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An Application of B. N. Sadovskij's Fixed Point Principle 
to Nonlinear Singular Equations	. 

J.APrELL, E. DE PASCALE and P. P. ZABREJXO 

Diese Arbeit befaBt sich mit der Anwendbarkeit des Sadovskijschen Fixpunktprinzips auf die 
Lösbarkeit nichtlinearer singularer Integralgleichungen der Form x = 2SFx, wo F cin nicht-
linearer Superpositionsoperator und S . cin linearer singularer Integra ]opera for ist. Bildet der 
Operator F den ,,kleinen" Hölderraum 1i,.0 oder einen Raum J, ,# von Funktionen, die einer 
1-l61derbedingung in Integralform genQgen. in sich ab, so ist er unter recht aligemeinen Bedin-
gungen k-vcrdichtend, so daB die obige.Cleichung venigstens für klcines A eine Lösung besitzt. 
An'dererseits kann man tinter diesen ailgemeinen Voraussetzungen den kiassisehen Fixpunkt-
satz von Schauder nur bedingt und den von Banach-Caccioppoli gar nieht anwenden; es wird in 
der Tat gezeigt, daB sich das Banach-Caecioppoli-Prinzip nur dann anwenden laBt, wenn die 
obige Gleichung linear ist. Daruber hinaus wird gezeigt, daB man zur Untersuchung der obigen 
Gleichung auch die topologisehe Abbildutigsgtadtheorie für Vektorfeldcr mit verdichtenden	- - 
Opeiatoren heranziehen kann. 

B craTbe o6cy aeTCH B03MOHOCTbHCnoJIb3OBaHan JflH ThOlCaaaTeJiIcTBa paapeluHMocrH 
.mIeJulHetlHbIx cummryirnpaamx nHTerpa3lbHblx ypaBIIeHnü nmija x = ).SFx (aecb F - Hem!-
HefIlh1fl olleparop eynepnoauiuia, S - - J1rnIefHb1ü cHHI'y.lnpIiblfl ullTerparlhHbln oñepa'rop) 
npiiunna HenoBI1RHofl TO'IKH B. I-I. CaoBcKoro. Ecmt onepaop F )CflCTByeT B ,,Ma.noM"	- 
npocTpancTime F6J1btepa I1,° 113TH B HOCTHCTB )y (HRIHt1	y(oa31eTBOpHI0LI)11x MuTe-
rpaJlbHoMy ycjoBiio FëJ1bepa, TO OKaabInaeTcH, 'ITO OIL, nooöiue i'oBopn, aeJinerca k-yriJloT-
HSnoEuHM, ITO it no3eoJrneT yCTaHOBHTb paapeluuMocrb paccMaTpllBaeMoro ypaniieusi no 
xpaflmief M epeJiJi1{ MaJibix 2. C pyrofl cTopomlhl, a ycJTOBHnx OTIIX TeopeM KJlaccH'IecKMfi 
npmiiiiuii Hen oJ B14H lIotl TO'LKH lJlay;wpa Tpy.tumo, a npuiumn Banaxa— l-a'm lion nwiit noo6iie 
HeJlI,3a HMlIflTb B caMoM Rene, lIoMa3aHo, 'ITO II03MOT-HI!OCTL, ripliMeHenuR npMIlIt.nna 
Bamiaxa— l- a'i'snormnojni a paccMaTpmlnaeMoM c.iy4ae oaua qaeT; 'ITO paccMaTpuBaeMoe ypan-
Helille oIa3hIuaeTca JTsIiieflhIlJM. KpOMe TOI'O, B cTame noHaaaHa TaH}Ke I3031140HflLOCTb n 
I1ccJ1eoBauIan ypaHHeHMf) paccapnaaesioro TMna HcnO3Tb3onaTb TeOptII0 BpaueuHa BeK-
TOHNX noaefi C YHJLOTHRI0WHMII onepaTopaMu. 

This paper is concerned with the applicability of Sadovskij's fixed point principle to the sol-
vability of nonlinear singular integral equations of the form x = ASFx, with F being a non-
linear superposition operator, and S a singular linear integral operator. If the operator F acts 
in the "little" Holder space I-I°, or in some space J ,8 of functions-which satisfy an integral-
type HOlder condition, F turns out to be k-condensing under fairly general hypotheses such 
that the above equation has it solution at least for small A. 00 the other hand, under these gene-
ral hypotheses the classical fixed point principles of Schauder does not apply immediately, and 
that of Banach-Caceioppoli not at all; in fact, it is shon that the Bunach-Caccioppoli principle 
applies only if the above equation is linear. Moreover, in this paper it is 'shown that the above 
,equation may be studied as well by means-of the topological degree theory for vector fields 
involving condensing operators. 
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0. infioduction	 - 

Let X be a real Banach space and A a nonlinear operator in X. Recall that A is 
called k-condensing if the estimate 

Ip(AM I X) kip(M I X)	(M €	 (1) 

holds, where (X) denotes the family. of all bounded subsets of X, and I X) is 
some measure of noncompactness in X. Sadovskij's fixed point principle states that 
a continuous condensing operator A has fixed points in each closed ball B(x0) 
= {x E X: lix -- I XJ ;5j r} whicl is mapped by A into itself, provided that k< 1 
([34, 36], see also [17]). Since both compact operators and contractions (in the norm 
of X) are condensing (for example, with respect to the H'ausdorff measure of non-
compactness, see below), this result generalizes Sehauder's classical fixed point 
principle as well as the contraction mapping principle of Banach-accioppoli. 

The purpose of the present paper is to apply Sadovskij's fixed point principle to 
the nonlinear singular integral equation 

X(S) = 2fk(t) i(t, x(t)) dl.	 (2) 

This equation can be written as operator equation 

(	x =-2SFx,	 /	 , (3) 
where

Fx(t) = f(t, x(t))	S	 (4) 

is a nonlinear superposition operator, and 

Sy(s) =t (1t 
(I)
	 (5) 

is a linear singular operator. The problem of verifying condition (1) for the non-
linear operator A = SF, , as well as that of finding au invariant ball for A, obviously 
leads then to the corresponding problems for the superposition operator (4), since 
the contribution of the linear part (5) is completely described by its "essential norm" 
y(S) and its usual norm I SI, respectively. Consequently, the natural problem arises 
to find conditions for the superposition operator to be condensing, as well as upper 
estimates for its growth, on a given ball. 

Let us make some observations on the first point. The most useful and appropriate measure 
of noncompactness in applications is the S9-called llawsdor// measure o/ noncompactness 

x(MI X) ='infE(M),	'"	 (6) 

where E(M) denotes the set of all positive reals e for 'which M admits a finite c-net. As already, 
'mentioned, a sufficient ondition for some nonlinear operator A to satisfy (1) . is a Lipschitz 
condition with the same constant k. "Unfortunately", it may happen that the converse is also 
true: a Lipschitz conditidn with constant k may turn out to be necessary for (1). This means, 
As a 'matter of fact, that the application of Sadovskij's fixed point principle does not give new 
results in comparison with the classical Banach-Caccioppoli theorem. This situation occurs, for 

- instance, if one considers the superposition operator (4) in the space C of continuous functions 
on [0, 1], with the usual maximum norm. In this case one can show [1] that condition (1)* (for
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the measure of noncompactness (6)) is equivalent to both 

IIFx— FyjCI	k IIx — y I CII (x,yEC) 
and	 - 

II(s , u) — /(s, v)I	ku —vi	(u,vE R). 

A similar statement holds in the space L of all measurable functions whièh are p-integrable on 
[0, 1] (see again [1]). 

It turns out, however, that the situation is quite differentjn other function spaces. For 
example, if one considers the operator (4) in the HOlder space Ha, equipped with the norm 

tx I Hail = x(0)i + sup 1 3 ) —.x(t)l	 (7) 
8+t	IstIa 

then condition (1) is satisfied for a reasonable class of functions, while F is Lipschitz in this 
norm only if the function / has the form /(., u) = g(-) u + h( . ), i.e. is linear in u! 

It is interesting to notice that the Holder spaces H. are fundamental in the study of singular 
integral operators. (Singular integral operators do not act in the space C; .they do act in LPfor 
1 < p < cc, but there are "too few"-nonlinear operators acting in in fact, the superposition 
operator F maps L into itself only if the generating function / is sublinear in u [22: p. :149]). 
To summarize, Holder-type spaces like Ha are the right "candidates" to provide "essential" 
applications of Sadovskij's fixed point principle to nonlinear singular integral equations. 

It is worth-while mentioning, by the way, that the advantage of using Sadoskij's principle 
rather than the Banach-Caccioppoli theorem is already evident by the fact that, in order to 
verify condition (1) for the operator A = SF, the contribution of S is given by the essential 
norm x(S) while for a Lipschitz condition one must take into account the operator norm IjSjj. 
In most applications the difference between these two norms is considerably large. This fact - 
allows one to strengthen existence theorems for nonlinear singular equations like (2) not only 
in HOlder spaces I1, but even in Lebesgue spaces L (acting conditions for classical singular 
linear operators in H. can be found e.g. in [32], in L e.g. in [33]). 

The plan of the paper is as follows: In the first section "we introduce and study a 
class of spaces J. , p (0 <a :E^ 1, 0 < fi oo) consisting of continuous functions .x 
on [0, ii whose modulus of continuity'a(x, a) is integrable with some weight in a 
(fl < oo) or is controlled by some power of a (9 = cc); in particular, the space Ja 
coincides with the Holder space Ha . Special attention will be paid to the study of 
the Hausdorff measure of noncompactness (0). Section 2 is devoted to properties 
of the superposition operator (4) in these' spaces; in particular, we shall be inter-
ested in condition (1). Finally, some applications.to nonlinear singular itegral 
equations will be i'ndicated in Section 3, and some possible extensions will be discussed 
at the end of , the paper. 

1. The spaces Ja,p 

Throthout this setion, let 0 <	1 and 0 <	cc. Given a continuous func-



tion x on [0, 1], let 

w(x, a)	sup {Ix(s ) — x(t) l- : 0	s, I	i, is — tj ;5 a) 
denote its modulus of continuity. We write x € J (ft < ) i f 

-,	jp(x) 
= 

a /	+'w(, a)Ia da < cc. 

For	c the set Ja.p with the norm	I J .pii = max {Ii 1011, j(.)a/fl} is a Banach
space. Similarly, we 'write x € Jam, if a(x, a) = O(aa ) , i.e. ja m(X) = sup {aw(x, a): 
o <a	1) <cc. The set Jam with the norm11. I J ii = max Q. I C II, jam()} is a 

13*
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Banach space. Observe that	is nothing else than the Holder space H; the
equivalence of the norms 11 . I J.II and II . I HII is a simple consequence of the esti-
mate lx CII	x(0)I + j(x). Moreover, we r'ernark that J, , o coincides with Muh-



tarov's spaceI,, (see [21: p. 79]) for (a) = a'" and p = 

	

For each subinterval (a,.b)	[0, 1. ], define a linear operator POb by 

PObx(s) = { x(s) if a :E^: s:<_ b, 
•	(x(a) if 08a,	

(8)
x(b) if 1 b^ s ^ 1. 

Obviously,P0 , acts in each of the spaces	and has norm 1. ForO < 	, let 
be the subspace of all functions x E	for which 

	

lim j,.p(Pobx) = 0.	 (9) 
b—a--'-O 

It is not hard to Bee that, for fl < oo, Jp coincides with the whole space J. On the other 
hand, the subspace(0 < a < 1) consists precisely of those functions x  .J for which 
w(x, a) = o(a) as a - 0, and hence coincides with the "little" Holder space HO; finally, for 
a = I the sôbspace J °° contains only constant functions. (We remark that the "little" HOlder 
space iI° (0< a < 1) can be characterized equivalently as closure of the space C' of conti-
nuously differentiable functions on [0, 1] with respect: to the norm (8). se&[38], and has impor-
tant applications in both partial differential equations, see [25], and singularintegral equations, 
see [21] and below.) 

Let us . point out an analogy between the spaces Jp and the Lorentz spaces Lpq which arise 
naturally in interpolation theory for linear operators (see e.g. [5, 23, 31]). In fact, if for some 
measurable function x on [0, 1] we denote by w(x, a) the measure of the Lebesgue set (5: (x(s)I 

< I/a), thccinditionf a	')w(x, a)'P da < oo holds if and only if xbelongs to the Lorentz space 

(in particular, the Lebesgue space L for p = q); similarly, the condition sup (oPw(x, a): 
0 < a	11 < 00 holds if and only if x belongs to 'the Maräinkiewicz space M = LP, 00 (see,
e.g. [16, 41]). Moreover, if the operator (8) is replaced by the multiplication operator 

PDX(s) = XD(8)X(S ),	 S	
-	 (10) 

where XD denotes as usual%he characteristic function of D C [0, 1], and if (9) is replaced by the 
analoguous condition lim II PDX. I L.lI = 0, then instead of	one obtains the space L, q of 

-mesD—.O	 - 
all functions x E Lpq with absolutely continuous norm. 

Let us still remark that other choices of the function w(x, -) (in terms of measurable or con- 
tinuous x) lead to other well-known function spaces. For example, letting 

w(x,a)=sup 

one gets a class of spaces which contains in particular the Morrey-Campanato spaces, (which 
are fundamental in the theory of elliptic systems, see e.g. [24, 29_1). Similarly, letting 

(p 
w(x,a)=sup f x(t ) dt:0a <fl 1 , —aa	- 

ne obtains a useful generalization of the Bogoljubov spaces (which occur in averaging methods 
for ordinary differential equations, see e.g. [401). 

As for the Lorentz spaces	the 'spaces J, , fl are "decreasing" in a and "increas-



ing" in fl; more precisely, the following holds. 

Proposition 1: For 0 < e <a	1, 0 </9 < oo, and 0 <y oc the imbeddings
hold.
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•	Proof: First, for x E Js we have	 - 
2. 

2+ I )afl(x, a) / <fr(P±w(x, r) / dt = 0(1) (a -' 0) 

- and hence o(x, a) = o(al) as a -* 0. The second inclusion is trivial. Finally, for 
x E J. , ,. we have  

^	 a_(Y+I)aI(_z) dor 

(y-'+t)/(a-) do < oo; 

and hence the third inclusion holds I	 - 

In what follows, the notion of a measure of nonconipactness will be of fundamental 
importance. Following the axiomatic setting of B. N. SADOVSKJJ [36], we call a real 

• nonnegative function tp( . X) which is defined on the system (X) of all' bounded 
subsets of aBanach space X, a measure of noncompactness, if it has the following 
properties (2W denotes the closure and co the convex hull of M): 
(i) (M J X) = 0 iff M is compact,  
(ii) o M I X) =(MJ X), 
(iii) S , i(M u N I X) = max {(M I X), (N 
(iv) M ± N X) ^5 ip(M I X) + (N I 

- (v)	p().M I X) = Al p(M 
(ii)	(M I X)	 (N I X) if M N.	 - 

• - For example, the Hausdorff measure of noncornpactness (6) satisfies all these pro-
perties, but it is also often convenient to invent new measures of noncompactness 
which are in:sorne sense "natural" for the problem under consideration (see, for 
example, the monograph [4]). 

The next theorem provides explicit formulas for the Hausdorff measui of non-
compactness in the spaces J (	oo)and J. 

Proposition 2: The equality 

x(tI Jafi) =	(M)	(M E c(Ja.p)) 
holds, where

If

= urn sup 	r)/" d-r
o-,-OXEM 0	 J - 

similarly, the equality  

-	y(M I J) =	(M) - (M E (J))	S	 - 

holds, where	 S	 -	 S 

M) = Jim sup cw(x, (7).	 -, 
a-sO ZEM 

- - Proof: Let us prove the second equality; the analogus first equality is proved 
in 'the same way with only a few minor changes. So let, > (M I J), and 
let {x1 , ..., Xm} be a finite n-net for fri in J. Fix x € M and choose x1 such that
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j(x - x,) = sup aw(x - x1 , a) ^ ,. Since x i E J, we have aw(x1, a) € for a 
a>O 

sufficiently small, and hence	(M)	y(M I J) + e. Since a is arbitrary, we 
have	M) ;5 (M I J00). 

• On the other hand, given a> 0, we can find ô E (0, 1) such that aw(x, a) 
(M) + a for a ô(uniformly mxE M). Since  is bounded in J2 . ,,., it is compact 

in C; thus we can find a finite e5-net {x 1 , .., x} for M in C which consists (with-
out loss of generality) of functions x E M, i.e. fulfills aw(x1 , a) 5 a for or ô and 
j = 1, ..., nt. Given x E ' 111, choose x, such that lix - xj. I C 15: €ô. We have then 

I  a w(x	x', a)

	

52 Jx -	CJ ^ 2€	 for a > O 
- 

[ 
aw(x, a) + aw(x, a)	( + a) ± a for or :5: & 

This shows that Jjx -	,Jj wax {a, r + 2E) = + 2€, and hence (M I J) 
<	M) 

Let us remark that, by the Arzelà-Ascoli theorem, the funtion 

lim sup a(x, a)
	

(11)

a-*O zEM 

is a measureof noncompactness in . C; i't is already mentioned in [36] in the form 

p(M) =lim sup max jjx - I C,	 (12) 
o—'O(M ,<o 

where x, is the shift 

/ for 081—t, 
lX( 1)	for 1 — r	s	1. 

'(The equality of (11) and (12) follows from the fact that the maximum in (12) equals w(x, a).) 
By standard techniques one can show that the two-sided estimate 2'1p(M) (M I C) 
.^ 2p(M) (M E /.(C)) holds. 

One could expect that similar estimates can be obtained for the Hausdorff measure of non-
compactness in the Holder space J = H. (which is not covered by Prop. 2). It turns out, 
however, that this is not possible. Moreover, the compactness criteria in the space H (or even 
more general spaces) with can be found in the literature (as e.g. [19, 21, 28]) are false, in fact, 
in the book [21], for instance, the authors claim that a necessary and sufficient condition, for a 
set M to be compact in the space I1 is't.hat M be closed and bounded, and that the family of 
functions of two variables  

Ix(s) - X(01
x(s, t) =	(s + t)	 (13)' 

Is—tIe 
(for x running over 231) be equicontinuous either on each closed subset which is entirely contained 
in the upper triangle ns, = {(e, t) 0	a	11 or lower triangle	= ((a, t) 0	I < s
:5, 11, or on the union A + u _. (As a matter of fact, this equicontinuity condition is formulated 
not very precisely in the above mentioned papers, and the error is just due to the' confusion 
between these two conditions.) It is not hard-to see that the equicôntinuity condition on each 
closed subset of or A_ is necessary for the compactness of Al in H. Nevertheless, it is not 
sufficient, since it is satisfied already by any set 4f which is compact merely in the space C. On 
the other hand, the equicontinuity condition on the whole set L + u _, together with closedness 
and boundedness, is certainly sufficient for a set 11 to be compact in Ii. Nevertheless, it is not 
necessary, since it fails to hold even for the singleton 231 = {x0), where x0(t) = t2a Isin t' E I'1. 
In fact, considering the sequences 

(s,,, t) = ([2nt + r/21- 1, [2n + r]'") and (se', t a ') = ([2n] 1, [2nr + /2]-"),
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one obviously has (s,, t) — (', t,') -* 0, but 

	

-,	2a (2n + 1) + (2n)	2'	L. lx0 (s, W -. x0 (s t )l	-	 -+	-I--
7	

(2n+.!.'l 2/ 
and hence the function (13) can not be uniformly continuous on A, u 

Let us observe that a similar situation occurs in the Marcinkiewicz space M = L: One 
does not know any simple compactness criterion in this space, nor any appropriate measure of 
noncompactness.	 S 

	

Let us return to the spaces	and compare Prop. 2 with what one can say in 
the spaces Lpq. Recall that a subset M	is called absolutely bounded [41] if 

lim sup IIPDX I LII = 0, 
meSD—O xEM 

where PD is defined in (10). Absolute boundedness is 'essentially weaker than .com-
pactness: Indeed, the imbedding of L, , , into (in particular, of L into L_) is 
absolutely, bounded, but not compact. On the other hand, Prop. 2 shows that the 
relation	 - 

= 0 
b—o---3O XEM 

(where P ,,,b is now given by (8)) describes precisely the compact- subset.,; M of J°p; in -- ± 
particular, one verifies easily that the imbedding of J,p into Jl, ) is compact.- It 
is due to these facts that the behaviour of the superposition operator in Holder 
spaces is quite different from that in Lebesguc spaces. A detailed analysis of the 
superposition operator in the spaces	and J, will he carried out in the follow-
ing section.	 - 

2. The superposition operator 

Let / be a real function on [0, 1] x R, and let Fx(s) = j(s, x(s)) be the correspondin 
superposition operator. If one considers the operator F between two normed spaces 
X and Y, many of its analytical and topological properties can be described by 
means of the growth /unction  

up(r) =- sup {IIFx I V u : lix I X lI :^-_ r}. 

For example, the relation 1u1(r) = 0(r) gives information on invariant balls for F, 
while the relation aF(r) = o(r) (r —i.- 0 or r -- oo) means, roughly speaking, that F is 
differentiable, respectively, at zero or infinity.	 - 

- It is easy to see that the operator F maps the space C into itself if and only if / is continuous 
on the product [0, 1] x R (see, e.g., [37]); moreover, in this case F is always continuous and 
bounded, and PF(r) = max {I/( s, u)I. :.0 s 1, Jul r}. This shows that the operator F 
exhibits in the space C it similar behaviour as in Lcbesgue spaces, where-also the acting condi-
tion F(L)	Lq (q < co) implies already the boundedness and continuity of F (see e.g. [22:
§17]). In Holder spaces H, however, the situation is completely different: In fact, the acting 
condition F(Ha) Hp does not imply the continuity or boundedness of F (see (6, 10]). More-
over, if F-maps H. into H5, the generating function / need not be continuous, and hence F does 
not act in the space C [10]. If the function / does not depend on s, however, the acting condition 
F(Ha) H does imply the boundedness of F, but F may still be discontinuous [3 6]. Let us 
remark that the superposition operator has been studied in HOlderspaces by several authors 
[3, 6-14, 18, 27, 30, 301 but the analysis is far from being complete. For instance, one does not 
know necessary and sufficient conditions for the continuity of F on the whole space H.	-
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Let us recall the following basic result [13, 141 which we shall need in the sequel. 

P ropo sit ion 3: The superposition operator F which is generated by the function 
maps H. (or .FJ°) into H O and is bounded if and only if the relation 

tp(r) := sup vP W(r, t, rr') < co	 ,	 (14) 
O<r1 

holds for any r > 0, where	 - 

•	 S	 W(', r, ) =,sup {Ij(s , u) - f(t, v)l: 
•	0 ^ s, t :5: 1 with Is - t	; 0	J ul, lvi ^5 r with lu - vj 

In this case the growth /u?zctionUF is given by 

	

max {p(r), p(r)},	•	 (16) 
where

(r) = sup {lf(s; u)i : 0	s	1, Jul ;5 r}.	 (17) 
/ 

We point out again that the boundedness of the operator . F does not follow from the fact that 
F maps H. into lip; consequently, Prop. 3 does not provide just a necessary and sufficient 

• acting condition F(H) S Hp (or F(H 0) 9 Ha). Moreover, under the hypotheses of Prop. 3 the 
operator F need not be continuous on 14; as mentioned aboveglobal continuity criteria for? 
in tcrmsof the function / are not known.  

Sinuilarly, the following hOlds.	 . 

Pioposition 4: The superpositort operator F which is generated by the function / maps 140 (or 14) into H° and is bounded if and only if, in addition to (14), the relation 
Jim rW(r, r, et") = 0 (resp. urn -rW(r, r, rr) = 0 

\ 

• holds for any r> 0. In this case, the growth junction fiis again given by (16), and F is 
continuous (resp. 'completely continuous). 

We now pass to the problem of characterizing the functions f which generate a Lip-
schitz continuous superposition operator; we confine ourselves to the ease a = 

Proposition 5: The superposition operator F which is gQnerated by the function 
satisfies a Lipschitz condition in II (or 14 0) if and only if f has the form f( . , u) 

- . = g( . ) u + h( . ) with g, h E H (resp. H°). 
Proof: The fact that such a function generates a Lipschitz continuous superposition 

operator in H. and H,° is obvious. Conversely, suppose that F satisfies a Lipschitz 
condition in the norm (7), i.e.	- 

/ -	Fx(0) - Fy(0)J + , (Fx - Fy)	L[Jx(0)	y ( 0)i + j,(x - y)J	(18) - 

for any x, y E 14. Fix a, r € [0, 11, a 'r, and u 1 , u2 , v1, V2 .E 11., and define two func-
tions x 1 and x2 by

u1 •	 •	 if 0:!E^8:5:a, 

-	x1(s) = u1	
v, (s —r) + v if or	s < r, 

la—ri 
Vi	 if --r	s<1	 -
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(i = 1, 2). Obviously, 

(xi - X2) (s) - (XI,- X2) (t)I 
1	 I 

=	
[(u - v1 ) (s -	- (u.2 - v2) (s - r) 

- (u1 - v1 ) (t -	+ (u2 - v2) (t - i)]	 A 
I	-	 - 

ui - .v 1 - u2 + v21 I(s -	- (t - r)I kr—r1 

for i	s	t :!9 r; since (s - t) - (t - T)I	Is - tJ, it follows that j(x1 - x2)
V1 - u2 + V21/l a - r. Substituting x = x 1 and y = x2 in (18) gives; 

lt(a, u) - /(a, U2) - /(i, v) ± /(r, V2)l 
11( 0, u) - 1(0, u)j. +  

	

Ia — ri	 - 

= L [iui -	+ Iu
1 - v 1 - u2 + v211	 - 

Ia - 

Multiplying both sides of this inequality by i a - r1 l and letting Ja - Tj tend to zero 
yields (by the continuity of /(, u))	 S 

- I/(a, u1 ) - /(a, u2 ) —/(a, v 1 ) + /(a, v)I L Jul - U2 ' - Vi + V21. (19)-

Now define the functioii q on t by p0(w) = f(a, w) - /(a, 0); setting u 1 = a + b, 
u2 = a, v1 = b, v2 -= 0 in (19), we get 920(a + b) = 9 0 (a) + q 0(b), i.e. q 0 .is additive. 
Further, setting.v 1 = v2 = 0 in (19) gives i'0(U1) - (u2 )1	'L ju, - -i2 , i.e. q,, is 

• continuous. Thus 19, is linear whichnieans that rp,,(w) = g(a) w, hence, as claimed, 
• /(s, u) = pa(u) + f(s, 0) = g(s) u + h(s), where both functions h = FO and g = Fl 

- FO belong to H (with 0 being the zero function). 
In' case F maps H° into itself the proof remains almost unchanged; the only differ-

ence is that instead of the functions x1 and x2 one must consider functions x1uindx2e, 
defined by	 - 

ui	 if Os:E^:a, 

x1t(s) 
= Ui	Vi ( - r)+ v1 if a	s :!z^ r,. 

•	 v	 if	rs1,	
0 

with e posiive U	 S 

We remark that the basic idea of this proof is taken from [26], where an analogous result is 
proved in the space 111 of Lipschitzian functions. 

- We are now interested in conditions on / which ensure that F is condensing with' 
'respect to the measure of noncompactness (6) in H 0 ; we confine ourselves again to the 
case a = 

Proposition 6: Suppose that the superposition operator F which is generated by the 
function facts in H° and is bounded. Then F is k(r)-condensing on the ball Br(0), where 

• k(r) = sup urn prW(r, r, t)	 (20) 
O<pr T-*•O 

with W given by (15).
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-

	

	 Proof: Let 1W he a subset of Br(0) and a = (M I H,°) its Hausdorff measure of 
noncompaetness. Further, given 71 > 0, choose r > 0 such that rW(r, r, era) 
;i;(k(r) + 72) e (0< r < r) and w(x,r) 15: (a ± 71) T , (x EM, 0< T < rn). 
Then for any x € 1W the inequality 

ro(Fx,'r)	rW(r, r, w(z, r)) ;5 rW(r, r, (a + 'i) ta )	(k(r) + ) (a + ) 

holds (0 < r < r,))[and hence, by Prop. 2, 7(FM I Ha°) does not exceed (k(r) + i) 
(a + ,q). Siice > 0 is arbitrary, we have (FM I H°) ^S k(r) (M I Ha 0) as claimed U 

As already pointed out above, the operator F is k-condensing in the space C iff it satisfies a 
Lipschitz concIition'(with Lipschitz constant k). The preceding two propositions show that in 
the spaèe H.O . the operator F may very well be k-condensing without satisfying a Lipschitz 
condition. To give a very simple example, 'already such a "harmless" nonlinearity like f(u) = Jul 
generates a superposition operator, F which is 1, -condensing, but does not satisfy a Lipschitz 
condition, by Prop. 2, in any of the spaces Ha or H.0 (the latter fact may be proved also directly 
by considering the funetions x(s)	s - 1/n and ye(s) = 

Let us now consider the superposition'operator in the spaces J , p (a	<oo). 

Proposition 7: Let the junction / be continuous on [0, 1] x R and let aô = y. 
Suppose that for any r E (0, oo) the estimate 

r, r"e) 6I ^,- c(r, r, 1) + Are P / a	(A € A 	r)	- (21) 

holds for some set A(r) c (0, cc), where W is given by (15), and c(r, ., A) is integrable on 
[0, 11 for r € (0, co) and A € A(r). Then the superposition operator F which is generated 
by / maps J. , p into J,,., is bounded, and satisfies	 -. 

' IuF (r)	max {q2(r), p(r)},	 (22)

- where T is again givei by (17), and - 

-	,	11.	., 
V(r) = inf	f c(r, r, A) dr, + ).r#/-

15A(r) Lo	 ly 
/

Moreover, F is continuous and k(r)-condensing on each ball Br(0), where 

k(r) ^ inf A(r).	 -	 ,	' (23)

Proof: Choose x € Ja with l Ix I J lI :!E^ r. For A € A(r) we have 

1_0+1)w(Fx, r) 61 dr	f r_(+ u W(r, r,w(x, t)) 6/Y dr - 

< f / cfr, r, A).dr + A  r+ ' )w (x, r)fila dr =fc(r, r, A) dr + 

hence  

Fx € J.ô and j .6(Fx) 5 f c(r, r, ).) dr + Alap(X). 
0 

Since / is continuous, we have q(r) < cc, and thus (22) holds.



B. N. Sadovskij's Fixed Point Principle	203 

We show now that F is . k(r)-condensing on the ball B(0), with k(r) as in (23). To this 
end, 'choose M 9 Br(0), and let a > y(M I J). Given x € M and 2 € A(r), we have 

f t_ o +uw(Fx, ) 61 dx	fc(r, x,2) dx + 2/ _(P+l)w(x,t)/d. 

For a sufficiently small, the right-hand side of this inequality does not exceed 

fc(r, x, 2) dx + 2a', by Prop. 2; but this means that 

urn sup f x_(ô+I)w(FX, -t)'/y dr	2a61 ,	 - 
o-+OXEMO	 -. 

and hence, again by Prop. 2, y(FM I J 5 ) ;5 Aa. Since a> y(M I J) is arbitrary, we 
have y(FMI J 6 ) :!E^ k(r) y(iW I J) as claimed. 

It remains to prove the continuity of F. Since F is condensing, it suffices to show

	

that F maps any sequence which converges in	into a uniformly convergent 

	

sequence. But this follows from the continuity, of / I	 * 

We donot know if equality holds in the estimates (22) and (23), and-whether- or not - 
condition (21) is necessary for F to map Jp into J,,,6. 

To illustrate Prop. 7 we consider the case when'the funètion (15) satisfies an estimate 
W(r, x. ) ^ a(r, x) + b(r) "	 (24) 

for some , E (0, 00). Then condition (21) leads to the two relations 
-	 - 

IT
	'a(r, x)ÔIY dx < 00	-.	 (25) 

and
b(r) x(641)"$çö/Y < c(r, x, 2) + ).r-' P1	(0	r),	 (26) 

where

5 c(r, x, 2) dx < 00	(r € (0, 00), 2€ A(r)).	 (27) 

The first relation is simply nalyzed: In fact, it holds for y Yo and 5 ^! 6, with two 
positive numbers yo and , possibly except for.the extreme! values Yo and 60 themselves. 
The second relation (26) is harder to analyze; for sake of definiteness, let us introduce the auxil-
iary function

v, u, 2, r) = max (uOl - Ax'}.
- 

If c(r, ., A) is integrable, as claimed in (27), relation (26) may be written as 

•	f (, .L , b(r) '—(6 F1)+*p, 2, r) dx < 00.	-	'	 (28) 

Hence, this integrability condition has to be verified in order to prove (26). By an elementary 
calculation one obtains the explicit formula 

ur' —Arr	 if j ^v and v2r'	1iizx
v, u, )., r) = . (v - z) (v_'u)I(U) (/L_1t_12)(I) if z 5 v and vAru > pux 

•	 max (0, ur' - ).x''1r}	 if ,a > V. 
'1	 (29)
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By means of this formula it is possible to analyze condition (28) more explicitly: 

The case xx.> y: If x :5, 1, the condition vAr' > ,aur appearing in (29) reads 
< Ar'"'/xb(r) and hence implies that, for any A > 0 and sufficiently small r > 0, 

(J(o5/y1 #/, b(r) r—(f1)+P, A, r)	cft)/(iUI 
with some constant c> 0. 'Since —( + 1 - x)/(1 — x) + x/(1 - x) > —1, condition (28) 
holds, and A(r) = (0, cx)). On the other hand, if x > 1, the expression url — Ar"r' under the 
maximum sign in (29) becomes negative if and only if r < Au"'rP; it follows that, for any 
2> 0 and sufficiently small r> 0, 

cP(xâ/y, fl/a, b(r)	A, r) = 0 

Consequently, condition (28) holds again, and A(r) = (0, 00). To summarize, under the hypo-
theses xa> y, (24) and (25), the operator F maps Jp into.1 y . 6 and has the properties mentioned 
in Prop. 7. 

The case xa = y: The fdrmula for t'J shows that then '(-,o5/y,fl/a,h(r) r_(')fl,A,r) = 
for sufficiently small r > 0 (with some constant c), and hence integrability'fails except for, 
c= O. The latter condition holds only if	v or, equivalently, if 0 2! fl and url	Ar'r' 
hence A	#6- lb(r) r(6-P)I. Consequently, the operator 1" maps Jp into Jvo in this case only
for 0 ^! fi, and the set A(r) reduc's to the interval (fiO'b(r) r 8fl1 , cc). 

The case xa < y: The formula for b shows immediately that the function 0(x6/y, /9/a, b(r) 
r) is never integrable on [0, 11 

We may summarize our discussion as follows: Condition (24) guarantees that the superposition 
operator F maps' J,. fl into J it either xa> y, or ma = y and 0 /9 . In the first case F is com-
pletely continuous, in the second case only condensing. 

3. Singular integral equations  

Combining the results of the previous section on the superposition operator with 
houndedness results on linear singular integral operators (nior precisely, upper 
estimates for thç norm and the radius of the essential spectrum of such operators in 
spaces of type ,J fl), one obtains various existence theorems for the singular equation 
(2). In this section we shall give just one simple result which, however, cannot he 
obtained by the , classical theorems of Schauder and Banach-Caccioppoli.. Consider the, 
nonlinear integral equation (2) or, equivalently, the nonlinear operator equation (3). 
Suppose that the kernel k of the linear part (5) satisfies the following assumptions: 

(Si) k is continuous on [0, i]x [0, 11 with k(0, 0) = k(i, I) = 0; 
(S2) Ic(', 0)— k(s'', 0)1 I ln .s' — s ''II = o( Is' — s ''I) as Is' — s ''I —> 0; 
(S3) Ik(0, t') — k(0,t'')I = o(I t ' - t ''I) as t' - t"I -'- 0. 

These conditions ensure the b9undedness of the operator (5) in the "little" Holder spac 
JJO (0 < a < 1) [21: p. 188]). In order to apply Sadovskij's fixed point principle to equation 
(2), it is necessary to find estimates for both the norm and essential norm of the operator (5) 
which are, in general, different. Without ging into details, we just mention that, for example, 
the classical Hubert operator 

Sy(s) 
= / cot n(s — t) y(t) dt 

has essential norm y(S) = 1, while the operator norm II SII heavily depends on the space involved 
(see [32] for Holder spaces and [33] for Lebesgue spaces) and may be, generally speaking, much 
larger than X(S).



B. N. Sadovskij's Fixed Point Principle	205 

Suppose now that the condition 

lim 'rW(r, r, et') = 0 

hold, with W given by (15). By Prop. 4, this implies that the superposition operator 
• F acts in H° and is continuous. Let 99 be defined as in (17), and let	 - 

V(r) = sup x"W(r, 'r, rr) and k(r) = sup lim'TW(r, r, er"); 
0<z1	-	 O<Q!gY 

by Prop. 4 and 6; F is bounded in H° if tp(r) <co, and condensing in H° if k(r) < oc. 
Applying Sadovskij's fixed point principle to the operator. equation (3), we arrive at 
the following existence result. 

Proposition 8 Suppose that, /or some r> 0, the inequalities . -

11 811 tp(r) <r,	.11 S ll v(r) <r,	Ay(S) k(r) < 1 
hold. Then equation (2) has a solution in the ball lix I H°JJ	r. • 

Similarly, using Prop. 7 instead of Prop. 4-6 one obtains existence theorems for 
singular equations in the spaces J fl ; we do not discuss this in detail.	•. ,. - 

Let us still make an addition)1l remark. In this paper we discussed only theapplicability of 
Sadovskij's fixed point,principlo to equation (2). However, one could arrive at similar conch,-
sions by means of the topological degree theory for condensing vector fields developed by 
SADOVSKTJ in [34-36]. Moreover, for studying equation (2), one could use analogues of the 
Leray—Schauder.alternative principle, of Krasnoscl'skij's fixed point principle for asympto-
tically linear operators, or of various bifurcation theorems, and similar methodswhich build on 
differentiability conditions. To this end, necessary and sufficient differentiShility ' criteria for 
the superposition operator (4) in Holder spaces, as given in [2], are useful. 

In this connection, the following fact is worth mentioning: In the case of "classical" singular 
integral opera* tors S which act in L21 the composite operator A = SF is completely continuous 
(as operator in L2 ) on each ball in II,,, by classical compactness criteria in Lebesgue spaces. 
Consequently, for such equations one gets solvability results already by , means of the Schauder 
principle. On the other hand, not every singuhr integral operator acts in L2 : just consider opera -
tors of the form  = 8o + S1 , where'S, is "classical", and S is 'a compact operator in H which 

• is hot defined on L.. Furthermore, we point out that, in order to apply, topological degree 
techniques, one must deal with domains which are representable 'as closure of open sets; this 
excludes the possibility of considering compact sets of the above mentioned type (i.e. balls in 
H) as subets of Lebesgue spaces.	 S 

4. Concluding remarks	 •	 - 

In this final sect-ion we want to,indieate a,possible extension of the preceding re'sults 
to spaces of smooth functions which are suitable for (ordinary or partial) differential 
equations. More precisely, let us consider the space H, (= C n +) of all functions x E C' 
for which the norm 

lix I,H,,II = max {Iix LCII, 11x(" I I "II} 

makes sense and is finite, or the space J,, of all functions _v .E C' for which the norm 

1k I Jn..piI = max {JJx I CII, IIx ' I J.flII	 - 

makes sense and is finite. We do not describe here in detail how the results of the first 
section carry over to such spaces; it just suffices to replace x by	-	-
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It is natural to search for acting conditions (sufficient or necessary) for the super-
position operator (4) in such spaces. This is a rather delicate problem; in particular, 
the results of the second section do not carry over immediately. Sufficient conditions, 
of course, are easily found. For example, from the formula for higher derivatives of 
composite functions, (see e.g. [20, 22]) 

d(m)

Am	4'+-**-* 	 [s, x(s)] x'(s) ... 
8 U 

(with Am = [ao !(1 !) a 1 ! .. (in !)" am !]/rn!) it follows that the operator F acts he 

tween H 8 and FIm. p if either n > m or n = m and a	, pr:ovided all partial deriva-

tives / U)# (a + = m) of the function / are continuous. In this case F will he automat-
ically bounded continuous, and condensing; an exact computation of its growth 
function I2F however, has not been carried out yet. 

We still point out that the existence of the partial derivatives f	(a ± = m) of I is, in 
general, not necessary for the acting condition 1.'(H,) but only under the additional 
assumption that F be bounded. In this connection, we refer to the necessary and sufficient con-
ditions for F to be bounded in the space C' given in [11]. Moreover, we recall a recent resultof 
J•, Bauno [15] which states that, if the function / generates a continuous superposition opera-
tor F from Cn into Cm (in .n), it must be m.timescontinuously differentiable on the product 
[0, 1] x R.  
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