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Some Recent Developments in the Theory. of Nonlinear Singular 
Integral Equations') 

L. V. WOLFERSDORF 

Es -wird über einige kürzliche Untersuchungeri sowjetiseher Mathematiker und des Auto 'rs zu 
nichtlinearen singulii.ren Integral- und Integrodifferential-Cleichungen v'om Cauchysch'sn und 
Hilbertshen Typ berichtet, weiche groBe Nichtlinearitäten enthalten. 
Coo6uaeTc9 0 HCKOTOUX IlegauHux I1ccJ1eo13aHHnx coBercHux MaTeMaTuLon H aBTOpa I 
IleJIlIllefluhIM cItHry.nnpuuM HhITCFJThHHM It uHTerpo-IHuepeHuHaJIhIrhlM ypaBHeHHHM 
Tuna Houhit It I'IrJlb6opTa, ioopaie co;tep;t;aIOT 60imwue HeJI1111efIH0CTH. 
We report an 'some recent investigations by Soviet mathematicians and the author about 
nonlinear singular integral and integro- differentialequations of Caicliy and Hubert type in-
volving large nonlinearities.  

Introduction 

Nonlinear singular integral and integro-differential equations involving the Cauchy 
operator	 -	 -. 

(Su) (x) = f	d,	—a x a,	 (1) 

or The Hubert operator	 - 

(flu) (s) 
= -_- f u(a) cot °2 S da,	—ii	S	t,	,	 (2) 

hav'e been considered for a long time. We refer to the well-known treatise on integral 
equations by POGORZELSKI [22], the recent monograph by GuSncoV and MUKHTAROV 
[13], and the recent survey article [14]. Moreover, we point out to the monographs 
by BrRxrroPF and ZABANTONBLLO [10] (cf. also the survey article by PYKHTEV 
[23]) and GAIER [11] for the occurrence and the investigation of particular equations 
of this kind in hydrodynamics aiid the theory of conformal mapping, respectively. 
But until recently the general theory of such equations was developed almost entirely 
for equations with a sufficiently small parameter before the nonlinear part. 

'In this paper we report on some recent existence results for equations of this 
type without such severe smallness assumptions on the nonlinearities. These results 
by Soviet' mathematicians and the author were obtained by means of various methods 
of nonlinear functional analysis (methods of monotone operator theory, application 
of nonlocal implicit function theorem, novel application of Schauder's fixed point 
theorem). Some minor till now unpublished results ofthe author are also incorporated 
in the paper.	''	 S 

I) Vortrag auf der Konferenz ,,Complex Analysis" (s. Z. Anal. Anw. H. 2 (1986)). 
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We remark that in recent times great efforts were made in applying numerical 
methods for the solution of nonlinear singular integral equations, too. But we will 
not deal with this topic here. 

1. Methods of monotone op4rator theory 
I	 S 

a) Integral equations 

The operator S isa linear bounded operator from L = L(—a, a), p 2, into 
L, i/p + 11q = J, satisfying the relation 

(Su,u)=f(Su)(x)u(x)dxO for U E L	p2 

Therefore, for any 2 E li the operator AS is a linear continuous monotone mapping 
. from L9, p ^ 2, into Lq. Let (x, u) be a monotone C(arathéodory)-function on 

[—a, a] x R, i.e., (x, u). is continuous and non-decreasing in u E if for almost all 
x E [—a, a] 'and measurable in x € [—a, a] for all u E H.. Further, let (x, u) fulfil' 
the inequality 

f(x, u)I ;5 A(x) + B JuJ Q ',	 (3)
where A € L, B> 0. Then the Nemytskyi operator associated with the functio 
is a bounded, continuous monotone mapping from Lq into L. If, moreover, satis- 
fies the condition 

wp(x, u) C Ju - D(x)	 0	 (4)
where C> 0, D E L1 the Nemytskyi operator is also coercive. 

If (3), (4) are fulfilled, the basic principle of monotone operator theory by Browder 
• and Minty yields the existence of a solution u ELq of the equation 

u+2S(.,u)=f	 ...	 (5) 
for any A € It, / E 4, [17]. By a theorem of Brézis and Browder on Hammerstein 
operator equations in spaces of summable functions a, unique solution u of (5) already 
exists if only (3) is satisfied. The coercivity condition (4) can be' left out [26, 81. 

Let the monotone C-function v(x, u) fulfil the assumptions (3), (4) with p ^ 2 
instead of q. Then, again by the basic'principle of monotone operator theory, the 

•	existence of a unique solution u € L. of the equation 

u+2Su+(.,u)=g,	 (6) 
for any A E It, g E 4, follows [12, 131. With the help of the main theorem of maximal 

•	monotone operators.by Browder this existence result can be extended to equatiOns 

• x(.,u)+ip(.,u)+2Su=g,	 (7) 
where x(x, u) is an arbitrary (strictly) monotone C-function satisfying merely the 
condition x( 0) € 4, [26].	 0	 • 

The basic principle of monotone operator theory can further be used to prove 
the existence of a unique solution u EL,,, p	2, of the equation 

U + 29( . Su) = h	 .	 (8) 

/	 I.
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for any E B., h € L, where the strictly monotone C-function satisfies (3), '(4) [8]; 
cf. also [17] for the case 1 <p	2. 

Finally, the existence theorem for the equation (6), also remains valid if 1 <p < 2, 
where the first term u in (6) can be replaced by flu with a nonnegative bounded 
measurable function fi on [—a, a]. For proving this the-operator flu ± )Su is 'con-
sidered as unbounded mnotone mapping from L into Lq with domain Lq. By a 
theorem of Bréis and Browder this mapping has amaximal monotone extension. 
Then, again the main theorem of maximal monotone operators is usd [27]. 

All the nientioned results hold in corresponding weighted Lebesgue spaces L(), 
p ^-_ 2, with weights. (x) = -(a —  x)? . ,(x + a) ö , —1 < y, c5 <p - 1, and L(c), 
a(x) = ()' Q , too [12, 13, 26, 8]. Further, the Cauchy operator can be replaced .by 
more general operators of the form  

b(x). r	
_) 

b(y) u(y) d
	1 r [d(x) + d()] u(y) d '	• ' 

	

y — x	'	,I	y — x	 '	.5 

with suitable summable functions b and d, respectively, (and 
by 

finite sums of 
them) and, moreover, by corresponding operators on the whOle real axis [2-8,26]. 

-	Furthermore, related systems of integral equations have been dealt with in [3-7, 
26]. 

By applying inversion formulaslike  

S08u = u for it E L,	p > ,	 .	-	'	,	(9)

where the operator S 0 is defined by  

(80u) (z) = —r() S[r 1u] (x),	r(x) 	(10) 

from the above existence theorems for the equations (5)—(8) one obtains existence• 
theorems for equations involvingthe operator 2 0 'and related ones [17, 26, 27]. 

Finally, related results hold for equations with the Hilbert operator (2) in	n) 
p	2, [1,26] since also 

(Hu, u) =f (Hu) (s) u(s) ds = 0 for , u € L(—, ),	p 2. 

Amann's existence result in [1] for coresponding Hammerstein equations of.form 
(5) with. a strongly monotone Nemytskyi operator of q, in L2(—r, m) èeems to be 
the first application of monotone operator theory to nonlinear singular integral 
equations..S 

The equation	..	.	 ' 

q( . ,u)+ AJJu=g '	
S	 /'  

is equivalent to a Rieniauin-Hilbert problem for a holomorphic function w = u + iv 
in 'the unit disk. Such nonlinear. Riemann-Hilbert problems are treated by methods 
of monotone operator theory in [24, 25]. In [24] the analogon to the existence theo-
rem for the equation (7) is given, whereas in [25] the equation (11) with 2 = +1 
and a monotone C-function' 97 satisfying the inequality 

q'(s, u)I	A(s) + B Jul,	 '-	'-	.	"	 -(12a)
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with A E L2 (—, ar), B> 0 and possessing limit functions 
= Jim '(s, u)	 -	 (12b) 

is studied -in L2 (—r,) by means of abstract Landesman-Lazer theorems of Brézis 
and Haraux, and de Figueiredo, respectively. 

b) Integro -differential equations 

Let again the monotone C-function lp(x, u) satisfy the assumptions (3), (4) with 
p 2 instead of q, the monotone C-function x(x, u) fulfil the condition x( c) € Jig 
for each c € R, and let be a nonnegative bounded measurable funCtion on [—a, a]. 
Then the integro-differential equation 

U, +u + A . , U ) +ip(,u) ± ).Su g	 (13) 
for 2 € R, g € Lq has a solution u € L with u' '€ Lq satisfying one of the conditions 
u(—a) = +u(a) or u(—a) = 0, respectively [26]. 1) The proof again uses the main 
theorem of maximal monotone operators. 

The theory of niaxinial monotone operators can also be utilized to prove the 
existence of solutions to some nonlinear generalizations of the well-known Prandtl's 
integro-differential equation of airfoil theory [26].' For instance, the equation 

+A&t-+Tu=q,	 (14)
where A € R, g E . L2(r), (x, u) is a monotone C-function satisfying the inequality 

I(x, u)I^ A(x) + Br-'(x) Jul	-	 (15) 
with A € L2 (r), B> 0 and T'w = —Su', has a unique solution u E L2(r) with 
U' € L2 (r) which fulfils the boundary conditions u(±a) = 0. The function 1 need 
not satisfy the corresponding coercivity condition. since the operator T is positive 
definite:  

(Tu u) ^_jfr 1 () u2 (x)dx	 (16) 

for any u € L2 (r- 1) with u(+a) = O'and u' € L2 (r). Here the function r is given 
by (10) again. An analogous theorem holds for the equation (14)' with additional 
term 1uu', where < 1, and with coercive function 0 in corresponding spaces 
L(e), p> 2 [26]. 

Other types of singular integro-differential equations are studied in [17] by reçlucing 
them to operator equations contaithng the monotone operators 

B,1 = —80[J(x0 , C)] 2 ),	B0 = J(—a, 0) [r18], 
where J is the operator of integration - 

(J(xo, C) u) (x) =fu(y) dy + C,	—a	a.	 - 

In case of u(—a)	u(a) the function fi shall not vanish identically. The case 21(—a) = 0
not handled in [26] can be dealt with as the other. cases there. 
2) In [17] the minus sign in B1 is missing. Therefore, iiithe sequel we will accordingly change 
the corresponding equations from [17].
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The monotonicity of B1 and B2 from L, p > 1 or p> 2, respectively, into L 
follow from (16) by corresponding substitutions3): 

(B1 , u) = (w, Tw),	w = B1u, 

since 220v = v — const for v E Li,, p> 2 (cf. [26]);	..	- 

- (B2u, r'u) = (v, Tw),	to = B2u, 

in view of (9), in both cases the conditions w(+a) = 0 are fulfilled. 
In this way the existence of absolutely continuous solutions it in suitable L 

spaces for it and u' is proved for equations of the form 

U - 2S( . , u') =1 '	 .	.	( 17) 

ru' +	u) = 0,	u(—a) 	(18) 
and  

U, - 29( . , Su) = g,	u(x0 ) = c,	 -	 (19). 

where 2> 0 in (17),	0 in (18),(19), and is a monotone C-function satisfying
conditions of the form (3), (3), (4) [17]. Some further analogous existence theorems 

• under weaker assumptions on q' are stated in [20],. especially for solutions u with 
the side condition (r, u) = m in the equation (18), where the term ru' is replaced 
by u' itself. 

Integro-differential equations of the type 

u' + ).Hu + q,(, u) = g	 .	 (20) 

with the Hilbert operator H are equivalent to a generalized Steklov problem' for a 
holomorphic function w = u+ iv in the unit disk. In [24] the analogon to the 
existence theorem for the equation (13) and in [25] a corresponding Landesman-
Lazer theorem for functions q, satisfying (12 a, b) are given.	 - 

2. Application of nonlocal implicit function theorem 

Existence theorems for the integral equation (5) and the integro-differential equation 
(17) were also obtained with the help of a nonlocal implicit function theorem derived 

-by MAGOMEDOY in [16]. In [16] itself existence of a (unique) Holder continuus 
solution u of equation (5) with I = 0 and 2 E R is proved if the function OF has the 
form q = gO with some weight function e(x) 'and a HOlder continuous function 
l(x, u) possessing a Holder continuous nonvanishing derivative Ou whose Holder 
norm satisfies a HOlder condition and whose reciprocal I/Ou obeys some weak 
growth condition.	 . 

Furthermore, the equation (17) with 2 > 0 and /E C has a unique solution u E C' 
if the function ç(x, v) is continuous and has a continuous derivative 9'v> 0 whose 
- reciprocal'l/ip, fulfils some weak growth condition [17, 18]. 

Finally, there exists a unique solution u € W2' to the equation (5) for any 2 E R, 
/ E W2' if the functioi q(x, u) has derivatives q'u, Tz , Tuu , Txu , where \q,, , 97,u are 
continuous functions with pu 0,

•	(21) 

) Or may, be directly shown as in [17] by means of trigonometrical Fourier expansion of u.
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and , and satisfy. some growth conditions -implying powerlike be-
havipur of 97 with respect to it [18; 19]. Moreover, this existence theorem for the 
equation (5) can be extended to a related equation 'vith S replaced by the operator 
K defined by  

	

- (Ku) (x) =	f k(XY)U(Y ) dy	 V 

where the kernel k(x, y) is symmetric and possesses Holder continuous- first deriva- 
tives. Then the condition (21) can be'replaced by the condition k(x, ±a) = 0, too 

•	[18,19].	 V 

• 3 Application of Schauder's fixed point theorem	
•V	

V	 V	

V 

a) Completely continuous operator equations	•	

V	

V 

By means of- Schauder's fixed point theorem the existence of solutions of 'nonlinear 
integral' equations can be proved if the'corresponding operator . is completely con-
tinuous, i.e. continuous and compact, in the considered Banach space and, roughly 
speaking, the nonlinearity is subli .near. 4)- This is the case in HOlderspaces for the. 

- integral equation (5) with fixed singularity	-, 

1	(x, y, u(y))	 V	 - 

u(x) ±-J 
y x0 

-	dy=/(x),	—a<x0< a,	
V	

• (22) 
V 

-	 -	 -a	 - 

if the function q(x, y, u) grows not faster than 1u1 1 , I V<1 and fulfils a Holder 
condition in x, y, u [15]. Further, by integration the integro-differential equations 

= AS( . , u), V	 u' = 2( . , Su)	
V	 -	

- ( 23)	- 
with the additional condition u(x 0) = -c, —a	x0	a, where 2. E R and p(x, u) is
a C-f unction which again grows not faster than lul l , 1< 1, can be reduced to such 
an operator equation in L,, p > 2 [17]. 

•	b) Quasilinear integro-differential equations	 -	• -

- The quasilinear integro-differential equation  

-.	A( . , u) u' - Su' = G( . , u)	 (24) 
with a continuous function A(x, u) and a C-function G(x, u) can be reduOed to a 
fixed point equation for-u by solving (24) for given A, 0 with respect to u' and V 

integrating the obtained expression for VU ' . This fixed point equation for u in a 
formal way resembles the corresponding equations steming from integro-differential 
equations of-the type	

V	 -	

S 

= (., u) . (., Su),	u' = 99( . , u) . (., SOU)	 (25) 
• by integration.	 V •	 - 

•	4) In this situation alsoKaéurovskyi's theorem for asymptotically linear completely continuous 
operator equations may be applied. -	-	 V
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Equations of the form (25k occur by the treatment of free boundary problems in 
the theory of jets. in hydrodynamics (cf. [10, M]). They can be handled by means 
of the Schauder fixed point theorem in spaces of continuous or Holder continuous 
functions using a,known lemma by Zyginund for estimating. Extending this ap-
proacF, one obtains the existence of a solution u E Wi,' for some p> 1 to equation 
(24) with u(+a) ="O if A satisfies the inequality'  

—1	A(x, u) :!E^ 12 .	..	 -	(26) 

with finite 1k	0, k = 1, 2, and 1 1 12 < 1 and 00 fulfils the estimation 

I0(x, u)I	10 (a2 - x2)'46'	 (27) 

with 10 ^ 0 and 0 !!^: 6 < 1/2 [31]. This existence theoreiii cn also be extended to 
quasilinear integro-differential equations of the more general form (24) with 
A(-, u, Su), G( . , u, Su) [32]. We further remark that recently a particular equation 
of the second type (25) from hydrodynamics with positive functions q', V was dealt, 
with by Schauder's fixed point theorem in a subset of monotone HOlder continuous 
functions in C [9]:	, 

Finally, corresponding quasilinear integro-differential equations to (24) with the 
Hubert operator H instead of S,,naniely equations of the form 

u' + H[M( . , u) u] = g + H[N( . , u)]	 (28) 

with one of the additional conditions	 '	 S 

U(0) = k	 ,	 (29a). 
or 

-fu(s) ds =m,	 '	 (29b) 
21

have been dealt with in an analogous manner in [30]. 

• c) Integral equations  

Under suitable differentiability assumptions about q(x, u) the integral equation 
q(., u) = Su + c	 '	

(30) 

for solutions 'u C W,', p> 1, with 'u(+a) = 0 and a free constant c is equivalent 
to the integro-differential equation (24), where A. = Tu, 0 = —ç. Theicfore, 'the 
above-mentioned existence theorem for (24) immediately yields a such one for (30) 
[31]. The same is true for more general equalions.of the form 

F( . ,-u, .Su) = c	
0	

(31) 

with a differentiable function F(x, u, v) satisfying F	0 [32].  

Moreover, corresponding existence theoris can be proved in analogous way for 
Hammerstein equations of the form (5)

-	
0	 '	 (32) 

with a free constant . c under suitable additional sign conditions on the functions 
. '(±a, u) and q'u(±a, u). Especially, if (21) is fulfilled, the constant, c can be fixed,

c = 0 without loss of generality [31]. This case corresponds to the above-men-
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tioned existence theoreni for the equation (5) by means of the nonlocal implicit 
function theorem of MAGOMEDOV in [18]. 

We further remark .that on the right-hand side of (32) additional integral terms of 
the form	 - 

7-- f v(y,* u(y)) In I - xI dy +fx(x y, u(y)) dy 

can be present, where the condition (27) has to hold for the sum , + q instead 
for , and z(x, y, u) is a C-function possessing a derivative .y, which satisfies an 
estimation

Y, u)I	y (y) (a2 - 
with 0 :!^- ô < 1/2 and y E L1.  

In an analogous way the integral equation 
u+I*p(.,u)+Kip(.,u)=f 

with the integral operator 

(Ky) ()=	f	In (4 sin2 a— 
2 8)

da	 '	 (34) 

and differentiable functions ', / can be reduced to the integro-differential equation 
(28) with (29b), where M = , N = V - p , g /' and 

?fl = _ft s ds. 5) 

In particular, in this way the existence of a solution to the known Theodorn integral 
equation of conformal mapping (cf. [11]) for a smooth starlike Jordan curve has 
been proved independently of Riemann's mapping theorem [30]. 

Finally, we remark that by a similar appoach related nonlinear Riemann-Hilbert 
problems for holomorphic functions have been dealt with in [28, 29]. 

d) Reduction to quasilinear Beltrami equation 

The integral equation (30) for functions g of the form 
Ax, u) = b0(x) + b1(x) u + V(u) ' (35) 

with Holder continuous functions bk , k = 0, 1, and a function V possessing a bounded 
measurable derivative ' can be reduced to a boundary value problem for the solu-
tion of a qua.silinear complex elliptic differential equation of Beltrami type with a 
linear Riemann-Hilbert boundary condition in the upper half-plane [31]. Existence 
theorems for theRiemann-Hilbert problem of the Beltrami equation have been 
given by MoNAonov [21] and others. 

In an analogous way such a reduction to a linear Riemann-Hilbert problem for -a 
quasilinear Beltrami equation can be done for the integral equation (11), cf. [29] 
for the reduction of the nonlinear Riemann-Hilbert problem for holomorphic func-
tions equivalent to (11): 
5) Knownly, for the operator (34) the relations [Ky]' = —liv and f(Kv) (s) ds = 0 hold.
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