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P/seudo-Diff@fentia.l Operators in F; -Spaces

H. TRIEBi:L

Fir a(z, &) € S?;mjt/ 0=d6< 1 ist der Pseudodifferentialoperator a(x; D) stetig in ¥
wobei —oo <

I Jas a(z, &) €

. P
§ < co und entweder 0 < p < 00, 0 < g < co oder p = ¢ = oo gilt.

S?.é ¢ 0 =46 < 1 ncenponuddepenunansunit oneparop a(z, D) uenpepmue:i B

F;'q,'rne'¥oo<s<ooun11600<p<oo,0<q§cxammp=q=oo. Ve '

If a(z, &) € S’f‘é with 0 < 6 <‘i, then the pseudo-differential operator a(z, D) is continuous

~

f .

inﬁ?‘;,_q,whcre~oo‘<s<ooandeither0<p< o'o,‘0<q§ooorp=q=oo.

1. Introduction

Let R, be the Euclidean n-space. The symbbl class 89, with 0 < 6 < 1 consists

of all a(z, &)

€ C°(R, X R,) with the property that for any multi-indices «, . there *

" exists a constant ¢,.p such that

1<¢ < oo;

| ID#Deals, ] S ol E) T,z g e R, S,
,Thé corresponding pseudo-differential operator a(x, D) is defined by4 ‘ S
.a(z, D) f(x) =.[ e¥a(z, &) f(§)dE, =z € R,, L (2)
. R v

where | stands for the Fourier transform of f and ¢ is the scalar product in R,.

The operator a(z, D) maps § into S, wherc § denotes the Schwartz space of all

complex-valued rapidly decreasing infinitely differentiable funétions on R,. By

duality, a(z, D) maps §’ into-S’, where ' is the usual spacc of tempered distribu--

tions. The main aim of the paper is to give a new proof of the following result, which .
- i8 essentially due to L. PAIVARINTA; cf. [16]., .

Theorem: Lel —oo < s < oo and let either 0 < p < oo, 0 <q Sooorp=gq
=o0. Let 06 <1 and a(x, &) € 89,. Then a(x, D) maps FS, . continuously into
wself, in particular there exists a constant ¢ such that : :

!

/

e, D) | Fagll S clif | Fagl,  fe€ Fs,. ' ~3)

Via real interpolation this result can be extended to the spaces Bj , where

—0 <§ <0, 0<p=E o0 and 0 £ ¢ < co. These two scales B, and F§ . of

(isotropic ‘non-homogeneous) spaces on R, cover many well-known spaces of func-
tions and distributions on R,,: . : : : )

(i) the classical Besov-Lipschit,z spaces Ay =B if s>0, 1 <p< oo and

[

’
'-
.

’
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zii) the Bessel-potential spaces Hp* = F;, if —oo <s < oo.and 1 < p < oo,
with the Sobolev spaces W, ™ = H,™ if 1 < p < oo and m non-negative integer,
as special cases; ’ :

(iii) the Holdel -Zygmund spaces & = F3 if s >0;

(iv) the (non-homogeneous) Hardy spaces H = sz if0<p < co.

In other words, the above theorem and its counterpart ‘with B, instead: of Fj,
cover known results of the above type for Ly, L,; with 1 < p < oo, and &* with
s > 0, cf. also Remark 9, where we give some references.

The plan of the paper is as follows. In Section 2 we define the spaces Fj, and
collect, those results which will be needed in the sequel. Section 3 contains the proof
of the above theorem. In Section 4 we give some references and add few remarks,
mostly about further possibilities. In particular we wish to convince the reader
that the method presented in this.paper is especially well-adapted to problems of
the above type and that it may be useful in connection with other classes of pseudo-

_differential operators and more complicated probl\ems. '

/
2. The spaces Fp q
. Definition . o N

We follow essentially [20, in part,ncular 2.3.1]. Recall "that R,, S and §" have been
introduced above. Because all spaces in this paper are defined on R, we omit “R,” .
‘in the respective dcfmltlons Let

I 1 Lpll = (f @) dx)"” ' . ’
. i
(usual modification if p = o0). Let @ be the collection’ of all systems {pilo = S
with the following. properties: N

(i) @i(¢) = @(2778)if = 1,2,... and & € Ry;

(ii) supp ¢o & {5 | /£ < 2) and supp <PC E112=1l=2;

(iii) th, =1 for every & € R,. l » . .
Let q),(D) f(x) be given by (2)- with a(z, &) _—:qJ,(zE) and f € 8’ (in the sense of the
above interpretation). By the Paley-Wiener-Schwartz theorem, ¢;(D) f(x) is an
analytic function with respect to z € R,, where f € S".

l)cfmlt,lon Let {p;} €®. Let —oo <'s <-coand 0 < ¢ = oo.
- (i) Let 0 <p<oo Then .

- : ,”q | .
= res 11 mpam = (2 2% (D) /() ) | < oo}
j=0 . .
- (usual modification if ¢ = c0). v
(ii) Let 0 < p < oo. Then ‘
- L Lo . . Vi

- |
o= 1€ S LI Bl = (;w 0111 ) < o}

(usual modificatnon if g = o0). . L e . y 4 -

" Remark 1: The theory of these spaces has been de\?c‘lo'péd,in [20]." All spaces.are Quasi-

Banach spaces (Banach spaces if p =1.and ¢ = 1) and they cover the classical spaces men-
" tioned in the introduction. Different choices of {p;},€ @ yield equivalent quasi-norms in the
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1

respective spaces. We shall not distinguish between equivalent quasi-norms in a given space.
' In this sense we write in the sequel |f | FY ol instead of (If | ¥3 olites with {p;} € @ or instead
of any of the equivalent quasi-norms decribed in the next subsection. )

’ Remark 2: We put FZ, 0 = Bl in the sense of the above ‘theorem, —co < s < oco.

-Let (-, -)gq with 0 < § < 1 and 0 < ¢ < co be the real interpolation method for quasi-Banach
spaces. Let —60'< 8, < 5, < 00,0 < p'< 0o and s = (1 — 6) s, + 0s,. Then
B;v?.q = (Fp! F;:p)li.q’ ' ’ (4)

p.p?

cf. [20: 2.4..2]. In other words, if the above theorem is proved, then (4) yields a corresponding

result with Bj ., instead of Fp e where —co <8< 0o, 0<pgoo and 0< g < o0, cf.
- Remark 6. ' .

\

2.2. Equivalent quasi-norms

In order to prove the above theorem we need two ingredients: well-adapted equiv-"
alent quasi-norms. and sufficiently strong Fouricr multiplier assertions:for the
spaces F;‘q. We formulate the corrcsponding results in this subsection and in the
following one. Let k € § with suppk < {y | [y| < 1} and k0) = 0. Let ky = A¥E,
.where A stands for the Laplacian and N =0, 1, ... (with k, = k). We introduce
the means ' : - ‘

. K@) = [ k() fi+ ) dy, zeR, t>0. (5
. nn Lt

This makes sense for any f € §' (ﬁsual interpretation). .

'Pr0~position 1: Let either 0 < p < 00,0 <g<o0o0rp=gq=o00 Let —c0 < s
< oo and let N € N with 2N > s and 2N > n(1/min (p, 1) — 1). Let 0 < & < oo
and 0 < r < co. Then_ ) .

: r . . 1/q
. dt .
1Kk, &) f | Lyl + .ft“’-" K (ky, &) ()17 = L, (6)

0
(modification if ¢ = o) is an equivalent quasi-norm in F 0

Remark 3: We developed the théo"ry of these equivalent quasi-norms in [21, 22]. The °
above formulation coincides essentially with Theorem A in [23], as far as the spaces F‘,’,_q
are concerned (there is a corresponding assertion for the spaces B‘,’m). The advantage of (5),
-(6) in comparison with the quasi-norm | | F,",_qlllw:) is its strictly local nature: in order to calcu-
* late K(ky,t) f(z) in a given point z € R, one needs only a knowledge of f in a neighborhood

of z (the positive numbers ¢ and » in (6) may be chosen as small as one wants). ¢

. Remark 4 We add two further remarks. As in the definition of F3 4 one can replace the
continuous version in (6) by its discrete counterpart '

' o . 1
1Kk, &) £ 1 Lyl + ” ( £ 20 Kk, 27) /«)lv) !
: - 1= :

Ly

, . (7)

where L is an arbitrary integer. This replecement is a technical matter and it is often more
convenient to usc (7) instead of (6). Secondly we remark that if the Tauberian condition
£(0) = 0 is'not necessarily satiqfit}d,-‘t,hen (6) and (7) can at least be estimated from above by
cllf | #4 gli, of. Remark 3 in [22]. : .

10 Analysis Bd. 8, Heft 2 (1987) ° ;,
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2.3. Fourier multipliers ' : ' , .
Let akx, £ €S, with0<d<1.Ifz¢ R,is fi:red, then we write
a(z, D) f(z) = [ e* alz, &) [(§)ds,  z € R, - " -8

R, .

Furthermore, £ — a(z, E) is a Fourier multlpher for F?
andeither0<p<oo 0<g=o0orp=g=o0,ie,

la(z, D) f | Bl < ¢ If | Foqll,” R T (9)

cf. [20: 2.3.7], where ¢ is not only mdcpendent off but also of z € R,. One can streng- -
then (9) by A . .

g Where —oo <s < oo,

B

<l P, (10]

( 3 2% sup ¢y(D) o alz, D) f(- >1q)
7

2€R,

L

where the ¢; have the same meaning as in the above Definition, cf. [20: Theorem
2.3.6]. We need a modification of (10) and of a known maxnmal 1nequahty

Proposition 2: Let either 0 < P < o0, 0 < q < o0 or p= q = oo. Let a(x, &
€S, with0 <6 =1

(i) Let —o0 <8 <00, 0 <7 < 0 and O <e < oo.-Let N be a su[fzczently large
natural number. Then there emsts a posttive constant ¢ such that C :

sup |a(z, D) K(k, €) f[ | Ly ” '

2€R,

r /g

e[ [emswiae oy ke ®) | sewimg - a
0 2€Rn - ’ . .
usual modification if ¢ = oo) for all f € F},
(
(i1) Let s > n/p and b > 0. Then'there exzsts a. positive constant ¢ such that,

sup sup [[a(z, D) /) @) | Ls|| < ¢ 11 Fal L a

[z—ylsb 2€R,
1 . \

for all f € F,,.

) Rem)}.rk 5: a(z, D) K(k, €) f and a(z, D) K(ky,t) [~ must be understood in the sense of (8)

. as functions of 2, and the Lp-quasi-'nor‘m in (11) is taken with respect to this variable z. Simi-
larly, in (10) and (12) the integrands must be interpreted as functions of x (which makes
sense at’least via some limiting arguments). A proof of (11) (includi‘ng the fact that we prefer

- continuous version in contrast to the discrete versions in (10)) is complctely provided by the -
Proposition, the Theorem and the tcchmque of estimates developed in [20; 2.3.6); cf. also [21]
as far as the reformulation of K(ky, t)/ in the language of Fourier multipliers is concerned.
Here one needs that N is large. (12) is essentially a consequence of the estimates at the end
of the.proof of Corollary 1 in [20: 2.5.9, p. 100] and the technique from [20: 2.3.6]."

3. Proof of the theorem '

”

‘"We prove the Theorem formulated in the Introduction in two steps:

Step 1: Let s be large, whereas all the other assumptions are the samé as in the
Theorem In order to use (5) and (6), with a(z, D) f(x) instead of f, we first calculate

\




The mtegral version of the last term in (13) ylclds

»
V

o
a(x + ty, D) f(x + ty), where z € R;,, lyl=land 0 <t <r. We ha;re
alz + ty, D) flz + 1) = f eiE+ia(z + ty, £) (£) d§

o -
T |<}"; Lyl y'fe'(’+f”"Dz’a(x, £) (&) d¢

L

+ X )t,_{'yr‘:[ 9;'(1+‘V)5Dz’a(x + Oty &) (&) dE, S 13)
Ivl=L V- . . ‘ 0

where L is a natural number with L > s and 0 g‘ﬁ <1 Let k,(y) = ykn(y), where .

ky has the above meaning. Furthermore, K(k,, t) f(z) is defined by (5) with k, in-
stead .of ky. Then we have - '

- K(ky, t) a(z, D) f(z)

. : - ' \.
S et [ e=D ra(x, &) K(k,, t) f(§) dé + R(z, 1).

yIsL—1 R,

Bz, t); £ ct” 3 sup sup |Dgra(z, D) f(y)l-

IylI=L lz—ylsr z€R,

- If scand L are fixed and if N is chosen sufflcxcnt]y ]arge then the kernels k, are

finite sums of kernels*which satisfy the hypotheses of Proposmon 1, maybe w1th

exception of” k(O) = 0. However, because we are only intcrested in estimates from '

_above, the last lmes of Remark 4 can be applied. Recall that

Lf(@) = [ e™(1 + g2 (&) d . - C (19)
R. ) ! . )
is a lift in F} . it maps Fj . isomorphically onto Fjy b, where —oo < b < oo, of.’
[20: 2.3.8]. Let . /

4 .
a(x, §) = Dyalz, &) (L + &) 2", R (15)
where 8 has the above meaning, cf. (1). In particular a,(z, &) € S9,. We have
|K (ky, t) a(z, D) f(z)|
Sec I tisup laz D) Kk, &) Luf(@)] + 1B(@, 0]

- IyIsL—1 zéR,

\

" By the above remarks about the kernels k,, Proposition 2(i) with k, and a, instead

cof ky and a, xespect,lvely, can be applied. \Ve obtain i N

r . /g
d
[ e Kt 06w, 0) 0 ) |2

0

e X Manf | FS;M +¢ X

yIsL-t | vl=L

'

Iz—ylér z€R,

where we .used'L > s and that N is chosen large enough. The first terms on the

right-hand side of (16) can be estimated from -above by c||f | F3 P19 and hence

by ¢|If | F3 q|| (this is true even if é = 1). We apply Proposmon 2(ii) to the last

10* Co- ) .

. \ - .
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sup sup |a,(z, D Ialylf(y)!IL “ (16\)‘ |

-
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!

term on the right-hand side of (16). Hence this term can be estimated from above
by ¢ [[Lscf | F5,4ll with 0 > n/p, and consequently by c [If | F5**%||. The term ||K(k, ¢)
X a{z; D) f | L,,ll can be treated in the same way. Now we: flx our assumpmons for s
by . .

nfp + 6L <s < L, L a.suitable natulal number. (17)

If p (and g) are fixed, then all large values of s are covered by (17) (here one needs
for the first time that 6 < 1). Under these assumptions for s, the above considerations
yield (3). . -

Step 2: Let s be an arbitrary real number. By the composntlon theorem for pseudo-
differential operators, cf. [7; pp.71/94], we have a‘(z, &) € 89,/ where the corre-
spondmg pseudo -differential operator ad(x, D) is defined by a4z, D) = I_40 a(z, D)
ol —oo < d < oo, cf. (14) (here we used again b < 1). Hence we obtain a{z, D).
= I;0a%z, D)o I_4. We choose d in such a way that Step 1 can be applied to
s + d instead of s. Then Iy maps F3, onto F¢*8, ad(z, D) maps F38 into k572, and
Iy maps F3id onto F%, . This completes the proof of the Theorem l :

Remark 6: After the Theorem has been provcd the real mterpolatlon formula (4) yields
a corresponding ‘result for the B g-8paces. In other words, let —co <8< 00, 0 < p < 0
and 0 < g < oo, then there exnsts a constant ¢ such that |la(z, D) f | Byl < cllf | B3, 4li for
-all f € B® .

4. Further 'remé’rks

- On the basis of the two propositions our method is not very complicated. The Taylor

- expansion (13) is the crucial formula. Furthermore we used the composition theorem
for pseudo- differential operators of the symbol class 89, with 0 <6< 1. The
advantage of our method is the strictly local nature as far as the z-variable is.con-
“cerned (for the &-variable nothing of this type can be expected). The question is to
apply the above method to other (more complicated) symbol classes.

Remark 7 (Weak-ezotic symbol class): The symbol class §? , is sometimes called exotic. An
extension of the above theorem to this class is not possible. There exist symbols a(z, &) € S,
such that a(z, D) does .not map L, into/itself.-On_ the other hand it has been shown by
Y. MEYER [10] and T. Runst [18] that a(z, D) with afz, &) € S?l preserves }""‘q and B 0.4
if 8 is large. Unfortuna.tely, the above method is not strong enough to cover Runst’s result.
But a weaker version can be obtained without additional efforts. We say that a(z, &)

€ C°(R, X Ry) belongs to the weak-exotic class.if ' .

N ID ﬁDe““(x, 5)] = 0,,3(1 + &)~ l°"“""‘l;‘3l

for allz ¢ R, & € R, withj — m; 1 oo if § — co. \Iaybc nt is reasonable to assume that j — m;
tends monotomcully to infinity, but this is not really necessary. Of course, any.a(z, §) € 894
with 0 < 0 < 1 is weak-exotic. Step 1 of the above proof can be applied to this class of pseudo-
differential operators, including the counterparts of (15)—(17):. Hence, if p and ¢ are given
as’ above, then a(z, D) maps Fj, into itself (and consequently also B3, o into itself) if s is
large. We have not checked whether the composition theorem for this class of pseudo-diffe-,
rential operators holds Hence 1t is at least doubtful w hether S‘tep 2 can be applled

Remark 8 (blementary symbols) ‘A symbol’ a(:t, ) is ca]led elementary if it can be repre-
sented as . -

(s, §>, ‘z 4 @) Bi(®).

N
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These symbols seem to be especially well-adapted to the above method because our approach
is strictly local as’far as the z-variable is concerned. The reduction of general symbols to
elementary symbols is due to R, R.CoirmaN and Y. MEYER, cf. [5]. These ideas have been
used in [6, 17] to mvestlgate pseudo differential operators m B .- and F" g-Spaces.

Rémark 9: The first candidate in order to study mapping propertles for various types of
pseudo-differential operators is always L,. However therc has been done a lot in- order to
study different types of pseudo- dlfferentml operators in L, with 1 < p < ‘co and in Halder
spaces. We réfer to [1—3, 8, 9, 11—15, 24] and [19: Chap. XI]. Some of these papers deal
. with the problém to weaken the smoothness asumptnons for the symbol a(z, &) in particular
for the z-variable. Mapping properties in B} - ahd F3 .-spaces have been treated in [4, 6, 16,
. 17, 25, 26]. We repeat that the above- proven thcorem is due to L. PAIVARINTA, cf. [16). The
question is whether the above method can be used in order to attack other problems than.
those treated in this paper (maybc in connection with the quoted papers).
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