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* Martinelli-Bochner Type Formulae in Complex Clifford Analysis

‘F. SO./MMEI:‘

\

Es werden verschiedenc Losungstypcn ‘des Syst,ems (D, + iDy) f = 0 betrachtet, wobei D
und D, Operatoren von Diracschem Typ im R™ sind. In Verallgemeinerung der’ l\lussnschen

' Martinelli-Bochner-Formel fiir holomorphe Funktionen wird solch eine Formel fiir C,-Lésun-
gen dieses Systems bewiesen. Es’ werden solche Formeln auch: fiir andere uberbestlmmte
Systcmc aus der Clnfford Analysis erhalten.. - -~ -

Paccua'rpnnalo'rcn pasHoro THma pememm cucremu (D, + iD ) | = 0 e D, u D, one-
’ paroput Tnoa JIupaka B R™. B oﬁoﬁmeumt Kaacclyeckolt - (I)opm_‘,nu MapTuHenan- Bomxepa
nas ronoMopdubix GynKiMi AoKaskBaCTCA TaKadA gopayna auaa Cy-pelleHNTt 3TOK CHCTEMBL.
Tarye GopMyNH MNONYYAKTCA TaK#e QA RPYTUX nepeonpeneesuex cuc"re’vx, BCTpC‘{alO-
muxcA B ananuse Kanddopna. - .
1)
Various types of solutions of the systems (D; -+ D, / =0 are considered, where D, .md D
are Dirac type operators in R™. Generalizing the classmal Martinelli-Bochner formula for
holomorphic functions, such a formula is proved for the C;-solutions of this system Martmdh-
Bochner formulae are also obtained for other overdetcrmmcd systems occuring in Chfford
: ana]ysns J

Introduction .
Let A4 be the complex Clifford algebra éonsm:uc,ted over- R™.' Then we consider
A-valued functions f, defined in open subsets 2 £ €™ = R™ x R™, which satisfy =
the so-called weak complex monogenic system : : . .

(DJ: + ZDu)/ =0,

where .
L . va’ d D g‘ o a
= —_ a.n e;
=1~ oz i '3?/:

are Dxra.c type operators and where {e,, ...; e,} is an orthonormal basis of R™ (see
[1]). As special classes of solutions to this system we obtain the holomorphic func-
tions of several complex variables and the solutions.to the so-called left biregular
system D,f = D,f = 0, which is an overdetermined system in R™ X R™.
". In the first section, which is of an introductory nature, we describe the basic
elementary properties of the weak complex monogcmc system and we glve several
examples of weak complex monogenic functions- occurlug in mathematics and phy-
-sics. ) ! .

In the second. scctlon we start from the kernel

, n‘ 1 'Ly -z . . . !

E:’c‘—}—ig'j):———,/ o
( e (BE T 7
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defined in €™ \ {0}, where w,,, is the area of the unit sphere in €™. Although this
kernel is itself not weak complex monogenic, it gives rise to a singular integral kernel
(D; + iD,) E(@@ + 15), which leads to a special higher Riesz transform 4, (see [8]).
Next, using 8 generalized Ca.uchy formula, we obtain a Martinelli-Bochner formula
for weak comp]ex monogenic functions, in which the transform 4. occurs. Further-
more, using the fact that (D, + ¢D,) E(Z + 1§ ) takes values in the.space of imaginary
bivectors, we are able to spllt this formula in such a way that we obtain the classical
Martinelli-Bochner formula for holomorphic functions as well as a Martinelli-Bochner
formula for left biregular functions. Finally we show that the Martinelli-Bochner
formula, obtained for two-sided biregular functions in [2], follows immediately from
a more general formula in complex Clifford analysis.

" 1. Complex monogenic systems

In this paper £ denotes the com plex Clifford al;gebra, over R™, while Ag denotes the
real part of «£. This means that elements of & and «Ag are of the form

a= 3 asey,, ay € C and a,€R respectively,
ASN : )
where N = {1, ..., m} and where for" A {oq, s )y &y < e <y, €4 = €, .- ea,‘
. The product in 04 is determined by the re]atlons eiej + eje; = 26,,, i, =1,

and the unity in & is denoted by e; = ¢y = 1. Let z = Z + iy, (Z,9) € R'" >< R"‘
then we shall identify Z with the Clifford element ez + - *+ emZm.
Furthermore we introduce the Dirac operators

. ' 7
D = ;g T = : —'.
z ;“Sl ¢ 6x and Dg ’g e 2,

i

and we shall consider the systems of differential equations -

; = 0 ) : .
D“f'i Dyf =0, , . . (2) .
Y .. 0 ) .
(6_1:1+za_%)/=0, ?—lf“."m’ | ' (3)
e, 2 X p - o
’é;‘iia—zif=0,' 6_2,~'f,=0’ j=1,...,m. _ @)

The system (1) is the main subject of our study and will be called weak complex
monogentc, while the system (4) is known as the complex left monogenic or complex
left regular system (see [3, 5, 7]). The system (2) is called left biregular and forms,
together with the two-sided biregular system D.f = fD, = 0 (see [2, 6]), a generall-
zation to Clifford analysis of the kolomorphic Cauchy-Riemann sy ystem (3) for m = 2.

Notice that all solutions to (2) and (3) are solutions to (1), whereas the solutions to (4) are
the simultanecous solutions to (2) and (3). Hence the system (1) is, in some sense, the union
of (2) and (3 while (4) is the intersection of (2) and (3).

Dcfmltlon 1: Let 2 & C™ be open and let E be a space of functions or distri- _
butions in 2. Then by M(r) 2(2; A) we denote the right 4-module of all solutions
in E to the differential system (1). If E = Co(R2; A) = ,,(2; A), E = Dy(82;0A),
E = &,,(2; A), we use the notations Mm &(2; A), My, 9(R2; A) and M(,,y (2; A4).
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We now give some examples of specna,l solutlons to (1) as & motivation for our
study: .
1. If a-function f satisfies the system (1) and takes values in the space of scalars .
'eoC, then it satisfies (3), i.e. it is a holomorphlc function of several complex variables.
2. If a solution f to (1) takes values in the real Clifford algebra AR, then it satisfies

the left bnregula.r system (2) : : ‘ /
3. If % = EZ: = 3y ~f= 6y /__ 0, m=4, | satlsfles the Dirac equation

. for massless fields (iel + Ze, )f-— 0. Hence (1) generalwcs the classncal

* Dirac system Sometumes we sha.ll ca.ll Z the space w,nable and 7 the fime varzable

4. Very important is the link between the weak complex monogenic system and
m i

the classical operator 0.= Y -% dz;,. If we identify the Clifford elements e, € A

j=1 j . . Lo ’

with the basic ‘differential formls diy = dz,, ... dz,,, we obtain that (D, 4 ¢D,) f

= [0 — %) / * being the Hodge star operator. Hence, if f is a k-vector, the system

(D, +1,D,,)f splits into the system 0 A f= 0, 6* A f = 0. Furthermore, the in-

homogeneous equation (D, + ¢D,) f = g may be expressed purely in terms of the
operators 0 and J*.

Bemarks: 1. We have that

D D 2 _' g \2 P [ t
( :t 2 ) Z (ax 6y,) EN . }
Hence the eqnatlon (D + tDy)f =g, 9 € Ep(f, u() has a solution f € 8(,)(!) o{) 1f n.nd only
if the equation P.f = g is solvable in C,-sense, which is equivalent to {2 being P,-convex
(see [9]). Furthermore the isotropic cone {Z:Z% = 0} is the characteristic variety ofP Hence
the entire solutions of (D, £ ¢D,) { = 0 may be expressed as linear superpositions of plane
wave solutions of the form (£ + m) exp ((Z, t) + «(¥, &)), where ( + @)z = 0.
A fundamental solution K for D, 4 1D, may be constructed as follows. Let (D +1D))K =;
" then the Fourier transform R of K satxsflcs the equation (Z + ty)K = 1. A solution in
Flo(R2™; A) to this equation is given by ) o '

, . C aaa | _
(R, ¢) = —lim P(Z, §) —mﬂ— iz dj, @€ SH(R™;A).
' 0 Z (74 iy
[ Xzt >e =1

. We have the identity
(Dy — iDy) (Dz +iD)) = —(Bz + 4,) + t[Dz, D,,],

[Dzv ] = E.eij (i i - '2‘ i).
i<j . . .

Hence our theory includes the elliptic second order system (A, + A,) f = [D,, D”] f=0,
which is still satisficd by both the left biregular'and the holomorphnc functions. It is the sim-
plest élliptic system containing both classes of functions in a non-trivial way, but it has a
much more complicated structure than system (1). It also leads to the sbudy of the C- va.lued
system

where

(A:+Ay)f= 0, . .

0. 0 o 0 : . R
___‘__ - = O, 1 " . ’
(3::,» ay; 3.’El~ ayi) f . 19 ' / . .

which is still satisfied by the holomorphic functions.
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3. Let £ be a right module over the ring J(£2; ) of A-valued holomorphic functions'in
Q < €7 Then also M) 5(2; A) is a right module over JH(2; A). Indccd if / € I satisfies
(D +1D)f OandhEJC(Q A), then fh € E and

'

. . o .0 . o
(Dz—}-zl)‘,) (fk) = ((Dz+tDy)f)h+-2e,/ (— + 1 E)h-—*o. 1 '
i I .
Furthermore, if (D, + ¢D )f = g; then also (D, + iD,) (f : k) = g - h. Hence, in particular,
the equation (D + iD,) f = h, h € H(2; &), always admlts a solution in C-sense. Moreover,
if Te¢E,p€E and h. = Y hyey € H(2; A), hy being C-valued holomorphic; then ‘'we put

#T,9) = Z(esToohe). 7

Hence E’ is a”left r.nodule' over 36(9;0() and so, using the Hahn-Banach extension theorem,
the ‘dual module M{;, p(£2; A) of M, p(2; A) is &lso a left module over H(2; A), where
M, p(82; A) is considered as a subspace of E itself, provided with the topology induced by E.

2. Martinelli-Bochner type theorems S
Asa first application of the theory of wéak complex monogehic functions, we show.
that the classical Martinelli-Bochner theorem for holomorphic functions,.as well as-
the corresponding theorem for left biregular functions may be derived from a more
genera.l Martinelli- Bochner formula, mvolvmg a singular mtegra,] We start from the ..
kernel _ ‘ .
1 G-z .
E@ 41 —_——— ~
€= =P+ T .

wym being the a.rea of §2m-t, It is clear that E(x + 1%) €L l°°‘(R2'") Using the nota-
‘tion Z A ¥y = (xy YZ), we have
Lemma 1: For every (Z, 375‘6 R™ X R™ \_ {O}‘,

dmi - GAZ T

Dt iD= TR -
e D BE ) = T+ -

Proof: The 1dent1ty is obtamed by straight- forwa,rd calculatlon, making use of
the relation (Z + %) (17 — %) = (|Z[2 +171P) — g A2 [ ] :

Notice that (D +-iD,) E(Z + i¥) is no longer locally integrable. Hence it has to
be considered as.a smgular integral kernel. Furthermore it takes values in the space -
of imaginary bivectors, a fact which will be of central importance in our argument.

‘In order to obtain our version of the Martinelli-Bochner formula, we shall’ use -
a generalized Cauchy-type formula for the operator D, + iD,. Let C be a compact
set with C,-boundary 8C in R?™. Then by é, = é,, + ze,,,, we denote the unit normal

. on 9C for the usual inner pnoduct in R2™, where ¢€,,, €,, € R™. Furthermore an

- oriented surface measure on aC is given by

| d§ =dé, +1d3,, do,=E,.dS, db, =&, dS,
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g ,

dS being the Lebesgué measure-on 9C. In terms of differential forms, we have that
do; = 3 e(—1)dzyn--ndRjn--o A d:z:,,, A dy1 ‘A dy,,,', :
N j=1 . - . .

. T doy, = 3 ei(—1)dy, A AdgiA--A dy,,, A dx,f/\‘--v- AdZpy.
2 . j_l . \ .
Hence, usmg Stokes’ formula., we can easﬂy prove

Theorem 1: Let 0 < Rem be. open, f, g€ C’,(.Q A) and let C S 02 be compact with
C;- bmmdary 0C. Then we have that -

. f[/D, ) g+ f(D,g)ldxdy=ffda;g,‘
C aC ‘

J 4D g + {Dg)dzdy = [ fdd,g,
c’ T ac

¢

G) [ [(fD; + D) g + A(D; + iD,) g)|dz dy = [  ddg.
N c . ac

. Next we introduce a singular integral operator 4. as follows. Let f € C,(2; A),
~let C S Q be compact with C\-boundary and let zZ, = Z, + ¥, E'C’. Then we put

o 4md GAE ~
AN o) =f o (T myizw“ f@ + 2o,

_§°
~

which ma.y be regarded as the llmlt for ¢ > 0 of the conve{gmg mtegrals

\

4mi'v A '
y /( ‘f‘zo L .

m (Z + [F1H™

AC t(f) (20)

, NG z.)\mon X .
Notice that § AZ = Z(y,xk - y,,:z:,) ek and that the functuons y,xk — ny arc
. i<k
spherical harmonics of degree 2 in R™. Hence. the mtegral kernel

gz Py(z) , @z
W is of the iorm Pk =2m, k=2, P,, being spherical harmonic -

of degree &k in R". These smgul&r kernels were studied by e.g. E.SreEm in [8).
Hence, if Ff denotes the Fourlet transform, we ha.ve that

(4m1, FAZ 4 )_', C4mi ™ G AE R
wem (1212 + 77" wom m! |Z[E A+ [F]%
and so the transform 4. is 8 higher Riesz transform of deglee 2, which implies that

"+ it may act on C,-functions. We now come to the Martmelll Bochner formula for the
operator D 4- 2D, ’

Theorem 2. Let .Q S R*™ be open, let C S Q2 be compact uzth Cl boundmy 3(:’~
~and let zo € C‘ Then for every [ € C\(L2; A),

= [ Bz — 7,)d5.f(%) — fE Zo) (D + sz) 1z )+ Ac(h) (Zo).
ac . )
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Proof: By Theorém 1, we have that for every ¢ > 0,

[~ BE —2)déd@) o
9(C\ B(Zo.2)) '

_ Tpe . 4mi FAZ . .

= [ |z mme v = 7 i) o).
C\ B(z,,8) . ) . .

Hence, wé obtain that e - . S N

[ BGE -2 do.f2)

dB(Z,,2) . ~

=[EE —%)d3.J3) — [ EE —32)((Ds + iD,) (7)) + Ac.f) (Zo)-
éc C\ B(Z,.¢) .

Furthermore, as we have that

lim [ EE = 3,)dd.f(z)

&0 9B(Z,.2)
/ . .
i (e b i) Gue + i) [+ ) 4,
=0 Wam : . . ’
@B(0,1) . .
' / 2% (. . .
. = f(Z,) (1 — = fe,,,, A€ny dSm) = f(Zo)
. Wam
. 92B(0,1)

and as E(Z — Z,) € L,'°¢(R?™) and f € C\(2; A), the theorem follows by takmg the
limit fore -0 1

Corollary 1: Let f € C\(82; A) such that (D, + iD,) f =0 in Q Then for C S Q2
compact with C,- boundary and for Z, € C,

1(Zo) = fE Z — Zo) d5.f(Z) + Ac(f) (Zo)-
. e .

Notice that, still for weak complex monogenic functlons, the smgular integral term Ac(f)
occurs. This is due to the fact that the weak complex monogenic system is not elliptic. Hence, -
in order to get rid .of the term A.(f), we have to restrict ourselves to special subclasses of
weak complex monogenic functxons, emerging from elliptic systems. Let us denote by (Z’ w)
the complex inner product ERTN —{- -+ z,,,wm, then for the holomorphlc system we obtain

Corolla,ry 2: Let f be leomorphzc in .Q Then for Z, € C’ we have that

f (z — 5}-0: €;x + wny) + (G — o, enu 1€5,))
(12 — Zol2 4+ |17 — Fol»)™

- f f(z) dS

2m
o2 - . 1 (2: xo) A'(én.z' iény) I (?7 ?70) A (Enll
A =
) C(j) (%) w f (12 — Zo|> + ¥ — Fo)™

%ns) /) dS. -

N 2m
Proof: As we ;nay assume { to be ¢,C-valued, A.(f) (Z,) is a bivector while /(z§

is a scalar. Hence we obtain (i) and (ii) respectlvcly as the scalar and the bivector
part of the formula in Corol]ary 1 £
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Notice that (i) corresponds to the classical Martinelli-Bochner formula (see [4]). -
We also obtain Martinelli-Bochner formulae for f and A(f) in the case where f is-left bi-
regular. As it is sufficient to consider f to take values in the real Clifford algebra AR, we obtain

these formulae respectxvely as the real and imaginary pa.rt of the formula in Corollary 1. We
obtain

Corollary 3: Let f be left bzregular in Q. Then for Z zo € C

(2: _ xo enz + ("/ . ?/o) €y =
(omo————f h_%P+w_meﬂ4m,

(F — %) éwy — (F — Fo) €z - |
A Zo) = — ds. -
) Ael) G f(@—%w+w 20l ey as.

As to the Martinelli- Bochner formula for two-sided biregular functions, (sée [2])‘ .

-we shall work in quite a similar way. Using Theorem 1, we obtain tha,t in the nota-

tions of the proof of Theorem 2,

Wz—mwmn+mawyaim1
9(C\ B(2.8)) .

- f(we—%HMJ+mmmz—%mh; g

C\ B(Z,.¢)

,f being two-sided blregular in a nelghbourhood of C. As we ma.y again consnder f
to be udg-va.lued we obtain by lettmg e —>0and ta,l\mg the real part the formula s
‘obtained in [2]:

[N

_¢3:~1f@—mw4+wmy—w.
m ) (B = ElF 17 — GoP)

!

'

By taking the imaginary part, we obfain an ‘identity of the form

(J = Yo) d3.f — {d5,(Z — %)
(17 = Zol* + 7 — Fol)™ -

(E —F) A @ —Foh /]
__2 dx dy,
m/u 7 =7 i

T — xo|2 i - ?/olz)m+1

" where fora,b € A, [a, b] = ab — ba. The integral in the rlght hand side of thls for-
mula may also be considered as a. higher order Riesz transform (see [8]

A

-
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