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Some Recent Developments in the Theory. of \Tonlmear Smgular
' Integral Equatlonsl) '

" L. v. WOLFERSDORF -

—
o '

Es wird iiber einige kiirzliche Untersuchungen sowjetischer Ma.thcmatlkcr und des Autors zu
mchtlmeqren singuliiren Integral- und Integrodifferential-Gleichungen vom Cauchyschen und
Hilbertschen Typ berichtet, welche groBe 1 \1chtlmeantatcn enthalten.

CoofIwaerca 0 HEKOTOPHX HEeXaBHMX HCCJICHOBAHMAX COBCTCKMX MATEMATHKOB M apTOpa K
HEJMHENHWM CHHIYJIAPHHM HITETPANLHEIM M HHTErpo-AuQdepeHIHanbHRIM ypanuenuﬂm
tiuma Houu 1t I‘n.nb6epTa KOTOpHIE cofiepkaloT Goabuue HEJIHHEIHHOCTH. . '

We report on some recent investigations by Soviet mathematicians and the author about
nonlinear singular integral and integro-differential equations of Cauchy and Hilbert type in-
volving ldrgc nonlmearmes

Introduetion . o :

Nonlinear smgular integral and integro- dxffcrentlal equatlons involving thc Cauchy
operator

, { ‘ L
(Su) (z) —f§ —e<z=Za, ' (M
or the Hilbert opera.tor '
) . 1 3 o _ . .
(Hu) (s) = Efu(a) cot 22 dy, | —n<s=a, . )

have been considered for a ‘long time. We refer to the well-known treatlse on integral
equations by PoGORZELSKI [22], the recent monograph by GuseiNnov and MUKHTAROV
[13], and the recent survey article [14]. Moreover, we point out to the monographs
by Birknorr and ZARANTONELLO [10] (cf. also the survey article by PYRHTEEV
[23]) and Ga1ER [11] for the occurrence and the investigation of partlcular equations
of this kind in hydrodynamics and the theory of conformal mapping, respectively.

. But until recently the general theory of such equations was developed almost entirely

for equations with a sufficiently small parameter before the nonlinear part.

‘In this paper we report on-some recent existence results for equations of this
‘type without such severe smallness assumptions on the nonlinearities. These results
by Soviet-mathematicians and the author were obtained by means of various methods
of nonlinear functional analysis (methods of monotone operator theory, application
~ of nonlocal Jmphcxt; function theerem, novel application of Schauder’s fixed point
t,heorem) Some minor tlll now unpublished results of the author are also incorporated
.in the paper. .

1) Vor"trag auf der Konferenz ,,Complex Analysis* (S. Z. Anal. Anw. H. 2 (1986)).
B t .

6* . - . ) .. |
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N

We remark that in recent times great efforts were made in applying numerical
methods for the solution of nonlinear singular integral equations, too. But we will
not deal with this topic here. ,

1. Methods of monotone opérator theory
I . .

" a) Integral equations

The obemtor S is'a linear bounded operator from L,=Ly(—a,a), p 22, int-o' _

L,, 1/p + 1/g = 1, satisfying the relation

(Su,u),=~f'(Su) ('g'c)‘@(x)‘dx;'o for wel, ' p=2.

Therefore, for any 1 € R the operator 4§ is a linear continuous monotone mapping
from L,, p = 2, into L,. Let ¢(z,u) be a monotone C(arathéodory)-function on
[—a,a} X R, ie., ¢(z, ). is continuous and non-decreasing in % € R for almost all
z € [—a, @] -and measurable in z € [—a, a] for all u € R. Further, let @(z, «) fulfil'
the incquality o - :

o, w| < A(z) + B ufot, . L B

‘where 4 € L,, B > 0. Then the Nerﬁytskyi operator associated with the function ¢
- . is a bounded, continuous monotone mapping from L, into L,. If, moreover, ¢ satis-
fies the condition ! -

up(z, u) = C Juft — D) . . @)
where C > 0, D E L, the Nemytskyi opérator is also coerciye.'

/

‘I (3), (4) are fulfilled, the basic princ;plc of monotone operator theory b}ll Browder
,and Minty yields the existence of a solution u € L, of the equation -

w At u)=f . : '(5)

for any 4 € R, f € L, [17]. By a theorem of Brézis and Browder on Hammerstein
operator equations in spaces of sammable functions a.unique solution « of (3) already
exists if only (3) is satisfied. The coercivity condition (4) can be-left out [26, 8]. .
Let the monotone C-function y(z, u) fulfil the assumptions (3), (4) with p = 2
instead of ¢g. Then, again by the basic’principle of monotone operator theory, the

~ existence of a unique solution u € L, of the equation .
u+i.Su+1,u‘(»,u)-\—-g, : ‘ : — (6) .

for any 4 ¢ R,g¢€ I, follows [12, 13]. With the help of the main theorem of maximal
monotone operators.by Browder this existence result can be extended to equations -
Kow) +90u) + Wu=g, . S Yl
where y(z, w) is an arbitrary (strictly) monotone C-function satisfying merely the °
condition (-, 0) € L, [26]. . : ' . ‘
The basic principle of monotone operator theory can further be used to prove
the existence of a unique solution u €-L,, p = 2, of the equation

woapls Su)y=h - o (8)
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for any ZER, he L,,, where the strxcb]y monotone C-functlon satlsfles (3), 4) [8];
cf. also [17] for the case 1 < p < 2.

Finally, the existence theorem for the equatlon (6), also remains vahd ifl<p< 2
-where the first term u in (6) can be replaced by pu with a nonnegative bounded
* measurable function g on [—a, a). For proving this the-operator fu + ASu is con-
- sidered as unbounded monotone mapping from L, into L, with domain L,. By a
theorem of Brézis and Browder this mapping has a.maximal monotone e)\tcnsmn
Then, again the main theorem of maximal monotone operators is used [27). '

All the mentioned results hold in corresponding weighted Lebesgue spaces L,(o),
. p =22, with weights. p(z) =(a.— 2)" - (z + @)}, —1 <y, d<p—1, and Lyo),
- o(x) = o(x)*9, too [12, 13, 26, 8). Further, the Cauchy operator can be replaced by
. more general operators of the form . :

b(a) f b(y) u(?/) *[de) + d(y)] u(y d;y

4 y—z = y -z
with suxtable summable functions b and d res'pectlvcly, (and by ﬁmtc sums of -
them) and, moreover, by corresponding operators on the whole real axis [2 8, 26).
Furthermore related systems of integral equations have been dealt with m [3—7,
26). .

By applvmg inversion formulas’ hke . s

SOSu=u for ueL,,, P> 2, o B R (9)
where the operator S is defined by . , _ |
(Sou) () = —r(2) S[f'lu] @), r(z)= Vaz'— 2, . (10)

from the above e\xstcnce theorems for the equations (5)—(8) one obtams existence -
. theorems for equations involving.the operator S, and related ones [17, 26, 27).

Finally, rclated results hold for equations with the Hilbert operator (2) iri Ly(—=, n)
p 2 2, [1, 26] since &lso . .

(Hu, u) = f (Hu) () u(s)ds =0 for uce L,,(—:n, ), p=2. |

—_%

Amann’s existence rcsult in [1] for corrcspondmg Hammerstein equatlons of form -
(o) with. a strongly monotone Nemytskyi operator of @ in Lz( —m, ) seems to be

the first application of monotone operator theory to nonlinear singular 1ntegral o

equations. ) ’ . ) . N
The equation '

o w) +AHu =g . v (11)

is equivalent to a Riemann-Hilbert problem for a holomorphic function w = u + v
in the unit disk. Such nonlinear. Riemann-Hilbert problems are treated by methods
of monotone operator. theory in [24, 25]. In [24] the analogon to the existence theo-
rem for the equation (7) is given, whereas in [25] the equation (11) with 2 = 41
and a monotone C- functlon @ satisfying the mequahty

Is,u)I§A8)+BIuIA ' ' L (12a)
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with 4 € Lg(—n 7), B >0 and possessing limit functions
© pu(s) = lim pls w) - o (12b)
00 : : S

is studied 'ln_Lg(—ﬂ,' 7T) by means of abstract Landesman-Lazer theorems of Brézis
Y,

-and Haraux, and de Figueiredo, respectively. )
'b) Integro-differential equations

Let again the monotone C-funcm‘()ln y(x, u) satisfy the assumptlons (3), (4) with
P =2 instead of ¢, the monotone C-function y(z, ») fulfil the condition (-, ¢) € L,

.- for each ¢ € R, and let # be a nonnégative bounded measurable function on [—a, ).
‘Then the integro-differential equation

W+ Bu+ 1(w) 4yl w) + 2Su =g o R ¢t
for2e R, g ¢ L has a solution u ¢ L, with «' ¢ L, satisfying one of the condltlons

u(—a) = iu(a) or u(—a) =0, respectlvely [26]. l) The proof agam uses the main

theorem of maximal monotone operators.
" The theory of maximal monotone operators can also be utilized to prove the
existence of solutions to some nonlinear generalizations of the well-known Prandtl’s
integro- dlfferentla.l equation of alrfoﬂ theory [26] For instance, the equation

(D( s u) + ASu+ Tu =g, : (14)

where 4 € R, g € Ly(r), D(z, u) is a monotone C-function satisfying the incquality '

- P w)|'S A@) + Bri@) u) . - “(15)

B with 4 € Ly(r), B> 0 and Tw = —Su/, has a ‘unique solution = € Ly(r~1) w&th

u’ € Ly(r) which fulfils the boundary condmons u(;{;a) = 0. The function @ need

not satisfy the corresponding coerc1v1ty condition. since the operator T is positive
definite: . o

(Tu, w) = fr‘l(:z: u?(x) dx S . : , (16)

—a

for any u € Lz(r 1) with u(:;:a) = 0'and %' € Ly(r). Here the function r is given
by (10) agam An analogous theorem holds for the equatlon (14) with additional

.term uw', where /|,u| < 1,-and with coercive function @ in corrcspondmg spaces‘

Ly(0), p > 2 [26].

Obher types of smgu]ar mtegro dlfferent,lal equations are st,udled in[17] by reducmg '

them to operator’ equatlons containing the monotonc opcrators
By = —8[J (%o, C)] By = J(—a,0) [18],
where J is thc operator of mtegration

z

(Vo OV u) (2) = [u(y)dy +C, . —a <z, <a.

Zo

1) In case of u(—a) = u(a) the function g shall not vanish 1dent1ca]l) The case u( a) = 0
not handled in [26] can be dealt with as the other. cases_there.

*2) In [17] the minus sign in B, is missing. Therefore, in bhe sequel we will accordingly change‘

the corresponding equations from [17].

”
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The monotomcxty of By and B2 from Ly, p>1or p>2, respectlvely, mto L,
follow from (16) by corresponding substltutlons“)

(Blu, u) (w’ T'IU), . w= Blu’

\
" since SSy» = v — const for v € L,, p > 2 (cf. [26]) ;) —
© (B )= (6, Tw),  w=Bu,

in view of (9); in both cases the condltlons w(+ta) = 0 are fulfilled.
In this way the existence of absolutely continuous solutions u-in suitable L,
_spaces for « and «’ is proved for equatlons of the form

an

u — 2Sp(-,uw') =1, . .

e’ + 2Se(5, u) = 0, " uf—a)=0, S S (18)
~and ' S : R « '

uw — lp(-, Sou) =g, - u(®) =¢, . - i (19),

where'A > 0 in (17), 72 = 0 in (18), (19), and @ is a monotone C- functlon satisfying
conditions of the form (3), (4) [17]. Some further analogous existence theorems
- under weaker assumptlons on' g are stated in [20], especially for solutions « with
the side condition (r, ») = m in the equatlon (18), where the term ru’ is replaced
by ' itself. )

Integro dlfferentlal equations of the type

W H el =g o - (20)

" with the Hilbert operator H are equlvalent to a generalized Steklov problem-for a
holomorphic function w = »'+ 7v in the unit disk. In [24] the analogon to the
existence’ theorem for the equation (13) and in [25] a correspondmg Landesma.n-
Lazer theorem for functions ¢ satlsfylng (12a, b) are glven

2. Application of nonlocal implicit function theorem '

Existence theorems for the integral equation (5) and the integro-differential equation '
(17) were also obtained with the help of a nonlocal implicit function theorem dcrlved
by MagoMEDOV in {16]. In [16] itself existence of a (unique) Holder continuous
solution % of equation (5) with f=0and 2 € R is proved if the function ¢ has the
form ¢ = o® with some weight function g(z) ‘and a Hélder continuous function
&(x, u) possessing a Hélder continuous nonvanishing derivative @, whose Holder
norm satisfies a Hélder condition and whose remproca] 1/¢ obeys some weak
growth condition. .

Furthermore, the equatlon (17) w1th 2> 0 and f € C has a unique solution u eC”
. if the function @(z, ») is continuous and has a continuous derivative ¢, > 0 whose-
reciprocal '1/p, fulfils some weak growth condition [17, 18].

Finally, there exists a unique solution u € W,! to the equation (5) for any A € R,
f € Wyt if the function @(z, u) has derlvatlves Pus P q),,,,, @zu, Where (p, (}J“, Quu BTe
continuous functlons w1th @s = 0,

<P(:i:a,u)—0 . o e

" %) Or may be directly shown as in [17] by means of trigonometrical Fourier expansion of u.
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‘and |g], @i, |@.], and |p.,| satisfy some growth conditions implying powerlike be-
haviour of ¢ with -respect to « [18, 19]. Moreover, this existence theorem for the
equation (5) can be extended to a. related equatlon with.S replaced by the opcrator
K defined by '

S N
K = —_2 T T
( u)((x) - f Yy — = ',dy,
—a
: where the kernel Ic(x y) is symmetrlc and possesses Holder contmuous first deriva-
‘ tives. Then the condition (21) can bé replaced by the condition k(x +a)=0, too"
[18,19]. = : :

i
.

.3 Applicétion of Schaudcr’s fixed point t-heorem

‘a) Completcly contmuous operator equatlons

By means of Schauder’s fixed pom'c theorem the exxstence of solutions of nonhnear
integral/ equatlons can be proved if the*corresponding operator is completely con-
tinuous, i.e. continuous and compact, in the considered Banach space and, roughly
- speaking, the nonlinearity is sublinear.?) This is the case in Hoélder.spaces for the.
: mtegral equatlon (5) with fixed smgularlty

—

uz) + — f 5980 4y ), —a<zm<a, (22)

Yy—2

. if the function <p(x, Y, u) grows not faster than |‘u|’, 2_< 1, and fulfils a Holder
" condition in z, y, « [15]. Further, by integration the integro-differential equations

w = ASp(-, w), . . uw = Agp(-, Su) IR . (23)

with the additional condition u(xo) =, —4 = Ty < a, where 2 € R and ¢(z, u) is
a C-function which again grows not faster than [)', 1< 1, can be reduced to such
an operator equatlon inLy,,p>2 [17]

! ) e . ] ’
b) Quasilinear integro-differential equations

The qﬁasilinea.r integro'differentidl equation L T ' o

A( u)u—Su:G’( %) . ‘ , o (24)

k3

thh a continuous function A(z, u) and a C- functlon G(z, u) can be reduced to a
fixed point equation for -u by so]vmg (24) for given A, G with respect to ¥’ and
integrating the obtained expression for /. This fixed point equation for « in a
formal way resembles the corresponding equations steming from integro- dlfferentlal .
equations of the type .

W =g, u) (-, Su), W =gl u)p(, S (25)
by integration.’ '

4) In this situation also-Kaéurovskyi’s theorem for asymptotically linear completely continuous
operator equations may be applied.
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Equations of the form (25) occur by the treatment of free\bounda,ry problems in ,
the theory of jets.in hydrodynamics (cf [10, '23)). They can be handled by means
of the Schauder fixed point theorem in spaces of continuous or Hélder continuous
functions using a.known lemma by Zygmund for: estimating. Extending this ap-
proach, one obtains the existence of a solution u € Wt .for some p > 1to equablon
(24) with u(:Fa) ="0 if A4 satisfies the mequallty A

L sSA@uwslh . -oll‘(%)
with finite /; = 0, k¥ = 1, 2, and {,l, < 1 and G {ulfils the estimation . '
6@, w)| < lyla 2 g2 h _ . s o (27)

with y = 0 and 0 < 8 < 1/2 [31). This existencé t,heorem can also be extended to
quasilinear integro-differential equations of the more  general form . (24) with -
A(-, u, Su), G(-, u, Su) [32]. We further remark that recently a partlcular ¢quation
of the second type (25) from hydrodyna,mlc; ‘with positive functions ¢, ¢ was dealt,
with by Schauder’s fixed point theorem in a subset of monotone Holder continuous
functions in C [9]. , - :

Finally, corresponding quasnlmear integro-differential equatlons to (24) with the
. Hilbert operator H instead of S,.namely equations of the form

u-me(wu]—g+HW(w] 1 - - (28)
with one of the additional condltlons _ T ' .
w(0)=k 3 N (29a) .
or e ) - : o
1 f ' . S
/au@)ds==nu - o ~ (29b)
27 ‘ o . . N :

—n

have been dealt with in an ahalogous manner in [30].

¢) ~Ipt‘egral equations

Under suitable differentiability assumptions about g(z, «) the integiral equation

#,u)=Sutc o | e
for solutions w € W, »p > 1, with u(:};a) = 0 and a free constant c is equivalent
to the integro-differential equation (24), where 4 = ¢,, G = —¢,. Thetefore, ‘the

above-mentioned existence theorem for (24) immediately yields a such one for (30)
[31]. The same is true for more general equations. of the form

.F(%Mpw , " : S -~ (31)
w1t,h a dlfferentla.ble function F(x u, v) sa.tlsfymg E, # 0 [32] ’

Moreover, correspondmg existence theorems can be proved in analogous way for
-Hammerstem equations of the form (5)

u=Sp(,u) +/ +c I ey

with a free constant ¢ under suitable additional sfgn conditions on the functions
“@(%a,u) and @4(ta, u). Especially, if (21) is fulfilled, the constant ¢ can be fixed,
.d.e. ¢ = 0 without loss of generality [31]. This case corresponds to the above-men-

\A'.



" 90 L. v. WOLFERSDORF

tioned existence theorem for thé equation (5) by means of the nﬁ)nlocal implicit
~ function theorem of MacoMEDOV in [18). : ' '

"We further remark that on the right-hand side of (32) additional ixitegral terms of
the form " . - :

—1 a ) b . a . : .
—~ f vy, w(v)) In |y — 2| dy + [ (v, w(y)) dy
A AN

can be present, where the condition (27) has to hold for the sum g+ ¢, instead
for ¢, and y(z, y, u) is a C-function posscssing a derivative .y, which satisfies an .
estimation ' '

| |22(, 9 w)| < ¥(y) (a® — 22)~*
with0 <6 < 1/2and y € L,.
In an analogous way the integral equation ‘
w + Ho(, u) + Kyl u) = f L (@)

with the integral operator

(Kv) (s) = % f’v(o) In (4 sinz Z ; 8) do N ’ o ‘ (34)

and differentiable functions ¢, f can be reduced to the integro-differential equation
(28) with (29b), where M = ¢,, N =y — ¢, g = {' and . ‘

m = 2%[/(8) ds.%)-

In particular, in this way the existence of a solution to the known Theodorsen integral
equation of conformal mapping (cf. [11]) for a smooth starlike Jordan curve has
been proved independently of Riemann’s mapping theorem [30). :

Finally, we remark that by a similar approach related nonlinear Riemann-Hilbert
problems for holomorphic functions have been dealt with in [28, 29].

d) Reduetion to quasilinear Beltrami equation - yz

The integral equation (30) for functions ¢ of the form

P(z, u) = bo(z) + ba(z) u + p(w) : (35)
with Holder continuous functions b, £ = 0,'1, and a function y possessing a bounded
measurable derivative ¢’ can be reduced to a boundary value problem for the solu-
tion of a quasilinear complex elliptic differential equation of Beltrami type with a
lincar Riemann-Hilbert boundary condition in the upper half-plane [31]. Existence -
theorems for the” Riemann-Hilbert problem of the Beltrami equation have been -
given by Mo~acHoV [21] and others. :

In an analogous way such a reduction to a linear Riemann-Hilbert problem for a
quasilinear Beltrami equation can be done for the integral equation (11), cf. [29]
for the reduction of the nonlinear Riemann-Hilbert problem for holomorphic func-
tions equivalent to (11). :

-_ .
5y Knownly, for the operator (34) the relations [K»])’ = — Hv and f (Kwv) (s) ds = 0 hold.

et 4
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