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A Priori Estimates for Elliptic Systems ' o .

H. BecERR!) and G. C. Hsra0?)

" Es ‘werden A-priori-Abschétzungeh fiir die allgemeine komplexe Beltrami-Gleichung im Zu--

sammenhang mit Riemann-Hilbertschen Randbedingungen’hergeleitet, -dic fiir Existenz- und
Eindecutigkeitsuussagen von zugehérigen nichtlinearen Problemen herangezogen werden kén-
nen. Dazu wird die Gleichung zusammen mit den Randbedingungen in die kanonische Form
transformiert und wesentlich eine Darstellungsformel von Haack-Wendland benutzt.

BHBOZATCH OLEHKIt AJA 061Ero KOMIIEKCHOrO Y PaBHEHHA BelbTpaMu B CBA3M ¢ KPAEBHMM
. ycaosuamu Pumana- PunpGepra i MpPHBJIEKACMBIC K YTBEPHIEHMAM, O CYIUECTBOBAHUM M
€RAMHCTREHHOCTI! COOTBETCTBYI0MX HeAUH e HHEIX npoGaem. [l 0Toro ypasueHie it KpaeBHe
* yCiI0BMA NpeobpasyloTcs B KAHOHMUYeCKYio popmy M cymecmelmo MCNONb3YETCH OAHA Pop-
MyJia mpefcTaBjieHsA Xaaka- Benpnanga.

A pnon estimates for the general complex . Bcltraml equation in _connection with Rlemann-
Hllb(,rt boundary conditions are developed, which can be used for existence as well as unique-

* ness statements for related nonlinear .problems. For this reason the cquatlon together with

the boundary conditions are transformed into the canonical form and essentmlly a rcprescnta-
tion formula originhally given by Haack Wendland is used.
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1 Introductnon .
In this paper a priori esmmates will be derived for solutlons of the general Beltrami '
equation

' ‘w;+p,wz+#2w,=aw+bw+c‘ . : . o
under.the ellipticity condition ] . '
l/h(z)l +lue) =g < 1. . : L @)

In partlcular, we are concerned with the boundary value problem consnstmg of (1)
together with certain boundary and side conditions which is known in complex
analysis as the Hilbert or the Riemann-Hilbert boundary value problem (see, e.g.
BeGEHR [2, 3], BEGEHR and GrLBERT [5—7, 9], Gaknov [19], GILBERT [20], -
MusHKELISHVILI [26], and WENDLAND [30]

One of the purposes for obtaining a priori estimates for’ solutions of linear’ equa-
tions is that they may be used to establish existence as well as uniqueness theorems

* for the related nonlinear problems. Indeed, in several recent papers by the authors

-
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[12—15], these a priori estimates are utilized' to investigate boundary value prob-
lems for nonlinear elliptic equations of the type o

with corresponding nonlinear boundary and side conditions. Similar-a priori esti-
‘mates for equation (1) have also been employed to study equations of type (3)
“ with respect to the so-called Riemann boundary value problem [10, 11]. As indicated
in a celebrated paper by WENDLAND [28] (see also WENDLAND [30]), because of the -
specific form of these estimates, they are particularly suitable for .the constructive
- existence proof of solutions for the nonlinear elliptic system in connection with the

Newton embedding procedure. . . .
Our main results concerning a priori estimates for (1) are presented in Section 5.

The derivations of- these estimates are based on the representation formulas in. -

Section 4 and the reduction of the relevant boundary value problem for (1) to a
~ canonical 'problem in Section.3. In this reduction, as will be seen, by introducing
appropriate transformations the Beltrami operator in'(1) is reduced to the Cauchy
‘Riemann operator according to Bers and NIRENBERG [16] (see also Kuwnzr- [23]
and MoxamoV [25]). Section 2 contains some basic properties concerning the homeo-"
morphisms of the Beltrami equation which will be needed later for establishing
: neces\sslry bourids of the transformations introduced in Sectién 3. -

. 2. The Beltrami equation

It is understood t,ﬁab by a complete hofneoillé)rphlism of the Beltrami equation
G=at @

we mean a solution of (4) in an appropriate class depending on u which defines a

- bijective mapping.of the z-plane onto the ¢{-plane (seec VEkUA [27]). If

WA Eg<1 S RN

then ¢ is a, K—Aqua,.sico'nfo.rma,l.ma,pping with K — (1 + ¢)/(1 — q). The solution of
, (4) can be made unique by imposing different additional conditions; for instance,
orie may require that zero and infinity are fixed points of the mapping £.

. .- : 1

~ Lemma 1: Let u be a measurable function in- ¢ satisfying (5) for some non-negative
* constant q and w € Ly(C), p’ < 2. Then there exists a complete homeomorphism ¢ of
equation (4) belonging to a class C*(C), 0 < & < 1 with {(c0) = co: -

- For a proof ‘of this lemma see ABLFdRs {1], Bosarski [17], LEnro and VIRTANEN [24],
MONAHQV [25], and VERUA [27]. If in this proof instead of the operator T, ; .

c ,.zw(z)=—ifw(c>iiﬂ (t=¢+in), ‘ e -
T . C—Z RN .
. C . '

one uses the. operator ‘..I.déﬁnc.d' by ‘:Zw(z) = Tw(z) — Tw(0), then the soilution‘C has the
representation £ = z '+ Tw(z) and fulfils the additional condition £(0) = 0. '

We note that from the assumption on u we have py € L,(C) for p" < p. In what
follows, we will assume x4 to have compact support. As will be seen, with this as- .
" sumption the Jacobian of { may be estimated. For the’ L;,(C) space, 1 < p = o0,
- we will denote by |||, the usual L,-norm. Furthermore if in (6), C is réplaced by a -

- bounded domain D, we then writc Ip instead of T. From VEkUA [27: p. 38], we.’

!
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“have for w € L,(D), 2 < p, -D =D v aD,
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Nl =-M(p, D) lellp, &= (p—2)/p : M

where |- ||, denotes the Holder norm in C*(C), and for w € Ly(C), 2 < p, we ha,ve
Zw(z)| = M(p) |lwll, 12I°, « = (p — 2)/p, where M(p) is" a non-negatlve constant
dependmg on p. Moreover the operator H defined by )

MTie) = — = f w(t) d“’j)z L e

L

is bounded on Ly(C),'1 < p < +oo, and satlsfles the estimate'(see VEKUA [27 ’

p- 711 ||17w||,, < A,, ||w||,,, w € L,(C), where A, is a posntlve continuous function of p
and A, ="1. Thus, if ¢ is a fu\ed constant 0 < g < 1, then for p sufficiently close
to 2, we have .

.
°

0<gd, < 1. - (9)'

Snmlarly, for a bounded ‘domain D, we defme HD by (8) with C replaced by D.
Obviously /7, has the same norm as I7. . :

Now if we denote by W,™ the Sobolev-space consisting of fun(,tlons w1th generalued
‘m-th order derivatives in L,,(C), we have the following result. :

Lemma 2: Let p € W2 with P > 2 and have compact support K lying in a bounded
domain D. In addition suppose w fulfils (8), and (9) is valid. Then for the complete
Iwmeomorphzsm ¢ of (4) with £(0) =0 and {(oco0) = oo, there exists a constant M
depending only on p, q and K such that. -

exp {—M iy} < [8:.(2)] < exp (M [lusll,) (2 € C)- ' (10). -
" Proof: The singular integral equation ‘ _ ’ o
& — ully® ="'y, ‘ : (11)

“has a unique solution @ ¢ W,{(D) such that @], < llull,/(1 — g,). Because of *

(11), we see that

b@) = f exp TyB(0) [@ +pdl]l (€0 S (12)
is mdependenb of the path of mtegratlon As is shown in MoxaHoV [23: V§ 3],
¢ is then a complete, homeomorphlsm of (¢ 4) such that £(z) — z € C'*(C) and £(z)
=z + O(|2|*!) as z — oo. Since £0) = 0, £ must coincide with {. Thus, from (12)
we have [, (z) = exp {TpP(z)} and (10) follows mnn(,dla,tely from (7) and the esti-
mate for P, B8 -

- From (4) and (10), it is easy to sce that the Jacobian J of £ defmed by J = |{,|* = [{z® is
bounded bélow from zero. In fact, we have J = (l — g*) exp {—2M fleezllph ’

Leémma 2 remains valid, if the conditions on u are shght]y weakened More pre-
cisely, we have the following result.

Lemma 3 Inequalztzes (10) remain valul Lf © s only n W 1 whzle all other as-
sumptwns from Lemma 2 are satzs/zed

[

Proof: Choose p; > 1 but sufflclently close to 1 so that q/l,,,,, < 1 and define P2

by 1/p,| 1/p, = 1. Consndcrg»sequence {ua} = Wf,p.(])) with ju,| = ¢ in D and

1#



4 H. Becerr and G. C. Hsta0 -°

#a = 0 in € \_D such that II,u,. = ,ullwl —0. for n — +oo Then, because 1 < p,
< P2y We also have\

- : -

llm ||,u,l — ,uIwa =0 and ]|m [l,u,, — pllw,r = 0.

\Tow let £, be the complete homeomorphlsm from Lemma -2 correspondmg to Hn
given by . .

La(z) = fexp TpD,(L) [dC + ty dC]

with @, satisfying @ ~—/4,,II,,<D = Ug- Then from b, — D, ./zmHD(di;,— b)) -
‘= (s — P): + (Un — pm) HpP,, it follows that : o .

. - 1 N
i IJ/¢n - ¢m“;: = 1__ {i1(ttn _l.um)z”p + llpgn — /"m”pp: ”HD¢’|HPPI}' .
— g4, . : .

Since

4
1,0, d>,, <L
” D “pp: = pm ” ”pm = 1 qupx ”/‘ z”pm

and for n large enough : , '

letnsllom, < Wetn — #)ellpp, + lltllppy < 1+ ltsllpps

we thus have forn sufficiently large

qupx

This proves éoni?ergence of {@;} in L,(C). Let @ be the limit of {®,} in L »(C). Then -
clca.rly, =0in C\ D, ;0 ¢ C‘(C), and @ satisfies @ — ullp® .= p,. If now ¢

" is given by @ via (12), thls function is a complete homcomorphlsm of (4) in-W ,1(C)

satisfying {(0) = 0 and {(co) = co. Because (10) is valid for ea.ch tny by ta.kmg

the lnmt we see that it holds for ¢ too § .

~

o ,- . % . (A oo,
”(pn - (pm”p éﬁ [”lf‘n — l‘m”p M ”l" - Iumupps]

) T .

- 3. Reduction to canonical problems

I . . :
" In what follows, let u,, u, € W,'(C), p = 2, satisfy

Il + lluallo <g <t -~ - 13

‘and ' . ’ : . ’ . : ' R :
Dl el Nl + sl < My S ¢ £
Define : : .
_ Ll — el — VA _ 2, (15)
o Nl — et + VA
.and * . .
a — 1— [pal® + lua|®> — VZ~= : 2u, ~ (16)
.2 1— |mf + al® + V4 -
where

4= (L~ lpl* — lal®)? — & fpgaf? = [1 = (o] + a1 [1 — (il — Tiel)?].
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It is easy to see that 4.> 0. In fact, 4= [1— (|,u1] + ],uzl)z]2 > 0, from Whlch we
obtain

1 S Dl + el and o] <l + . S a7

Moreover a simple computation shows that a = ,uz/(|,uz|2 e + ylj)il). This
together with the identities : , : .

i l? (1 — ) = VA s, :
(Ial? — 1al?) (L — 1) + VA = |1 — Bapl? — |peasl?
" leads to an a,lterna,tlve form
- 1— 2\ ) -
— ) ﬂ?ﬁ . |/"I ) S . . o ] 4( (18)
- 11— mpl? — |l . S T
Lemma 4: Let w € W,(C) fulfil the equation

- — ppl; =F ‘ S - 19
‘and let { be a compiete fwmeomorphzsm of S o
&= ut; . : s e (20)

with u given by (15). Then by changing the vanable from z o C and the correspmcqu
unknown from w to w aocordmg to.

©=w — a®, . : R N . (21)
“with a given by (16), equation (19) can be transformed into the canonical form
: ,wi=Ao+Bs+C - . ... _ (22)
with S A L .
,Az';““fw Bz_'—_“f_2 i C— }(1‘—/71,14)F+p;42F_. _
1= lal 1= lal (1 = Enl — el 2,

(The inverse trans/ormatwn tmns/orms (22) back into (19) accordmgly )

Proof In view of (20) we note that ;

w, = Law; + #Czw¢ and ws = plaw; + Lwi.

Substltutmg these e\pressmns into (19) and its conjugate equation, we obtain two
. equatlons in four unknowns w;, w;, w; and w;. However because of the choice of u

.in (1:)), it is not difficult to see that both w; and w; can be eliminated. Thus, we
arrive at the equatlon

(11— il — lauel®) G + (B — ) popt = (V— piny o) G
= (1 — ap) F + pouF, }

from which formula (22) follows immediately from (21) and “the definition of @

in (18) & i \
We note that . , oL .
= IF |Gw + @] ||
CLl=gza e TTRE STy
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. Moreover, the function {, can be estimated by using (10) if P, pp arTE requlred to
~vanish outside a finite domain D.

. For later calculations, estimates of the derwatlves of Iz and a are also needed.
Because of the symmetric forms from the definitions (15) and (16), it is’'sufficient
to consxder only one of them, say u. However, the lemma below holds for a too.

Lemma 5: In addition to the assumptzons (13) and (14) let p,y, p, vanish outside ,

<

~ofa fzmte domam D. Tken for u defined by (15 there hold the estimates

2M ' 2M
w, Il £ = andul, fal < (1—‘—

T (=g
_From VEKUA [27 p 38] ‘we have [y, 5 M('p, q, D, M,\, o = (p - 2)/p. Moreover, if

,ul, ug € C1+5(D), 0°< o < 1, then similarly {lg,ll., ll6%l, < M(p,.q, D, M,). Here, instead of-

the p-norm as in (14), M, is a bound for the sum of «-norms of first order derivatives of the
n; ’s. In the same manner, it can bc sho“n that ||{,ll. = M(p, q, «, D, M,).

.

Proof of:the lemma: We have from (15) . " N
/71_: (If?): - =
=0, £ ml? — |uof?). + —=— and’ Cz. Gaps)[J .

As we i_rJdicat,ed before, the. Jacobian J = |¢,|2 — [{5|% is positive. .NOWA with the
\help of the inequalities [u| < |w|/(1 — ¢%) and |u] < VA q/ 1 — ¢%)? the desired

results for |u,| and |u;| follow immediately by direct computatlons The estuma,tes

for u3 and y; follow smular]y 1

- We now derlve the correspondmg Hilbert boundary and side condmons according

to the transformation (z w) — (£, ) defined by (20) and (21). First we need some '

sxmple property concerning-the boundary oD = F of D. - o .

Lemma.G IfTre C"*“ then I ={(I') e 1=,

Proof: Let s be the arc length para.meter a,nd L be the total length of I'. Then -

we have from (10) a.nd 23)
f ld¢| = f |dc(z(s>)| = f 1| |z'(s> + p2(s)lds < M(p,q, D, M) L, ~

to that I is rectlflable with a total length say E'. Moreover if § denotes the arc
length parameter of T, then - :

as. cz("t)wm)'
ds ICIIZ(8+#Z(S)I

d¢

rrie (z (8) & + 27(9) cz)

4

In the case of mEW 1(C) a]] the funcblons mvolved here are in C“([O L] and the

denommator is bounded away from zero. In partlcular we note that here
[2:(2(5) — &:{z(s)| (2(8)) - Cz(z
s = T T RG) — 2(5)]

-. is bounded, since ¢, € C*(C) and 2z 6 C'+¢([0, L)); hence C,( 2(- )) € C¥([0, L)). Slmllarly
one can show that ,u(z( )) € C*((0, L]). Therefore it follows that £ € C'+([0, E] |

2(s) — 2(s')

’s—s

eM(pq DM, ;- : (23) ’

R
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" ‘Lemma 7: Let w fulfil the boundary and sidé conditions

Peg

3 Re{e"w}——w on I’e",tpEC(I’)n:—ferO .

—[Im{e"w}ods_x,aEC(P 0So,0<2'_ —fads,xeR (24)5”

_ w(zk)=ak,zé€D,aj,€C(1§k§n).
Then w fulfils analogous conditions of the form . o
1— |af? |

on
0 y

Re {efw} =

.o — | Im {e'"w} 6, d5 = x, . \ (25)
- .
' F

(Ck)—ak+aak(lgkgn) _
AHe"eTl—T‘*‘% B : . . ‘, i )

- 1 ds X2
. — .— 4 = — _ 2ir, —2
o, = o d5 o, Z: fa,ds, % le‘ Z, Im {ae 3 1p}o‘ds |
[ - Fo r

and Ck = {(z) while e and &% are C*(I") functions defined by oe? =1+ 6e*'—’_"'.., .
Furthermore, all tke z in (25) are replaced by 2(0). -

The proof follows by direct computations. Obviously the data functions in (25) fulfil with
respect to D = (D) the same conditions as those in (24) with respect to D. In particular, we
see that beca.use ja| < 1 (cf. (17)), it follows that

fdlog (1+@e?)=0 and hencequ; —o0.
.r . \;

"Thus, the index in (25 is also equal to n as in (24). — la?

If py, 1 € € C1+a(D), then e, y € Cc1+s(F) wou]d imply efr, 6 C”"(I’) as well

. From Lemma 4 and Lemma, 7, the boundary value problem (19), (24) is tra,ns-
formed into the canonical problem (22), (25).

4. Representatxon formulas

1

A representatxon formula for (D) functions in terms of Green’s and Neumann’s
functions G'(z, {) and G"(z, ¢) of a C'+* domain D are given by Haack and WEND-
Lanp [21: Formula 10. 43/p. 271). If @ denotes the conformal mapping of D onto
~ the unit disc D, then Green’s function is given by

. 1 _t
Gi(z,8) = —o= 1o M
| 22 71— o) P(2)
while the Neumann function is.of the form (see Haack a,nd WENDLAND (21: § 4. 7])

%Q—@%O+ V(z, ¢)

'
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where . _
. . - L
, 07 0) = — 5 log (@) — D) (1 - BQ) o(2))|

and V. is harmonic in D given by

(,,)=— f s)log|[¢(c(s)) qb(z][qb( s)) ¢(C)]|ds

nsz_/ s)ot)log|<1)(¢ ) ( t))ldsdt CED.)."

Here o is a non-negative continuous function on F with

Z::'fa(s) ds &= 0.
r

Moreover ~

4V 0) = o= 40| — 2D as

. . . d¢ ) T .
forallz € D, { € I'"and if o(s) := ‘—_ , then V vanishes identically.

Lemma 8: Each w € CY (D) can be represented by -

-

w2) = —6(2) + i [ Wit) [6F + G (¢, 2) + W) [68 — G (¢, 2)) dEaf,
. D ) . )

0(z) := f Rc.w(t) [2.GF — sz’"] ¢, 2) + zC
r

C::f‘Im w(l) d,GN(, 2) = ~—flm w C(s
F ' ‘ B
In WeNDLAND [30: p. 22] this reproscntatnon formula is rcformula,ted for CY(D) functions’
which satisfy the homogeneous boundary and side conditions given by (24) with ¢ belonging
to C*4(I") and for y, x and a; being equal to zero. It is not difficult to sec that similar represen-
tation formulas can be derived from Lemma 8 for non- homogeneous boundary and side con-
ditions such as (24) with eir, p € C(I).

Following WENDLAND [30], let P, denote the polynomlals in z of degree 2n defined
by Py(z)) =0and P'(z)) =6, (1 <k, 1 < n). We set .

01,

W = w — wy, Wy = P

wi(zk),}T(zj: PR o

k=1

~

‘and define @ by

w(z) = wl(z “’“’[7(2 —z)!

where

N -

- n z_zk ,

Dz):= i'/-f[d,,G’l‘— WdGU] (L, 2), e 1= et

r

k=1 2 —z|

. . y
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!

Then élearly # € CY(D) and satisfies the boundary condition , =
. ‘ | . ‘
-Rew|r = §:=[p — Re {e""w,}] e Re®@ [T |2 —z|™' onT,

: : . i k=1 . ,

~and the sude condltlon ‘
Im We ds = # 1= 2 + ! Im {e“@ } afis
e = = —x —_-
z )0

\ ’ r ’

w1th ] _ : :
8(2) 1= o(z) eRe&""’le__— %.;k|, zeT, and 2 := f 6ds; .

k=1 ’ :

Now let G denote the Neumann funct,lon correspondmg to 4. Then an a.pphcatuon '
of Lemma 8 to w yields the following lemma. . :

Lemma 9: Each w € C‘(D) which /ulles (24) with a; = O can be represented by

~
N

w(z) = Zn (Zk) Pk(z) — 0.(2) e? H(Z — 21:)

k=1 ,
IR T PRI ey - —1
-+ zf{e‘”“’,“‘"“ I [wc'(E) — 2 wi(2z) Pk’(i)]
3 _ . k=1 — 2z - k=1 o
X [Gc + G, (¢, z) + ePD—3(0) 1[ ; : Z‘: [w;(C 2 wi(z) Py (C)]

, X (05 — Ga] (2, 2) az 3
forz € '1_), where’

0, = () — f Re {e‘*iwxzk).P:(o} e H" =zl
. . N =1 . .
. r . L. .

X [d.G* — sz“] ((, —flm {e‘ Zn zk) P,, )} ods, '

~ with o o i
o _n o P > '
0(z) =‘f ¥(&) e“’“’k]_/lt/— zkl.‘1 (.Gt — idG1] (E,2) + ¢ T

, F ) =1 . . . .-
This representation formula is also valid for w € W,,‘(D). In this case the regularit); assump-

tions on ef* and  can be weakened to e"" yw € C(I') as in (24).

-The rcpresenta.tlon formula in the lemma can be made more explicit-in terms of
the conforma,l mappmg function @. In particular, we note that

~ -1 o 1
(G + GM (6, 2) = — 5 q—;(z)—_(ﬁzp—(zj — 5 M8

1 T - :
W1—0@)PC) 2.

[

168 — G (¢, 2) = =
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and - _ e . .
46— idf) (¢ z — — L [_P@d o) FE)
-‘[ . - ]:(F %) + 2mi [d’(C) - ¢(z)' 1— ¢(c) D(z) |-
- [(c>d¢+2@) at) -
‘where '

)(z) . _f : z) ds
¢(c 5)) — P(z)

" These relatlons will be utxhzed for obtammg estlmates for w as well as for w,. For '
later use, we also need.a similar representation formula for.w,. This can be achieved:
by differentiating the representation formulas for w. Explicitly we have -

we(2) = [‘ff(z) -Jrk.i:"l (z — zf)-‘] [w(z) '-glw;@;) 1T(z>]
+ ﬁ f [w(C) - Re { i é’ wi(z) ITC)H eP) =8}
r .

. z—zk di(z)dcb(C) ) ‘ R —
k IIC—zkI (q)(;)—q)(z)) - o

. [wc'(C) -z @(zl)-PF(_c)]'

\

2mi /. — ‘
D‘ - C : N ~
. D'(2) D' (£) dt df ) .. . ,
NP (<1><c> - ) - S
, + 2—75 | 90’(7.) 0 1=‘[ ?— [m —ké ws(z;) Pk’(é‘)]

@(2) T
(1 - P o)

~ With the representation formulas available bounds for w and w, may be derived.
We begin with the followmg crucml estimates in connection with w,.

‘Lemma 10: I/ (1= <k S n) are distinet ponts in the umt disc D then
_f "=z dfdy f z2— 2z dédy
k=xC—Zk(C—Z)2 . le—Zk(l—{z)“’

are bounded m D. [

Proof: Let g(2) H (z — z,,) L We note that . o
13 fz a % ' df - =0 . T
oL 8¢ — 2)k1=71 (€. — =)

£g(¢)

2ni

. Ri=1 ki=1
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’
v

» for ]z| < 1. Hence an applicé.tion of Green’s formula

_fu,cdfdn-——fw ac - ' . .

to £g()/(¢ — 2) in a domain D obta.med from D by removing circles with sufflclently
small radii around the points z and 2z (1 <k < n) from'D yields

—f M:[mz-}-zzkl—[

g9(z). : o
k=1 =%k zk_zl]

o D1v1dmg both sides by ¢(z) and then differentiating with respect to z, we obtain

1 "e—z 1 N L 1 o '
“”f{nc—zk@ 2)2 %fg',g{—z, (C—zk)(C—z)}déldn

.z 2, 1°

k=;‘ I+k vﬂlzk—z Z— 2

" The second mtegral again can be mtegrated expllCltly by the precedmg formula...

‘Indeed
1 i z— 2 1. .
- \ 0 dd ’
nﬁfk=ll¥kc_zl(;_zk)(¢_z)577 s
=5t PRl

— 2 k=12 — 2 v=1 H'T' (Zy —_ Zl)‘ .
. ’ \
Consequently, after some simplifications, we a.rrive at the relation

L AEEs s )

f= 15—%(5—7«)2 —kmlz_zk =iz =% $% 2% — 2

Here the rlght -hand side is bounded in D.
Smularly, we apply Green’ s formula

—fw:dfdn-’——fwd{

to E;J(Z; )/(1 —&z)ina proper subdomain D of D, and obt,am
déd L 1 -
1 f R Rer-l ! .

l—Cz k=1 1_2k2l=tzk2k_2l
. L "o T 1
+ ’T‘ — — —
) k=jl 2k ; {@ — 21 Z(1 — Z2)
by ma.kmg use of
—1 n . 1
1.:.[ 2 —k§1 Zk(l -—_ z,,z [1*7/‘ 2y — E[

ICI=1
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'Multip]ying by z and differentiating with respect to z then lead to

_f 1 dédy
lcif—?-’k(l—gz)2 .

" —1"‘1-{—22 1
‘ =H ; 2]

(1 + z2) 2 ek —z

k=1 %
.

Because this as well as ]7 (2:' — ) is bounded inD, the lemma is proved I
K=

Asa consequence of Lemma 10 we now have the followmg result.

“Lemma 11: Let z, (1 < <k < n) be dzstmct poznts in the wunit disc D. Then tke ’
inequality !

1 . 2 z—z ’i_ i ‘= E
nf[(c—Z)zl!l C—z;,+(1—¢z Il z }d‘dn <M”/”« .

holds far every f €. ce (D) with 0 < x < l where.D := D y 2D and M is @ non-negalive
constant depending. on z, and «.

Proof Let g C) ][ and for f € C%(D), we write

| f 1©) 9(0) ‘5_2)2-

f[/(C + 2) — (=

l+zl<1
Then we see that o ;
f IHE +2) — [ 19 + 2] S < f 000 o

. 161 —
li+zl<t-

Here H.(f) denotes the Holdér coefficient of f, and the integral on the rlght hand side
is bounded This follows from the inequalities :

dfdn <.ﬂ[ a1
f E—al it =z = M —al

(see VEKUA [27 p- 39]) by decomposmg g into partial fractions. Similarly, we find
d§ dn
f 090 T e

= Hif f lg( C)I d£ dn + [ifflo

] a& clh]
f 1 T—ap
D L

- d&vdnv | -
fig C)i &—[2 déd’] S‘/‘ig(i)IW‘ . .

By using Lemma 10, this will complete the proof ]

and also
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In BeGEHR and Hsiao [15] it is shown that for n > 0 the integral operator from Lemma 11

“fails to be a unitary operator in Lz(D), its norm in L, (p > 1) is, in general, greater than one. .
Forn=20 thls operator reduces to the H -operator (see VEKUA (27: p. 210]).

Lemma 12 Ifp¢€ CH““(I’), then P, '

O+ PR APE) - L -
.\. P(z) = —j e(d) ‘D(C —o@) Q) (z€ Dy, . | .

°

belongs ‘to C‘“(D) and satisfies the mequahty I1Pllise = M |lollysa,r for some constant M

depending only on « and D. Here @ denotes the conformal mapping of D onto the unit’
disc D.

~ Proof: Let z0 € D be the zero of @. Then from' Privalov’s theorem (see COURA}.T .
and HILBERT [18: p. 380]), we have |P(z) — P(zo)| < kH, r(o) |z — 2|* "so that
1Pl < k llolle.r < & |dofdsllo.r < k llolly, r- Now P’ = (dP[d®) @', and an integration
by part yields : )

P _ 1 fde(c) D) + Pz) dPE) | 1 fdg(o do(0)
db(z)  2ni J dD) PE) — D(z) PE) | 2qi ) dD(Q) cb('l{)'

Again using Privalov’s theorem, we get 1Pl = fc ol 14a. rs where fc is a constant
1ndepcndent ofp I

~

. Main results

This section contams various a priori estlma.tes Thesc estlmates are particularly .
useful, from the constructive point of view, for studying non-linear Riemann- -
Hilbert boundary value problems consisting of non-linear boundary and side con-
ditions.

/
Theorem 1: Let D be a 0‘“ domain and let a, b € C‘(D with |all,"+ |1bll. < K.
Then there. exist constants 7,, 1 < v < 4, depending only on «, D, K, 7, o, and 2
(1 =k<mn) but not on a and b suchk that for each we€ C’”“(D satzsfymg (24)
with e, y € C‘+°‘(T the following estimate holds: .

[whsa = 71 1Pllisa,r + P2 2] + ?sg'llakl + Vo llwz —aw.— bwls. i (26)

"The estimate (26) is stated in WENDLAND [30: p. 20] based on the closed graph theorem where
the constants y,, 1 v <4, depcnd on a and b as well. .

* Proof of-the theorem: Let us begin with the homogeneous data, = 0, x = 0,
a,. = 0 (1 £k =< n)and derive (26) for @ = b = 0. From the representation formula
for w in Lemma 9, it is easy to see that |[w|l, llwll. = M ||wzlly (similarly as in BEGEHR
and Hsiao [12]). Now from the representation formula for w,, we shall establish the
mequa.llty R ' '

llw,llo = M ffuwels-

* Here the proof is more involved, and some: clarifications are needed. Indeed, in view
of the representation formula for w,, let us first make the following observations.

a) For the conformal mapping @ in Section. 4, there exists a posntlve constant Co
depending on D such that 4

D) — P(z)
{—z

’ . . : N\
. \ ' :

ol's

<S¢ (zteD).
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s
S

P() — P(2)

L =20 o) |

. 'b) The function @ defined by - : v
(f)(z) = zf i[d,0" — ¢ dGM} (¢, z), F=T 4 Zﬂ arg (z — 2)

k=1

: In addition we‘have the estimate /§ 1 forall z,¢( ¢ D.
I

in the representatlon formula belongs to C““‘(D and is analytlc in D. The Holder
cocffxclent of @' depends on that of dt/ds

c) For given 1/) ‘and x, not necessarlly equal to zero, there holds the estimate

wi(-)’

—_—

S M[Ilwlla r Tl fwsll).

This follows from the representatlon formula for w by ma,kmg use of analov s
theorem, the estimates :

| ,\‘%[wc@) S us(a) 4,'@;”- o v
| < D st IJk—;l—l+z; wrlz)| CP'_(?k ; /‘
' as weu as typical mequalltles of the form (see VERUDA [27: p. 39]) : o /
= {nlc =MD, ) '/
- J 1t —al |c(f:1771_c—zk;l—a'%'ﬂﬁia;%l'ﬁ’i:l) ".(z,-f;;), g
L Df:gk 232 |c—z:lf{n|c—z| S ’él’vfé’/n))- |

The last inequality follows from the second one by applymg decomposmon mto
partial fractions to the product.

It remains now to estimate the supremum norm of the area integral. This can be
achieved by t,ransformmg it into an integral over the unit disc D to which we may
apply Lemma 11 in view of a). The result here will be neéded for the general case for
nonvamshmg a and b. N

' We next consider the case y == 0, » == 0.-Again we assume that a vanishes and
proceed from the represcntatlon formulas for w. To facxlltatc the presentation, let

Ti(2) = 6(2) e“’(‘)]/(z—zk o

- and denote by J,the arca mtegral in the- representation formula. We would like to
show that the Holder coefficients of J, and'J, satisfy the estimates . '

H,(Jl),__é MH,(p) + Il + Tl + leezllo] and  H.(J,) < M llwzllo

The first estimate follows from Privalov’s theorem. To establish the second one, it
suffices to examine only the mtegral containing G, -+ @1, since the other mtegral
>

v
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can be treated s1m1]a,rly We note that G¢! + G;!1-has a singllarity of the form ‘
(¢ — 2z)7! and that (- — z)/( z)) is Holder-contmuous in D. Let us first con-
. sider the product . ~ ‘

8 = (172 z‘) !

=18 — 2z C—z.

- in J, for z = {, and'¢,. We observe that

. L g Izk . 1
S L) — S L) = {IZ (=% C—C -0

n"_lcl_zk- Cz—lk 1 } » .
+121'k171 §— 2z k=it {~2z (C—z,) (C— ) (G — &)

moreover since (§{ —.z)) ' = (£ — Cl)‘l‘ & — =) /[(C — z;) (¢ — &,)] this difference
S, &) — S, CQ) can be rewrltten m the form ‘

{ i lCl_zk Cz_lzk

e N T 1+1C-—2k

\

\r, ! R } G —t)
,Z;k”l ¢—z,,klllc—zk (cv—.a)(c—cz)’ '

V]

ll_zk ol — 2

—
1§ — 2z kit C._zlc‘

LY § T

S k.—1§ 21:/.1+1C—2k ""4'1)(4'—4’2)

) v
) S(Cy l) - S(é‘) 4-2 = {l

"[\1
3 - 2

" * Now from the identity o : '
| S ek R WS ’_Z”’.("C.“—'%)' _1 7
klE—ZLC—C. E— 8. k=1 ¢

(¢ = 1, 2) each term in the above sum for the difference S(C, C, - S'(C, {s) méa,y be
reformulated, e.g.

vk 2L

L 1L\ 2 LSy L
(k[[lC—zLC—Cl)(kﬂ'lg;z{:g—Cz) .

1 _ ! Cl;zy)' 1 .
“E-ne—t 'é(ﬁa—a C—w €

£l

(

k=Tr1 ke 2t — 2 ) (6 —z) (§ — &)
re gk LV ey et
k=1 x==l+41 v*kzk 2, ugx Zx — (C - zk) (C - Zx)'

Hence it is not difficult to see that/the dlffcrence Jo(¢y) = Ja(E,) will contain now
'typlca,l integrals of singular tcrms such.as ‘ .

1 S 1. o 1
N (e &2)’ G —z)(C— Cx)’ (€ —2) (=18
1. o '
(€ —z) (€ —2) "

and _-
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AY

All these mtegrals can be handled. In pa,rtlcula.r we see that (VEKUA [27: p. 39])
d& dn
IC —GlIE— &l

This lpads to the desired result.
In the'samc Jmanner, we find

~

= 11[ 1 + |log |&5 — &l])-

2 — 2

H. ( = ) < M(Hu(y) + lwlh + Ix] + ||w;|lo)
and : . -
Hy(w) < M(H.(y) + lipllo + x| + llwelho)-

For the estimates of the- Hélder coefficients.of the z-derivatives of J 1 and J 2, We use
Lenimas 11 and 12, and find (see VEEUA [27: p. 63]) ‘ '

-

L~

7}
H. (o 02) S MOl + 190+ s and 5, (35 72) = M .

Thus, we obtain H,(w,) < M(|lylica.r + |2} + llwslla) and hence (26) follows in_ the
special case @, = 0 (1 £ k = n) witha and b equal to zero.
. If now w does not vanish at the z;, then we may use the transformation

L=w-—f, (2)—Zak]7

k=1 1%k % — 21 - ’
and reduce it to the previous-case for 2 sa.tlsfymg ,

Re {¢"Q} =y — Re {e*f} on I'
—fIm e ) ads—x—-—fIm e"/ Yodst

.Q(zk)=0. a Sk<n)

In this way (26) is \proved for the general case but with vanishing a.and b.
We are now in a position to establish (26) for the most general case. Again.we
will begin with homogeneous boundary and side conditions. For arbltrary a,be C"‘(D),
~ we consider the function w uniquely glven by

- e b—-, w0, -
w; = + w :#:. Im w]r = 0, and chw(C)’ads=0.
; :

a, w =0, .
We note that @ — iw satisfics the homogeneous conditions (24) in the special
case n = 0, 7 = 0. Although & ¢ C'+*(D) in general, from the representation’ for-
mula, as in the case for the hgmogeneous data, it can be shown that the inequality
lolle = M |ldslle remains valid. Thus we have |w|l. < M(|lall, + [blle) = MK, and
hence fle“|l, =- el’“‘(l + JIIK)
Next, let f, be analytic in -D and umque]y defined by

. Re e follr =0, f[m {e**fo) ods =2, foz) =0 (1 SkSn)

Then if we define / by
f=we™ — Af, with A4 =.f Im {e"we*} ods,’
‘ .
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thén f satisfies the equation f; = (w; — aw — bw) e~ in D together Wlth the homo-
geneous boundary and side conditions : g

'Re{e‘-'/ l[r=0," fIm {e"/ ods—O 'f(z;)-;-O ('lgkén),

f

if  has vanishing data y =0, » =0, =0 (1 = k < n). Because f: € C* (D), we
may apply the previously established estimates to fand obtain M. =M ll/,”o Further,
from the definition of f, we have w = (f + Af,) & a.nd hence

AfIm {e"/o e‘" ods —}—fIm {e*fe’} ods =0 ‘

for- vanishing z. Observmg the conditions sa.tlsfled by fo on I' and especially the .
consequence 0 << Im { "fc on I'leads to .
f Im {e¥f, 6%} a ds = f Im {efo} Reevads = e’ MK
r ’ ’
. Consequently we have
14| < e % fiflly and  Jooll. < [Iflla + €% ifllo folla] lle“lls = il

for some constant M. \Ioreover in view of the analytxclty of fo, we see that wz = f, e
+ ww;. = f: € + aw + bw Hence

_ lheylle < M jhwsll. = 4(R + Wf:ll) < M fifzll - .
Thus, we arrive at (26) in the special case for’ the homogeneous da,ta
[tll1a 5 s lhoz — &0 — bl o | @

Clearly here the constant Vs depends on |lall, + lIbll: but not on a and b. : ‘
Suppose now a;. = 0 (1 <k < n) but g % 0 and x = 0. Then let 6 denote the
ana.lytlc functlon from the representatlon formula. (Lemma 9) Set

.

w=w+H with O(z) = 0(z) b H (z — ).
Then it can be verified that ' _
w; =w;, wz)=0(«1 g k g‘n); Re {e'.‘a‘)}l} = O,
'fIm{e“w'}.ads=O,. N S :
r - . ) ) . .
« and hence wls'atisfie‘s (27). Thus . : ‘ ' SR
0lliee < llolliva + (01, leollisa < yollws — aw — bwll + 7 |la0 + b0l
ThlS together w1th the already  established estlmates of |]0||,+a lmplxes (26) with

ak—O

- Finally if the similar transformatlon o .

_w—[ w1th /z)_Zal,H

k=1 %k % — 21

1s utlllzed the geneml mequa.llty for the non- homogeneous data then follows imme-
diately l

9 Analysis Bd. 8, Heft 1 (1087) !
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We emphasize that here (26) is found in a constructive way, and it is more suitable -
for numerical procedures such as the Newton embedding type (see WENDLAND [28],
BeGeRR and Hsrao (14]) '

The considerations in Section 3 enable us now to extend Theorem 1 to the fol-
lowing result for the general Beltrami equation.

Theorem 2: Let w € CH‘“(D) satisfy (24) with €', y € O“(F) Let py, py € O"‘”"(C)
and vy, v, € C'“(D) be given fulfilling the assumptions - :

a) =y =0 in C\D,

lllo + leollo < g < 1, | s

\”/"lz_”a + “/“li”a + “/“Zz”a + ”/‘22“« = Ml’ : ' °
a ) .
b bl + el S K,

respectively. Then there holds the estimate

llisra = 1 @llira,r + v2 %] + v3 Z; Iakl

+ yallwz — pyw, — !‘2wz — nw — W, - ' (28

" where y, (1 = k = 4) are constants dependmg onD,z(1=k=n)0,71, 04, Jl[,, K
- but not on w, u,, o, Y1y V2 Py % a (1 =k =< n).

Proof: The transformatlon (20), (21) reduces the dlfferentla.l ‘equation

s = b B L, 2€0D), o

4 'together w1th the boundary and side conditions (24) to the canomcal problem
defmed by the differential equation .

w(——Aw—}—B_—}—CmD o

and the boundary.and side conditions (20) Here the coefficients A, B,and C are
grven explicitly by - -

(l — Zp) (v + avy) + .“2:“(“"1 +. "’2) a;a

(1 — laf?) (11— Bpl* — luaul®) T, T 1—ap?’
- (1-— ) (avy + v,) + I;z,lt(il -+ av,) _ a; . .\
(U~ ) (1 — Bpl* — e &, 1 = Jal®

Q= mm At ph
(11 — Zapl? — uepl?) Z;

Obviously, these coefflclents belong to C"(f)) D =Du 8D and are bounded accord-
ing to -

Nl + 1Bl < K and Clles = M ||Alle.p

with constants K and M dependmg only on ¢, M,, K, and D. Hence the estimate (26)
is valid for w in D. Now from the transformatron (21), we see that

w + aw
w = T F and hence [[w||4a,p é M, llwllita,p-
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However, in order to a,pply (26) to w, we first show that the right- -hand, sxde is -
domma,ted by. |w|li+«,5. To this end, let us consider the relations - \

—Czl— fds—fds dS—fICIIZ(S +#Z(S)Ids

“letl lel z,z,

Here 212 212 is the line segment between 2 a,nd 2y, and lies in D for |z; — z,} sufflclent)ly
small while {[z;2;] is the image of z;2; under the mapping {. Hence by using the esti--
mate ||{[, < eM*: from (10), we obtain the mequallty 18 — &) = e‘”"(l +q)

X |z, — z,|. This together with the identities w, = wrl, + wz,uC, and w; = wc,uC
+ w(C, 1mphes that

"w:”a.D + flwzlle.o < M M1 + @) [llwclle.5 + Neoglla.5]-
ansequently we have :
lIwllise,p < M e“MM( + ¢ lolh4ess

and from (26) IIwI[1+,D is bounded by the approprlate terms th,h respeet to norms
on D and also on I". In particular, to recover those bounds on I with respect to the
norm on I', we see-that forf € C“(l ) .

ez

”fl'a r. _‘ (1 “/”a r» .
’where we have used the similar estlmate as before

1t —cel = fds = f L] 12/ (s)+uz <s)|lds>e—“"*(1 ~q> f

__.

- nn anh T
ZemMn (1 g) fx(t) —z(cm !
Sifnila.rly from (25) we have, in view of Lemma (6), - . .
'~ 1 — |a? ds. 1— a2

‘D E

¢

eaMM,. )

_ of (1 —g)°
‘Moreover, it is not difficult to sce that

% : d._ o o A

W"’i’ﬂo.r and |ap + ad] = (1 + q) |a.

=<
l+a,f‘

0

wa, I | °

Il = (1 +9) [I%I +

These estimates give
o n . ', . Lo
@llira,0 = ¥1 IWllhita,r + Vz._l"l' + )’3 2 lael + yallAlla,o s

which proves the desxred a priori estuua.te N |

If u,, p, are only Hélder continuous and eit, y € C“(I‘), one can 'still derive an a priori
estlma,te using a subnorm of w:

ol = P ”'/’”u + Pa x| + ?3 ): lagl 4 Pqllwz — syw, — pow, — vyw — ”2“’”0

We emphasme again that a priori estimates such as. (28) are most desnrable for
establishing existence and uniqueness results for the nonlmear Hilbert problem

2% . ' . -
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consisting of nonlinear boundary and side conditions. In this regard, we refer to
‘BEGEHR and Hsrao [14] where (28) is utilized to treat such problcms
To conclude the paper, we now state a similar result concerning an a pr10r1 esti-

- mate for functlons with generalized derivatives. ,

, Theorem 3 Let wy, p, be two measurable functions in D fulfilling (2), and let
"Wy, ¥ € L,(D) for p > 2 but sufficiently close to 2. Then there exist constants RC
1=k S 4) such that for we€ W l(D) satzsfymg (24), the inequality /

iwlle +llewell, +-llwsll

< Ilwlla r + e l#| + }’a Zl lae] + vs IIw- — ,ulwz - ,uzw~ —ww = 20,
holds. ’ - c ' ‘

The proof of this théorchl is given in BEGEHR and Hsiao [15]35 Again this a priori
‘estimate can be employed to. establish existence and uniqueness theorems for the
Hilbert boundary value problem on fionlinear equations of the form (3) with nonlinear
boundary and side (,OndlthnS For details, we refer to BEGEHR and HSIAO [1.:)]
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