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Pseudo-Differential Operators in F , -S paces 

H. ThIEEIL 

Für a(x, ) € 810. 5 Mt 0	6 < 1 1st der Pseudodifferentialoperator a(r, D) stetig in
wobci — 00< s< 00 und entweder 0< p < 00,0< q S co oder p = q = oo gilt. 

.LJiR a(x, ,) E S?6 C 0	6 < 1 nce B)01144epeH4MaJ1bllMü onepaTop a(x, D) lienpephillen n
Fq,re—oo<8<00llJill600<p<00,o<q;500fljIflpqcc. 
If a(x, )'E S	with 0	6 <. 1, then the pseudo-differential operator a(x,D) is continuous
in F, where — 00<8< oo and either O< p< doO< q;^; 000rp=q= Co. 

1. lntrothiction 

Let R be the Euclidean n-space. The symbol class S? with 0 6	I consists
of all a(x, ) € C(It x R5 ) with the property that for any multi-indices a, fl there 

-- exits a constant Cp such that 

DDa(x, )I	c(1 ±	) H !+i ,	x) E R.	 (1)•

The corresponding pseudo-differential operator a(x, D) is defined by 

.a(x, D) 1(x) =J	 x, ) J() d,	x € R5 ,	 -	 (2) 

where f stands for the Fourier transform of / and x is the scalar product in R. 
The operator a(x, D) maps S into 5, whci-c 8 denotes the Schwartz space of all 
complex-valued rapidly decreasing i nfinitely  differentiable functions on R . ,1 . By 
duality, a(x, D) maps 5' into 5', where 8' is the usual space of tempered distribu-
tions. The main aim of the paper is to give a new proof of the following result, which 
is essentially due to L. PAWARrNTA Cf. [16].,	

0 

Theorem: Let — 00<8<00 andlet either 0< p <00, 0 <q;5 00 or p =q = oo. Let 0 6 < 1 and a(x, ) € SO, a. Then, a(x, D) maps F q continuously into 
itself, in particular there exists a constant c such that 

-	Ija(x, D) / J c f j F ,qII,	/ € F ,q .	/ 

Via real interpolation this result can be extended to the spaces where 
—00<s <00,. 0 <p ^5 øà and 0 <q oo. These two scales B q and .Fpq of 
(isotropic 0 non-homogeneous) spaces on R5 cover many well-known spaces of func-
tions and distributions on R5 : . 

(i) the classical Besov-Lipschitz spaces1'p.q =B8 ., if s > 0, 1 < p..< •- and 
l . q	oo;
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(ii) the Bessel-potential spaces li 8 = F 2 if - < .s < oo. and I < p < o, 
with the Sobolev spaces W IJm if 1 < p < 00 and m non-negative integer, 
as special cases; 

(iii) the Holder-Zygmund spaces 618 , = F8 if s> 0;	-	 - 
(iv) the (non-homogeneous) Hardy spaces H =

1 F 2 if 0 <p < Co. 

In other words, the above theorem and its counterpart 'with B q instead of F 
cover known -results of the above type for L2 , L; with 1 < p < 00, and 68 with 
s > 0, of. also Remark 9, where we give some references. 

The plan of the paper is as follows. In Section 2 we define the spaces F q and 
collect those results which will be needed in the sequel. Section 3 contains the proof 
of the above theorem. in Section 4 we give-some references and add few remarks, 
mostly about furtherpOssibilities. In particular we wish to convince the reader 
that the method presented in thispaper is especially well-adapted to problems of 
the above type and that it may be useful in connection with other classes of pseudo-
differential operators and more complicated problems. 

2. The spaces 4 -	'	 -

2.1. Definition 

We follow essentially [20, in particular 2.3.1]. Recall that R, S and S' have been 
introduced above. Because all spaces in this paper are defined on Jt,2 we omit "Rn" 
in the respective definitions. Let	.	 . 

'C.	

lit I LJ	(f /(x)J P dXP 

(usual modification if p = oo). Let O , be the collection of all systems	S 
with the following, properties: 

(i)
(ii) supp To	 2) and supp T	1/2	2); 

(iii) q) =' 1 for every € R.	- 

Let 1 (D) /(x) be given by (2)- with a(x, ) = q() and f € S' (in the sense of the 
above interpretation). By the Paley-Wiener-Schwartz theorem, ,(D) /(x) is an 

• -	analytic function with respect to x E 11,,, where / € 8'. 

Definition: Let {} €. Let —oo<s <co and 0< q 0°. 
-- (i) Let 0 <p < cc. Then	 .

.• 
F, q = / E §' I III I	= ( ' 2i q(D) / ( . )i )	L	< 00 

-	
. (usual modification if q = cc). 

(ii) Let 0<poo.Then  
IN

/ 
(	 .	 . 

=	€ 5' il/ I B .qII' = (	
' 2' IIq(D) / I L9j!")	<.00 

(usual modification if q = co).  

Remark 1: The theory of these spaces has been develo'ped in [20]. All spaces are quasi-
-Banach spaces (Banach spaces if p 1 and q ) and they cover the classical spaces men-
tioned in the introduction. Different choices of { q j) ,E 0 yield equivalent quasi-norms in the

-
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respective spaces. We shall not distinguish between equivalent quasi-norms in a given space. 
In this sense we write in the sequel 11f I FqII instead of It I F .qIf{i} with {j} E 0 or instead 
of any of the equivalent quasi-norms decribed in the next subsection. 

Remark 2: We put F 0 in the sense of the above theorem, —cc < a < 00. 
Let (•, )o with 0 < 0< 1 and 0 < q ^5 co be the real interpolation method for quasi-Banach 
spaces. Let —&)< 8 < 81 < 00,0< p 5 cc and a (1 - 0)80 + 0s. Then 

p.q = (F'0, F'p )o q ,	 (4)

cf. [20: 2.4.2]. In other words, if the above theorem is proved, then (4) yields a corresponding 
result with B q instead of	,where —00< s< cc, 0< p <cc and 0< q cc. cf. 
Remark 6. 

2.2. Equivalent quasi-norms 

In order to prove the above theorem we need two ingredients: well-adapted equiv-
alent quasi-norms. and sufficiently strong Fourier multiplier assertions ' fOr the 
spaces	We formulate the corresponding results in * this this subsection and in the 
following one. Let k E S with supp k	{y I jyj < 11 and (0)	0. Let kN = 
where ZA stands for the Laplacian and N = 0, 1, ... (with k0 = k). We introduce 
the means	 . 

K(kN , 1)1(x)	f kv(y) /(x + ty) dy,	x € R, I > 0.	 (5) 
R. 

This makes sense for any / € 5' (usual interpretation). 

Proposition 1: Let either 0 <' p <00,0< q i5 cc or p = q = oo. Let—cc <a 
<cc and let N € N with 2N> a and 2N> n(1/min (p, 1) - 1). Let 0 < a < 00 
and 0 <r < cc. Then_	- 

K(k, a) / I LVII + 

(

f

\ 1/q I 
-	 di'	I -8q IK(kN , t) /(.)Jq	L (6) 

(modification if q = cc) is an equivalent quasi-norm in 
Remark 3: We developed the th&ry of these equivalent quasi-norms in [21, 22]. The 

above formulation coincides essentially with Theorem A in [23], as far as the spaces 
are concerned (there is a corresponding assertion for the spaces B, q). The advantage of (5), 
(6) in comparison with the quasi-norm II • I F .qII ( i} is its strictly local nature: in order to calcu-
late K(kN , 1 )1(z) in a given point x € R one needs only a knowledge of! in a neighborhood 
of z (the positive numbers e and r in (6) may be chosen as small as one wants). 

Remark 4: We add two further remarks. As in the definition of F, q one can replace the 
continuous version in (6) by its discrete counterpart 

I

	

 
II K ( k, e) /I LVII + ( E 8Jq IK(k,, 21) 1(-)1q 

\11q 
}	L	 (7) \j=L	 I 

where L is an arbitrary integer. This replecement is a technical matter and it is of ten more 
convenient to use (7) instead of (6). Secondly we remark that if the Tauberian condition 
&(0) ri= 0 isnot necessarily satisfied, then (6) and (7) can at least be estimated from above by 
c II! I. F 4 11, cf. Remark 3 in [22]. 

10 Analysis Bd.6, Heft 2 (1987)
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2.3. Fourier multipliers  

Let a(x, ) € S with 0 ^ 6 ^ 1. If z E R is fixed, then we write 

a(z, D) /(x) =f e a(z, ) f() d,	x € Re ..	'	 (8) 

Furthermore, —> a(z, ) is a Fourier multiplier for	where - <s < oc, 
andeithero<p<oo,0<q^000rp=q=oo,i.e., 

Ila (z , D) / I F	;5 c 11f I FII,'	 (9) 

cf. [20: 2.3.7], where c is not only independent of 7 but also of z € R. . One can streng-
then (9) by	 - 

R

lfq 
2i' sup	(D) o a(z, D) /()I)	L	^ C 	F ,II	 (10) 
 tERn  

where the Pj have the same meaning as in the above Definition, cf. [20: Theorem 
2.3.61. We need a modification of (10) and of a known maximal inequality. 

Proposition 2: Let either 0< p <00, 0 <q oo or p = q= oc. Let a(x, ) 
E SO, 6 with 0	6	1.  

(i) Let —oc <5 < oo, 0 <r < Co and 0 < a < oc. -Let N be a sufficiently large 
natural number. Then there exists a positive constant c such that 

I
sup Ia(z, D) K(k, a) /11 , L 

•	 zER 

•	 + (Jtssup Ia(z, D) K(kN, t) ,jq	L	c l/I	- -	(11) 
zER,,	 t 

\o	 - 

(usual modification if q = oc)/or all / € Fq. 

- :	(ii) Let s > n/p and b > 0. Then'there exists a. positive constant c such that 

sup sup I(a(z, D) I) (y)I L	c	F ,qII	 -	 (12) 
x — yJb zER,,	 .	- 

for all / € F,q. 
Remark 5: a(z, D) K(k, a) / 'and a(z, D) K(kN, t) /- must be understood in the sense of (8) 

as functions of x, and the L- quasi -norm in (11) is taken with respect to this variable X. Simi-
larly, in (10) and (12) the integrands must be interpreted as functions of x (which makes 
sense aticast via some limiting arguments). A proof of (11) (including the fact that we prefer 
continuous version in contrast to the diecrete versions in (10)) is 'completely provided by the 
Proposition, the Theorem and the technique of estimates developed in [20; 2.3.6]; cf. also [21] 
as far as the reformulation of K(k., t) / in the language of Fourier multipliers is concerned. 
Here one needs that I'! is large. (12) is essentially a consequence of the estimates at the end 
of the proof of Corollary 1 in [20: 2.5.9, p. 100] and the technique from [20: 2.3.6].' 

3. Proof of the theorem 

We prove the Theorem formulated in the Introduction in two steps 

Step 1: Let s be large, whereas all the other assumptions are the sam6 as in the 
Theorem. In order to use (5) and (6), with a(x, D) /(x) instead of f, we first calculate
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a(i±ty,D)t(x±ty), where zE R,yI:!E^ l and O<t<r.Wehave 

a(x * ty, D) /(x ± ty)	ei(x+tY)Ea(x + Ly, ) f() d 
Rn 

	

-	 gIYI	r = E —j- Y I e"'+1v)D7a(x, ) 1(e) d 

	

•	 IyIL-1 Y .	J 
K,, 

	

•	
-	 + + ?91y, )	) d,	(13) 

IyI=LY

	

	 0 

R. 

where L is a natural number \ith L> s and 0	9 ^ 1. Let /c(y) = ykN (y), where - 
kN has the above meaning. Furthermore, K(k, t) /(x) is defined by (5) with k in-
stead of /cN. Then we have 

'K(kN,t)a(x, D)f(x)	 S 

=	, ct 11 f e i2 D Ya(x, ) K(k, t) /() d + R(x, t). 
! y IL-. 1	K,, 

The integral version of the last term in (13) yields 

IR(x, t)	ct T	' sup sup D/a(z, D) /( y )L'	 - 
yI=LIX-0 25 r zER,,	 S 

If sand L are fixed and if N is chosen sufficiently large, then the kernels k are 
finite sums of kernelswhich satisfy the hypotheses of Proposition 1, maybe with 
exception of (0) 0. However, because we are only interested in estimates from 
above, the last li'nes of Remark  can be applied. Recall that 

Ib/(x) =f e(1 + II 2 ) 2 J(&) d	 (14) 
R. 

is a lift ip F,: it maps Fpq isomorphically onto Fb, where —oc < b < oc, cf. 
[20: 2.3.8]. Let  

a7(x,) = D),a(x,) (1 + 11 2),	 (15) 
shere ö hasthe above meaning, cf. (1). In particular a(x, )E S? . We have 

K(kN, t) a(x, D) /(x)I 

^ c	tI sup a(z, D) K(k, t) I 111(x)f + R(x, )I	 S , 

yIL-1	zER,, 

- By the above remarks about the kernels k, Proposition 2(i) with k and a inst"ead 
of kk and a, respectively, can he applied. We obtain 

fIK(kN , t) a(x,. D) /(x) 

^5 c L' IIIoi/ I F 'II +c	,sup sup fa(z, D) Ioiit(y)t L9 ,	(16) 
-	yIL-1 •	 I=L Ix-yIr ZER,, 

where we used ' L > s and that N is chosen large enough. The first terms on the 
right-hand side of (16) can be estimated from above by dl! I F1jland hence Aq 
by c'll/ I F7qII (this is true even if 6 = 1). We apply Proposition 2(u) to the last 

10	 -	 -	 - 

/	I /
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term on the right-hand side of (16). Hence this term can he estimated from above 
by c JJ16d I F' . ,11 with a > n/p, and consequently by c 11f I F L II . The term IIK( k, e) 
x a(x, D) / I L,11 can be treated in the same way. Now wcfix our assumption g for s 
by

nip + 5L <s < L,	L a.suitable natural number.	 (17) 

If p (and q) are fixed, then all all large values of,s are covered by (17) (here one needs 
for the first time that a < 1). Under these assumptions for s, the ah'ove considerations 
yield (3). 

'Step 2: Lets be an arbitrary real number. By the composition theorem for pseudo-
differential operators, cf. [7: pp. .71/94], we have ad(x, ) E S,' where the corre- 
sponding psudo-differental operator ad(x, I)) is defined by ad(x, D) = o a(x, D) 
o I, —oo <d < oo, cf. (14) (here we used again a < 1). Hence we Obtain a(x, D), 
= Id 0 ad(x, D) o I_a. We choose d in such a way that Step 1 can be applied to 
s + d instead of s. Then J maps	onto F, ad(x, D) maps F into F, andp.q

Id maps F onto F1 , -. This completes the proof of the Theorem I p.q
Remark 6: After the Theorem has been proved the real interpolation formtla (4) yields 

a corresponding rsult for the B q-spaces. In other words, let — 00 < 5 < 00, 0 < p ^ 00 
and 0 < q 5 oo, then there exists a constant c such that IIa(x, D) / I B , 5II C B ,qII for 
alf/ E Bpq. 

4. Further remarks 

On the basis of the two propositions our method is not very complicated. The Taylor 
expansion (13) is the crucial formula. Furthermore ,We used the composition theorem 
for pseudo-differential operators of the symbol class S with 0 6 < 1. The 
advantage of our method is the strictly local nature as far as the x-variable is eon-
cérned (for the -variable nothing of this type can he expected). The question is to 
apply the above method to other (more complicated) symbol classes. 

Remark 7 (Weak-exotic symbol class): The symbol class So, . , is sometimes called exotic. An 
extension of the above theorem to this class is not possible. There exist symbols a(x, ) E S 
such that a(x, D) does not map L2 into /itself. 'On the other hand it has been shown by 
Y. MEYER [10] and' T. RUNST [18] that a(x, D) with a(x, ) € S preserves F q and 
if 8 is large. Unfortunately, the above method is not strong enough to cover Runst's result. 
But a weaker version can be obtained without additional efforts. We say that a(x, ) 
E C(R x R,,) belongs to the weak-exotic class,if' 

D)Da(x, E)I	c ,a( l ± ID—II+mIpI 

for all x E R, € H,, with j - m f oo if j - 00. Maybe it is reasonable to assume that 	m€
tends monotonically to infinity, but this is not really , necessary. Of course, any. a(x,) € St 
with 0 6 < 1 is weak-exotic. Step 1 of the above proof can be applied to this class of pseudo-
differential operators, including the counterparts of (15)—(17) Hence, if p and q are given 
as' above, then a(x, 1)) maps F q into itself (and consequently also B q into itself) if s is 
large. We have not checked whether the composition theorem for this class of pseudo-diffe-. 
rential, operators holds. Hence iis at least doubtful whether Step 2 can be applied. 

Remark 8 (Elementary symbols): A sS'mbola (x, ) is called elementary if it can be repre-
sentedas .................	.	. 

a(x	='EA,(x) B,()
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These symbols seem to be especially well-adapted to the above method because our approach 
is strictly local asi far as the x--variable is concerned. The reduction of general symbols to 
elementary symbols is due to RR. OIIAN and Y. MEYER, cf. [5]. These ideas have been 
used in [6, 17] to investigate pseudo-differential operators in B q and F,-spaees. 

Rmark 9: The first candidate in order to study mapping properties for various types of 
pseudo-differential operators is always L2. However there has been done a lot in order to 
study different types of pseudo-differential operators in L7, with 1 < p < cc and in Holder 
spaces. We refer to [1-3, 8, 9, 11-15, 24] and [19: Chap. XI]. Some of these papers deal 
with the problem to weaken the smoothness asumptions for the symbol a(x, ) in particular 
for the x-variable. Mapping properties in B q and F q spaces have been treated in [4, 6, 16, 
17, 25, 26]. We repeat that the above-proven theorem is due to L. PAIVARINTA, Cf. [16]. The 
question is whether the above method can be used in order to attack other problems than 
those treated in this paper (maybe in connection with the quoted papers). 
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