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Z.	and K. PRZ4DKA 

tJnter der Voraussetzu'ng der Stetigkeit und einmaligen 'partiellen Differenzierbarkeit der 
Lasungen wird bewiesen, daB das Cauchy-Problem 

.	z")(x, y) = /() (x,y, z(x, y), i, z9(t)(x, y))  

	

--	(t=1.... . in.) 
zU)(x, y) = q,(x, y) für (x, y) E [—r0, 01 X 1{' 

• nicht mehr als eine Losung besitzt, falls die Funktion / = ( J(1)/(m)) der Variablen 
(z, y, p, z, q) die Lipschitzsche Bedingung bezuglich (p, z, q) Oder die Lipschitzsche Bedin-
gung buglich (p, z) und die Höldersche Bedingung bezuglich q'erfullt..	'. 

Flog, yciloBueM IIenpepbIBHOcTis II C[UCCTBOBIOIH 'lacmalx flpOunBO)TlIbIx neporo nopiuua - 
peweHilfi AOKa3LlBaeTCJ9, 'ITO aa)ala Houni  

z(° (x, y) = /()(x, Y, z(x, y), z, I9 10 (x, y))	 ,  
(z=1.... . m) 

Z(t)(X, y) = q,(x, y)	uia (x, 'y) € [ — T0 , 0] x R	 -	-, 

MoKeT IIMCTb Twibsco e,!iHHcTBelIuoe pelueHue, ecnsi (l ylIHluIn / = (/>, ..., /(m)) nepe-
MCHHLJX (x, y, p, z, q) 'yjlOBJleTBOpneT 'ycuoinaio. JIunw'nI.(a no nepereellilaist '(p, z, q) cuili 
yCOBilIO ,TInniiinia no nepesieaisi (p. z) ii YCJ10131110 1'eJIbepa no nepeMelinofi q. 

Under the assumptions of continuity and the existence of first-order partial derivatives of 
the solutions it is proved that the Cauchy problem 

Z ( (x, y) = f( tc (X,Y, z(x, y), z, z9 0(x, y))
(s=l .... . m)	 .	. 

z ( ' ) (x, y)	9(x, y) for (z, y) € [ — r0, 0] x RIt	 - 

admits at most one solution if the function (/0)/(m)jof the variables (x, y, p, Z, q) 
satisfies a Lipschitz condition with respect to (p, zq), or a Lipschitz condition with respect 
to (p, z) ,nd a Holder condition with respect to q. 

/ 

1. Introduction 

First-order partial differential inequalities were first treated by A. HAAR [9] and by M. NA- 
euieo [20]. The classical theory of partial inequalities is.described in detail in [17]. The in-, 
vestigation of properties of partial differential-functional' equations of first order is strongly 
connected with the theory , of differential and differential-functional inequalitis. In [ii] 
differential-functional inequalities are applied to the estimation of the difference between 
solutions of, two systems of partial differential-functional equations and to the formulation 

- of a criterion of.uniqueness of solutions of such systems Difference inequalities corresponding 
to the differential inequalities with a retarded argument are considere'd in [13]. The paper 
[14] contains sufficient conditions for the stability and asymptotic stability of solutions of 
non-linear partial differential-functional equations. The basic tool' in these investigations are 
differential-functional inequalities and Lapunow functions. Generalized solutions of partial 
equations and inequalities are considered in [1-3, 7, 15, 16, 181.
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The problem of existence of solutions for partial differential-functional equations is also 
strongly connected "With differential inequalities. A global existence of solutions together 
with an estimation of the existence domain is considered in [12, 24]. At the present moment 
there e*ist numerous papers on this subject. For more detailed information and references see 
[2, 12, 24]. 

This note deals with solutions of differential-functional equations and inequalities 
defined in an unbounded zone. The solutions are supposed to be continuous and to 
have first partial derivatives. The theorems discussed here are known , under the 
st'onger assumptions that the solutions possess the total differentials 111, 24]. 

Dhote by R the n-dimensional Euclidean space and by y = (y , ..., y) its dc-
rnnts. Let I = O} x fl?, D0 = [ — r0 , 01 x R and D = (0, a) 'x B?, where 0 -s^ r 
and 0 <a	+o. Suppose that z = (z(,), ..., zr)) is a function of the variables 
(x, y) defined in a domain Q	If E possesses first-order partial derivatives
on Q; then we denote 

z = (z1 (1 , ..., zm)).	(zr?, ..., z), 	= [z I1= i.... 
j=1..... n  

Further, denote by C(X, Y) the set of all continuous functions defined in X taking 
values in Y; X, Y being arbitrary' metric spaces. Suppose that	= (99 ,,...)	)!
E C(D0, Htm ) and 

/ = (/(1), ..., / m ) • 'Dx Rm xC(D0 u D, H") X B? --- Htm. 

If z E C(DO u D, R") and possesses first-orderpartial de?ivatives on D \J, then 
we define for (x, y) € D \ J	 - 

/(x ) y,z(x, y), z,z(x, y)) 

= (/,(x, y, z(x, y), z, z(')(x,j)), . . ., /() 	y, 'z(x, y), , z(m)(, y))). 

- -	-	In this paper we shall deal with the Cauchy problem for paitial differential-



functional systems of first order - 

z(x, y) = I(x, y, z(x, y), z, z0 (x, y)),	(x, y) E D \ 1, 

z(x, y) = (x, y),; (x, y) € P0. 

The solutions are supposed to be continuous in D0 u D and to have first-order par- 
tial derivatives in D \ I. As a particular case we obtain differential-integral equa-
tions and systems with a retarded argument. 

First-order partial differential-functional equations have applications in different branches 
of knowledge. Hyperbolic differential and differential-integral systems of first order have 
recently been proposed [3] as simple mathematical models for the non-linear phenomenon 
of harmonic generation of laser radiation through piezoelectric crystals for non-dispersive 
materials and of Maxwell-Hopkinson type. There are various problems in non-linear optics 
which lead to non-linear hyperbolic differential-integral problems. For more detailed in-
formation and references see [4]. Non-linear equations may be used to describe the growth' 
of a population of cells which constantly differentiate (change their properties) in time [8]. 
First-order partial differential-integral telegraphic equations are' examined in [19]. Our results 
in .this paper are also motivated by applications of partial differential-integral equations 
considered in [10].	 . 

For (x, y) E D we define 

T(x, y) = {(t, s) € P0 u D: — To ;5 t s- x and Isj ;5 IIylI}



..'
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where	is the Euclidean norm in R". We assume that the function / satisfies the 
following Volterra condition,: if z, € C(D0 u D, It) and z =	on T(x, y) then

y, p, z, q) = /(x, ,, p, 2, q) for all p E Rm and q E W. 
in this note we prove that if the function / of the variables (x, y, p, z, g) satisfies 

a Lipschitz condition with respect to (p, z, q) then the problem (1) admits at most 
one solution in D. We obtain this uniqueness theorem as a particular- case of some 

- general comparison theorem for: partial differential-functional inequalities. At the 
end we prove the uniqueness of solutions in the case when / satisfies a Lipschitz 
condition with respect to p, z and a Holder condition with r6spect to q. 

The system (1)_is of special hyperbolic type sinè each equation contains first-order deriv-
atives of only one unknown function. This is a weakly coupled system. The existence and 
uniqueness of solutions of initial problems for strongly coupled systems is examined by using 
slightly different methods and under more restrictive assumptions than for (1). We illustrate 

• this in more detail by the example of the Cauchy problem for the system without a functional 
-	argument -	-	 - 

z( t )(x, y) = F(x, y, z(x. y),zy,(x, y), z(0(x, y)),	j ,	. ., lii,	-	-. 

z(O, y) = y(y),	 -	 - 

where F = (Fli .	F.): D•x R ln+ln 11 - It'. The derivatives (z,...,z) =	are respon-
sible for the system to be strongly coupled. Solutions of the above problem are supposed .to 
belong to a special class of analytic functions with respect to the variable Yi This class was 
first taken adantage of by K. NICKEL [221 in the theory of strongly coupled parabolic systems 
of non-linear second order differential equations. 'rhe analyticity of z with- respect to Yi is 
essential in questions treated in this paper. This is shown by a-counter-example constructed 
by A. Pr.i [23] in which for a strongly coupled system of two linear equations there is no	- 
uniueness for the Cauchy problem in the class C. The local uniqueness (and also existence) 
of a solution which is analytic with respect to y and belongs to the class C' with respect to x 
was proved by M. NGUMO [21] under assumptions on analyticity of the right-hand sides 
of strongly epupled systems with respect to all arguments except the variable x. The problem - 
of uniqueness of solutions for strongly coupled differential-functional systems in a class of 
analytic functions was considered in [25].	-	 - 

2. A coniparison lemma	 - 
/ 
For p, E Rm we write p ^S p if the conipomients satisfy p ^ p i for all indices 

j = I, ..., m, and in case of a fixed index p.	^ if p	and p = pi. For pwe define 
iIp Iim = mi +	+ lpml,	= (ip I, ..., p,,,) and if C = [c 1 ] is an m  n-matrix 
then E[CJl- = Ic ij 	CT is the transposed matrix of C. Let [a, j	(a0, )	R. If 
IV = (w 1 , ... Wm) E c((a o ,	), It') then	- 

1016,01 = iw iIii. p j -.+- -	••+- 10,n16,1 

where IIIIlJ is the usual max-norm of C([a, ], It). For (t, y) € 1) we define S(t, y) 
= {(t, s): j sIi IiyI!(. We shall , denote ti function vi of the variable t E [a, ] by 
IV( . ) or (w(t))i1 . if z € C(D0 u D, lt) and x € , a) then we define a vector-valued 
function	 - 

(max z(t, = ((max iz(')(t,$)I	, ..., ( max z(m)(e 
)\ - \. 

	

3ESU,y)	 /	\\8ESU. fl) •	/1 — r..xJ	8ES(t ,)	 -
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In order to simplify the formulation of subsequent theores we introduce the 
following AssuniptionH on a function 

a = .(a, ..., a,,,): [0, a) X R+ m x c([	a),  

where R = [0, +co):	 - 
1. a satisfies the following Volterra condition: if w, E C([ —r0 , a), R+1")and 

W = oil [—, x], 0 f^ x :^-, a, then a(x, p, w) = a(x, p, i) for all p E Jm• 

2. p	implies a 1 (x, p, w)	a 1 (x, p, w), for x E [0, a) and wE C([—to, a), 11+"). 
3. If w,	E C([—r0 , a),	and w(t)	(t) -for t € [—re, x] then a(x, p, w) 

^S a(x, p, ) for all p Et R m .	- 
4. a satisfies the one-sided Lipschitz condition 

•	a(x, p, w) — a 1 (x, ji, Th)	K 11 1) 	p11. + M 11 
for i = 1,-..., m, wherex € [0, a), p, € R+m with p ^ and w, Tv E C([ —TO) a), R.+m) 
with w(t) ^ (t) for € [—re, x].	 - 

In dealing with applications.of ordinary differential inequalities to partial differ-
ential equations, we have to estimate' the solutions of such equations, which are 
functions of several variables, by functions of one vafiahle. In this section 'we shall - 
prove the following comparison lemma. 

Lemma 1: Suppose that	 - 
- 1. the function a satisfies Assumption H, 

2. 1' = (O , ..., ip'll)- C(DØ u D, It") and possesses first-order partial deri-
vatives on D \ 1,	 - 

3. there exists a constant L L, 0 such that the differential-functional inequality 

-	V'(x, Y)l	x, I'(x, y), (max t'(t, s)\ 
\sES(ty)	It --

± LLmt E[iJ (X, y)]1",	(x, y) € D \ Io	 (2)

where L"' = (L, ..., L) € II", and the initial inequality 

fflV'(i, y)11 f^ (x),	.(x, y) ED0 ,	-	 - 

where 77 = ( 17,... , flrn) € C([ -I--to, OJ, R+m), are satisfied,	 -, 
4. the right-hand solution w = (, ..., th) of the problem	 - 

(t)'(X) = a(x, w(x), w)	 - 

ai(x) = y(x) for x  -7[t0, 01, 

exists on [0, a). 
Under these assumptions ({W(x, y )]l	6i(x) for (x, y) € D.	 - 

• Proof: It is patterned on that given in [5]. We will show that at an arbitrary 
point ( , i) E D,	0, the function w( . ) = 97(.) - Co(:) is non-positive. Let 

<b<aand	- 
= max max w()(x, y)..  

xE[0bJ	- 

Let 0 E G'(R+, R), (b(t) 1' +oo as t - +00, satisfies the condition (t)	0(t) for 
- t	0. It i-easy to verify that the function 

•	•	H,(x, y) = exp [ct(nLx + (IIy Il 2 + 1)1/2) + x(m('K + M) + 1)]	(4)
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satisfies the inequality	 -	S 

- m(K+ M) H( . ) 4- L )H( . )I -H( . ) 5; -B( . ) <0 on D.	 (5) 

It follows from the definition of cP that for every e > 0 there exists ,r = r() such - 
that for i = 1, ..., m 

y) <H(x, y) for 0 :!^ x b and r 

Let. iT = V-1/H, E5 = th/H and	=.QW(.)J --(.). There exist an index i0 and a 
doint (x) , Yo), 0 :!-, x0 ^ b and IIoII :!E^ r, such that	 - 

1i3( 1 )(x0,y0 ) = max	max W(t)(x, y).	 (6) 
iim Oxb 

-	 IulIT
A 

It follows from the initial estimate that ('°(x0 , Yo) ;5,: 0 if x0 . = 0. We prove this 
inequality now if x0 4 0 and III <r. Suppose the contrary. Then we have - 
Iv(xo, Yo)I > 0 and	 . 

Iwz '( O : Yo) + aj (xo, (o), &) =	 )I 
- 

:5,- o 1 (x, l(x0, yo)]b( max uW(t, s )Jl\	\ + L Iw 1 (x0 , Yo)II. 

	

8ES(t.y0 )	 /1 - 

Because W"-(x0 , Yo) > 0,	11 ( x0 , Yo)	0 and W( 10 (x0 , y0 ) = 0, thenwé obtain 

0 :!E^ iv-11 (x0 , Yo) H(x0, Yo)  

^ i7"'(x, Yo) [L I JH(x0 , yjI - H(x0, y0 )]	 . 

a 1, (x0, [H(x0 , Yo)	(x0, Yo)]J,(max	W(t, s)]J' 
sES(t4t,)  

	

- o,.(xo, H(x0 , /o) i(x0 , Yo), &).	. 

Let I =, (i: ()(x0, ) > 0):a ' nd F = (y( 1 ) , ..., y(m )) where 

I 1f(x, Y) Ii(c:x, )I	if i € 1 
y )(x, y) 

= 
H(x, y)ii()(x, y)	if i I. 

Then we have	 . . 

H(x0, ho)	o, Yo)	F(x0, yo).	 (8) 

Let /1 = (A t , ..., )) be a function defined by	 - 

1 th (x),	x  [-To, 0]	 S	 -	

S 

21(x) 
=	

max [ & 1(x ) , max I(')(x, 8 )11,	x E (0, a).	 - 
!.	L	8ES(X.LI,)	 J 

Then we have A € C([-ro,a), R+m) and	 --

max I[W(x, s)	A(x) for x € (--r0 , a).	 5	 (9) 
8ES(Z.y.	 S 

From. the monotonicity conditions for a and from (8), (9)5 
we get 

a 1 , (xe, H(x0 , Yo) (x0, Yo),( max W(t, s) 
-	 \ESUy,)	IL -	 S	

5 

^ a,(xo, F(x0, Yo), it).	.	 S	 .	 (10)



p
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-	Applying the Lipschitz condition for ,and (8) we obtain 

	

- uj (x0 , F(x0 , yo ), A)	aj,(xo, H(x0 , y) (x0 , I/o), ) 

•^5 K Z [y()(x0 , I/o) - I1(x0 , y) ( i)(x0 , yo)] + M Il/I - Coll[- E1 - 

^ mKH(x, y) 300(xo, Yo) + M 11A - ó tI_,.x,j . ,-	 (11) 

It follows from the definition of A that there exist points (xi , y()), j = 1 1 ..., m, 
such that 0 !E^x ' :5 x0,	 IIY0II*and 

•	 th5	= max	(')(x, s)I - th(x5 ) = ip0)(x1, y(h)1 - &j(x,). 
8ES(2'1y.) 

'S. 

Then we have 

-	-	= W(i) (x1, yø)) H(x5, y(h ) ;j; i1(x0 , Yo) (o)(0,	).	(12) 

- Estimates (7), (1O)-(12) imply, in contradiction to (5),	 - 

0 :!^-, iv- o)(x0, Yo) H(x0, I/o) 
(io)(x, y) [m(K + M) H(x0 , I/o) ± L 11H(x0, )II - H(xo, Yo)] 

•	Finally, if IIy0II = r,. then, from the definition of : Fv, we obtain W( 1o )(x0 , Yo) <:, -	e being arbitrary..	 S 

It follows from the above considerations that W()(, ) < E for arbitrary e > 0. 
Then we have 3(t)(; ) 0 and consequently w()(, ) ^ 0, i = I, . . .,ni; Since 
(, ) is an arbitrary point.inD, we obtain the desired inequality I 

Example: Suppose that for (x, p, v) E [0, a) x It!" XC([-r(,, a), Rm) and i = 1, 
•...,mwehave	.	 . 

•	(x, p) w) = ai x, p, max 5 w1 (t), ..., max Wm(t) 
•	 i([ - r z j	iEI - to,xJ 

If z E C(DO u D, B tm ) and. (x, y) E D then we denote 

S	 max	z(t, s) = (. max z (1 )(t, s)I, ..., max z ("1> (t, s)I 
•	 (t.)ET(xy)	 \(t,8)ET(z.y)	 (.$)ET(x.y) 

Let-
S	

max w(t) = ( max w 1 (t), ..., max W(t)  
tEL - ro.xL	 \IEL -	 tEE - 

Then assumption (2) of Lemma 1 has the-form	.	S 

QP(x, y)] ^5 a(x, I[ 1'(x, y)Jj , max II/'(t, s)]fl + L(mJW(X, y)JJT, (x, y) E D \ 1, 
*	 (t,8)ET(x.V)  

and the comparisoti problem (3) is  

w'(x) = CF x, £v(x), ' max w(t), 
tE(-..xI	/ 

•	w(x) = ?i(x) for x  [-r0 , 9]. 
•	if ,j is non-decreasing then the above problem is equivalent with o'(x) =.a(x, (0(x), 

S w(x)), w(0) = (0) .	 .
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3. Eiimation of the difference between two solutions, uniqueness criteria 

- Let us consider the initial problem (1) and the problem	'.	 S 

Z. x ,	g(x, y, z(x, y), z, z(x y))	(x, y) E D \'I,' 
z(x,y)	Vx, y),	(x, y) E D0 .	 .. 

The following theorem allows us to estimate the difference between solutions of '(1) 
mid (13). *	. 

Theorem  1 ' : Suppose that 
1. the functions / = (f('), ..., f() ) and g = (g('),'..., g(m)) are defined on D x R 

X C(DO u D, Rm ) x R" and satisfy the Volterra condition,	- 
2. 'the function a satisfies Assumption H,	- 
3. the estimates	 ..	 - 

J(x, y, p, z, q) - g(x;y, p, 2, q)]l 
a (x, , I[p	fiJI, (max I[z(t, s) - (t, s)Jfl' 

-	 \SES(t.71)	 .	 - 
and  

	

}/(x, y,p, z, q) - g(x, y, p, z, 0Im	Lq - qI1. - - 

• are satisfied on D x Rm x C(D0 u'D, Rm ) X R", 
4. u, v € C(DO u D, Rm) are solutions of (1) and (13), respectively, having first-order 

• pdrtüil derivatives on D \ I, 
5. there exists a function 71 € C([--r0 , O],- R,m) such that 

[u(x, y) - v(x, y)j ;5 ?)(x) for (x, y) € D0 

and the right-hand solution Co of the problem (3) exisls on [0, a).	- 
Under these assumptions ([u(x, y) - v(x, y)J)	for (x, y) .E D. 
Proof: The function W u - v satisfies all the conditions of Lemma 1 and, 

hence, the desired inequality holds true I 

For ZEC(D u D, Itm) and"(x, y) € D . denote 

- I zIL =	1 1i 11 . )II	where Ijz(J	= max Iz()(t, s)J. 
i 1	 .	 (t.8)ET(x,y) 

The , next theorem is an immediate consequence of Theoreni'l.  

T h e ore rn 2: Suppose that 
1. the Junction f: D x Rm x C(D0 u D, Rm ) x R ..> fltm satisfies the Volterra condi-

tion and 
- 2. J/(x,.y, p; 2, q) - f(x, y, p, z, ilm	K M ' rIIm + M llz	11., + L I jq - 
where z,	C(DO u D, It), p, P E Jl and 'q, q €'-R'.	- 

Under these assumptions, the solution u of (1), which is continuous in D, 'u D and 
has, first-order partial derivatives on 1) \ I, is unique and depends continuously on 
and f.	 - 

The following theorem concerns weak inequalities between vector-valued func-
- tionè satisfyi'ig first-order partial, differential-functional inequalities in an unbound-_ 
edzone.	,• ,	 S	 - 	 -	 S	 • 

•	 .,



Li 
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• Theorem 3: Suppose that 
1. the function I: .D x Rm x C( D0 u D, IV'S ) x R —> Itm satisfies the Volterra condi-

tion and the following monotonicity conditions: 
(i) if z, EC(D0 u D, It") and z(t, s) :!E^ (t, s), for (t, s) E T(x, y), (x, y) E D, then 

f(x,y, p, z, q) :!E^ /(x, y, p, Z; q) for all p E Rtm and q E R", 

(ii) p	3 implies /(')(x, y, p, z, q)	j(t)(x, y, 5, z, q) for all (x, y) E D, q E II)' and 
zEC(D0uD,Rm), 

2. there exist thmstants K, M, L 0 such that for i = 1, ..., m 

f( t )(x, y, p, z, q) — /()(, y, P, 2, ) 
K lI - Pllm + M liz — ilzy ± L ll — 

where (x, y) ED, p, P E H tm with p	q, q € It", z, 2 € C(D0 uD, Rm) with z(t, s) 
> (t s) for (t, s) E T(x, y),	 V 

• 3. the functions u;v ar continuous on D0 u D, possess, first-order partial derivatives 
on D \ 10 and satisfy the initial inequality u(x, y)	v(x, y) for (x, y) € D0,€

4. the differential-functional inequalities 

u--(x, y)	.f(x, y, u, (X, y), u, u(x, y))	 (14)
v(x, y) ? f(x, y, v(x, y), v, v(x, y))  

are satisfied on D \ J.	 V 

Under these assumptions u(x, y) :E^ v(x, y) for (x, y) € D.	 V 

•

	

	Proof: We . have to show that the function w = u - v is iion-positive at an

'arbitrary point (, Y_) 'E D. Let 0 < Y < b <a and' 

0 (t) = max max w()(x, y). 
1f-,i-^m xEtO.bJ'  

V	 Imi:j.ct 

. Let b € C'(R.,, R,), b(t) t	as I —> + oo , satisfies the condition (t) 	0(t) for 
t	0. Let H be function defined by (4). This H . satisfies the inequality (5). For
every e >'0 there exists r •— r(e) such that () (X, y) < eH(x, y),' i = 1, ..., m, for 

V	 0 x :5: b and r lly il . Introduce now the transformation w'= li,!1, u = iH and" 
v . = UH on D0 u D. Let the index i0 and the point (x0 , y0 ) € D be defined by (6) 

- with Fv defined above. If x0 = 0 then by the initial inequality we have W(1°)(X0, Yo) 
- 0. We will show that the last inequality holds if x 0 4 0 and IIy0Il <r. Suppose 
the contrary. Then we have Wc 1')(x0 , Yo) > 0,	( . )(x0 , y0 ) ^ 0 and	(")(x0 ,yo) = 0. 
It follows from (14) that	 V 

W°)(X, 'Yo) = nJ(i. )(xo, y) H(x0 , yo) + .3(1 °)(x0 , Yo) H(x0 , Yo) 
10a)(, 

Yo ' i(x0 , yo) H(x0 , Yo) ' u, l00 (x0 , Yo) H(x0, Yo) 

+ ( 1')(x0 , Yo) H(xo, Yo)) _.f(xo, Yo ' 1(x0, Yo)	'	,S 

X H(x y0 ), v 3('o )(x0 , Yo) H(x0 Yo) + i' )(x Yo) H(xo Yo)) 

Let I = {i: 3()(x0 , Yo) > 0} and F = (y(1 ..., y(rn )) where 

y()(x y) 
= J 'H(x, y)	)(x, y) if i € I'  

H(x, y)()(x, y) if i 4 I.	 V
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Then we have •	 - 

;9(x0, Yo) H(x0, Ye)	P(x0, Yo) .	 (15) 

Let A = (21, . . 2) be a function defined dfined by	 - 

• ;.,(x, y)= max [U(t)(X, y), v(')(x, Y)] for (x, y) E D0 u D. 

-. Then we' have A € C(DO u D, R) and	 S 

•

	

	u(x,y)^SA(x,y) for (x,y)ED0 uD.	-	 - (16)

The monotonicity conditions of / and (15), (16) imply 

i(xo , Yo ' (x0, Yo) H(x0, y0 ),'u,	00 (x0 , Yo) iJ(x0 , Yo) - 

+ ii(1)(x0, Ye) II(x0, Yo))	 - 
/Oo)(x, Yo, -(x0 , Yo), A,	( 1')(x0 , Yo) H(x0 , y) 

-	

:	+ 00(x0, Ye) H(x0, Ye)). 

- Applying the Lipschitz condition for f(bo) and (15), (16) we obtain 

• :	W1(x0, Yo) H(x0, Ye) + 04 )(x0 , Yo) H(x0 , Ye) 

•	 - ^ K E w(')(x0, Yo) H(x0,y0) ± M 11A- 
jet	 - 

+ L3('°)(x0 , Yo) jH(x0 , i0)M .	 ,	- 

It follows from the definition of ii that there eist points (xi , y()), j = 1, ..., m, 
• suck that 0 :!E^ xj ^ x0 , I y0> II	It yoi and	- v (i)II., = wø>(x1,Y(')). Then we 

have, in contradiction to (5), 

-	0 :E^ W(-)(x0 , Ye) H(x0, Ye) 
^ 0')(x, Yo) [m(K + M) H(x0 , Yo) + LrIlH (xo, Yo)II - H(x0 , Yo)]. 

• Finally, if IIoI* = r, then we obtain from the definition of	that ( 1')(x0 , Yo) < 
being arbitrary. 
It follows from the above eoniderations that W()(, ) < e, i = 1, ..., m, for an 

arbitrary e > 0. Then we have y) ^S 0 and w(, 0. Since (, j) is a' a arbi-
trary point i n- D, we obtain the desired inequality U 

4. Uniqueness criterion with a ilUlder condition 

Now we prove the uniqueness of solutions of the initial problem (1) under weaker 
assumptions concerning the function /: the Lipschitz condition with respect to q 
is replaced by the Holder condition. This will be a.generalization of the results 
published in [6]. •	 •	 I	 - 

Theorem 4: ,Suppose that 
1. the 5 /unction 	is dc/med on D x Rmx C(DO u D, 11') X 1t' and satis/ies the 

Volterra condition,	•	 S	 •	 S	 S

Analysis lid. 6, heft 2 (1057)
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2 the estimate 

IJt(x, y, p, z, q) - /(x, y, , 4 )IIm 

;S K hr - hlm+ M. hl — IL + L _T max , (Iqk	qkl, Jqk - j)	(17) 

is satisfied on D x Rm x C(DO u D, RI ) x II", where a E (0, 1) and K, L, iw 0. 
Under these assumptions, the solution u of (1), which is continuous in D0 u D and 

has first-order partial derivatives on D \ 10, is unique. 

Proof: Let u,v E C(D0 uD, Ittm) be two solutions of (I). Denote w 
—

u - v. By 
(1) we have w = 0 in D0 . We shall show that w 0 in D. Let 0 <b <a and 00 
be the function defined in the proof of Theorem 3 with the above v. Let 1 E C'(R, 114, 

'(t) > 1 as t	0, satisfies the condition (t) ;^ 0(t) for t	0. Then we have for 

	

-. W()(, y) ^5 1 (hIyhI) in D' = [0,,b] X R".	 (18) 

Let e E (0, 1) and fl = (1	a) &'-'. It is easy to verify 'that the auxiliary function

H(x, y; e) = s exp [(eP(IIyhj*2 + 1)1/2 + nL) + (m(k + M) + 1) xl 

satisfies in D' the inequality 

H(x, y;	[m(K + M) + 11 H(x, y; e) 

+ LE max (I HYk(x, y; i )!, !Hyk(x, y; e)J).	 (19) 

Moreover, since (t) t +oo as t --	we have for every fixed s E (0, 1): 

(ftyhI,)	
0 'as IIhI —> +00.	 , 	 ,	(20) 

H(x,y;e) 

Let z(x, y) ='w(x, y) - H(x, y; s). By (18) and (19), for every > 0 there exists 
r = r(e) such that z(x, y) <0 for 0 x b and r hly iI . If x = 0 then H(x, y; e) 
> 0 and it follows from the initial condition that z(x, y) < 0 for hhI <r. We 
prove that z(x, y) <0 for x r= 0 and hIhI <r. Suppose the contrary. Then there 
exist an index i0 and a point (x0 ,	0 < x0	b and hIIl < r, such that z0°)(x0 , Yo) 
= 0, z"(x0 , Yo) 0 and z()(x, y) <0 for 0 x < x0 and	<r. Then we have 

Z(1°(Xo, Yo) ^ 0 and z0 ')(xo, Yo)- = 0. 	(20)

Further, at (x, Yo) we have
 

^Yk-w(')(x, )I = w(x, y) ,	- w( o )(x, )I ;;5Jw( ) (x, i)J' 

and by (20) we obtain 

	

w1 ( 1')(x0 , yo)11 = I[H (xo, Yo )]J, - Iw(xo, yj - ,H(x0 , 'Yo )	0. (21)

But on the other hand, by (1) and (17) we get 

IW(xo,'Yo)I ;5 K htw(xo, Yo)hhrn + M 1011,Y. 

+ L X max (jw (xo, yo)I, w(xo,yo)I),Yk
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and by (19), (20) we obtain 

.Iw (4)(x0, Y)I — H(x0 , Yo; )	 - 
K Ilw(x0,	)II. ± At IIwII.. 

• + Lmax (Iw (x , yo)I W '?(X, Yo)I)	 .. 

-. — [m(K + M) + 11 H(x0 , Yo e)	.	 (22) 
-	

- Lmax (J HYk(xo, yo; e)I, I11(x0, Yo )J)  

-,	Kj [Iw( (xo, Yo)I - I1(x0 , yo; e)J - H(x0 , y;) . 

± M	[IIw('J., - H(x0 , Yo; e)]. 

It follows - from the definition of w that there exist points	y(j)), j = 1, .'.., m, 
such that 0	x; yø)	IyoIi* and Iw(j)II,,= 0')(x, y()). Then we get 
froii (22)	-	.	..	 . . 

- w(1')(x0 , ?/0) j 	B(xo, yo ;	—H(x0, Yo; e) <0  

which contradicts (21); So inequality z(x, i) < 0 is satisfied for (x, y) E D, 0 :E^ x b. 
Now, letting E -- 0 we obtain w(x, y) = 0 in D'. Since b may be chosen arbitrarily 
close to t, the proof is complete I  
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