (4.6) : , - 

'S	 {Lfl(B2R(o)o II GIIL'(B,o)} + IIVGIILv 

	

C2 VGLP ^ C2 o := -_ 7 -	s(p) := 
•	 p	np	 n — p 

by Lemma 3.1 (iii). From (4.5) and (1.7) we infer 

*IjT RG p2R ^ -	 C2,	*Ep2 RI 
in conclusion,	 S 

*IIW II q.R	C2R 1 '.	 -	 (4.7) 
To complete the proof of the lemma we have to show	 • 

S	
kIUtILa(T,R)+ II VU IILQ ( T,R)	C2R'-	 .	.	•.	 (4.8) 

for the functions u := 0, T0, E, where T2R denotes the ring B2 (0) \ B(0). For 
u := E (4.8) is already contained in (1.7), for u := 0 we use estimate (1.13). Drop-
ping afl indices we let w(y) A(y) - A(0) and write for x € B2R(0) 

•	 TR0(x) =7 V2'K(x - y) w(y) V0(y) dy	 .	. 
R2R(0)	 - 

-	
= 

f ... dy +.f ... dy =: p1 (x) ± 992(x).' 
B,,12(0)	B2ft\BR12	.	 . 

Obviously, 2• P2R(F) for F(y) := 0 on BR12 (0); .F(y) :==w(y) VG(y) on B2R(0) 
\ B12 (0).	1.3 implies  

• * 2 I1 1.2R	C2 IF16 ( D) :!9 C2 I! VOII Lq(D) 	C2R'- 1 ,	D:r= B2 R(0) \ BRI2(0), 
by a version of inequality (1.13). Since	is of clas C' on T2R we get (4.8) for p1-by 
direct calculation. Combining (4.7) and (4.8), the assertion of the lemma follows U 

Using w E JJI.(B2R(0))R, we can rewrite (4.6) in the form	 - 
Co 

C = E + E (T RY E +E (T R ) 1 w on B2R(0)	 (4.9)

where the last term on the right-hand side satisfies (use (4.5)) 
* 00 

' (T)1 w < *I) 2R < C2R1', 
1=0	 Iq,2RI • 

and by -the Sobolev Embedding Theorem we get	 - 
00 .	 S 

•	sup Ew <C,R'-'.	\	 (4.10) 
-	B2R(0) 1=0  

Estimate (1.7) impliesE(x)I- C1 IxI2- for all x	0, so that (4.3) follows from (4.9)
and (4.10), provided, the sum over 1 of all (T)' E has the correct growth. The cal-

• culation of the growth order of this remaining term is contained in 

-
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Lemma 4.2: Suppose that a,r are real number's satisfying 0 < r, a <'n, a + 'r >  n. 
Then for all x, y € R 

	

Ix - zIIy - zh dz ^•C(n, r, a) Ix 7 yfl_O.	 (4.11) 
Rn 

Lemma 4.3.:- Let u1 = (T)' B, 1 € N0 . Then there exists a constant C1 = C1 (n, N, 
L, ).,A, x) such that for all balls BIRO) c: Q and all points x, x1 , x2 € B2R(0) \ {0}, 

- R < 1, the following estimates hold:	 . 

(i) IVuj(x)I !E:-^ C +lRla lx! i_n ,	 S

(4.12).. 

(ii) Vu,(x 1 ) - Vuj(x2 )I ;5 C'R' x1 - x2I" max (Ix1I', Ix2I'''). 
The proof of Lemma 4.2 is an easy calculation, whereas the proof. of Lemma 4.3  

is somewhat more involved. We therefore first finish the proof Of Theorem 7: For 
I € N, x E BIR(0) \ f0j we have	 S	 S 

•	I(T)' E(x)f =	f V2''K(x - y) o(y) Vu11 (y) dy 
•	 B2n(0) 

	

C1R f Ix - yjl_fl C1tR(1-1) y11_fl dy	C11+1R1lx12_n, 
B2R(0)  

according to (4:11), (4.12). Froth this we infer  

	

(T)' E(x) tS C1	(C1R)' x12 .	 S. 

1=1  

Requiring C1 R0 ^5 1/2 (C1 from' Lemma 4.3) we arive at (4.3) U 

• Before proceeding further let us give some comment on Lemma 4.3: In standard potential 
theory it is shown that Lebesgue, Sobolev and Holder classes are reproduced by certain singular 
integral operators (compare for exrnple [15]). Here we extend this reproduction property toa. 

- class of functions having an isolated singularity with prescribed growth order. 
S	 .	 ..	 S. Proof of Lemma 4.3: We write for x.,E BIR(0) and functions u E 

•	

.

 

dropping all indices 

I T(x) = f V' K(x,— y) (0(y) Vu(y) dy	.	 S 

B2R(0)	 .	.	.	 .	. 

and proceed by induction. For 1 = 0 (4.12) .immediately follows from (1.7). Now 
assume that 1 is a positivç integer and that for some constant D1 _1 the estimates 

IVu1_j(x)I 	D1 _ 1 xI',  -	
- Vu1_(x1 ) —Vug i (x2 )I	D1_ 1 lx i - x2 I max (1x 1	x2I')	(4.13) 

'hold for all points x, x 1 , x2 in B2 (0). Abbreviating (y) = ' V2 'K(y), y  R'\ {0}, we 
have the following formula for. the derivative of u (compare [15: Thin. 3.4.2b)], 
here and in the sequel C1 denotes constants depending on the parameters stated in 
Lemma 4.3)	 .	 S 

Vu1 (x)= C,-(x) Vu1 .. 1 (x) + urn f Z(x —'y) a(y) Vu1 _1 (y) dy  
•	 .	 p_O82R(o)l3c,(x)	 S	 •	 • 

/(x) + Jim W5 (x),	x'. E BI11(0) \ {0}	•	 '	 -	 (4.14) 

S	 .	

S
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a) We discus W(x) : = urn W5 (x)	0) for fixed x E B2R (0) \ {0}: Choose 0 < a< 
e < 1x112 and apply [14:-Thm. 2.6.5] to get.	 - 

We(x) - W0(x) = f tL(X - y) (q(y) -- O(x)) dy,	= wVu,_j.. 

B5(x)\B0(z)  

(4i3)'gives the inequality 
- (x)j	C,Dj_,jjxj I lx -. yll max (lxl', ya) 

± iy l'	lx - y}.	.•	 (4.15)
B4his we can estimate the above integral a. follows: 

	

•I W(x) - W0(x)J 'C1D11 (	f lx - yjmax ( l xl'", l yi'") dy xl 

+ f k - yl IV dy 
B(x)B0(z)	 -. 

-.	 E^ CiD1i (x l zi'+ lx l 1 ) f ix -	dy	- 
B5(z) 

•	.C1D1_1 I x l'- e". 
Consequently, (W,(x)),>o is aCauchy sequence, the limit W(x) exists and satisfies for 
x E ARM \ {O}, e < ix l12 , e <2R - lxi the inequality	 - 

1l W5(x) - W(x)l ^ C1D1_	l xl' .	 .	 (4.16)

Furthermore we have for x and e as above, using (4.11) and (4.15), 
•	lW0(x)l	1	l(x--- y)i ç(y) - q(x)i dy	CjD1_1RIxl'.. 

B2R(0)B(x). 

If we combine this result with (4.16) we arrive at 
IW(x)l	C1D1_1Ru xl 1 ,	x E B2R (0) \ {O}. .	 -	(4.17) 

By (4.13), estimate (4.17) holds for the function / defined in (4.14). We thus have 
proven  

lVuj(x)l	C1 D1 _1 x'' R	 -•	 '.	 . (4.18) 
for.all points x in the punctured ball B2 (0) \ {O}.  

b) We now derive the Holder condition for Vu 1 : Let x1 , x2 E BSR (0) \ {0} be given 
and assume  

e.:= lxi - X21 !_5 thin (lxii, lx2l)/5	 :	(4.19) 

	

•	One would like to argue as follows: By calculating V WQ one gets a bound for. I W5(z1)
- W, (z2)1and the Holder condition for W is a consequence of (4.16). Unfortunately, (4.16) is 
restricted to the case 0 < 2R -	i = 1, 2, and this condition is obviously violated for
x1 , X2 near ÔB2R (0). To overcome this technical difficulty we extend the function Vu1 .. 1 to the 
punctured ball B4R (0) \ {0}, assuming that (4.13) continues to hold for the extended function, - 
which we also denote by Vu1 _ 1 . The constant D1_1 appearing in (4.13) has t.be replaced by a 
constant of the form C1 D,_ 1 , but this does not change the argument.. 

On B4R (0) \ {0} we define the functions	 - 

	

• -	
.	 W15(x)r. f	(x—y)w(y)Vu1_1(y)dy,	 .. 

•	 .	 •	 B48(0)\B(x)  

• W1 (x) = lim W15(x),  

-	 W2(x) r..f L(x - y) w(y) Vu,_1 (y) dy.	 • 

T2R(0)	 .	.
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Obviously, W(x) = W 1 (x) - W2 (x) on B2R(0), and the inequalities (4.16), (4.17) 
hold with W replaced by W1 and 2R replaced by 4.R. Now a simple calculation shows 
(H' 1 denotes the (n - 1)-dimensional Hausdorff measure)	 - 

VW 1 (x) = _f.(x - ) ()- (x) ) Y X dIP(y)	
- Lo 

B Q (X)	- 

•	 - + f V(x - y) ( p (y) - q(x)) dy	- 
-	B4R(0)\B(X) 

for points x E B2R(0) \ B2 e(0). The resulting term' s satisfy the estimates	. 

•	 j :.. dH''(y)	T	- -	aB(x)	 - 

CD11 {IxI f x - y I	max (Ixl, y ') dH1(y) 
B e(x)	 - 

+ Ix	ly' d1151(Y)}	CD1 R I x I'--, t) . —I, - 
•	B(x)	-	 -	 - 

where we used (4.15) and the fact that II	k112 on aB(). Let us write 
B4 (0) \ B(X) = .((B4R (0) \ B12(0)) B0 (x)}u B1112(0) =: Q1- u Q2. 

• Observing II	I x I12 on Q1 , x - y I	I x I/2 on Q2 weget 
fVL(x —y) ( p (y) -- ç(x) ) dy	 - 

CI D,-, fix - yJ_n (jx max ( I xI'", yI') + I y I 1 ) dy' 
I	•12,	 --	 •-

•	 ^5 CD1 R I xI'	f lx - yI'" dj = C1 D1 _ 1R XI T a—i 

	

R"\B Q (X)	 - 

• and the sam estimate holds for the integral over Q 2: We have thus shown for poi •	x .EB2,(0) \ B2 (0) that	 - 
•

	

	• Vwi (x) ;5 C1 D11 .Th Jxj'-'	Qa_i.	 - (4.20)

• By integrating (4.20) over the path x (which is contained in-B2R(0) \ B2 (0) we 
conclude 

,	•-
I W(x 1 ) - W i e(x2 )1 ^S 'C1D,_1Ra 1xi - x2 I max (Ix1I1-'-", Ix2I 1 'i . (4.21) 

Applying (4.16) in the version for W1 on the ball B4R(0), (4.21) holds fior the function 
W 1 itself. It therefore remains to prove (4.21) for W2 . For x E 2R(0) we have by defi-
nition	•	 •	-	 .	 • 

VW2 (x) = f . V(x-- y) w(y) Vu,-1 (y) dy. 
-	T2,0)	 •	 •	- 

From (4.13) we infer •	 .	 •	 - 

- - IVW2 (x)I	 ô'(x), - 6(x) := 2R - l x ! .	 - 

•	
.

 

This estimate shows that'VW2 behaves well iiithe interior of the ball B2R (0). Intro-
•	ducing w(x) Vu1 _ 1 (x) in the expression for VW2 and using (4.15), we see 

•	
JVW(x)I ;5 C1 .D1 _ 1B(x)' xI'"	 • 

0	 •	

•	 (4.22)
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for x E B2R(0) \ {0}. (4.22) has the advantage that V W2 increases of lower order when 
I -> aB2R(o). As before let x 1 , x2 satisfy (4.19). We want to show 

W2 (x 1 ) — W2 (x2 )1 ;5 C 1 D1 . 1R lx i - x2 I max (jx 1 1'7, lx21)	(4.23)' 

and consider the following cases (compare [16: Thm. 2.6.6]): 

1. 1x 1 l	2R - o: Integration of (4.22) over the path x 1 x2 implies (4.23). 
2. 1x11 > 2R — f? lx2 1	2R - o: Consider the path x1x3x21 where x3 is on the ray 

Ox1 .ith lx3 1 = 2R - Q. Observing 

lx 1 —x3 1	, x2 - x31	2, IX2 + t(x3 — X01 3 IX2 1 151 0	I < 1, 

we get the ëstithates 

•	1W2(x2)— W2 (x3)1 ^ C 1 D,_ 1R l x21 1--

- I W2(x) - W2 (x3 )I ;5 C 1 D, 1R'lx j - x31 I (. - ( l xi - x31)' dl lx31 
0 

C1 D1_ 1R ixi — x31" lx21 

This proves (4.23) in the second case. 
3. 111  > 2R — e, 1x21 > 2R — : Choose x3 on 6Z x4 on 6x2 with IX31 = 1x41 

=2R—.Wehave 

lx i — x3 1	e, lx2 - x41	o ' 1x3	x4 1	3e, lx i + t(x3 — x i )l 4 x/5, 

1x2 4a t(x4 — x2 )I 4 I X2115, 1x3 + t(x4 — x3 )I 2R ---4p	Ixil/5 

for O^t<1..  

•	Similiar calculations as in the eases 1, 2 yield (4.23). 
•	Collecting our results we have shown 

0(x 1 ) - W(x2 )1 :E^ C,Di-,Ra jx-1 - x2 1 max (lx1l'", IX21")	(4.24) 

for points x 1 , x2 with (4.19). By (4.15), inequality (4.24) holds for the function / defined 
in (4.14). So it remains to consider the case 1x 1 x2 1 ;^; mm (lxil, x21)/5. But under 
this assumption the Holder condition for Vu 1 is a trivial consequence of .(4.18) I 

In the scalar case Green's function g can be estimated from below in terms-of lx - y 1 2 , ! 
compare [8]. We mention the following weaker result which is valid for N > 1. 

Proposition: Under the assumptions of Theorem 7 we have/orally E Qand Ic = 1, ..., N-

urn sup lGk(z, y)J lx	y"_2> 0.	 (4.25) 

Proof: We use the notations from the proof of Theorem 7. Since E is homogeneous of degree 
2 - n, lim sup E(x)I x1 12 = 'O would imply E = 0. Therefore	 - 

X-0	 - 

E(x,)l Jx,I 12 a. C,	v € N, -	•	 -	 •	 (4.26) 

for some constant C >. 0 and a suitable sequence x,	0. Recalling (4.9) we obtain the in. 
equality	 . 

co 

lG(x)l IE(x,)I -	(Tf E(x,)	k (TR)'w(x,) 

E(x,) -.C1 L' (C1R)' l x,1 2-' - C2R'7,	 -
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.-	I
and by (4.26) we get 

Jim sup Ix,I' 2 G(x,)I	C — C1	(C1R9', 

which proves the proposition if B is chosen small enough I	- 
Next we use the well-known Campanato techniqe (see [3, 7]) togethr with Theo-

rem 7 to derive gradient bounds for Green's matrix.-	. 

Theorem 8: Suppose that (4.2) holds and let 0 <'/9 < 1.be given. Then 

aG(x, y)fexj ^ C1 Ix — y l' + C.I x - -1 R' + 	(4.27) 

for all x E BR(y)\ {y}, y E Q, 0 < B	min (R0 , dist (yj aQ)14). Here C1 , C21 Ro are the 
constants appearing in Theorem 7.	. 

Proof: As before we may assume y = 0 E Q and use the notations from the proof 
of the preceding theorem. Let B satisfy the above hypothesis and choose z E BR(0). 
Define D = B iis(z); for x0 E D and 0 < e ^ r :!^: diam (D) =-lz I/4 let the func-
tion V E H12(Br(xo)) 1 .be the solution of	 . 

_D7(A(xo) Div') = 0' on Br(Xo), 'V 5B,(,)	GIB,(X.),	 - -. 

which satisfies the Campanato estimate [(7: Thm. 2.1/p. 80])	 - 

f'1vv1 2 dx	Ci(e/r) -f 1 Vv 1 2 dx	 " (4.28) 
-	B(X,)	-	.	B,(z0)  

with C1 =' C1 (n, N, 2,A). The function w = C— v is a solution of 

•	
' f A(x) D,IPDw' dx 

= -f (Ai j. - A 1', (x0 )) D,bDG dx	-
- 

for all 0 E I 12 (Br(Xo))'. Inserting 0 = w, a simple calculation shows 

f .jVw1 2 dx	Cr2 f IvGI 2 dx.	-	 .	 - (4.19)' 
Br(X•) 

Here C1 . has the former meaning. Combining (4.28) and (4.29) we get the following 
- growth condition for  

97(t) 
= f IYOI dx:	) :!E^ C1 ((/r)" + r2 ) 92(r),  
B(X0)  

and a well-known iteration lemma due to Giusti [7: Lemma 2.1/p. 87] implies for all 
0<rdiam(D) 

q()	C1 (/r)'	92(r),	-'	-	.	.	 '.	(4.30) 

• provided B0- is sufficiently small. Since this smallness condition on B0 involves the 
parameters m,.N, L, 2, A, a we may assume that in the beginning B 0 has been chosen 
in the right way. Let ,	- 

f IVG — (v(,')x,,I2 dx;	(VG)--..O := VG dx; 
•	 B(z)	 '	 •	 B(x,) 

• according to [7: Thin. 2.1/p. 80] the function v'satisfies 

f Ivy -  (VV)X..,1 2 dx	C1(/rr2 f IVy — (VV )_ 	dx.	 (4.31) 

B(x,)  

Comparing C and v as above, we get from (4.29)—(4.31) 
C 1 ((Q/r)	(r) + r2 92(r))	C1 ((0 /r) 2 (r) + 7.n+d92(d)),
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d: diam (D). From the iteration lemma cited above we infer 
V	 p()	Ci	{r(r) ± d(d)},	0 < e <r	d. 

	

•	Choosing r: '= d we finally arrive-at,  

V	
-	 C Jz"	f I VG1 2 dx..	 (4.32) 

	

V	 BJzI/2(z) 

for all x0 € D and 0 <	d. Thus VGV belongs to the Campanato space L'+"(D)"M-
(compare [71), and from (4.32) we get the bound	 V	 - 

sup VIYGI :5 C1 z_nI2 IIYGII L.(B/Z(z) .	.	 V 

V	

V	

The Dirichiet integral of C over B12112 (z) is controlled by	
V 

V	 .	 C	Zf1 JI GIIL'(B	())	V	

V	

V 

•	Estimating the L2-norm of C with the help of Theorem-7 we get (4.27) I	- 
V

	

	 We just showed that VG belongs to the space L2 +(D), i.e. VG € C0 . 12 (D) flN , but
the proof of Theorem.8 contains more information: Take two points z, E BR12 (0) '\ {0}, 

	

•	Izi ;5 Ifl. Defining M	sup {I VG (x )J :x € Bi1i2 (z)} we get v(e) .	Ci((/r)t2 V(r)	V 

	

•	.+ r+2M) and by the iteration 
V
lemma	-	 V 

V	 p()	C1	2 {d' 2 p(d) -1- M 2} . .C1 +2ad-2M2 .	 V 

This implies	V	

V	

V	

V 

V	 •,	 -	

H 
sup .{jVG(a) - VG(b)I/Ia — bj: a + b  D}	C1Md.	•V	 (4.33) 

V	 '	 V	 V 

V	
Case 1: ED. Then (4.27) and (4.33)-give

	 V	 V 

	

• V	 VG(z) — VG()I	Jz —	(C1 I Z I I	+C2 IZI  
•	

-	 Case 2:	P. Observiiig 1z -	z/8, the above estimat is a trivial conse-
quence of (4.27).	 'V	

V	 V 

We state these facts in	 VV	
V	

V 

Theorem 9 I (4.2) is satisfied and i/O <9< 1 is given, then'- 
-. V	 IVG(x, y) - VZG(, Y)I	(C1 max (I x - yJ'", p - yI') 

	

•'	 •.: 
VV	 + 62 max (I	l-'-, I — y ' - ) R1+-n) Ix —	 - V 

for all x, T E BR/l (y) \ {y}, y E Q, 0 <R	mm (R0 , dist (y,Q)14). Here ;&,, P^ - and-
RO are as in Theorem 7.	V	

V V 

V

	

	 According to this estimate the a-Holder constant for aa( . ,y)/ax on rings B2r(,)
\B (Y' ) with sufficiently small radius grows of order r"" when r becomes smaller. - 

	

•	 V	 •	 V	 V	

V' 

	

-.	

V V 5. Some applications	
V	 V	 V	

V	 V 

As Green's function for a single elliptic operator has become a useful tool in various fields (corn- 
V 

V pare [911, 14]) we want to give two applications of Green's matrix. We start with the descrip-
tion of the behaviour of aVweek solution to a homogeneous elliptic system having an isolated 

V	
V	 singularity of prescribed growth. Then either the singularity is removable or of order 2 - n. 

	

V V - Our result corresponds to a well-known fact for harmonic functions.	 V	 V
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• Theorem 10: Suppose that (GA) holds andt hat the coefficients 4ij satisfy a Lipschitz 
condition on Q. Let Q be o/ class C2 and let u E H C (Q \ y))N, y E Q, be a.weak solu-
tion to the system Li jul = 0 on Q \ {y} having the following properties: 

(i) There are constants C, e . 0 such that ju(x)I	C Ix - yI e + l_? for 
points x near y. 

(ii) For some ô > 0 and all balls B(y) with sufficiently small radius u 
belongs to the space H 1 - I + '(D \ Be (y)) N having boundary values zero on a.Q. 
Then u = C 1 0 1 (•,y) on Q with suitable constants Ci E R.	- 

Proof: We may, assuthe y = 0 6 Q. It is easy to see (cmpare Lemma 3.2) that 
u€ H1T(Q\Be (0))h for all 1	r <00 and small radii , and the difference quotient 

• method gives u 6 H(Q \ (01) ,v . Since u vanishes atthe boundary we have the stronger 
result uE H2 . 2(Q \ B(o)) N (compare [8: proof of Thni. 8.12]; the technique described 
there also applies toelliptic systems). Moreover, (i) implies the gradient bound (see 

• proof of Theorem 8	 .	. . 

.... Vu(x)	C IxI	 - -	.	 (5.2) 

for all points x near the origin, where C is independent of x. Now choose 0 <B0 
<dist (0, 892), 0 < p <B < Ro and z 6 Bp(0) \BR(0). Let w = tGk (., z). Then the 

- relation fADawtDfP1 dx = (z) holds for all 0 E c0 (Q)N . Take a cut-off function 

6 C m (Q) such that 77 = 1 on T = BR (0) \ B(0), 77 = 0 on BR12 (0))and- insert 
=77u in the above identity to get	 - 

uk(z) = f ADw'Dui dx + f AjDawDp(7)u) dx'=: (1) +(2): 
•	..	•.	.	7'	 T  

Since Li jul	0 on. T we see that (v is the outer normal 'to T) 

- -	(1) = f AwDpuiv, dH'	-.	 . .. .	- 

Observing w 6 ff2.2Q \.T)N and Lfwf = 0 o £2 \ T we gt  

-	(2) =  

For functions,/,' g: aB,(0)	R we let  

M(f, g) =A(g'Dfiv.— Dg'/1rp),.	v(x) = x/r.	 -	-	- 

Obviously, the above relations can be rewritten as	- 

- uk(z) = f M(u, w) dll"-' - f M(u, w) dH''.	 - 
--	BR(0) -	 - 

Since U1Q = w1 0D 	0 the first integral vanishes, and integration by parts shows. the 
identity	•	 • -	-	.	 -	.	- 

•	-	- f M(u, w) dH' = f M(u, w)dR"',	 - 
•	•	 B(0)  

and we arrive at the formula  

uk(z) = _fM(u, w) dll'	-	 .	. -	-	- (5.3) 
Bp(0)	 •_	 .	 •	

-	.'	

;-	 -
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for all sufficiently small values of Q . By definition we-have - 

f M(u, w) dH"- 1 = w4(Q) f ADuiv. dH'1 
5B 5 (0)	 5B5(0) 

+ f A/,(w - w'(0)) D fiutv. dU'' - f Abwuivp dH'	- - 
SB(0) 

w(0).at+b—c. 
- Since Lw = 0 on	m = sup {IVw(x)!: x € BR12 (0)} is finite and we infer from 

•	(5.1), (5.2) ibi ;E; CAm	2'' = const e' i d	const Q1 . Moreover, 
ai 	f ADu'v dH' 1 =: C.	-. 

& BR,0)	 S 

Now passing to the limit o- , (5.3) becomes uk(z) = C1 G k(z 0) for all z € BRO(0). 
Corollary 1 of Theorem 1 infplies u = C1 G 1 ( . , 0) all over Q I 

1. According to Theorem 10 the column vectors of Green's matrix G(, y) form a basis of the 
space X of all non-trivial solutions with mro boundary values to the system L . uJ = 0 on 
Q\ {y} satisfying the growth condition (5.1) which requires a growth order less than ix - yi1" 
when X  Q approaches the point y. After Theorem 7 we remarked lim sup IG(x, )i ix - y" 

S	 x—p 
> 0 and in Theorem 7 we proved an inequality of the form IG(x, )I . 0 Ix - y2-fl. On the 

- other hand, uE .X \ (0} cannot satisfy a local growth condition of the form Iu(x)I C ix - 
for some positive e (this would imply .VuE LI(fl-1) near y. and therefore u = 0, compare the 

S following remark), so that the statement of Theorem 10 can be reformulated as follows: If u is 
a non trivial solution of the system L,ui = 0 on Q{y} with zero boundary values which in-
creases of order less than Ix - yi'" when x 

•- 
y, then the growth order of u is exactly Ix - yI2. 

2. Let us replace condition (5.1) by	 -	 S	

S 

u  fJI.146()N for some ' s> 0.	 S -
	

(5.1)' 

For 6	1/(n— 1) an easy calculation shows that a is a weak solution on the whole domain 
and therefore vanishes identically. Consider the case P: =  1 ± 6 E (1, n/(n - 1)). For suffi. 

S	 ciently small values of Ix- I we get the inequalities (Assume y = 0) 
-	Vu(x)l	C xl'2 II Vu1 IL(B IxI i2()) (proof of Theorem 8), 

. 1 1U1	 1ixj12(Z)) ;^ C 1xn12 IxI 1P *IIu!I( f11(z)) '
	 S 

from which we get iV(x)i	C XIIP I uBH .P( m . Thus usatisfies local growth condition of 
•	 - the form (5.2) and by integration we get (5.1) (i). Let us state this observation as 
- - S	 Corollary: The statement of Theoren 10 continues to hold if the focal growth condition in (5.1) 

j8 replaced by (5.1)'.	 5 

We finally return to the representation formula proved in Theorem 6 and want to 
show that the solution to the boundry value problem (2.1) has certain regularity 

'properties if the meashre 1u does not behave too bad. 

- Theorem 11: Assume that (4.2) holds and that u € fi is the unique weak solution 
of (2.1) with 1a € 11t(Q)1e , 1u =u, i -	saisfying	

S 

fix - y 2 " d(	+ J) (x) <co for ally € .	 - (5.5) 

Then the following statements hold:	 . -• 

(i) Each point y € Q is a Lebesgue point of u, i.e. the limit	- 
= lim	u dx  

s-'O B5(y)	 -
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exists for all y. Identifying u with the representative U we get 

•	uk(y)==j G1k (y , x) d1L(x)	(y E Q, Ic = 1,..., N). 

(ii) For all e> 0 and all ballsBR(yo)	Q there exists a ball B,(y) c BR (yo) such that 
the oscillation of u on Br(y) is controlled by e.. 

(iii) 11(5.5 ) is replaced by the stronger condition 

•	r
 

sup {fIx—y I2d(, +x:yE	00,	 '.	(5.6) 

then u is locally bounded. 

	

Let Ec: Q denote a compact (n — 1)-dimensional manifold and define, for A Q, 1z(A)	* 
= H' — ' (A n £), i = ..., N. Obviously, (5.6) is satisfied, 80 that all statements of Theorem 
11,hold. Such properties as local boundedness and generic continuity are not contained in Sec-
tion 1: Theorem 2 for example only describes the behaviour of u on ,.Q \ Z, so that u(x) cduld 
behave most irregularly in the limit .Q \,E 3 x —* x0 E E. 

The proof of Theorem his based on ideas from [11: Thm. 2.3, 2.6], which we com-
bine with our previous results. For further details we refer to [5: Section 5, Thm. 12]. 
Theorem 11 immediately aqlies to elliptic systems with quadratic growth which 
are studied for example in [7, 10, 11]. 

Theorem 12: Assume that (4.2) holds and let u E 11 1.2 nL(Q)N be a weak solution 
of the system L ijui	u, Vu), i = 1, ..., N, where / is a Caratheodlry function. 
satisfying I/(x, y, )I	a 1 p 1 2 + b with' positive constants a, b. If 

j V'ic(x) x -. y I2 dx is finite for all y E Q, 

- 'then each point is aLebesgue point and uis of class C 1 ona dense open subset of Q. 

Iii [6] we had described another application of Green's matrix. Suppose that -uls a weak 
minimum of the quadratic functional	 -'	•• 

Fv. f A'pD,vDpvi dx  

in a class-of functions described by a side condition of the form v . e for a fixed vector e and 
a smooth real-valued function V. If the coefficients satisfy (4.2), we had shown that u is regular 
in (1. The arguments rest on a careful analysis of the sign properties of G combined with poten-
tial theoretic considerations.	 -	• 

-' - 6. Final remarks	 • 

Up to now we only considered the case n 3 and assumed the coefficients of the system to b 
continuous functions. In two dimensions the existence of Green's matrix-can be proved for bound-
edmeasurable coefficients satisfying the strong ellipticity condition. This follows from the 
fact that for 'n	2 the unique I1' 2-solution to the system L1 ui =	i = 1 .... . N, on
Q with FE LP(Q)' for some p> 2 is continuous with vanishing boundary values, so that the 
method of Section 2 applies (compare [5] for details). In general it is possible to construct 
Green's matrix by duality whenever regularity theorems are available. In higher dimensions 

•	such regularity results for systems with L-coefficientsare only true under additional smallness 
- conditions. Thus for proving the existence of G the continuity hypothesis can be dropped in 

34 Analysis Bd. 5, Heft 0 (1986)
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two dimensions and has to be replaced by a smallness condition in higher dimensions, rcspeê-
tively. But it seems to be impossible to derive the standard estimate for O(x, y) in the more 
general situation: the technique used in this piper does not apply since Lemma 4.3 essentially 
rests on the Holder continuity of the coefficient matrix. For continuous coefficients the corol-
lary of Theorem 2 gives the information G(x,y)j C(e) Ix - yJ+l_fl for all 0 < a < 1, but the 
right growth order can not be achieved by this simple argument. 

We wish to remark that in the case n = 2 Theorem 7 has the analogue 

IG(x, )I 5 C1 log (l/x - 1/I) + C2R' log (R')	 (*) 

for all x € BO R (y), y  12, 0 < R mm (R0 , dist (y, Q)14) (notations as in Theorem 7). The 
proof uses ideas from Section 4 combined with an appropriate modification of the local esti- 
mates in Section 1. From (*) one easily obtajns gradient bounds and estimates for theHölder 
norm of the first derivatives. For details we again refer to [5]. 

In this paper we studied Green's matrix for strongly elliptic operators of the form L 
= (—D(ADfl)). By a suitable extension of the method it is alsopossible to prove the exis-
tence of a Green matrix with the correct growth order for more general operators . .E -= L 
+ (BD ± a i), provided the leading part L satisfies the LegendreHadamard condition 
and some mild regularity properties are imposed on the lower order terms. Since the details 
are somewhat technical, this generalization is discussed in a-separate paper. 
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Buchbespreehung 

G. HEINIG and K. ROSY: Algebraic Methods for Toeplitz-like Matrices and Operators 
(Math. Forschung: Bd. 19). Berlin: Akadenie-VerIag 1984, p. 212. 

The book under review is divided into two parts: Pare I - "Toeplitz and Hankel matrices" 
contains 9-chapters (sections, according to the authors' terminology.) and Part II— "Toeplitz- 
like operator's" - contains 7 chapters. The book is supplied with a list of ref  ere nces,(117 titles), 
subject and notation indices. 

Many characteristic properties of Toeplitz matrices can be deduced from, the fact that 
AU - UmA has at most rank two; here A is an m x n.Toeplitz matrix ad U,, is the matrix 
of forward shift in the space C". This leads the authórs,to consider such operators A for which rank A U - VA is small compared to rank A; U and V being some fixed operators. The author 
call such oporatorsA Toeplitz.like operators. Let its explain the contents of thebook under 
review in more detail.	 . 

Part I is devoted to the algebraic theory. of finite Toeplitz and Hankel matrices (T. and 
11-matrices). The main problems are the following: 

.1. Fast inversion algorithrnl: 
- 2. Structure of T. and li-matrices, their rank and signature and the relation between T and H-matrices.	 .	..	.	.. .	.' 

3. Application to some-problems of Wiener-Hopf equations theory. 
Chapter 0 contains some facts which are utilized on the full length of the book; iii parti-

cular the notions of T- and 11-matrices are foçmulated and some special matrices of these 
classesTare described.	 .	.	 . 

In Chapter 1 the problem ofinvcrsion of T- and il-matrices is investigated. It is shown 
that one can reduce the last problem to the problemof the solution of two special linear alge-
braic. systems, which the authors call "fundamental equations". Tf the fundamental equations 
are solvable then the given matrix is in,ertible and one receives a simple inversion formula 
The fright-hand side of the second fundamental equation depends on the given matrix. If 
this matrix satisfies some complementary conditions then it is possible to change the right-
hand .side of the equation, by a certain fixed vector. Further, operators A and V are intro-
du-66d, each of which transforms any ni x n matrix into an (rn + 1) X (n + 1) matrix.	- 
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