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On the Convergence of Some Random Series
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Es scien {X,} eine Folgc unabhnnglger ZufallsgroBen mit Werten in einem separablen Banach-
awaum, S, =X, + --- + X, und {a,} cine Folge nichtnegativer Zahlen. Es wird ein Kriterium
fiir die fast snchere }\onvergcm der Reihe } a,8, bewiesen. Insbesondere wnrd der Spezml-‘
fall @, = ne, « > 0, untersucht. ‘

‘.

ITycts {X;] MOCNER0BAaTENbHOCTb HE3ABHCHMEIX cnyqaimux 9/IEMEHTOB CO 3HAYEHHAMH B
cenapabenbuoM OanaxoBoM npocrpancree, S, = X, + .-+ X, u {a,} mocneixonaress-
HOCTh HEOTPALATEILHLIX Yitced. JToKasHBaeTCA KpuTepui mm CXO/NMOCTH nowm HaBepHOe
pn;1a Ya;S:. B qacwnocm paccma'rpuuae'rcn c.nyqaﬁ a, =n"% > 0. :

( . - '\'
N ¢

Let {X,}"be a. sequence of independent random clements with values in a separable Banach

" space, §; = X, + - ‘oo X, and {a,} a séqucncc of nonnegat,ive numbers. There is proved a
criterion for the almost, sure convcrgence of the series Z‘ a,S,. The special case a, = n"¢,
« > 0, is also studlcd .

1. Introiluction - . e Lo s

Throughout the paper {X,, n =1} is a sequence of independent random elements
- with values in a’separable Banach space (B, ||-l) and {a,, n S1isa sequence of
nonnegat,lve numbers. Assume a, > 0 infinitely often. Put

K b= Y a, Ea,, S, =X X, for j=1, n=j.  -°

i i=j i=1

Jl\qs

_In this note we study the a.s. (almost sure) behaviour of the series 3 a,S,. Such a
series.has been considered in cohnection with problems of learning theoxy (cf. [2]),
but its-a.s. convergence is also a measure of the raté of convergence in the st,i’ong
law of large numbers lim a,S, = 0 a.s. Koopmaxs et al. [2] considered the scries
2 n—=718, for sequences of real- valued X, and positive . They showed that this
series diverges a.s. for each sequence of independent identically distributed X, if
¢ < 1/2. GAPOSHKIN [6] obtained the followmg result: Assume ' a, < oco. Then
for each sequernce of mdependent, symmetric X, the series Y a,S, converges a.s.
iff the series } b,X, converges a.s. He also showed that 2 n—e=18, diverges a.s.
for each sequence of independent and identically distributed real-valued X, if
« = 1/2. In this note we prove a criterion for the a.s. convergence of "the series
. 2 a,S,. Furthermore, the results of Koopmans et al. and Gaposhkin concerning

+ the a.s: divergence of J) n==~!§, are generalized to the Banach space setting.
e , : .
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2. Auxiliary results

The lemmas of this section are fundamental for the proofs of the results in Section 3.

Lemma 1 (MARTIRAINEN [7: Lemma 1}): Let {(Yy,n=1), {Z,,n=1} “be two
sequences of B-valued random elements such that the distributions of (Z,, ..., Z,, Y,)
and (Z,,...,2,, —Y,) are ,identical fornz=1.If im (Y, + Z,) = 0 a.s. then lim Y,
=0a.s.

Lemma 2: Suppose tkat one o/ the X; is nondegencrate If 3 a,,S converges a.s.
then X a, < oo.

“Proof: If X a,S, converges a.s. then Y a,8, converges a.s., where 5,2 = X,°
4 -+ X5 n 2 1 and (X% n = 1} is a symmetrized version. of {X,,, n = 1}. Let
X, be nondegenerate Put :

Y, = b,,_i,Xi,, CZ, =Y @St — Y, for n =i,
k=1 s
" Then . -7

lim J . S® ='.lim (Yo 4+ Z,) =Y aus.
k=1

/

. for sbme B-valued random element Y. Fix ¢ > 0. By Lévy’s inequality,

, 2P(}Y, +ZnH>6)ZP(HY|l>e ) = P(|Y,] > & X2, %+ 0).

Smce X;, is nondcgenerate we have P(X§ ‘4 0)-> 0. Assume ‘_‘a = oo. Then
lim || ,,|| — oo on (X% =0). Hence 4P(|Y, + Z,)| > &) = P(Xf =+ 0) for suffi-
.ciently large n. Thus 4P(|]Yl| >¢) = P(X{, +0) > 0. Slnce e > 0 is arbitrary we ..
have P(}|Y|| = o0) > 0 in contradlctlon to, the a.s. convergence of 3 a,S,. Hence
Ja, <ocoll

Lemma 3: Suppose that 3 a, < oo and X a,S, converges a.s. Then tkcre exists a

sequence {c,, n = 1} of constants such that
. 7

- lim b,,(S, —¢,) =0 a.s. K I (1)
If the X,, n = 1, are symmetric or b,,,S, Py 0asn > oo, then (.1) holds with ¢, = 0.

Pr&of: Assume that the X, are 'synlmetfric. We lave

Z"as b XK= SBX, - buSi | 2)

i=1 =1\ . >

Thus .
Z‘aS —ZaS —bnm+1;5' + 2 b, X
i=m+1 X
" for ’m g n. Hence

lim (b,,,HS,,, + lim  } b,,_iX,») =0 as.

m— 0o n—o0 t=m+1

The a.s; existence of Y =lim, (by i1 X pur + - + by.nXs) i8 a consequence of (2)
and the a.s. convergence of } a,S,. Let Z,, = b,,Sp. Then lim (Y, 4+ Z,) =0
a.s. Apply Lemma 1. to obtain (1) with ¢, = 0. ;
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"Now, let the X,, » = 1, be not necessarily symmetrlc. App]yiné the first part

of the proof to a symmetrized version {X,? n = 1}, we obtain (1) for this version

and for {X,,n = 1} it follows by standard desymmetrization arguments. Further-

more, if (1) holds and b,,,S, Pyoasn— 0, then b,.,c, =~ 0asn = o0

Lemma 4: Assume that 3’ b X converges a.s. Then 2 a,S, conwrges a.s. and
lim b,8, = 0 a.s.

" This lemma follows from (2), the a.s. convergence of 3’ b,X, and Kronecker’s
lemama. It is not difficult to see that Lemma 4 remains true for not necessarily in-
dependent random elements.

. . .
{ . . , !

3. Main results

In this section we study the a.s. behaviour of }’a,S,. In general, there is no. 0—1
law for the convergence of this series. Indeed, let X; be nondegencrate, X, = X,

= =0 and } a, = co. Then J a,8, converges on {X,; = 0} and diverges on -

.'{Xl :#: 0}. But if {X,,n = 1} is'independent and identically distributed thenthe
Hewitt-Savage 0—1 law is applicable to J’ a,,S The following theorem characterizes ™
_ the a.s. convergence of this series.

'I‘heo rem 1: Suppose that one of the X; s nondegenerate The followmg:statements
are equivalent:

(A) The series- 5] a,S, converges a.s.
(B) 2 a, < oo and there are constants d,, n'= 1, such that

lim, (b,,HS,. - Z bid,')'_z 0 as. - S R (3)
' n— 00 . . . L.
and tke series Z bi(X; — d;) converges a.s.

C) Ja, < x, lnm .Sy = 0 a.s. and theré are constants dy,; n = 1, such that

lim gl(bi—b,.)di=0 : o ‘ ,<(4)
and 3 by(X; — d;) converges a.s. '

~ Proof: (A)= (B), (C): By Lemma,2 we have 2 a, < oo. By Lemma ‘3 there is
a sequence {c,, n = 1} such that lim b,,”(S — ¢,) = 0 a.s. Define d, by b,,,c, = b,d,
+ -+ + budy, n = 1. Then lim by, (S, — c,) = 0 a.s. implies (3). By (2) we have

=§nl alSi ={Z"‘ b;X; — bn+1cn} - bnn(sn = Cq)

i=1

-

.

=~Zbi(Xi—di)_{n+lS —‘Zbd} ‘ ’

i=1 i=1 :

Let T, = b,(X, — dy) + -+ + by(X, —d,). Using (3), we have lim (V, — T,) = 0
a.s. Thus, by (A), the sequence {T',, n = 1} converges a.s. The relation lim a,S, = 0
a.$. is an immediate consequence of (A). By Kronecker’s lemma and the a.s. con-
vergence of {7T,, n = 1} '
limb, (S —Zd):Oa.s. ' ' (3)

i=1

s
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By (5), (3), ia_,ndllim a',,S,, = 0 a.é., \

* - lim 3 (b —by) ) = lim {bn (sn —-z"d;) + (—buSe + anSh) +'2"bidi}
i=1 i=1

‘n—00 i=1 n—00

. . —=limb, (s" - Zdi) —lim (b,,ﬂ,s'n - Zﬂ‘bidi) —
i=1 ! t=1 .

‘ n—>oo n—oo

which implies (4). Thus (B) and (C) follow from (A).
- (C) = (B): The relations (5), (4), lim a,S, = 0 a.s. and

,bws,,—zbidi_ —a,5, +b,,(S —Zd) 2 bo —b)di |

Ci=1

imply (B). (B) = (A): This follows from lim (V, — T,) — 0 a.s. I

Thé following theorem is more practicable than Theorem 1. In case B = R,
Gaposhkin’s criterion on the a.s. convergence of Y’ a,S, (see Section 1 and [5]) is
an 1mmedlate corollary of * - )

T heorem 2: Assume Za,, < oo. Suppose that b,,HS 240 as n — o0, or the X,,,
" m =1, are symmetric. Then' X b,X, converges a.s. if and only if Y a, S converges
a.s. IIZbX corwergesasthenZa,,S = ' b,X, as. :

Proof: By Lemma 4 and (2) it is sufficient to prove that the a.s. convergence of
2 a,S, implies that lim b,,,8, = 0 a.s. But this follows from Lemma 3 and the
assumptions of the thcorem 8 : ' o : o :

By the same methods we obtain the following: Assilme 2 ap < 0. Then 2 b,X,

converges a.s. iff 3’ a,8, converges a.s! and 'b,,,8, £40asn — oco. In this way, the

problem of a.s. convergence of } a,S, can be reduced to the problem of convergence

of 3 b,X,. Conditions for the convergence of-this series are well known. In Banach
‘spaces they ‘depend on the geometry of B (cf. [3, 4]). )

The results of Koopmans et al. and Gaposhkin ‘concerning the convexgence of

~ 2 nme"18, (see Section 1) follow from ‘

‘Theorem 3: Let B be a Hilbert space. Assume that {X,, n = 1} is independent
and identically distributed. For fized x > 1/2 the following statements are equivalent:

(D) The series }) n—¢~18, converges a.s.

(E) The series 3 n=°X, converges a.s. ' .

(F) E|X,|V* < oo. Furthermore EX, =0 for « E (1/2, 1] and Zn EXL (X
‘= m) converges for « = 1.

If x < 1/2 then ' n—°718, diverges a.s.

Proof: Let a, = n—*~1. Obviously, ab,n® ~ 1asn — co. Assume & < 1/2. Thus,
by Lemma 3 the condition lim n~¢(S, — ¢;) = 0 a.s. (for appropriate c,) is necessary "’
- for the a.s. convergence of 3’ n~=~1S,. But this is 1mp0581ble by the central limit
theorem in Hilbert spaces (see [1]). Hence 3 n~°~}S, is not a.s. convergent. By the
Hewitt-Savage 0—1 law this series diverges a.s.

Assume « > 1/2. By the 3-scries theorem in Hilbert spaces (see [5]) and by stand-
ard arguments (E) and (F) are equivalent. Using ab,n® ~ 1; it is not difficult to
show that (E) and the a.s..convergence of } b,X, are eqmvalent

Assume (E). Then J b,X, converges a.s. and (D) is an immediate consequence
of Lemma 4.

-
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‘Assume (D). Lemma 3 an(i abn® ~ 1 imply lim n‘;(S,, —¢,) =0 a.s. Thus
E |IX,||V* < co. Let « € (1/2, 1] and assume EX, = 0. By the strong law of large
numbers, 2 n*718, converges a.s. iff 3 n~* < co. This is impossible. Hence EXl

‘= 0. Now, E [|X,[|'* < oo and EX, = 0 for « € (1/2, 1] imply that b,,,S, £y 0,as
n — oo. Apply Theorem 2 to obtam that Zb X, converges a.s. Hence 3’ n~ “X
converges a.s. 8

- a
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