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A Priori Estimates.or Elliptic Systems 

H. BEGEHR') and G. C. HsrAo2) 

Es 'werden A-priori-Abschätzungen für die aligemeine komplexe Beltrami-Gleichung im Zu-
sammenhang mit Rierñann-Hilbertschen Rand bed ingungen ' hergeleitet, die für Existenz- und 
Eindeutigkeitsuussagen von zugehorigen nichtlinearen Problemen herangezogen werden kön-
nen. Dazu wird die Gleichung zusammen mit den Randbedingungen in die kanonische Form 
transformiert und'wesentlich eine Darstellungsformel von Haack-Wendland benutzt. 

B1,IB0RTCH oieiiicn AJIH o6iero oMnjieicnoro ypaBHeHu Be.nbTpaM1 B CBH311 C HBMM1l 
yciosunriis PuMaua-r11i1b6epTa H npnniexaeie K yepaemanM , 0 C[1(CCTB0BH11H H 
egMHcTnelIHocTH COOTBeTCTBYIOIUMXlIeJlllIIeftHbIX npo6JIçM. Lin DToro ypanhlellne it ipaewe 
ycooaun npeo6pa3ymTcn B xaH0HB1eclyho (Popmy it C1UCTBHHO lldnoJlb3yeTcn oHa 4)op-

yia npecTah11eH11H Xaaa-BeHi1ana. 

A priori estimates for the general complex Beltrami equation in connection with Riemann-
Hilbert ' boundary conditions are developed, which can be used for existence as well as unique-
ness sttements for related nonlinear problems. For this reason the equation together with 
the boundary conditions are transformed into the canonical form and essentially a representa-
tion formula origihally given by Haack-Wendland is used. 

/ 

1. Introduction 

In this paper a priori estimates will be derived for solutions of the general Beltrami 
equation	 - 

w1+,a1w-u2W=aw+bTh+c	 (1) 

underthe ellipticity condition 

•	 u(z)l + 11u2(z) I	q < 1.	 i	(2) 

In particular, we are concerned with the boundary value problem consisting o'f(l) 
together with certain boundary and side conditions 'which is known in complex 
analysis as the Hubert or the Riemann-Hilbert boundary value probleth (see, e.g. 
BEGEHR [2, 3]; BEOEILR and GILBERT [5-7, 91, GAKHOV [19], GILBERT [20], 
MUSHKELISH'TILI [26], and WENDLAND [30]). 
• One of the purposes for obtaining a priori estimates for solutions of linear' equa- 
tions is that they may be used to establish existence as well as uniqueness theorems 
for the related nonlinear problems. Indeed, in several recent papers , by the authors 

The research of this author was supported in part by the Fuibright-Commission Exchange-
Visitor-Program under Travel.Grant ICA G 15, and the Applied Mathematics Institute, 
University of Delaware.	 S 

2) The research of this author was supported in part by the Freie Universität Berlin-and the 
Alexander von Humboldt-Stiftung. 

1 Analysis lid. 6, Heft 1 (1987)	 •	 S



2	H. BEGERR and G. C. HsxAo 

[12-15], these a priori estimates are utilized' to investigate boundary value prob-
lems for nonlinear elliptic equations of the type 

= H(z, w, w)	 (3) 

with corresponding nonlinear boundary and side conditions. Sirnilar.a priori esti-
mates for equation (1) have also been employed to study equations , of type (3) 
with respect to the so-called Riemann boundary value problem [10, 11]. As indicated 
in a celebrated paper by WENDLAND [28] (see also WNDLAND [30]), because of the 
specific form of these estimates, they are particularly suitable for .the constructive 
existence proof of solutions for the nonlinear elliptic system in connection with the 
Newton embedding procedure. 

Our main results concerning a priori estimates for (1) are presented in Section 5. 
The derivations of- these estimates are based on the representation ' formulas in, 
Section 4 and the reduction of the relevant boundary value problem for (1) to a 
canonical'problem in Section,3. In this reduction, as will be seen, by introducing 
appropriate transformations the Beltrami operator in (1) is reduced to the Cauchy 
Riemann operator according to BERS and NIWENBERG [16] (see also KtNzI [23] 
and MoNrIoiT [25]). Section 2 contains some basic properties concerning the homeo-
morphisins of the Beltrami equation which will be needed later for establishing 
necessary bounds of the transformations introduced in Sect .  

on 3.	- 

2. The Beltrami equation 

It is understood that by a complete homeomrphism of the Beltrarni equation 

U1Z

- .	.	

(4) 
we mean a solution of (4) in an appropriate class depending on u which defines 'a 
hijective mapping, of the z-plane onto the c-plane (see VEKUA [271). If 

-	jz(z)J'q <1	'	 '	•'-	 (5) 
then is a, K-quasiconformal mapping with K. = (1 -i'- q)1(1 - q). The solution of 
(4) can be made unique by imposing different additional conditions; for instance; 
one may require that zero and infinity are fixed points of the mapping C. 

Le miii a 1: Let y be a measurable function in C satisfying (5) for some non-negative 
constant q and 4u € L-(C), p' <2. Then there exists a complete homeomorphism C of 
equation (4) belonging to a class C'(C),O <c < 1 with (oo) = oo 

For a proof 'of this lemma see AELFORS [1], 130JARSKI [17], LEHTO and VIRTANEN [24], 
MoNAlrov [25], and VEKUA [27]. If in this proof instead of the operator'. 

',	-- w(z) = _	 f -(C) dd5	 j)	

'(6) - 

C 

one uses the operator	defined by w(z) = w(z) - w(0), then the solution ' C has the

representation = z + w(z) and fulfils the iidditional condition 4(0) _- O. 

We note that from the assumption on 1u we have y E L(C) for p' p. In what 
follows, we will assume y to have compact support. As will be seen, with this as-
sumption the Jacobian of may be estimated. For th&L;(C) space, 1 <p ^ +oo, we will denote by 1 1-11p the usual L,-norm. Furthermore if in (6), C is replaced by a 
bounded domain D, we then write Zb instead of Z. From VEKUA [27: p. 38], we.'
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S	/ 

have for w € L5çb), 2 <p,b = D u 

I1DMI5	. M(p, D) IIwII,	a = (p -	 (7) 

where	denotes the Holder norm in C(C), and for w € L,(C), 2 <p, we have 
.J w (z)I	M(p) IIw, Izi a ,	= (p - 2)/p, where M(p) is a non-negative constant 
depending on p. Moreover the operator 17 defined by	 S 

I1i,(z) 
=	

w()	 I.	 ()

 

71 

2

is bounded on L(C), 1 <p < +, and satisfies the estimate -* (see VEKUA [27: 
p. 71)) 11 11w 11 3, ;j; A, J jw jjp , w € L(C), where A is a positive continuous function of p 
and A 2 = 1. Thus, if q is a fixed constant, 0 <q < 1, then for p sufficiently close 
to2,wehave

 

0<qA<1.	 -	 •(9) 

Similarly, for a bounded domain D, we define TID by (8) with C replaced by D. 
Obviously 11D has the same norm as TI.	 - S 

Now if we denoie by W the Soholev-space consisting of functions with generalized 
m-th order derivatives in L(C), we have the following result. . 

Lem ma 2: Leta E WP 2 with p> 2 and have compact support K lying in a bounded 

domain D. In addition suppose fulfils (5), and (9) is valid. Then for the complete - 

- lwmeomorphisni of (4) with (0) =0 and () = bo, there exists a constant M 
dependin4 only on p, q and K such that 

exp {—M II,aII}	(z)	exp {M II U:IIp}	(Z € C).-	 (10) 

Proof: The singular integral equation	 S 

_	 =	 (11) 

has a unique solution 0 € W 1 (b) such that 110 11 p ;;j; 11 ju,11,1(l - qA). Because of 
(11), we see that  

(z) . := I exp D) [d + y dJ	(z E C)	 (12) 

is independent of the path of integration. As is shown in MoNAlov [25: V § 3], 
is then a complete, homeoniorphism of (4) such that (i) - z € C'(C) and (z) 
z ± O(z) as z -^ oo. Since e(0) = 0, must coincide with C. Thus, from (12) 

we have (z) = exp {D(b (Z)) and (10) follows immediately from (7) and the esti-
mate for 1 101 1,  

Froii (4) and (10), it is easy to see that the Jacobian J of . defined by .J =	J 2 ;ICZ12 is 
,bounded below from zero. In fact, we have .J	(1 - q2 ) cxp {-2M 

Lemma 2 remains valid, if the conditions on It are slightly weakened. More pre-
cisely, we have the following result. 

Lemma 3: Inequalities (10) remain valid if /.L is only in W9 1 while all other as-
sumptions from Lemma 2 are satisfied.	 . 

	
- -

Proof: Choose p > 1 but sufficiently close to 1 so that qA5 , < 1 and define P2 
by 1 1P 1 + l/P2 = 1. Consider asequence {}	W 1 (D) with	q in D and 

1*	-S 

2



4	H. BEGEUR and G. C. HsIAo. 

p. = 0 in C \,b such that ILu,H-iII' .-*Ofor n	+OO. Then, because 1 <Pi

P we also have '	 V 

urn ILu -	= 0 and urn lly. - /,zIjw9 zr'0. -	 PPI, 

Now let Cn be ' the complete homeomorphism from Lemma 2 c'rresponding o 
given by	 0	 ,	

V 

(z) = I cxp ZDO.P [d ± d]  

with 0. satisfying	jnThDn f2,,. Then from ,, -	-	- n) = (i - /2m)z + (f-tn	f-tm) llP,,, it follows that	 V 

	

V	 Ifl	mIIp	 {II(f-4n - fLm)zp + 1 11U. - f-tm IIpp. 11hn11pp,}. 
qAP 

Since	 V	 - 

II[IDn Pp,	n, iini,p,  AM  ILuIIi,, —q 
•	and for n large enough	 0 

•1

	

	 IIftnzIpp	-	+' IIf-tzIppi	1 + 111tZ lIPP,, 
we thus have for n sufficiently large  

In - mII;	
'	

V	

j p 

+ A,(1+	
. - IL mIIPP .] . 

V	

,	 — q	 •Vq 

This proves convergence of {} in L(C). Let be the limit of {} in L(C). Then 
•	dearly, J = 0 in C \ b, ZhO E C"(C), and Ji satisfies P - uHDTk.= i. If now V is given by J) via (12), this function is •a complete horneornorphism of (4) inW'(C) 

-	satisfying (0) = 0 and (oo) = oo. Because (10) is valid for each c,,, by taking 
the limit we see that it holds for too I	 V	 S 

3. Reduction to canonical problems	 V 

In what follows, let ,	E W1(C), p 	2, satisfy 

IIfL iIlo + IlIU2110	q < 1	•	
'	 (13) 

and	
-	0	V	 -	V	V 

•	I/VtI:IJp + II/ti2Ip + II12zIp + lIfL2llp <1W 1 .	 (14) 

Define	 S	 V 

V V	V	-	- 1 + J U 1I 2 - 1/12 12 -	-	2t1  
-	2	 - +	2l +	.	

(15)
 V 

	

•ancV	 -.	 V 
V •
	 a - - II2 + f-2 I2 - J/,	 2u2	

(16) 
•	 2/i	 1 -	± /22 1 2 + i'Z V •

	where	V	 V	 - 

4—(1—i 2 - - IIL1l - /22 1 2 ) 2 - 4	= [1— (LuiI + /12 1) 2 ] [1 - (LuiI - 

_50

5'
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It is easy to see that zl.> 0. In fact, zl ^ [1— (hufl + 1,021 )2]2 > 0, from which we 
obtain

LtI	IiI + I121 and ItI ^ IIL 1 H- 11421.	 (17) 

Moreover, a simple computation shows that a = /22 /(1 /22 1 2 - /2112 + z 1 z'). This 
together with the identities 

I/', 2 (1 - 1/21 2 )	 -• 

( 1 /22 1 2	1 1t 1 1 2 ) (1	1 /21 2) + 1(21 = I' -	- Lu2/i12 

leads7 to an alternative form 

a =	/22(1 - 1/212)	 (18) - 
- Ii - 911u I 2 - I/¼uI2 

Lemma 4: Let w E W' (C) fulfil the equation 

w!—/L lw.—/22 F	 -	 (19) 

and let C be a complete horneomorphism of

•	(20) 

with t given by (15). Then by changing the variable from z to and the corresponding 
unknown from w to co according to. 

w=w—ai3,	 (21) 

with a given by (16), equation (19) can be transformed into the canonical form

(22) 
with

ae B=	and C= (1-1/2)F+/2/22F 
1 - 1a1 2 '	1 - 1a1 2	 [ji	/I/2j2 - I/2I2] 

(The invrse transformation transforms (22) back into (19) accordingly.) 

Proof: In view of (20) we note that 

=w+ w and	=/2wc+wf. 
Substituting these expressions into (19) and its conjugate equation, we obtain two 
equations in four unknowns wf, i, and w C . However, because of the choice bi1i 
in (15), it is not difficult to see that both i3 and WC can be eliminated. Thus, we 
arrive at the equation 

[I' - /2 1 /21 2 - /2 I 2 ] C.WZ + [(/1 - 9) /LU - (1 — /2/21)7221 ..WC 

=(1— ply) F+jz2F,	 • 

froni which formula (22) follows immediately from (21) and the definition of a 
in (18) I	• 

We note that	 •	 •	 - 

-	 1F1	 jw + Zi	wi CI	1 - q2 
and	

- 1a12 	
q:

•'
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Moreover, the function	can be estimated by using (10) if , u 2 are required to

yanish outside a finite domain D. 

For later calculations, estimates of the derivatives of y and a are also needed. 
Because of the symmetric forms from the definitions (15) and (16), it is sufficient 
to consider only one of them, say u. However, the lemma below holds for a too. 

Lemma 5: In addition to the assumptions (13) and (14) let u,, u2 vanish outside 
of a finite domain D. Then /or u defined by (15), there hold the estimates 

I/zI, LiJ	
(l—q)2	

and	I uZ l 	
M(P.q.D)Mi	 (23) 

From VEKUA [27 p 38] o have 11 jull. M(p q D M) a = (p -'2)/p. Moreover, if 
1U 11JU2 E C'+(D), 0< a < 1, then similarly IPiII, IIII < M(p, q, D, M 1 ). Here, instead of 
the p-norm as in(14), M1 is a bound for the sum of a-norms of first order derivatives of the 
, 's. In the same manner, it can be shown that II	M(p, q, a, D, M1). 

Proof ofthe'lemma: We have from (15) 

	

JU = - ELuI - I 2 I 2 ]z +	and p C = (z	 ClItz)IJ. 

As we indicated before,theJaeobin J	KI is positive. Now with the 
khelp of the inequalities	z/(1 - q2) and ui . 1/zi q/(1 - q2 ) 2 the desired

results for I.LI and Ipci follow immediately by direct computations. 'The estimates 
for pi and	follow similarly I  

' We now derive the corresponding Hilbert boundary and side conditions according 
to the transformation (z, w) -^ (, w) defined by (20) and (21). First we need some 
simple property concerning the boundary D = f of D. 

Lemnia6:I/. FE C' then r:= (F) E C'.	 - 

•	Proof: Let s be the arc length parameter and L be the total' length off. Then 
we have from (10) and-(23)	- 

f l d 	f Id(z(s))I z'(s)+	)Ids ^ M(p, , D, M1 ) L, 

•	to that P is rectifiable with a total length, say L Moreover if denotes the arc 
length parameter of I', then 

d	,	 ds.	(Z' (s ) + 4uz'(s)) 
-	z(s)	+z(s) Ci)  
ds	 -	 ds	I:I jz'(s)+ z'(s)I 

In the case of 1u E W I (C), all the functions involved here are in C([0, L]) and the 
denon ,inator is bounded away from zero. In particular, we note that here 

- ('z(s'))I - k. Ws)) - C2(z(s'j)I z(s) - z(s') - 
Is -	-	 1z(s) - z(s')J	s - 

is bounded, since	E C(C) and . z E C' ± ([0, L]); hence (z( . )) € C"([O, LI). Similarly

one can show that 4z( . )) E C([0, L]). Therefore it follws that C € C'([0, L]) I
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Lemma  7: Let w jul/il the boundary and side conditiOns 

Re{e"w}= on F, e6T , v€Ca(f) n =--ifdrO 

Im {e"w} ads = , a € C(I');O ^s a, 0 <Z:=fads E R	() 

w(ze)=ak,z€D,aEC(1kn). 

Then co /uilil.s analogous cOnditions o/ the lorm
 

1_1a12 
Re {eunlw}	 V on r -	 '	S Co 

Jim {e1 'w} a1 d= x1	 (25) 

k) =ak+ aãk(lkn) .	S 

Here r1 : r + 99 ,	 - 
1ds 1'	 Z.	2 r 

r 
a, := --a-- a, .E := J a1 d, , :=---- x —

	

Im {a e2 e2} ads 

and	= (Zè) while . Q and e' are C(r) junctions de/ined by e e' = 1 + a e_ 21T . - 
Furthermore, all the z in (25) are replaced by z(C). 

The proof follows by direct computations. Obviously the data functions in (25) fulfil with 
respect to b. = (D),the same conditions as those in (24) with respect to D. In particular, we 
see that because jal < 1 (cf. (17)), it follows that 

f,d log (1 + 5e 21') = 0 and hence 5 dip = 0.	
5 

Thus, the index in (25) is also equal to n as in (24).	1 —JaJ 2 
If 91 , /z2 E C1+ a(), then e1', v E 0 +4(F) would imply e1 ",	' E . C'(f) as well. 

From Lemma 4 and 'Lemma 7, the boundary value problem (19), (24) is trans-
formedintothe canonical problem (22), (25). 

4. Representation formulas  

A representation formula for C 1 (b) functions in terms of Green's and Neumann's 
functions GI(z, C) and G"(z, ) of a C'+ domain D are given by }IAACK and WEND- 

LAND [21: Formula 10.43/p. 2711. If 0 denotes the conformal mapping of D . onto 
the unit disc D, then Green's function is given by 

GI(z, C)	— ..!_ log	C)—(z)	 S 

2t	1 — (C) (z) 

while the Neumann function is.of the form (see HAACK and WENDLAIcD [21: § 4.7])


(z, C) = O1T(z, C) + V(z, C) -	 S	 -
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where

On(z, ) = _.!_ log I(() - (z)) (1 —	) cli(z))I  

and V. is harmonic in D given by	 - 

V(z,) = 
_ f 

a(s)1ogI[(s))	(z) [(s)) —	)] I ds 

•	-	,ff a(s) 1(t) log I()) - )((t))Fds dt (z, E D). grE 

Here a is a non-negative continuous function on r with 

E:= a(s) ds = 0.	 - 

Moreover	 - 

d. V(z, )	d(	 a(s) 2n	 E 

•	 d(s))	- 
for all € D, C E f and if os) :=

ds	
, then V vanishes identically. 

Lemma 8: Each w € C' (b) can be represented by 

W(z) = —0(z) + if {wE() [GC ' + Ge"] (, z) +	) [Gel - GE"](, z)} 

0(z) :=fRew() [dG' - idG"] (, z) ± iC, 

C:= f  Im w() dG"(, z) = — -. f nrw((s)) a(s) ds.	 - 

In WENDLAND [30: p. 22] this representation formula is reformulated for C 1 b) functions 
which satisfy the homogeneous boundary and side conditions given by (24) with c il belonging 
to CI+a(F) and for V, z and ak being equal to zero. It is not difficult to see that similar represen-
tatión formulas can be derived from Lemma 8 for non-homogeneous boundary and side con-
ditions such as (24) with e'', 1P E C'+(I'). 

Following WENDLAND [30], let PL. denote the polynomials in z of degree 2n defined 
by Pk(z,) = 0 and Pk '(z,) = ô (1	k, 1	n). We set. 

WI	W - W2•1	W2 = k1 W(Zk) Pk(z), 

and define ti'by  

(z) = W, (Z) e- ( ,) ff (z - Zk)'	•	 S


where •
Zk •	)(z) := if f[dG' - idG"] (, z),	0 : = e[J - 

 k-1 1Z
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Then dearly iv E c(h) and satisfies the boundary condition 

Re ü, r = :=	- Re. (e i'w,j] e_Jj Iz --zkP on I', 

and the side condition -	 0 

- 4-f Tm ü'& ds = = 4' + 4f Tm {e* Tw2} a ds 

with
&(z) 

:= (z) e( z ) H k -	z EP,	and	:=f & ds. 

Now let On denote the Neumann function corresponding to & Then an application 
of Lemma 8 to iv yields the following lemma. 

Lemma 9: Each w E C1 (b) which fulfils (24) with ak = 0 can- be represented by 

W (Z )	W(zk) Pk(z) - 0(z) e(JJ (z - Zk) 

•	'+ if {e2	f Z - Z 
[w) - w(z) Pk'()] 

k=1	—Zk.	-	k=I 
D	- 

•	 - - n	k l•_____	n 

X PC' + O"] () z) + e_ 	Iw(C) - ' w(z) Pk'() 

	

k=I	Zk L	k=1 

X [G' - "] [, z)} d	 : - 
for z b, where 

0(z) = 0(z) - / Re leiT w(ze) .P} eJJ - Z' 

x[d,G' - idO"] (, z) + 4- (Tm {eh ' W(zk) N()} a ds, 
k=1 

with.0 
I. -	n	•	 U 

-	0(z)	1	) e t TI K,- zkI 1 [dG' - idGH] (•; z) + i -- x. 
.1	 k=1	 0	U.

F- 

This representation formula is also valid for w E W I (b). In this case the regularity assump-
tions on e1 and V can be weakened to e' ip E C(F) as in (24). 

The representation formula in the lemma can be made more explicit in terms of 
the conformal mapping function 0. in particular, we note that 

	

•	
[Gel + Oc Ill• (, z) = - 2 .	)—(z) - 

_ 2(	 •• 

[Gel —'](,z)=----	
(z))0+1	• 

	

U	
•	 2v 1 - (z) P()	2t
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and	 S 

[d U' — idO l'] (C, z)- - 1
	 '() d	(z)	) d -	

2vi O(C) - (z)	1 - (c) (z) 

— --	d + 2(e) d} - 

where 

• ..	 2(z) = -f 
 &((s))'(z) ds 

 P((s)) — (z) 

These relations will be utilized for obtaining estimates for w as well as for w. For 
later use, we also need.a similar representation formula for.w. This can be achieved 

•	by differentiating the representation formulas for w. Explicitly we have 

w(z) = [ '(z) +(z — ze)_ i] [w(z) — W(Zk) P)]  

+ -_f	— Re je- 	' u(z,) Pè(C)}] e(2)_) 

Z - Z	'(z) d() 
•.. k=1 IC- zfrI () - 

+	fe0(2)I1 
_: 

{wc(C) 
k=1 

•	() -	(z)
	d' d
	 . 

+ f	 z — =ZL. PC7 n 

• }ddc.	 S 

P()	())2	S 

With the representatioii formulas available bounds for w and w may be derived. 
We begin with the following crucial estimates in connection with w. 

Lemma 10: If zk (1	k	n) are distinct points in the unit disc b, then 

1 f	- Z dE di1	1 r	z -. zk d d9) •	 JJ	 and —i.JJ  k=I - Zk (•— z)2	 k=i —	( 1— z)2 
I)	 D 

•	are bounded in B.	•	 S	 S 

	

Proof: Let g(z) =JJ(z —zk) 1. We note that	 S • 

1	-	d	1 f	d' 

•	
—z	 0 

II=iS
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for Izi < 1. Hence an application of Green's formula 

fwdd=fwdC 2 
 ØD 

to C g(C)f(C -z) in a domain D obtainedfrom D by removing circles with sufficiently 
small radii aiound the points z and zk(l	k < n) from * D yields 

f - C) dd 
=	+ E H - ' ] g(z) 

C - Z	 k=1 lk Zk - 

Dividing both sides by g(z) and then differentiating with respect to z, we obtain 

J{/lCZk(CZ)2 k1Ct (C—zè)(C—z)} 

=r E zkE H 
ki l+k -tk.1 Zk - Z, Z -ZI 

The second integral again can be integrated explicitly by the preceding formula.. 
Indeed,

I f	Z — ZI	 d 
3	k=1 141k CZ (C	ZjJ(C ;

	
- Z) 

4=1 Z - Zk	k=1 Z - zk	z	(z, - Z1 ) .	 . 

Consequentl, after some simplifications, we arrive at the relation	- 

f1Zz—z,--,-d dj\ Zk ,Zk 1Z-Z1 

11	2 -k(C—z)	k1ZZk	k=1ZZkL. l*kZkZl 
D 

Here the right-hand side is bounded in B.	 ., 0


Similarly, we apply Green's formula 

•	 fzvcd$d^__fwd	.	
0 

D	 OD 

to Cg(C)/(1 -. z) in a proper subdomain D of D, and obtain 

11'	dd	-	 1	- k 

v J	1 - Cz k=1 1 - ZkZ l+k Zk - 
-'	 -	- 

	

•	'--1	'	1	1' 
• k- I Zk	k=1 14-k Zk - Zj 2k(1 - ZkZ) 

by making use of	 •	 .	
0	 - 

0 

fd
1 	

kZk lZk(1Zkz)tzkZ,
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Multiplying by z and differentiating with respect to z then lead to 
1	dd 

D 

- n —in	+ZkI2  
k=1 Zk	k=1 ( + zkZ) Zk j	Z -. Zj 

Because this as well as J7 (z - Zk)iS bounded in D, the lemma is proved U 

As a consequence of Lemma 10, we now have the following result. 
Lemma 1 1: ,,Let Zk (1 < k < n) be distinct points in the unit disc D. Then the 

inequality

Vz	
Z)2f [	

/7	z + ( _Z)2 TI z;kk] dd ^ Mu/un 

holds for every / E. Cn (f)) with 0 < a < 1, where .f) := I) u ab and M is a non-negative 
constant depending. On zk and a.	 - 

Proof:. Let g() =	
Z - Zk and for / E Cn(D), we write 

-k1 

-	r  j /()() (z) 
D

f[i( + z) - /(z)]g( + z) 
dd?1 

± /(z) f g) 
I+zI<1	 D 

Then we see that 

uI(+ z) —/(z)I I±z)I 
d7	

Hn(/)fIg(H f  
D 

Here H,(/) denotes the Höldér coefficient of f, and the intgral on the right-hand side 
is bounded. This follows from the inequalities 

•	

-

 

f

dd

I • — 41- zJ2_	
M(a) Jz T 

(see VEKUA 127: p. 39]) by decomposing g into partial fractions. Similarly, we find 
dd 

(1-

H(/)f ()u112 dd + 111110 f-g() 

and also

fl(c)u i_12 dEd?1 f 1W)l 

By using Lemma 10, this will complete the proof I
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In BEOERR and HSIAO [15] it is shown that for n > 0 the integral operator from Lemma 11 
fails to be a unitary operator in L2 (D); its norm in L (p > 1) is, in general, greater than one. 
For n = 0 this operator reduces to the fl-operator (see VEKUA [27: p. 210]). 

Lemma 12:1/ e E c, (r), then F, 
-	1 f.	P() + 1i(z) di() 

P(z) 
= 2ni 	

(C)	-O(Z)O(C)(z 
E D), 

belongs to C' + "(b) and satisfies the inequality 11P%, M IIIIi+,r for some constant M 
depending only on x and D. Here 'denotes the conformal mapping at D onto the unit 
disc D.	 S 

Proof: Let z0 € D be the zero of 0. Then from Privalov's theorem (see Cot-RANT 
and HILBERT [18: . 380]), we have IP(z) - P(zo)I	kHr() Iz - z0 I 'so that 

1P11 0	k IkI,r	k ILd/dsIIo,r	k IIlIi,r. Now F' = (dP/d) ', and an integration

by part yields ' 

	

- _L C d) 1) + b(z) dcb(C)	d) dP() 
d(z) - 27ri J d)	) - (z)	) + 2i J dcP() P( 

r	 F 

Again using Privalov's theorem, we get JP'11	ILIIi^.r, where k is a constant

indepe'ndent of 0 I 
5. Main results 

This section contains various a priori estimates. These estimates are particularly 
useful, from the constructive point of view,' for studying non-linear Riemann-
Hubert boundary value problems consisting of non-linear boundary and side con-
ditions.

 
Theorem 1: Let D be a C' domain and let a, b E C(h) with IIa' + IIb ;^t K. 

Then there exist constants ,, 1	v	4, depending only on a, D, K, t, a, and z

(1 ^ k < n) but not on. a and b such that for each w € C'(b) satisfying (24) 
with e 1 ',V € C' + "(f'), the following estimate holds: 

IIw + ^5	IIj,p + y x +	a + y Iw —aw. - b Ij .	(26) 

The estimate (26)is stated in WENDLAND [30: p. 20] based op the closed graph theorem where 
the constants ,, 1 _1-,  v	4, depend on a and b as well. 

Proof of-the theorem: Let us begin with the' homogeneous data, = 0, x = 0, 
= 0 (1 :E^: k :5, n) and derive (26) for a = b = 0. From the representation formula 

for w in Lemma 9, it is easy to see that IIwIlo M Hw IIo (similarly as in BEOEKR 
and HsIAo [12]). Now from the representation formula for w, we shall establish the 
inequality	 . 

IwI	ill' Jwj .	,	 S 

Here the proof is more involved, and some clarifications are needed. Indeed, in view 
of the representation formula for w, let us first make the following observations. 

a) For We conformal mapping 0 in Secti6n,4, there exists a positive constant co 
depending on D such that	, •	 S 

C 	 co	(z,CEL). 

I
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In addition we have the estimate	 :5: 1 for all z, E b. 
1	P()	(z)	

•, 

b) The function 0 defined by	 0 

	

(z) = if [dUi - i dG] (, z),	i	+arg (z - Zk) 

in the representation formula belongs to 01+a (b) and is analytic in D. The Holder 
coefficient of ' depends on that of dr/ds. 0	

0 

c) For given and x, not necessarily equal to zero, there holds the estimate 
w(.)	

M[IIJr+ H +
Zk 110

 jW];	
0• 

0 

This follows from the re'presentation formula for w by making use of Privalov's 
•	theorem, the estimates	

•o	

0 

010 1	 1 

zk	
E w(z) l),(.)j	

0 

<H(w)+Z(zk)I	
() - 1 +

	w(z)J	
() 

1*k	 zk 0	J 
as well as typical inequalities of the form (see VEKUA [27: p.39]) 

- 

0 

hC	

d di1 
.

M(a, D,.z,,z)	
(z .+ z)

—ziI K— zI J:.—zkJ' -" =	I z — z,I' -

f I+k C	ZI K Zkl'-' K	ZI

^M(a D zk (1k:!E^n)) 

The last inequality follows from the second one by applying decomposition into 
partial fractions to the product.	

0 

It remains now to estimate the supremum norm of the , area integral. This can be 0 

achieved by transforming it into an integral over the unit disc 1) to which we may 
• apply Lemma 11 in view of a). The result here will be needed for the general case for 

nonvatiishing a and b.	0  

0 

We next consider the case	0, x 0. Again we assume that a vanishes and' 
proceed from the representation formulas for w. To facilitate the presentation, let 

0	 J(z) := O(z) e)JJ(z - zk)	/	
0	

0 

• and denote by J2 the area integral in the representation formula. We would like to 
show that the HOlder coefficients of J1 andJ2 satisfy the estimates	

0	

0 

H(J1 ) ;S M[H) + IIPo + 'j-1 + IIwIIo] 0 and H(J2 )	M Iw. 
0 

The first estimate follows from Privalov's theorem. To establish the second one, it 
suffices to examine only the integral containing G' + O C II , since the other integral 

0	 •
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can be treated similarly. We note that G' + O" -has a singilarity of the form 
( - z) ' and that (. -	-	is Holder-continuous in b. Let us first con-
sider the product	- 

S(, z) = (/ ':) 1 

in J2 for z = and- C, We observe that	. 
I n 1-

S(,CO.- S(, 2) =	— Zk  

kZk(i)(2) I
	

}i_2) 
1=iki 

moreover, since ( .L z, )' = ( - y"-_-(C I — z1) /[ ( -- z1) ( — )] this difference 
S(C, C) - S( )- ) can be rewritten in the form 

• 0• 

k=i	— Zk	l=iki	— zj k=1+i - 
\n 

	

n

C.	ZL- k=I+ , C	Zkj (C	CO (C — C2) 

or T'' S(1)—S(2)
 ={	1	

— Z	C2 -z 1-1 

1=1 k=I C Zk k=1+i - Z 
t3—Il7 1 

— .	
— Zi	2 —	 i	'2 

•	 1=1 k— i C Zkk=j+i C ZkJ, (C - CO (C - C2) 

• Now from the identity	 -	• 

-	 m	 1	1	ml •.,'- 

) ' C 

i	 k	

.k=i	- Z,- I	 I	k=i\*kZk - Z- 

(i = 1, 2) each term in the above sum for the difference S(C, C1) - S(C, C2) may be 
reformulated, e.g.	 •	 • 

(k= 
C L — Z	1.	C2—Zk
C-zk CTClk=l+I C—Zk CC2	 - 

	

1	• -

	 Q*7^1-z(C — C1) (C — C2) ikZk - z) (C — Zk) (C - C2) 

	

•n .1 ,'-•-
S	

•	 I  
k=l+i \*k Zk - z. (C  Zk) ( - i) 

(17
Ci_ z )(ri C2_) •1 

k=i n . L±i .*k Zk,	z,	- z,, (C - Zk) (C - z) 
Hence It is not difficult to see that 1 the difference J2(C1)	J2(C2) will contain now 
typical integrals of singular térmssuch.as	• 

	

1	.	 i•	-	• -	 i 
(C C1) (C — C2) (C — zk) (C — C1)' (C — z ) (C- C2)' 

an	 -• 

	

1	•• 

(C—zk)(C—z,)
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All these integrals can be handled. In particular we see that (VEKuA [27: p. 39]) 

fH— 
21 ^'M(l + 109 K— 2I). 

This leads to the desired result. 
In the same manner, we find 

IL 
	Zk)	

M(Hv) + JII + N + IwlIo) 
and

.H(w) ^5 M(H(v) -I- ftlIo -+- lxi -I- ilwli). 
For the estimates of the Holder coefficients-of the z-derivatives of J1 and J2, we use 
Lemmas 11 and 12, and find (see VEKUA [27: p. 63]) 

H (-' 1 ) ^ M(iipip + ikv'iL + Iiw o) and H (-f- 2)	ii 
t9Z

M liw. 

Thus, we obtain H(w)	M(liiii,r + lxi + iiwli) and hence (26) follows in the 
special case ak = 0 (1	k	n) with a and b equal to zero. 

If now w does not vanish at the Zk, then we may use the transformation 

Q=w — f,	/(z)=EakJJZZ1 
k=1 g	—ZI / 

and reduce it to the previous case for Q satisfying 


Re {e'Q}	— Re {e'f} on I' 

fIm fei,Q} ads = x — -.fIm{e/}ads 
0 

Q(zk )	 k<n); 

In this way (26) is proved for the general ease but with vanishing a.and b. 
We are now in a position to establish (26) for the most general case. Again .we 

will begin with homogeneous boundary and side conditions. For arbitrary a, b E 
we consider the function . co uniquely given by 

a + b --, w40, 
W	 Imwir=O, and fRew()ads=O. 

a, 0	w=0, 

We note that & iw satisfies the homogeneous conditions (24) in the special 
case n- = 0, t = 0. Although o C1+1(h) in general, from the representation for-
mula, as in the case for the homogeneous data, it can be shown that the inequality 
ii&ii M ith!o remains valid. Thus we have iiwM. ^L M (11a 110 + ilbilo) MK, and 
hence ilei!,. :5^e"(1 + MX). 

Next, let / be analytic in D and uniquely defined by 
Re lei n/o } i r = 0, JIm {e; n/0} ads = L, /O(Zk) = 0 (1	Ic	n). 

Thn if we define I by	 - 

/ = we - A10 with A= JIm {eu1we} ads,'
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then / satisfies the equation / = (w - aw - b3) e in D together with the homo-
geneous boundary and side conditions 

Re{&n/}lr=0,	flm{e 1 '/} ads =°
	

0	k	n), 

if w has vanishing data v = 0, ,	0, a = 0 (1	k^n). Because 11 E C(b), we 
may apply the previously established estimates to  and obtain 11/ ll	M Ii/lI . Further,

from the definition of /,we have w = (/ + A/O ) e'5 and hence 

A  Im {e'/0 e''} ads +f Tm {eln/ e'°} a ds= Q 

for vanishing c. Observing the conditions satisfied by / on rand especially the 
consequence 0 < un {e"/c} on P leads to 

JIm {'t e} a ds =f Tm {eitfo} Re ea ds ^ E eK. 

Consequently we have 

Al ;5 e21K 11/110	and	llwII	[II/II + e2MK li/lie lI/oll]IIe''lI, 5 J	IItll 

for some constant A. Moreover, in view of the analyticity of /o, we see that w = h e-
+ wcoj.= h e" ± aw + bW. Hence, 

lIw i. ;5 ' m lIjl	[/ll ± I/ilL]	M itii.	 * 

Thus, we arrive at (26) in the special case for the homogeneous data: 

llwM1+ •^ Y4 108 -	 (27) 

Clearly here the constant y, depends on 11all, + lIb IL but'not on a and b. 
Suppose now ak 0 (1 k n) but + 0 and x 4 0. Then let U denote the 

analytic function from the representation formula (Lenima 9). Set 

- w=w+O with O(z)=O(z)eJJ(z—zk). 

Then it can be verified that 

co = w,	w(Zk) =+ 0 (1	k 5:n),	Re {eiew} i, = 0, 

fIm{ew} ads =0,	 S. 

and henáe co satisfies (27). Thus 

lwll+	ll w ll+ +	 y4. jjw - aw - bjj ± y4 IIa0 + bOjj.


This together with the already . established estimates of1 10 1 1,+.implies (26) with 
a=O.	 - 

Finally if the similar transformation	
0	 S 

n 
Q=w — f with /(z)=akH 

k=1 i*k Zk —Zj	 - 

is utilized, the general inequality for the non-homogeneous data then follows imme-
diately g 

2 Analysis Bd. 6, Heft 1(1987)
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We emphasize that here (26) is found in a constructive way, and it is more suitable• 
for numerical proceduies such as the Newton embedding type (see WENDLAND [28], 
BEGEiu and HsrAo (14]). 

The considerations in Section 3 enable us now to extend Theorem 1 to the fol-
lowing result for the general' Beltrami equation. 

Theorem 2: Let w E 61+6(b) satisfy (24) with ei ', ip E Ca (r). Let a 1 , u2 € C'(C) 
and v1, v2 € Cu (b)be given fulfilling the assumptions 
a) u1=u2=0 in€\111, 

I1,1L 1II0 + IlIU 2110	q < 1, 

IJ u !I -1-. IituIL -f IJjU2zII -I- 1/L2iII 5 11 
and

b) JvjIL + JV2 I • 

respectively. Then there holds the estimate 

IW IIi+	Yi IIIIi+.r ± Y2 H + y3E 

± *Y4 jJw- - 1UiW - 02w - v 1 w -	 (28) 

where Yk (1	k	4) are constants depending on D, z (1	k n), a, r, c, q, M 1 , K 
but not on w, Y1 , u21 VII v21 v,x, ak (1	ic	n). 

Proof: The transformation (20), (21) reduces the differential equation 

w2 = I w + z2 7 + v 1w + y2 7 ± 2 ,	A ECb), 
together with the boundary and side conditions (24) to the canonical problem 
defined by the differential equation 

o=Aco±Bii±CinD 
and the boundary and side conditions (25). Here the cciefficients A, B, and C are 
given explicitly by	 - 

A	(1 - ji1 t) (v 1 + iZv2 ) + tu(äi 1 +'2) -	aa 

	

•	 (1 — a12). (I i — Piil 2 — l /t2/ l 2 )	1 — a12 

— (1—	(av1 + v2) + i ( 1 -f- a 2 )	a 
— (1 — a12) (11 -	- t 2fL1 2 )	- 1 -.1a12' 

	

•	 —	
(1-1fl1u)1+4u 

(Ji — ,i ijul 2 — hu2u12) 

Obviously, these coefficients belong to Ca(b), D := D u a, and are bounded accord-
ing to

llA 11,5 + JBll .n ;5 k and •llCllj	M ll A l.D	 - 

with constants 1? and M depending only on q, M 1 , K, and D Hence the estimate (26) 
is valid for w in D. Now from the transformation (21), we see that 

W = 1 - al2	
and hence IIWII1+D	M0 I1Cv111+.D.
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However, in order to apply (26) to w, we first show that the right-hand side is 
dominated by- jjcojjj+ . , b. To this end, let its consider the relations 

2I=fd =f-- ds	 I'(s) + iz'(s) ds. 

tz 1 zd	zz,  

Here	is the line segment between z1 and'z2 , and lies in D for Iz i - z2 1 sufficiently 
small while [2] is the image of	, under the mapping . Hence by using the esti-
mate IRI!o	e'• from (10), (10), we obtain the inequality I •1 - 2I	e3fMI(1 + q)

X IZI - z21 . This together with the identities w= wC + cueF4 and coz 

-	+ w, implies that	 V 

I'-:IlD + IlW II.D < iF! e"(1 + q) [IIw lI5 + Ilw 1I1 .	 V 

Consequently we have	 V	 'V 

I W llI+D ^ M etM,1 + q)' 1 W11;,	'	.	V 

and from (26), II w 111+5 is bounded by the appropriate terms with respect to norms 
on D and also on P. In particular, to recover those bounds on P with respect to the 
norm on I', we see that for / E C(1')	,	 V 

(1q)	.II/ll.r,	 V	 - 

where we have used the similar estimate as bfore	 . V 

• KI - 21 =fda = f ll 1z'(s) + zz' (s )I(ds	e M'(1 —q). f,ds 

V	 V	

V	 V	

,	 zii 

	

e' ( - q) (z() — z() l .	, 
•, 

Similarly from (25) we have, in view of Lemma (6),	.	 V 

1	J a12	 dsV	eaMM,.,	1 - a12 

--	 - Il	a (2	 9	y- —	 9 

'Moreover, it is not difficult to see that	,	 V 

k11	
(1 ± q) [ii + (1 —q)2 IIlIo.r] and	ak + aakl	'(* + q) aL-I. 

These estimates give	V 

lWIIl+aD	Yi lIlliI.r + y2.kI' + y3EIakl + y4 II2lI,' ,,
	V	

V	 - 

which proves the desired, a priori estimate I	 . 

If JU II 112 are only Holder continuous and e", ip € Ca(F), one can 'still derive an a priori 
estimate using a subnorm of w:	,	 V V	 V 

jw II	i III + P2 H + P3EIakI + P4 II W — P1Wz - P2W Z - VW	V2JIo. 

We emphasize again that a priori estinates such as (28) are most desirable for 
establishing existence and uniqueness results for the nonlinear Hubert problem 

2 *	 -	 .	 •	
•	V
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consisting of nonlinear boundary and side conditions. In this regard, we refer to 
BEGEHRañd HsIAo [14] where (28) is utilized to treat such problems. 

To conclude the paper, we now state a similar result concerning an a priori esti-
mate for functions with generalized derivatives. 

Theorem 3: Let u, u, be two niea.sviable functions in b /ul/illing (2), and let 
v 1I v2 E L(h) for p > 2 but sufficiently close to 2. Then th&e exist constants y 
(1 ^ k :!E^ 4) such that for w E W'(.b) satis/ying (24), the inequality 

liw Ilo -I-. llw ll	-.1- .wIIl 

Yi IlI r + ?'2 kI + y3 _F lad + Y4 11 w - IL 1 Wz - /L2W - viw - V1 V 111. 

The proof of this theorem is given in BEdEHR and HsLAo [15] 3). Again this a priori 
estimate cn be employed to. establish .existence and uniqueness theorems for the 
Hilbert boundary value problem on ?ionlinear equations of the form (3) with nonlinear 
boundary and side conditions. For details, we refer to BEGEIrR and HsrAo [15]. 
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