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. On a Coupled System of Partial Differential Equations
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Es‘werden verschiedene Randwertaufgaben fiir ein gekoppeltes System stationirer partieller
Differentialgleichungen, das- Modellen des Eindringens von Verunreinigungen in Halblciter
entlehnt und den Gleichungen der inncren Elektronik dhnlich ist, mittels energetischer Metho-
den auf Existenz von Lésungen untersucht. Daneben werden Abschitzungen von oben fnr

~den Durchmesscr der Lésungsmenge gewonnen.

MCC'Ie;IVIOTCﬂ pdmue Kpaesble samaun aas CHCTEMM CTANMOHAPHBIX yPABHEHHil B HACTHHIX
NPOH3BOTHHX, KOTOpPas MPOHCTCKACT OT MOJeiell MHMEKTHPOBAHUA 3apAAOB B NOMYNpO-

* BOZHUEM M nojpo0Ha YpasHeHMAM pacnpejlellenua IUIOTHOCTel 3apAnoB. JlokasbBaeTCA™
CYIIECTBOBAHME PelIeHli npu MoMolM dHepreTHyeckuX metomos. IIpi sTom monyualnoTea i
- OUEHKM CBEPXY AJA  AHAMETPA MHOMECTRA pewienufi: N - -

Boundary value problems are considered for a system of stationary pnrtlul differential equa-
tions that stems from the models describing the.implantation of impurities into semiconductor -
devices and is similar to the equations of carrier transport. The existence of solutions by func-
tional analytlc means (energetic method) is proved. Besides, an upper estimate for the set of
- solutlons is obtained. Lo

We mvesmgate the following coupled system of stationary partial dlfferentlal equa-
tions: : .

. ' V(D Vu)—*—V(kzu,(a—{-buf) I/ZVY’)—f.} | '

—V.(Dy V l1’)—1c(N-{—u0) i=1,...,. M M
where u;, f;, ¥ and N are real functions on & bounded domain G of the n-dimen- _
sional Euclidean space R, allowing partial integration and the Sobolev 1mbeddmg

. theorems V. (D Vu) means div (D grad u). Let further u, = zju; + -+ + 2y,

= 41, Uy = 1/(a + buy®)'/2, M a natural number, &, k;, a, b positive constants.
The diffusion coefficients may be of the form D; = D;(|Vu;]) and Dy,'= Dy(|V¥)).
For all functions u; and ¥ we suppose the same: t,ype of boundary conditions:

ula(‘:_-/l’ ?’=l:""j[:. yIla(:‘xzt_lo
A Ao, =0, i=01,...M

whele Jo = —Do V¥ and Ji= —D; Vu; — k‘z,u i(a 4+ dbug2)"¥2 V¥ are the flow

_densities, 8¢/, and: 10@, are portions of the boundary of ¢ with the properties G, n &G,

= 0, 3G' = 8(, v 3G, nes 3G, > 0 with respect to the boundary measure, and 7%
: 1s’the outer normal to the boundary of G.

The system (1) is similar to the stutlonury eqlmhons of carrier tmnsporb in semiconductors
(cf. [3,-7]). Instead of two equations, here an arbitrary number of carriers is supposed. The
mobilities are replaced by the terms zku;(a + buy?)~"2 and the recombmn,tnon rates are

. lacking. The coupling of the quantities u; by the last equation of (1) here takes place in an

-
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-
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analoguous. way. The system’ (1) has its origin in the models describing the implantation of
impurities into semiconductor devnces as they were used by Durrox (cf. [5]) and others for
numerical snmulatlons

It'is the purpose of this paper to prove the existence of a solution of the problem
(1), (2) by functional analytical means. We proceed in a similar way as in [3, 7].
In Section 1 we consider first the problem: with homogeneous boundary conditions

wilog, =0, i=1,..,M, W, =0 R '
. (3)

.‘ Ji'.nlavc,=0, 1=0,1,..., M.
The closure of {v € C¥G) : v|ze, = O} with respect to the norm -

19]l1.g = ( o2 + |Vv|n210/2'd_a)”«, L og> 1y
N ! (4

-of ‘the Sobolev space W (G) = {v € Ly(G): D*» € L(G)} (||, is the Fuclidean norm
of R,) is denoted by W (G). Let us assume that & has a Lipschitzian boundary
(cf. [9]). Then : ‘ . b

T il = (f IVol,? dG')”"
S G ,

and |-, , are equivalent norms on, W (). We ask for solutions [u,, ..., U, Y1 of
. the problem (1), (3) in the sense of the notion of the solution in variation (weak
solution) in the space "W X W, ((), where W* = W x ... X W is the M-fold pro-
duct of W =. Wy(G), r, p = 2. For the sake of simplicity we suppose p > n in order
. to be sure of the compact imbédding of W, (&) into the space C(G) of continuous
* functions on G. We assume further that N € L(G), 1/r' -- 1/r =1, f; € Ly(G),
1/p" 4+ 1/p.= 1. Concerning the diffusivities we assume

Di|Vu) = d([Vuil) [Vt and Dy(V¥) = VW2, (4)

where the d* are defined on R, = [0, 4 o0), continuous, non-decreasing, and 0 < d;,
‘=dis) S diy, s€ R.. Under these assumptions the diffusivity terms generate
uniformly monotone operators in W,(G) and W .(G), respectively. An operator T
.of the whole of a real, reflexive Banach space B, into its adjoint space (B,)* is’called
uniformly monotonous if there is a function 6 € (R, — R.) with 6(1) > 0 such that
(Tw — Tv, u. — v) = &(|lu — v|)) holds for u, v € By. In our cases either §(s) = c,s?
or §(s) = ¢os™ hold. We will show that the operator equation Tu = 0 corresponding’
to the homogeneous problem has a bounded, coercive, pseudomonotone operator T,
and therefore a solution exists by a well- known theorem of Brkzis [1]. v

In Section 2 the inhomogeneous problem (1), (2) will be investigated, reducmg it
to the homogeneous case. In this way a ‘“‘disturbed” operator equation will arise
that will then be solved by the same means, as the undisturbed one considered in
Section 1.

\

1. The homogeneous hboundary value problém

Here we conéider the ‘homogex-leous boundary value problem (1), (3). Let us begin
with the following useful abstract lemma, which is partially contained. in many
papers (cf. e.g. [2, 4, 6]). ' ~
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4

Lerﬁma: Let (H, (-, -)) be a Hilbert space, |-| = (-, -)!/* the norm and « a real num-
ber. For u,v € H we have '

v

(lulow — [of o, u — ) = {

lu — v|**?  for « >O
K(|u|‘ + |v|"‘)‘1 Iu — o2 /or —1<ax0 -
(1. 1)

and )
G(lul* + [v|*) [u — o] for « 20

A . (1.2)
Gl — ot for —1<x=0 )

lfule w — Joj* o] g{

. 'where K and G are positive constants depending on . S

Proof: We -are going to prove the Lemma in an elementary algebraic manner.
We begin with (1.1). Division of (1.1) by |u[*+? (we assume [u} = [v] > 0)- ylelds

(uftul — (ol/lul)* oflul, uflul — /i) o
' {Klu/[u| — vfful|=+2 for « =0
= LK(L + (olfluly =) fufluf —ofjulft for —1'< & < 0:
Consequcnt,ly, it suffices to show for |z| = 1 and |1/| <1 that \ ¢

K |x-— y|*t? for « = 0

- @ ’ - g )
@ = llryz—y) {K(l 4yt —y* for —1<a=0.

Settmg t = ]1/| and s=(z,y) W 1th jz| = 1 we get
I —pU et D E—s) B
{K((l — 1) + 2(t — )2 for « =0

KL+t [(1 =2+ 20t —s)] for ~1<a<0 (1:3)
for =t s <t < 1 with ¢ = 0. This is what, we have to show.

First let us consider the special cases t. = 1 and ¢ = s. The case t = 1 is easy and .
clear. In the case ¢ = s and « = 0 we argue that, because of 1 = (1. — )*+! 4 =+,
(1 — t)**+1 < 1 — =1 holds, i.e. (1 — £) (1 — £2+1) = (1 — ¢)+2% For 0 < & < 1 we
have (1. — #)/(1' — t) = ¢, as the difference quotient equals f'(t,) for {(¢) = t¢ and
some ¢, < 1. Because of the monotomclty of f' then /(to) = f( 1) =& Then in t,he
caset——sand—1<a$0 )

(140 (1 a1 — t) )z — et )1 — e):-z o+ 1 '= K >.0.

Now we are gomg to show (1.3) in case t = 8 and ¢ =#: 1. Because of (1 — t)““z
<1 — et we have for « = 0 ) -

(1 =02+ 2(t — PRl —t) (1 — o+ - (¢ + 1) (;_43)]_ .
S QL — 172 4 2R — PR — ) (L) + (= + 1) (¢ —9)]
< B(L — (YL — ) (1 — 54) - 2R — PR 1) (¢ )]

. < 2,/2[1' + Qa/f2+1 2a[2] — l/K.
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At last, for —1 < x= O, using (1 —¢¢)/(1 —¢t) = e for 0 < & < 1, we have -
S =0 420 — (L~ ) [(1— 1) (1 — 1251 (&5 1) (¢ — )]
S =L (L — ) (1 —
2 — 9L+ o) + 1)t —s) N
= (1 — /(1 4 7°) (1 — 1541 + 2/(1 4 £=2) (¢ + 1)
<1(a+1)+2=1/K.

The proof of (1.1) is complete, : :

As to (1.2), we first observe-that the inverse of the operator T,u = |u|* u is just
the operator T,"lu-= T ojuiyyu = ju| =2+ 4 = Tpu, and & =0 iff —1 < =0,
—1 <« = 0iff § = 0 hold. This way, to prove (1.2) for T, we use (1.1) for 7, = T'.
- let w, = Tou and v, = Ty, i.e. w = Tsu, and v = Ty,. Then we have .

~

1}

.IT,gu, — Tovy| luy — 0| 2 (Touy — Tovy, uy —vy)
{K_(ﬂ) (w8 + [oa|"8) 7 Juy — v 2 for « =0 ,

T KB [y = ] = K(B) [uy = vy e+ for —1 <& <0,

]u—z,lKﬂ qul’g‘{‘l”xlﬂ .

(lw — o| K(B)1)=+!. -

This is (1.2), t'aking into account that [u,|~% = |T,u|~# = ||ul* u]“/‘°+” = [u|* holds

lTu—Tv| [u,—v,|_{

Using the boundary conditions (3) and partial integration we come to the weal\
formulation of the problem (1). The functlon [, ...s upg, W] € WM x W.(G) is called
solution of our problem if ) .

fD Vu; Y dG+jkzu Uy, V¥ Vu; a6 +f/w dG=M, i=1,..0,
' (1.4)

RN

i

and, o . - o

J Do V¥ Vs dG = [ k(N + ug) wy dG ' _ T(LB)
¢ - ¢ : :

hold for all [wy, ..., wa, we] € WM X W(G). If Dy = |V¥|-2, the left-hand side of
(1.5) generates a uniformly monotonous, coercive opérator on W (G): Hence (1.5)
is uniquely solvable for fixed N and w,. Since this solution (for generally fixed N)
. only depends on % = [u,, ..., upy] we denote it by ‘Su. Substntutmg this into (1 4),
we obtain the problem: Fmd U = [Uyslh.., Upy) € WH such that ) ,

[ Di Vu, Vo, dGo- [ ki, Uy VSu Vo, d6 + [ f0,dG = 0

G : ¢ i G oo ,
hold for ¢ - 1,..., M. In the sequel we will transform this»prob]efn into the opera-
tor equation Au + Bu = f in (WM)* and invest\igate the properties of "the opera-

" tors A and B. : ) ‘
. Now, let {-,-) be the dual pairing between W* and W = W,(G). We generate
operators A; and B; mapping W into W*: s R

(Ap, w) = fD Vv VwdG, |

(Biv, wy = ziki f vi(a +, bvoz) 12 VSy Vw dG.
E ,




-
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Under suitable conditions on D,», the operator A; will be uniformly‘ mohotb]idug
(cf. (8) and [3]): - B : : :

(du— Aw, u; — V) = ¢ fluy— P, ¢;>0."
7 v ’

.. (1.6)
Now, after. proving some estimates for [[Biu — Bivll,,;. and I1Bulliys we will show

that B, is increasing continuous. First we estimate b; = (Biu — Bw, w)]. We have

0 Z kil [ Ju Uy VSu — vV, VSu| |Va| dG, -
G .

where U, = (a —i—'\bu(,?.)'l/z' and Vo, = (a + bye?)~12. As the derivative of the func-
rtion (@ + bz%)7/2 is bounded we have |U, — Vol < k(a, b) [uy — vy]. We calculate
U, YSu — v, VS| - SN ‘
= [uUo(V8u — VISv) + Uy — Vo) VS0 + (u; — 1) Vo V0|
< a7V¥(fw] |9Su —ViSe| + fu — vl IVSo]) + |l [VISo] iy — vo| ka, b).
Then',_ : ’ : o - . |
by <k} (f |ui| IVSu — VSu[ V| dG . AU
: R

\

P - \
+ [ ol [V8u] fuo — wol Vo] dG + [ fu; - ;] [VSv] |Vag] dG'), (1.7)
G- .. .G ) - + R
1 [N
where k;! is a positive constant not dépending on % and v. For p > n, as' W is im-
bedded into C, we get by the Holder inequality, putting ¢ = p/(p — 1) and denoting
‘the L,-norm by |I-||,, the C-norm by ||, ‘ .
4 : -

N

.

Ay

by STEMuile VS — VSoll, + luile [t — ol 9] -
LTl — il 19 [Val. ) ' - a
Néxt, \.ve‘e'stimate IVSu — VSu|, and ||VSv||,,.-We have
- V. (|VSu|™-2 VSz'z.)\ = k(N + %) and V. (léSvl"2 V8v) = k(N 4 ).
From th:is we get by subtraction and partial integration for w € W ,(G;)
S TS VU Vet V) Y d6 — —k [ (o — vo) wdG.
¢ g 6 :
Fors,t € R, and r = 2 the Lemma give.s (s |8~ — ¢ lt]"e) (s —t) = const ls — 7.
" Thus, /if we take w'= Su — Sv € W (G) then we get :
' - cdqst f [VSu — VSu|r d@
° G

S (VST S — VSt V) (VSu — VSy) dG i
=0 |

< [ lug — vl 1Su — Sv| dG' < const, [u, — Vle IVSu — VS|,
: - ¢ . . ' | - -
as W, = W, < L, < L, with continuous imbeddings. We get

VS — VSull,” < const, Juy — vyl [IVSu — VS,

IVSu — VSull, < const Ju, — vo|c;1/<"‘). _ _ ©(1.8)

L)
i.e. [VSu — VSu||, = const juy — v,|c!/~1. As’q < r we also have
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' By multiplication with Sv and partlal integration the equation V (IVSvl"'2 VSv)
" = k(N + v,) gives '

[ 1V8y|2 VSy VSv dG = —kf N 4 vy) Sv 4@,

G

.

- l.e. ||VSv||,' S k|N.4+- voll, ][Sv||, From [|Sv|, S const, ”VSL”, we get as before

VS|, < const |N 4 v|Hr—1. H C (L 9)
q

Now, taking into account that (1Vall, :_IEwlio_'p, (1.7) and (1.8)'yield
llB % — Bjv|lwe = const (Iu lc [#o — Dol MY + Juile [t — volc [IViSVlg
A+ Jug — il VSl T ‘ (1.10)
In the same way as in [3] we are now able to show bhab B is increasing contmuous
Indeed, let wi — u in WH, ie. u{ — u; and uyf — u, in W Then, because of the
compact imbedding W < C, u/ — u; and uy’ — 4, in C, and (1:10) gives us ||Buf

— By — 0 since |ui|; is bounded
Let us now define operators® 4, B: WM - (WH)* as

oo Mo
(Au, wyy = Z (A,-u, w,») and (Bu,w)y = ) (B, w)),
1
. ..
where ( )M is the dual pairing bet“een (WM) and W Then, if we define ||u||?y_u
uu,no,, s o+l from (1.6) we get. ~ : o
, i

(Au—Av u-v),,,>c2||_u —v||o,,__c|]u—v|[wu (1

Furthermore, the operator B is mcreasmg contmuous because the B; are. Indeed,
we have for allw ¢ W¥  °

N
]

. oM : oM )
’ |<Bu — Bo, w)M] = .12 [(Bu — B, ‘f0i>l,§ .?: 1Biw — Bl [lwillw

[}
S

) M _ L\l
= (41\:' 1Biuw — Biv“fV‘) ”wUn'M,l

ie.

1/2
”Bu — B’U”(WM)‘ (Z ”B;u - B v”W‘) .

Besides, we need an estnmate for |(Bv, v)y|. The Holder inequality glvcs

(B v, 0 = Ik [ If (a + bvoz)‘ll2 Vv Vo dG‘ < const foile V8w, lwillw -

From (1. 9 and |vile = const [jo; Ho » we then obtam
I(B v, v = const IIN + Bl il -
This gives o ‘ :

¢
\

I(Bv, )u S Z KBiv, v')l < const ||V + voll”"‘” o | (1.12)
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Furthermore, we can estimate

N

Voo ’ . . : -
IV + wll#~ < const (IN]H + ||ulfiyé ") , : (1.13)
since : ' - ’

M
llvollr- = const ||vo”o.p < const }; lillo,p < const [|v]lys.
‘ 3 .

" Now we are ready to prove the coerciveness of T = 4 + B. Because of (1.11),
(1.12) and A0 = O we have : ' . \

©{To; v) = (Av, v)p + (Bv; fl));w = const |[v]/s — const ||ZV + ool |l 3yt
and with (1.13) ‘ S ¥ o
(T, vYse/|ollsr = const [follaP — const |fully (const + [fofly e ~1),

converging to oo if [[v]|;y — oo, provided 1 + Hyir—1)<p-—1,ie r>(p— 1)/
(p—2). : o
This way, if p > n and »' > (p — Djip—2),Tisa cocrcive and pseudomonotone
. operator (T is the sum of a uniformly monotone, continuous operator and an in-
’ creasing continuous one). Consequently, by a standard theorem of monotonicity
theory the problem Tu = 0 has a solution » € W, taking into account that T is
- also bounded. We have obtained o - ’

'
‘

The'or.ebu-l 1: Letbe p,r =2, p>n,r> (p —:.l)/(p-— 2) and let our assumptions ‘
for Dis ¢ =1, ..., M, and Dy be fulfilled. Then the homogeneous boundary value prob-
,lem (1), (3) has at least one solution. . »

’

2. The inhomogeneous problem '

In this section We seck: solutions [v,, ..., vy, @] of the inhomogeneous boundary
value problem (1), (2). We suppose that there exist elements y; € W @), ¢ =1,
..., M, and y, € W,X(G) such that o L ,

-

Yiloc, = ¥, t=1,..., M, and- yls, = Y. o _ (2.1)

_Then, for u; = v; — y; and ¥ = @ — y, we have the homogeheou‘s conditions (3).
Now, we can reduce the inhomogeneous problem to the homogeneous one considered
inSection 1. To derive the corresponding operator equation we substitute v; = u; +v;,
i=1,...,.M, and ® = ¥ 4 y, into the original differential equations (1), and we
consider these equations in the variables u; and ¥. Then we again generate operator
equations in W,(G) and W (G). Besides the homogeneous bpflxldal-y.coxlditi011s after
the substitution we obtain the differential equations ' : .

V' (Dil1V(u; + wi)l) Y(u; + yi)) + V- (kizi(ui + ) Vo V(¥ + Yo)) = /i} . : (2-2) .

SV (DY + 9)) VY ) =N+ ), - i=1,.., M | -

where. V, = (a + bve?)V 2 with v, = z(u, +'?/1)' + o zm(uar -+ ya). .

Now, let us generate corresponding operators E; and F;. We put - *

C(Fau, w) = IiF(w, w), u, € W, we WM
(B, ), w) = LEw, ¥,w), ¥ WG

(Foqj’ wWo) = IF(E[/’ W), ¥, Wy € Wr(G)

’
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TR, w) = fD(IV 9 Vi ) Vo dG,
I E(uy, W, w) f/cz ) Vo V(¥ + yo) Vw dG,

I (W, wo) = [ Do(V+ y0)l) V(¥ + o) Vu, d6.
v e . ..We have [IFf(u;,w) < dil|V(u; + y)ll,?7 " llello, o Consequén_tly,‘ there exists an
T Fie(W— (WM)*) with - - '
. /.
(Fai, ) = Iftu, w) and  [[Fasl] < diy 22-20illf3! + lwill25h)

]:urt,her there exists an E, 4(W,(G)- = (W (G))*) with -
ST (B e = TFOP ) and S 2R + ol

- At last, we justify (E~(u,~‘, ¥, w) = IE(u,, ¥, w). We obtain, with 1/p 4 1/p" =1,
_ i (u., ¥, w)| < a V2 Ju; + yile V(Y + yo)lly oollo.p
L | = a7 2(ude + 1yile) (W + llyolis) I1llop

\

Next, we 1nvest1gate the propertlcs of the operators F;, F, and ;. Undel the
assumptions (4) and (2.1) F; is uniformly monotonous with §,(¢) = g;¢*. This follows
from the fact that Fi(u;) can be understood as 4;(%; + %;), because 4;.can be gen- |
erated.also on elements u; + %; as an operator in »; on W,(@). The uniform mono-'
tonicity of F; then results from the uniform monotonicity of 4; (cf. (1.6)). Regarding
F, we can proceed in an analogous way. Then for u € W¥ there exists a unique
solution (again denoted by) Su of the problem (2.2) (now with v, instead of u,)
under the boundary conditions (3) at ¥. Obviously, S'is an incréasing continuous
mapping. We are going to show that, after substituting Su, the operator Ei(w)
= E,(u‘, VSu) is mcrcasmg contmuous too. “The me,quallt,y

{E’iu‘ E’ ut wy|

<k (] i + gi) Vol VI — (wd + i) Vo? ViSu?| |Vu )
J _

a kl( I jud + ol [V(Sut — Su2>| |Vw| a6

Ry yil 98] fout — vl 4G + f fus — u?| [VSu?| [Vuol 0)

holds true, where k; 1is a constant and ! = wo(ul), Vol = (@ + b(wef)?) 22, j =1, 2.

". The increasing cont,mult,y then follows in the same way as in Section 1. 'I‘he so]umon
! of the inhomogeneous boundary value problem is equnvalent to the solution of the

operator equation Fu + Eu = f, where F = [F}, ..., Fy] is a unifor mly mono-
~ tonous operator and E = [E}, .. . Ey]is an mcreasmg contmuous one.

. Theorem 2: Under the /ormulated assumptions, especially (4) on D;, (2.1) on y;
and r > 2, p> (2r — 1)/(r — 1), the boundary value problem (1), (2) has at least
one solution. The solution sel is strongly compact and weakly closed and its dmmeter .
_an ‘be estimated from above by a concrete finite number.

pe . ]
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’

Proof: The operator F + E is bounded, coercive and pseudomonotone. The
. coerciveness follows from the uniform monotonicity of F with é(t) = g¢?, p>(2r —1)/
(r — 1), and the fact that (Ewu,u) must increase to infinity at least as fast as
llellZp 1 =1." Thé solution set is weakly compact and'weakly closed (cf. e.g. [6)).
F + E satisfies the S,-condition, i.e. especially that every weakly (to a solution)
converging sequence of solutions also converges strongly. From this, the strong
“compactness of the solution set follows. : :
Now to the last assertion. Because of the coerciveness of the mapping F + ¢
and the résulting a priori boundedness we have for v!, 22 € WM and » > 2:

(Fo'.— Fo?, 0t — o?) + (Evt — Ev?, o' — 0?) oo
=gt = E, — e It — P, — e [0t — Y
o= =R (It — PN (gl — vR)E5 — ) — cp)

= ellet — w2y
T S il i
At — o, = max {[(c) 4 &)/gIV P, [(0; + &)/ ]CVICD) = K(ey, &)
is assumed with arbitrary & > 0 and ¢ > 0. Hence for solutions o1, »? we. can
conclude [[pl-— 22, , < K(ey, &) B :

’ l{em’drk i\T'Yxe constants ¢, and ¢, in the proof 6f Theorem 2 enclose e.g. the im-
bedding constant of W (@) into C(G). .
7 oot s X .

A
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