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On the Convergence of Some Random Series 

T. thKOSCE 

• Es seien {X} eine Folge unabhangiger Zufallsgrolkn mit Wertén in einm separablen Banach-
raum, S =X1 +	+ X, und {a5} eine Folge nichtnegativer Zahlen.Es wird cin Kriterium 

• für die fast sichere Konvergenz der Reihe ' a,,S 5 bewiesen. Insbesondere.wird der Spezial-
fall a 5 =	a > 0, untersucht.	 - 

flvcTb {Xh} nocMea0BaTe.1b1l0cTb IIe3amlcIlMbIx cJly4aflHJJx aHeMeJITOB CO 3Ha q eHI(RMII B 
cenapaüeJll;HoM üaIIaxoBoM npocTpallcTBe, S = X1 + + X5 it {a,,} nocJ1eJonaTeJ1b-
IOCTI, IIeoTpnUaTelbHuX q itceji. AoKa3biBaCTC.9 KpuTeplll JJ1H CXOJUIMOCTII fl0'1TII iianepoe 
plu.a 'a 58. B 4acTJIocTi!, paccapiivaeca ci1y'ia a5 = n, a> 0. 

Let S {X,,} -be a-sequence of independent random elements with values in a separable Banach 
space, 8,, = x1 + .. -- K,, and {a,,} a sequence of nonnegative numbers. There is proved a 
criterion for the almost suite onvergencó of the series	a,,S,,. The special case a = 
a > 0, is also studied.	 S 

I. Introduction  

• Throughout the paper J Xn , n. l} is a sequence df independent random elements 
• with values in a separable Banach space (B, I-Il) and {a,,, m	l} is a sequence of
nonnegative numbers. Assume an > 0 infinitely often. Put 

b =a 1 , b,, 1 =Eae, 8,, =	X for	iç n  

• In this note we study the a.s. (almost sure) behaviour of the series ' a,,S,,. Such a 
series has been considered in coirnection with problems of learniig theory (cf. [2]), 
but its-a.s. convergence is also a measure of the rate of convergence in the strong 
law of large numbers urn a,,S,, = 0 a.s. KOOPMANS et al. [2] considered the series 

n'S,, for sequences of real-valued X,, and positive a. They showed that this 
series diverges a.s. for each sequence of independent identically distributed X,, if 
•a < 1/2. GAPOSUKD [6] obtained the following result: Assume E an < cc. Then 
for each sequence of independent symmetric X,, the series E a,,S,, converges a.s. 
iff the series ' b,,X,, converges a.s. He also showed that diverges a.s. 
for each sequence of independent and identically distributed real-valued X,, if 
a	1/2. In this note we prove a criterion for the a.s. convergence of -the series 

' a,,S,,. Furthermore, the results of Koopmans et al. and Gaposhkin concerning 
the a.s: divergence of	 are generalized to the Banach space setting.
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2. Atixiliary'results 

The lemmas of this section are fundamental for the proofs of the results in Section 3. 

Lemma 1 (MARTrKAINEN [7: Lemma 1]): Let: { Y,,, n ^ 1}, {Z,,, n L^ l} be two 
sequences of B-valued random elements such that the distributions of (Z 1 , ..., Z,, Y) 
and (Z 1 , ..., Zn, - Y) are identical for n ^ 1. If urn (Y ± Z8 ) = 0 a.s. then urn Y,, 
= 0 a.s. 

Lemma 2: Suppose that one of the X, is nondeçjenerate. If f anS,, converges a.s. 
then Z an <oo. 

Proof: If	aBS,, converges a.s. then ' a,,S,, 3 converges a.s., where 5,8 = X18 
+	+ X,,8, n -:^ 1; and (X,,8, n	1) is a symmetrized version. of {X,,, n	l}. Let

X in he nondegenerate. Put 

Y = b,, 10X,,	Z,,	 akSk - Y,,, for n	i0. 
k=1  

'[hen
hmakSk8 =lim (n + Z,,) = Y a. s. 

for some B-valued random element Y. Fix e> 0. By Levy's inequality, 

2P(IIYn + Z,,II > e)	?(Ii Y,,I > €)	P( JI 	> r,	+ 0). 

Since X, is nondcgenerate we have P(X O + 0) . > 0. Assume ' a = oo. Then 
lim 1 1 Yn jj = oo on (X,	0). Hence 41'(II Y + Z,I > s) >	0) for suffi- 
ciently large n. Thus 4P (lI Y II > e)	P(X1. +	0) > 0. Since > 0 is arbitrary we
have P(II YII = oo) >0 iii contradiction to. the a.s. convergence of Ea,,S,,. Hence 
Ea,,<ool 

Lemma 3: Suppose that E an <oo and LT a,,S,, converges a.s. Then there exists a 
sequence {c,,, n	1) of constants such that 

-	urn b, 1 (S,,	c,,) = 0 a.s.	 •	 (1) 

If the X,,, n	1, are symmetric or b,,, 1S,,	0 as-n - oo, then (1) holds with c,, = 0.

Pr6of: Assume that the X, are symmetric. We have 

E a jS j f bX = Zb jX j b,,+1S.	
I	 (2) 

1=1	i=1	j=1	 S 

Thus

'aS1 - _Y a jS j bnm+iSm + E 
1=1	1=1	 i=rn+1 

for m ^-, n. Hence 

lim (b m+iSm + urn	' bX) = .0 a.s. 
m- 00	 n-+00 i m ± 1 

The a.s. existence of Ym = lim,, ( bn , n+i X,n+i +." + b,,.nX,) is a consequence of (2) 
and the a.s. convergence of Ea,,S,,. Let Z, = b ni+iSm. Then lim (Ym + Z01 ) = 0 
a.s. Apply Lemma 1, to obtain (I) with c,, =0.	 •
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• Now, let the X,, i ^ 1, be not necessarily symmetric. Applying the first part 
of the proof to a symmetrized version {X8, n ^ 1}, we obtain (1) for this version 
and for {X, ii	1} it follows by standard desymmetrization arguments. Further-. 
more, if (1) holds and b, 1 S	0 as -n --oo, then b 1c —>0 as n -- 00 

Lemma 4: Assume that Y b?Xfl converges is. Then ' aS converges a.s. and 
urn bS = 0 a.s. 

This lemma follows from (2), the a.s. ' convergence of E bX and Kronecker's 
lemma. it is not difficult to see that Lemma 4 remains true for not necessarily in-
dependent random elements. 

3. Main results 

In this section we study the a.s. behaviour of EaS. in general, there is no 0—i 
law for the convergence of this series. Indeed, let X 1 be nondegencrate, X2 = X3 
= ... = 0 and E a = oo. Then	converges on {X 1 = 0) and diverges on 

O}. But if {X, n ^E! 1} isindependent and identically distributed then the 
Hewitt-Savage 0—i law is applicable to ' The following theorem characterizes 
the a.s. convergence of this series. 

Theorem 1: Suppose that one o/ the X i is nondegenerate. The /ollowingstatenments 
are equivalent: 

(A) The series	a,,S,, converges a.s. 
(B) <-00 and there are constants d, n 1, such that 

urn (bn+,Sn -E bd 1) = 0 a.s.	
• () 

and the series E b(X - d1 ) , converges a.s. 
(C) E.a < 00, urn aS	0 a.s. and there are constants d, n 1, such that . 

lirn'(b1—b)d1=0 

and E b(X 1 - d 1 ) converges a.s. 

Proof: (A) ==> (B), (C): By Lemma2 we have E a < co. By Lemma 3 there is 
a sequence (ce , n	1) such that urn b,1 (S - c) = 0 a.s. Define d by b 1c = b1d1 
+ ... + bndn, n	1. Th,en lim b +1 (S - c) = 0 a.s. implies (3). By (2) we have 

V 
=' 

a81 = j b jX j  - bn, icn}	b 1 (S - c) 

E b 1 (X 1 - d 1 ) - {b +1s -	b 1d}.	 S 

j 1	 1=1 

Let T = b 1 (X 1 - d1 ) + ... ± b(X —.d). Using (3), we have urn (V - T,2 ) = 0 
a.s. Thus, by (A), the sequence (T, n 1) converges a.s. The relation lim aSS,, = 0 
a.s. is an immediate consequence of (A). By Kronecker's lemma and the a.s. con-
vergence of {T, n	11	 .	• 

lim b,,. S. --T. d i  = 0 a.s.	 •
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By (5, (3) ai ndlim a,3 S,, = 0 a.s.,  
n	

n

n 

-	
- 1im'(b 1 - b,,) di = lim {b (Sn	di) + (—bS + aS) +Eb1d1} 

 (b.,ISn limb,, (B,, - Ed1) —urn 	—Eb1d1) = 0 n—..	\	1=1	/	n—	 i1	/ 

which implies (4). Thus (B) and (C) follow from (A). 
(C) (B): The relations (5), (4), urn a,,S,, = 0 a.s. and 

b,,+S,, — bd 1 = —a,,,, + bn (s	 _T d i) +	(b,, — b 1 ) d4 

imply (B). (B)	(A): This follows from urn (V,, — T,,) = 0 a.s. I 

The following theorem is more practicáble than Theorem 1. In case B = II, 
Gaposhkin's criterion on the a.s. convergence of E a,,S,, (see Section 1 and [5]) is 
an immediate corollary of 

Theorem 2: Assune _T a. < oc. Suppose that b,,, 1 S,,	0 as n — 00, or the 
n > I, are symmetric. Then E b,,X,, converges a.s. if and only if E a,,S,, converges 
a.s. If E b,,X,, converges a.s. than E a,S,, = E b,,X,, a.s. 

Proof: By Lemma 4 and (2) it is sufficient to prove that the a.s. convergence of 
E a,,S,, implies that urn b,, 1 S,, = 0 a.s. But this follows from Lemma 3 and the 
assumptions of the theorem I 

•	By the same methods we obtain the following: Assume E a,, < oc. Then E b,,X,, 
• converges a.s. iff E a,,S,, converges a.s and b,, 1S,, -+ 0 as n - oc. In this way, the 

problem of a.s. convergence of E a,,S,, can be reduced to the problem of convergenc 
of X b,,X,,. Conditions for the convergence of-this series are well known. In Banach 
spaces they depend on the geometry of B (cf. [3, 4]). 

The results of Koopmans et al. and Gaposhkin concerning the convergence of 
E n'S,, (see Section 1) follow from 

Theorem 3 Let Bbe a Hilbert space. Assume that {X,,, n	11 is independent 
and identically distributed. For fixed x > 1/2 the following statements are equivalent: 

(D) The series En'S,, converges a.s. 
(E) The series E n. IX,, converges a.s. 
(F) E II X1II' / < oo. Furthermore, EX, = 0 jar a E (1/2, 11 and !' n1EX11(IJX1II 
n) convei-ges for a = 1. 
If a	1/2 then E n'S,, diverges a.s. 

Proof: Iet a,, n'. Obviously, ab,,n 1 asn —oo Assume ox 1/2. Thus, 
by Lemma 3 the condition urn n(S,, - c) = 0 a.s. (for appropriate c,,) is necessary 
for the a.s. convergence of E n- I S,,. But this is impossible by the central limit 
theorem in Hilbert spaces (see [11). Hence E n"S,, is not a.s. eohvergent. By the 
Hewitt-Savage O—. 1 law this series diverges a.s. 

Assume x, > 1/2. By the 3-series theorem in Hubert spaces (see [5]) and by stand-
ard arguments (E) and (F) are equivalent. Using ab,,n 1; it is not difficult to 
show that (E) and the a.s.convergence of E b,,X,, are equivalent. 

Assume (E). Then E b,,X,, converges a.s. and (D) is an immediate consequence 
of Lemma 4.

,	I
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Assume (D). Lemma ' 3 and obn	1 imply urn n"(S	c,) = 0 a.s. Thus
E IX 1 II' I < 00. Let cc E (.1/2, 1] and assume 'EX 1 + 0. By the strong law of large 

' numbers,	n- ' - IS,, converges a.s. iff' ' n	 p < oo. This is impossible. Hence EX, 
0. Now, E ftX 1 1I' < 00 and EX1 = 0 for a E (1/2, 1) imply that b,1S -.± 0as 

n -- oo. Apply Theorem 2 to obtain that .,f bX 'converges a.s. Hence E nX - 
converges a.s.  

Acknowledgement: The author is grateful to Alexander Martikainen for valuable 
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