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On a Coupled System of Partial Differential Equations 

G. BRUCKNER'and R. KLUGE 

Es'werden verschiedene Randwertaufgaben für cin gekoppeltes System stationärer partieller 
Differentialgleichungen, das . Modellen des Eindringens von Verunreinigungen in Halbleiter 
entlehnt und den Gleichungon der inneren Elektronik ähnlich ist, mittels energetischer Metho-
den auf Existenz von Losungen untersucht. Daneben werden Abschatzungen von oben für 
den l)urchmesser der Losungsmenge gewonnen. 
I4ccJ1eyloTcn pa3uble i-cpae8Me 3aa'lu ai ducTeMw CT1HOHHMX ypanneililu B 'lacTHaIx 
npoIlaBoLHux, I-oTOpafl npoiicexae OT Mo1e.3Iefl uHee}TnpoBaHnH 3fl)OB B I10!1ynpO-
130HHH1I it nooGua ypanhieHilhiM pacnpee.neiiHn nnoTnocTe1 aapH)oB. JoFca3MBaeTchi 
cyuecTuoBaHHe peweilith npsi flOMOUH 3HepreTn4ecHnx MeTo10B. llpii )TOM noJly'IaIoTcH H 
weHxI1 cepxy Ann - uxaMeTpa Mh!o}MecTBa peweilliri.	 -	- - 
Boundary value problems are considered for a sytem of stationary paitiul differential equa-
tions that stems from the models describing the implantation of impurities into semiconductor 
devices and is similar to the equations of carrier transport. The existence of solutions by func-
tional analytic means (energetic method) is proved. Besides, an upper estimate for the set of 
solutions is obtained.	 - 

We investigate the following coupled system of s,tationary partial differential equa: 
tions:

V. (D i Vu) + V- (kzu(a + bu0 2 ) 112 VW) =
(I) 

—V.(D0V—P)=k(N+u0),	i=1,...,MJ 

where u,/1 , W and N are real functions on Er bounded domain 0 of the n-dimen- - 
sional Euclidean: space R allowing partial integration and the Sobolev imbedding 
theorems. V . (D Vu) means div (P grd u). Let further u0 = 'z 1u1 + .. 
z j = + 1, U0 = 1/(a + bu0 2 ) 112 , M a natural number, k, k 1 , a, b positive constants. 
The diffusion coefficients may be of the form D = D 1 (Vu 1 !) and D0 = D0(jVWj). 
For all funQtions u1 and !/' we suppose the same-type of boundary conditions: 

-	
= y,	i = 1, ..., ill,	iaG, = YOl	 2 

J i flIse.=O,	i0,1,...,M	J	- S 

where J0 = --D0 VI P and J	—D i Vu - kzu(a + bu0 2 )_ 1 I 2 VI! are the flow 
densities, OG, and4G2 are portions of the boundary of 0 with the properties eQ 1 n CU,	.' - = 0, CO =	u CO21 Ines CO 1 >0 with respect to the boundary measure, and 1 
is'the outer normal to the boundary of 0.	 - 

The system (1) is similar to the stationary equations of carrier transport in semiconductors 
(cf. [3,-7]). Instead of two equations, here an arbitrary number of carriers is supposed. The 
mobilities are replaced by the terms zk u(a + bn02)'2 and the recombination rates are 

• lacking. The coupling of the quantities u 1 by the last equation of (1) here takes place in an
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analoguous. way. The system (1) has its origin in the models describing the implantation of 
impurities into semiconductor devices as they were used by DurTox (cf. [5]) and others for 
numerical simulations. 

itis the purpose of this paper to prove the existence of a solution Of the problem 
(1), (2) by functional analytical means. We proceed in a similar way as in [3, 71. 

In Section 1 we consider first the problem with homogeneous boundary conditions 

	

-	Uj,= 0, i = 1,..., 1W,	qJ16, =	/	
(3) 

'3 e •fl IOG. =O ,	i=0,l,...,M. .	J 

The closure of, (v € C2(6) : VIoC, = 0) with respect to the norm 

IJ V IJI.q	(f 1t v ! 2 + jVv j. 1 jq 11 dG) 1 /Q	q > 1,' 

of the Sobolev space W'(G) = {v € Lq(G) D'v € Lq(G)} is the Euclidean norm 
of R,,) is denoted by Wq (G). Let us assume that G has a Lipschitzian boundary 
(cf. [9]). Then 

	

-	
IIv H	= (f I VVI,q dG)l/a 

and . 111 0 are equivalent norms on, Wq(G). We ask for solutions [u 1 , ..., um* , /'] of 
the problem (1), (:3) in the sehse of the notion of the solution in variation (weak 
solution) in the space W' x Wr(G), where WM = W x x W is the M-fold pro-
duct of W =. W(G), r, p ^ 2. For the sake of simplicity we suppose p> it in. order 
to be sure of the compact imbedding of W I (G) into the space C(G) of continuous 
functions on G. We assume further that N € L(G), 11r' ± hr = 1, /i € L.(G), 
lip' + l/p.= 1. Concerning the diffusivities we assume 

D1(I Vu1!) = d ( t Vud) Vu 1 ! P2 and D0(!VWI) = VV'I t . 2 ,	 (4) 

where the di a're defined on R 1.	[0, + cc), continuous, nondecrasing, and 0 <d10 
d i(s) ^ d 1 , s E R.,. Under these assumptions the diffusivity terms generate 

uniformly monotone operators in W(G) and W,-(G), respectively. An operator T 
.of the whole of a real, reflexive Banach space B0 into its adjoint space (B0)* iscalled 
i.ini/ormiy monotonous if there is a function ô € (R.,. - R,) with 6(1) > 0 such that 
(Tu - Tv, u. - v) ^ 6()u - Vt!) holds for u, v € B0 . In our cases either a(s) = c1s 
or O(s) = c0sT hold. We will show that the operator equation Tu = 0 corresponding 
to the homogeneous problem has a hounded, coercive, pseudomonotone operator T, 
and therefore a solution exists by a well-known. theorem of BRzIs [1]. 

In Section 2 the inhomogeneous problem (1), (2) will be investigated, educing it 
to the homogeneous case. In this way a "disturbed"operator equation will arise 
that will then be .solveU by the same means as the unditurbed one considered in 
Section 1. 

1. The homogeneous boundary value problem  

Here we consider the homogeneous boundary value problem (1), (3). Let us begin 
with the fpllowing useful abstract lemma, which is partially contained, in 'many 
papers (cf. e.g. [2, 4, 6]).
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Lemma: Let (H, (., .)) be a Hubert space, 1.1 = '(., .)1/2 the norm and a a real num-
ber. For u, v E II we have

1K J U —v 2 /or a > 0 
(Jul u — ivi v u — v) >	 — 

-	 t'K(iui + ivL,)- , iu — v 2 /r	 0 
(1.1) 

and	 S 

G( I u i + vi) lu - vi for a	0 
Iui u — Ivl Vt :< (1.2) 

IG  - v' for —1 <a <0 

where K and 0 are positive constants depending on a. 

Proof: We are going to prove the Lemma in an elementary algebraic manner. 
We begin'with (1.1)..Division of (1.1) by iI 2 (we assume Jul	ivl > 0)'yields 

(u/iu i - (I v l/i uI) v/iu i, /iui - v/iui) 

J Ku/u - v/[uI! +2	 for a 0 

+ (iv IIlu iY) t lu/lul _ ' v/juII 2 for —1< a :!E^ O 

Consequently, it suffices to show for lxi	1 and !i ^5 1 that 

1 K x,—yl"2	for a 
(x - I y l" y , x _	 lK(1 ± l yi)- 'lx - y	for —1< a 0. 

Setting t = l y l and s = (x, y) with lxi = 1 we get 

/	(1 —0 (1 - t') + (t + 1) (t - s) 

K((1 - t) 2 + 2(t - s))J2	 for a	0	 (1.3)

-- K(l±t'[(1—t)2+2(t—s)] for —1<a0 

for —t :5, s 	1 with t :^-_ 0. This is what we have to show: 

	

First let us consider the special cases t. _. 1 and t = s. The case t	1 is easy and

clear. In the case t = s and a 0 we argue that, because of 1 ^ (1 — t)+' + t4", 
(1 — t)' :!:^ 1 — ta- ' holds, i.e. (1 - t) (1 - t')	(1 - t) +2 . For 0 :E^ s < 1' we 
have (1 — tt)/( 1	t)	e, as the difference quotient equals 1'(t0) for 1(1) = tt and 
some t0	1. Because of the monotOnicity of f' then 1'(t0) 2^ /'(l) = e. 'Then, in the 
case t =sand —l<a0,	S 

(1 + t) (1	t"')/(l — t) ^ (1 - t')/(1 - t)L> a ± 1	K >0. 

Now we are going to show (1.3) in case t	s and t ± 1. Because of (1 — 
<	t1+1' we have for a :^!O	 ,	 S	 S 

((1 - t)2 + 2(1 - s))a 12+ 11[(1 - t) (1 - t') + (t + 1) (1  

-	^ 2[(1 -' t)u±2 + 2/ 2 + 1(t - 8)I2+1]/[(1 - t) (1 —'t') + (t" +1) (1 - s)] 

^ 2 1 [(1 - t) 2/(1 - 1) (1 - t') + 2I2 + 1 (t - s) I2+11(t + 1) (t -- s)] 

^ 2"/[1+ 2a / 2 + 1 2I2] = i/K.
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At last., for —1 <'x:Ei: 0, using (1 - t')/(l - t)	s for 0	e < 1, we have

[(1 —t) 2 +2(e —s)]/(1 —t)[(1—t)(1 — ')+(t+ 1)(t —s)] 

.	(1 - t)2/(1 ± t) (1 —t) (1 —t+') 

+2(t—s)/(1+t)(t±1)'(t_s). 
(1 - t)/(1 + ,t) (.1 - 1 +1 ) ± 2/(1 + t) ( + 1) 
1 /(+ 1 )+ 2= 11K.	 .. 

The proof of (1.1) is coniplet 6. 
As to (1.2), we first observe'thát the inverse of the operator Tu = lul l u is just 

the operator T'u'= T, ( ± l)u = UI	u = Tu, and 	0 iff —1 <	0, 
—1 <	0iff	0 hold. This way, to prove (1.2) for T we use (1.1) for T' = T.€
Let u1 T,u and v 1 = Tv,i.e. u = Tu1 and v Tv1 . Then we have 

ITpul- Tflvl I lu 1 - v1 j ^ (Tu1 - Tv1 , u1 

J K() (lu L fl + v1 1' In, - v 1 1 2 for	0 

= .'IK(,9) In, - v i Ifl 2 = K(') ju.	v i I i + hI(+ I ) for	4 <. 	0, 

ulu -vIK()-'(IuiL± v 1 1) . 
T,u— .T,vI= In, ---viI^ 

— t(! u	vj K(y')+'. 
This is (1.2), taking into account that u P =jTuj fl = IIuI uJ"'(+') = l ul l holds • 

Using the b9undary eoiiditins (3) and Nrtial integration 'e come to the weak 
formulation of the problem (1). The function [U i , ...,ujjf , !I'] € WM X Wr(G) is called 
solution of our problem if  

fDi Vu 1 Vw 1 d +f k 1 z 1u 1 U0 VPVw 1 dO +f /w dO ,= M, i	I, ..., 0, 

and .

f D0 VP Vw0 dO =J k(N ± u0 ) w0 dO  

hold for all [w 1 , ..., wM, 11,01 E .WMX Wr(G). If D0 = V pl T- 2 , the left-hand side of 
(1.5) generates a uniformly monotonous,coercive operator on )V(0) Hence (1.5) 
is uniquely solvable for fixed N and u0 . Since this solution (for generally fixed N) 
only depend On u = [u1 , ..., UM] we denote 'it hy'Su. Substituting this into (1.4),, 
We obtain the problem: Find u = [u1 ,L.., UM) € WM such that	- 

fD1 Vu 1 Vw 1 d0±f k 1zU0 VSu Vw 1 dG +ftewO=,0 

hold for i = 1, ..., M. In the sequel we will transform this problem into the opera-
tor equation Au + Bu ==r / in (WM)* and investigate the properties of * the opera -

tors A and B.  
Now, Jet (.,.) he the dual pairing between W and W = W(0). We generate 

operators A, and B, mapping WM into W*: 

(A iv, w)=fD 1 Vv 1 VwdO,	 S 

G. 

(B 1v, w) = z 1 k 1 f v 1 (a + bv0 2 ) I2 VSv Vw dO.	 .
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Under suitable suitable conditions on D 1, the operator A 1 will be uniformly monot&ious 
• (cf. (8) and [3)):  

-(A 1u — A 1v, u• — v1)	c1 lu,.— v 1l1,	c1 > 0.	 (1.6) 
Now, after, proving some estimates for J jB iu	B1v. and lB 1ulJ 1 y * we will show that B 1 is increasing continuous. First we estimate b, = (B1u — B,t3, w) We have 

b 1 :5: Ik i lf IuA VBu — v 1 V0 VSvJ jVwj dO,	- 

where U0 = (a +bu02)_ 112 and V0 = (a + bv0 2 ) 112 . As the derivative of the func-
tion (a -+- bx2 ) 112 is bounded we have IUo — 1/0 1 < k(a b) ju, --- vol . We calculate 

k i UoSu—v 1 VoVSvJ	 -	 - 

u 1 U0(VSu — VSv) + u 1 (U0 —. J o) VSv + u1 — v 1 ) V0 VSvf 
a I (u VSu —'VSvI + u1 — v VSvI) + 1u 1 1 VSvI Juo — vol k(a, b). 

Then,
b 1 <=.k1' (f Ju i l I VS71 — VSvI VwdG	- 

+ fu1 1 JVSVI luo — vol lVwl , dG + flu 1	v 1 l ISvJ I Vivl dG,	(1.7)€
C'  

where k 1 ' is a positive constant not dpending on u and v. For p > n, as W is ml-bedded into C, we get by the Holder inequality, putting q = p/(p — 1) and denoting 
the La-norm by lJ . 11, the C-norm by .,	 -	 - • 

b i	ke1(lu1lc II VSu — VSvllq + lu ilc luo .— voc 11 VSVIIq 
+ U — Vjjc iI VIlq) lll	

-	 S 

Next, veestimate IIVSu 
T V8v and II VSv I 0 . We have	 • 

• -	v: (lVguI r2 VSu) = k(N + u0 ) and V. (VSvI Y2 VSv) = /T + v0). 
From this we get by subtraction and partial integration for w E Wr(0) 

VSu -- VSvl 2 VSv) Vw dO = —kf (u0 — v0 ) wdG. 

For s, t E R and r 2 the Lemma gives (s 82	tr_2) (s — t)	const Is - 
Thus, if we take w= Su — Sv E W(G) then we get	• 

-; constf VSu — VSV r dG	
S 

•	flvsulT2 Vu — jVSv 2 VSv) (VSu — VSv) dO	 -	
• S 

fn	Vol J Su -7,3vi 40	const !u0 — volc 11 VISU — VS'VII r	- 

as Wr

	

	Wr'	Lr c L1 with continuous imheddings. We get	 S	 S	 • 

JI VSu — VSVII rT ^5 cortstju0 — voic II VSu — VSVIIr, 

	

i.e. II VSu — VSv ;S cotist luo — vochl ( T_i ). As'q	r we also have 
IVSu	VSvll	const l0 — Volchj(T_I).  

•	 .

 

'I
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By riultiplication with 8t and partial integration the equation V . (VSv t2 VSv) 
= k(N +.v0) gives 

f 'ISz'V2 VSv VSv dG = —kf (N + v0) SvdG, 

i.e. IIVII rr	k Il 1V '+'oIIr' IISV Ir . From !I SV IIr	const jVSv we get as before 

I}4Iq	const uN + Vol It(r_1 ). 	 (1.9)


Now, taking into account that IlVwU = IIwIIo., (1.7) and (1.8)-yield 

II B 1u - B;vIIw. 5 const (I U iIc l uo —' voIc''' + keIc luo - .VoJc IiSVIIq 

-	 ± Ju 1 : V jIc IIVSVIIq).	 (1.10) 

In. the same way as in [3] we are now able to show that B 1 'is increasing continuois. 
Indeed, let u -k u in W m , i.e. u' -k u, and u0 1 - u0 in W. Then, because of the 
compact imbedding W	C, u — ui and u,j u0 in C, and (L 10) gives us IIB,u' 

- B 1uII1 . - 0 since IUc is bounded. 

Let us now define operators -A, B: W 1 '-- (W!)* as . 

M	 -	 M 
(Au, W)M = E (Au, w) and (Bu, W)M = , (Bu, w1), 

	

1'	 1	
I 

where (•, . )m is the dual pairing between (01 )* and Wm : Then, if we define IIuIIvM 
= IkiI:p +	+ II UM,p, from (1.6) we get  

M 

(Au _AV, U_v)McuuuI—v.PulU—VuIVM.	 '	(1.11) 

Furthermore, the operator B is increasing continuous because the B 1 are. Indeed, 
we have for all w E WM

M	 '	M 

	

(Bu - By , W)MI	! KB1u - B 1v, w	X I[B 1 u - B jv IIiv . IlWiItw 
I	 '	 1 

-	

(	

jB 1u - Biv I! . )	IIw lIls' M ,	 . 

i.e.

iIBu - Bvuu(wM).	
(	

IBu - B1vI1.).  

Besides, we need an estimate for (By, v MI The Holder inequality gives 

	

('° v 1)I = k11 If v 1 (d -j- bv02)'' /2 VSv Vv 1 dG	const I v l!c II VSV IIQ IIViw. 

From (1.9) and IeIc	enst i lv i llo . , we then obtain  

I(B 1 v, v 1)I	cont I IN ± v0II I ' 1 lIv1I1.


This gives  

KBv, V)IM ^	(B 1v, v ^ eonst IN ± voIIt1) II VI jM.	'	(1.12)
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Furthermore, we can estimate
/ JN + v0 jJ 1	const (IINII' + IIv Ii

Iw vCr-i) 
)	 (1.13) 

since	 - 

IIVoIIr'. ^5 const IIv0IJ0. :!E^ const E IIv IJo.p	eonst IIVIIWM. 

Now we are ready to prove the coerciveness of . T = A + B. Because of (1.11), 
(1.12) and AO = 0 we have	 I. 

(TV; VM = (Av, V)M + (By, v)M	crist IIv lvM - const 1 19 + v0iI	11V11W51, 
and with (1.13) 

(Tv, V)M/II VJIM = const JvJJ, P ' - const Jv JIM (const + IIvIJM(r I)), 
converging to oc if 11vilm - oc, provided 1 + 1/(r - 1) < p - 1, i.e. r > (p - 
(p —2). 

This way, if p > n and r> (p - l)/(p - 2), T is a coercive and pseudomonotoiie 
operator (T is the sum of a uniformly monotone, continuous operator and an in-
creasing continuous one). Consequently, by a standard theorem of inonotonicity 
theory the problem Tu = 0 has a solution u € IV-", taking into accoun .t that T is 
also bounded. We have obtained	 - 

Theorem 1: Let be p, r ^! 2, p > n, r > (p —l)/(p----- 2) and let our assumptions 
for D 5 , i = 1, . . ., -M, and D0 be fulfilled. Then the homogeneous boundary value prob- 
lem (1), (3) has at least one solution. 

2. The inhomogeneous problem 

In this section cve seek solutions [v 1 , ..., V, ] of the inhomogerieous'boundary 
value problem (1), (2). We suppose that there exist elements y , € W'(G), i = 1, 

M, and Yo E W'() such that  

YIec = y,	i = 1,..., M, and yoJao 1 = Yo .	 (2.1)	- 
Then, for u 1 = v 1 - yj and l' =0 - Yo se have the homogeneous conditions (3). 
Now, we can reduce the inhornogeneous problem to the homogeneous one considered 
in Section 1. To deiive the corresponding operator equation we substitute v = u, ± y1, 
i = 1, ...,.M,  arid 0 = P + y into the original differential equations (1), arid we 
consider these equations in the variables u i and W. Then we again generate operator 
equati6ns in W(G) and Wr(G). Besides the homogeneous bondaryconditions after 
the substitution we obtain the differential equations 

V. (D(JV(u + y )I) 7(u + y )) + V . (keze(u 1 + y ) V0 V(' + yo))	f	
(22) V. (D0 (IV(P + ijo)I) V(V' + Yo)) ='k(N + v0 ),	i	1, ..., i1	J 

where. V0 = (a ± bv0i)1/2 with v0 = z 1(u + y ) + ... + ZM(UA,+ YM)-
Now, let us generate corresponding operators Ej and F ) . We put	-	- 

(Fu, w) = 1 1 1(u1, w),	u E W, W € WM 

(E 1 (u, l'),w) =I,'(u,, I', w),	W € Wr(G) 

(F0 W, w0) = 1"(W, w0 ),	!/', w0 € W7(0)	 -
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W1IUit 
•	 J1F(U, v) =f D 1(I V (u1 + y 1)I) V(u1 -4-y) VwdG, 

G. 

I(u1, 1,p, w) = f k 1z 1 (u 1 ± yj) TTo V( 11J + yo) Vw dO, 

IF ( 1 , w0) = f D0(v(P+ Yo)) V(W + Yo) Vw0 dO. 

• We have jI(u1 , w)l	1 11I V (u 1 ± y I' IIwII0 . Consequently there exists an 
F, E (W - (WM )*) with	 - 

(F 1u 1 , w) = J 1 F(u 1 , w) and	JjF ju j jj	d 11 22 (IIu I' + MYII') 

•	Further, there exists an E0 E (Wr(G) _> (W r(G))*) with 

(F0 I',w0 ) = I"( 111, w) and IIFoPU ^S 2P_2(IlWIj	± IyII)• 

At last, we justify (E 1 (u 1 c	w)= I(u0, q', w). We obtain, with 1/p -4- l/p' = 1, 

/', w) !E^ a 112 1u 1 + YiIc IV(P + y )I' I!wIIo. 

:5: a12( udc + IYdc) (II'iIo, + I yo ' .') MwII05. 

Next, we investigate the properties of the operators F 1 , F0 and 'F 1 . Under the 
asumptions (4) and (2.1) F 1 is uniformly monotonous with &(t) = g1tP. This follows 
from the fact that F 1 (u 1 ) can be understood as A 1 (u 1 + y), because A 1 cari be gen-
erated also on elements u + Yl as an operator in u 1 oil W(G). The uniform mono- 
tonieit' of F 1 then results from the uniform monotonicity of A, (cf. (1.6)). Regarding 
Fo 'we call proceed in an analogous way. Then for It E 1,17Af there exists a unique 
solution (gain denoted by) Su of the problem (2.2) (now with v0 instead of u0) 
under the boundary conditions (3) at P. Obviously, S is an increasing continuous 
mapping. We are going to show that, afte substituting Su, the operator E1(u) 
= E 1 (u 1 , VSu) is increasing continuous, too. The inequality 

- l(E iu t	E 1u2 , w)j	 -€
^k1 

(f (u i' + y) Vol VSt' - (u 1 2 + iii) V02 VSU2I VwldO) 

< k1' (f l u i l + yj V(Su' — Su2 )I I Vwi dO 

5	+ f JU,1 +y VSu2I JVOI. — v02 1 dG + f 1u1' — u121 I \7SU21 jVwj dO 
-.	G 

holds true, where k 1 ' is a constant and vof	v0(), J(O = (a + b(voi)2)_u12, j = 1, 2.

The increasing continuity then follows in the same way as in Section 1. The solution 

-, of the inhomogeneous boundary value problem is equivalent to the solution of the 
operator equation Fu + Eu = f, where F = [F1 , ..., FM] is a uniformly mono-
tonous operator and F = [Ei, ..., E 1 J is an increasing continuous one. 

- Theorem 2: Under the formulated assumptions, especially (4) on D 1 , (2.1) on y 
and r > 2, p > (2r l)/(r - 1), the boundary value problem (1), (2) has at least 
one solution. The solution set is strongly compact and weakly closed and its diameter 
an be estimated front above by a concrete finite number. 

•	 -5,

I



	

On a Coupled System of Part. Diff. Rqu.	141	- 

Proof: The operator F + E is bounded, coercive and pseudomonotone. The 
coerciveness follows from the uniform mpnotonicity of F with (t) = gt, p> (2r - .1)J 

-. 1), and the fact that (Eu, u) must increase to infinity at least as fast as 
iiuii T_u ; The solution set is weakly compact and' weakly closed (cf. e.g. [61). 

• F + E satisfies the S,-condition, i.e. especially that every weakly (to a solution) 
converging sequence of solutions also converges strongly. From this, the strong 

• compactness of the solution set follows. 
Now to the last assertion. Because of the coerciveness of the mapping F ± 0 

and the re'sulting a priori boundedncss we have for v', v2 E	and r > 2: 
•	(Fv'.— Fv', v' - v') + (Ev' - Ev', v' - v)	 - 

g liv ' - v	 ' •p - C i liv - v'i.p - C2 liv' - v2IiI) 

liv' - v2II	OW- V2I12t_1) (gu y ' - v2iP2 - c,) - C,) 

ev' -	 . 

jJv' - V210p 	max {[(c, + e,)/g]uI(P2), [(02 + s2 )/E i1( 1I(r2)} = .K(,, ,) 

is assumed with arbitrary a > 0 and e, > 0. Hence for solutions v i , v2 we can 
cdnclude liv,- v210 ^S K(e,, e,) I 

Rmrk :Tlie constants c, and c, in the proof of Theorem 2 enclose e.g. the im-
heddinj constant of W'(0) into C(). 

I	/
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