On the Convergence of Some Random Series

Т. Микозсн

Es seien $\{X_n\}$ eine Folge unabhängiger Zufallsgrößen mit Werten in einem separablen Banachraum, $S_n = X_1 + \cdots + X_n$ und $\{a_n\}$ eine Folge nichtnegativer Zahlen. Es wird ein Kriterium für die fast sichere Konvergenz der Reihe $\sum a_n S_n$ bewiesen. Insbesondere wird der Spezialfall $a_n = n^{-\alpha}$, $\alpha > 0$, untersucht.

Пусть $\{X_n\}$ последовательность независимых случайных элементов со значениями в сепарабельном банаховом пространстве, $S_n = X_1 + \cdots + X_n$ и $\{a_n\}$ последовательность неотрицательных чисел. Доказывается критерий для сходимости почти наверное ряда $\sum a_n S_n$. В частности, рассматривается случай $a_n = n^{-\alpha}$, $\alpha > 0$.

Let $\{X_n\}$ be a sequence of independent random elements with values in a separable Banach space, $S_n = X_1 + \cdots + X_n$ and $\{a_n\}$ a sequence of nonnegative numbers. There is proved a criterion for the almost sure convergence of the series $\sum a_n S_n$. The special case $a_n = n^{-\alpha}$, $\alpha > 0$, is also studied.

1. Introduction

Throughout the paper $\{X_n, n \ge 1\}$ is a sequence of independent random elements with values in a separable Banach space $(B, \|\cdot\|)$ and $\{a_n, n \ge 1\}$ is a sequence of nonnegative numbers. Assume $a_n > 0$ infinitely often. Put

$$b_j = \sum_{i=j}^{\infty} a_i, \quad b_{n,j} = \sum_{i=j}^{n} a_i, \quad S_n = \sum_{i=1}^{n} X_i \text{ for } j \ge 1, \quad n \ge j.$$

In this note we study the a.s. (almost sure) behaviour of the series $\sum a_n S_n$. Such a series has been considered in connection with problems of learning theory (cf. [2]), but its a.s. convergence is also a measure of the rate of convergence in the strong law of large numbers $\lim a_n S_n = 0$ a.s. KOOPMANS et al. [2] considered the series $\sum n^{-\alpha-1}S_n$ for sequences of real-valued X_n and positive α . They showed that this series diverges a.s. for each sequence of independent identically distributed X_n if $\alpha < 1/2$. GAPOSHKIN [6] obtained the following result: Assume $\sum a_n < \infty$. Then for each sequence of independent symmetric X_n the series $\sum a_n S_n$ converges a.s. iff the series $\sum b_n X_n$ converges a.s. He also showed that $\sum n^{-\alpha+1}S_n$ diverges a.s. for each sequence of independent and identically distributed X_n if $\alpha \leq 1/2$. In this note we prove a criterion for the a.s. convergence of the series $\sum a_n S_n$. Furthermore, the results of Koopmans et al. and Gaposhkin concerning the a.s: divergence of $\sum n^{-\alpha-1}S_n$ are generalized to the Banach space setting.

2. Auxiliary results

The lemmas of this section are fundamental for the proofs of the results in Section 3.

Lemma 1 (MARTIKAINEN [7: Lemma 1]): Let $\{Y_n, n \ge 1\}$, $\{Z_n, n \ge 1\}$ be two sequences of B-valued random elements such that the distributions of (Z_1, \ldots, Z_n, Y_n) and $(Z_1, \ldots, Z_n, -Y_n)$ are identical for $n \ge 1$. If $\lim (Y_n + Z_n) = 0$ a.s. then $\lim Y_n = 0$ a.s.

Lemma 2: Suppose that one of the X_i is nondegenerate. If $\sum a_n S_n$ converges a.s. then $\sum a_n < \infty$.

Proof: If $\sum a_n S_n$ converges a.s. then $\sum a_n S_n^s$ converges a.s., where $S_n^s = X_1^s + \cdots + X_n^s$, $n \ge 1$, and $\{X_n^s, n \ge 1\}$ is a symmetrized version of $\{X_n, n \ge 1\}$. Let X_{i_s} be nondegenerate. Put

$$Y_n = b_{n,i_0} X_{i_0}, \qquad Z_n = \sum_{k=1}^n a_k S_k^s - Y_n, \text{ for } n \ge i_0.$$

Then

$$\lim_{k=1} \sum_{k=1}^{n} a_k S_k^{s} = \lim_{k \to 0} (Y_n + Z_n) = Y \text{ a.s.}$$

for some B-valued random element Y. Fix $\varepsilon > 0$. By Lévy's inequality,

$$2P(||Y_n + Z_n|| > \varepsilon) \ge P(||Y_n|| > \varepsilon) \ge P(||Y_n|| > \varepsilon, X_{i_0}^s = 0).$$

Since X_{i_0} is nondegenerate we have $P(X_{i_0}^s \neq 0) > 0$. Assume $\sum a_n^s = \infty$. Then $\lim ||Y_n|| = \infty$ on $\{X_{i_0}^s \neq 0\}$. Hence $4P(||Y_n + Z_n|| > \varepsilon) \ge P(X_{i_0}^s \neq 0)$ for sufficiently large *n*. Thus $4P(||Y|| > \varepsilon) \ge P(X_{i_0}^s \neq 0) > 0$. Since $\varepsilon > 0$ is arbitrary we have $P(||Y|| = \infty) > 0$ in contradiction to the a.s. convergence of $\sum a_n S_n$. Hence $\sum a_n < \infty$

Lemma 3: Suppose that $\sum a_n < \infty$ and $\sum a_n S_n$ converges a.s. Then there exists a sequence $\{c_n, n \ge 1\}$ of constants such that

$$\lim b_{n+1}(S_n - c_n) = 0 \ a.s.$$
(1)

If the X_n , $n \ge 1$, are symmetric or $b_{n+1}S_n \xrightarrow{P} 0$ as $n \to \infty$, then (1) holds with $c_n = 0$.

Proof: Assume that the X_n are symmetric. We have

$$\sum_{i=1}^{n} a_{i}S_{i} = \sum_{i=1}^{n} b_{n,i}X_{i} = \sum_{i=1}^{n} b_{i}X_{i} - b_{n+1}S_{n}.$$
(2)

Thus

$$\sum_{i=1}^{n} a_{i}S_{i} - \sum_{i=1}^{m} a_{i}S_{i} = b_{n,m+1}S_{m} + \sum_{i=m+1}^{n} b_{n,i}X_{i}$$

for $m \leq n$. Hence

$$\lim_{m\to\infty} \left(b_{m+1}S_m + \lim_{n\to\infty} \sum_{i=m+1}^n b_{n,i}X_i \right) = 0 \text{ a.s.}$$

The a.s. existence of $Y_m = \lim_n (b_{n,m+1}X_{m+1} + \dots + b_{n,n}X_n)$ is a consequence of (2) and the a.s. convergence of $\sum a_n S_n$. Let $Z_m = b_{m+1}S_m$. Then $\lim (Y_m + Z_m) = 0$ a.s. Apply Lemma 1 to obtain (1) with $c_n = 0$.

Now, let the X_n , $n \ge 1$, be not necessarily symmetric. Applying the first part of the proof to a symmetrized version $\{X_n^s, n \ge 1\}$, we obtain (1) for this version and for $\{X_n, n \ge 1\}$ it follows by standard desymmetrization arguments. Furthermore, if (1) holds and $b_{n+1}S_n \xrightarrow{P} 0$ as $n \to \infty$, then $b_{n+1}c_n \to 0$ as $n \to \infty$

Lemma 4: Assume that $\sum b_p X_n$ converges a.s. Then $\sum a_n S_n$ converges a.s. and $\lim b_n S_n = 0$ a.s.

This lemma follows from (2), the a.s. convergence of $\sum b_n X_n$ and Kronecker's lemma. It is not difficult to see that Lemma 4 remains true for not necessarily independent random elements.

3. Main results

In this section we study the a.s. behaviour of $\sum a_n S_n$. In general, there is no 0-1 law for the convergence of this series. Indeed, let X_1 be nondegenerate, $X_2 = X_3 = \cdots = 0$ and $\sum a_n = \infty$. Then $\sum a_n S_n$ converges on $\{X_1 = 0\}$ and diverges on $\{X_1 \neq 0\}$. But if $\{X_n, n \ge 1\}$ is independent and identically distributed then the Hewitt-Savage 0-1 law is applicable to $\sum a_n S_n$. The following theorem characterizes the a.s. convergence of this series.

Theorem 1: Suppose that one of the X_i is nondegenerate. The following statements are equivalent:

(A) The series $\sum a_n S_n$ converges a.s.

(B) $\sum a_n < \infty$ and there are constants d_n , $n \ge 1$, such that

$$\lim_{n\to\infty}\left(b_{n+1}S_n-\sum_{i=1}^n b_id_i\right)=0 \quad a.s.$$

and the series $\sum b_i(X_i - d_i)$ converges a.s. (C) $\sum a_n < \infty$, $\lim a_n S_n = 0$ a.s. and there are constants d_n , $n \ge 1$, such that

$$\lim_{n\to\infty}\sum_{i=1}^n (b_i - b_n) d_i = 0$$

and $\sum b_i(X_i - d_i)$ converges a.s.

Proof: (A) \Rightarrow (B), (C): By Lemma 2 we have $\sum a_n < \infty$. By Lemma 3 there is a sequence $\{c_n, n \ge 1\}$ such that $\lim b_{n+1}(S_n - c_n) = 0$ a.s. Define d_n by $b_{n+1}c_n = b_1d_1 + \cdots + b_nd_n$, $n \ge 1$. Then $\lim b_{n+1}(S_n - c_n) = 0$ a.s. implies (3). By (2) we have

$$V_{n} = \sum_{i=1}^{n} a_{i}S_{i} = \left\{\sum_{i=1}^{n} b_{i}X_{i} - b_{n+1}c_{n}\right\} - b_{n+1}(S_{n} - c_{n})$$
$$= \sum_{i=1}^{n} b_{i}(X_{i} - d_{i}) - \left\{b_{n+1}S_{n} - \sum_{i=1}^{n} b_{i}d_{i}\right\}.$$

Let $T_n = b_1(X_1 - d_1) + \dots + b_n(X_n - d_n)$. Using (3), we have $\lim (V_n - T_n) = 0$ a.s. Thus, by (A), the sequence $\{T_n, n \ge 1\}$ converges a.s. The relation $\lim a_n S_n = 0$ a.s. is an immediate consequence of (A). By Kronecker's lemma and the a.s. convergence of $\{T_n, n \ge 1\}$

$$\lim b_n\left(S_n-\sum_{i=1}^n d_i\right)=0 \quad \text{a.s.}$$

(5)

(3)

(4)

By (5), (3) and $\lim a_n S_n = 0$ a.s.,

$$\lim_{n \to \infty} \sum_{i=1}^{n} (b_i - b_n) d_i = \lim_{n \to \infty} \left\{ b_n \left(S_n - \sum_{i=1}^{n} d_i \right) + (-b_n S_n + a_n S_n) + \sum_{i=1}^{n} b_i d_i \right\}$$
$$= \lim_{n \to \infty} b_n \left(S_n - \sum_{i=1}^{n} d_i \right) - \lim_{n \to \infty} \left(b_{n+1} S_n - \sum_{i=1}^{n} b_i d_i \right) = 0$$

which implies (4). Thus (B) and (C) follow from (A). (C) \Rightarrow (B): The relations (5), (4), $\lim a_n S_n = 0$ a.s. and

$$b_{n+1}S_n - \sum_{i=1}^n b_i d_i = -a_n S_n + b_n \left(S_n - \sum_{i=1}^n d_i \right) + \sum_{i=1}^n (b_n - b_i) d_i$$

imply (B). (B) \Rightarrow (A): This follows from lim $(V_n - T_n) = 0$ a.s.

The following theorem is more practicable than Theorem 1. In case $B = \mathbf{R}$, Gaposhkin's criterion on the a.s. convergence of $\sum a_n S_n$ (see Section 1 and [5]) is an immediate corollary of

Theorem 2: Assume $\sum a_n < \infty$. Suppose that $b_{n+1}S_n \xrightarrow{P} 0$ as $n \to \infty$, or the X_n , $n \ge 1$, are symmetric. Then $\sum b_n X_n$ converges a.s. if and only if $\sum a_n S_n$ converges a.s. If $\sum b_n X_n$ converges a.s. then $\sum a_n S_n = \sum b_n X_n$ a.s.

Proof: By Lemma 4 and (2) it is sufficient to prove that the a.s. convergence of $\sum a_n S_n$ implies that $\lim b_{n+1}S_n = 0$ a.s. But this follows from Lemma 3 and the assumptions of the theorem

By the same methods we obtain the following: Assume $\sum a_n < \infty$. Then $\sum b_n X_n$ converges a.s. iff $\sum a_n S_n$ converges a.s. and $b_{n+1}S_n \xrightarrow{P} 0$ as $n \to \infty$. In this way, the problem of a.s. convergence of $\sum a_n S_n$ can be reduced to the problem of convergence of $\sum b_n X_n$. Conditions for the convergence of this series are well known. In Banach spaces they depend on the geometry of B (cf. [3, 4]).

The results of Koopmans et al. and Gaposhkin concerning the convergence of $\sum n^{-\alpha-1}S_n$ (see Section 1) follow from

Theorem 3: Let B be a Hilbert space. Assume that $\{X_n, n \ge 1\}$ is independent and identically distributed. For fixed $\alpha > 1/2$ the following statements are equivalent:

(D) The series $\sum n^{-\alpha-1}S_n$ converges a.s.

(E) The series $\overline{\sum} n^{-\alpha} X_n$ converges a.s.

(F) $E ||X_1||^{1/\alpha} < \infty$. Furthermore, $EX_1 = 0$ for $\alpha \in (1/2, 1]$ and $\sum n^{-1}EX_1I(||X_1|| \le n)$ converges for $\alpha = 1$.

If $\alpha \leq 1/2$ then $\sum n^{-\alpha-1}S_n$ diverges a.s.

Proof: Let $a_n = n^{-\alpha-1}$. Obviously, $\alpha b_n n^{\alpha} \sim 1$ as $n \to \infty$. Assume $\alpha \leq 1/2$. Thus, by Lemma 3 the condition $\lim n^{-\alpha}(S_n - c_n) = 0$ a.s. (for appropriate c_n) is necessary for the a.s. convergence of $\sum n^{-\alpha-1}S_n$. But this is impossible by the central limit theorem in Hilbert spaces (see [1]). Hence $\sum n^{-\alpha-1}S_n$ is not a.s. convergent. By the Hewitt-Savage 0-1 law this series diverges a.s.

Assume $\alpha > 1/2$. By the 3-series theorem in Hilbert spaces (see [5]) and by standard arguments (E) and (F) are equivalent. Using $\alpha b_n n^{\alpha} \sim 1$, it is not difficult to show that (E) and the a.s. convergence of $\sum b_n X_n$ are equivalent.

Assume (E). Then $\sum b_n X_n$ converges a.s. and (D) is an immediate consequence of Lemma 4.

Assume (D). Lemma 3 and $\alpha b_n n^a \sim 1$ imply $\lim n^{-\alpha}(S_n - c_n) = 0$ a.s. Thus $E ||X_1||^{1/\alpha} < \infty$. Let $\alpha \in (1/2, 1]$ and assume $EX_1 \neq 0$. By the strong law of large numbers, $\sum n^{-\alpha-1}S_n$ converges a.s. iff $\sum n^{-\alpha} < \infty$. This is impossible. Hence $EX_1 = 0$. Now, $E ||X_1||^{1/\alpha} < \infty$ and $EX_1 = 0$ for $\alpha \in (1/2, 1]$ imply that $b_{n+1}S_n \xrightarrow{P} 0$ as $n \to \infty$. Apply Theorem 2 to obtain that $\sum b_n X_n$ converges a.s. Hence $\sum n^{-\alpha}X_n$ converges a.s.

Acknowledgement: The author is grateful to Alexander Martikainen for valuable discussions. In particular, this work was inspired by Martikainen's Lemma 1.

REFERENCES

- [1] ARAUJO, A., and E. GINÉ: The Central Limit Theorem for Real and Banach Valued Ran-% dom Variables. New York: Wiley 1980.
- [2] KOOPMANS, L. H., MARTIN, N., PATHAK, P. K., and C. QUALLS: On the divergence of a certain random series. Ann. Probab. 2 (1974), 546-550.
- [3] WOYCZYNSKI, W. A.: Tail probabilities of sums of random vectors in Banach spaces, and related mixed norms. Lect. Notes Math. 794 (1980), 455-469.
- [4] WOYCZYNSKI, W. A.: Geometry and Martingales in Banach Spaces. II. Advances in Probability 4 (1978), 267-518.
- [5] Вахлиня, Н. Н., Тариеладзе, В. И., и С. А. Чобанян: Вероятностные распределения в банаховых пространствах. Москва: Изд-во Наука 1985.
- [6] ГАПОШКИН, В. Ф.: О необходимых условиях сходимости рядов для одинаково распределенных независимых случайных величин. Мат. Заметки 20 (1976), 529-536.
 [7] МАРТИКАЙНЕН, А. И.: О регулярных методах суммирования случайных слагаемых.
- Теор. вероятн. и ее примен. 30 (1985), 10-18.

Manuskripteingang: 10. 12. 1984; in revidierter Fassung 11. 09. 1985

VERFASSER:

Dr. THOMAS MIKOSCH

Sektion Mathematik der Technischen Universität DDR - 8027 Dresden "Mommsenstr. 13