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An Appllcatlon of B. N. Sadovskij’s Fixed Pomt Prmcnple - -
to Nonlinear Smgular Equations ’
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Diese Arbeit befaBt sich mit der Anwendbarkeit des Sadovskijschen Fixpunktprinzips auf die
Losbarkeit nichtlinearer singulirer Integralgleichungen der Form z = ASFz, wo F ein nicht-
" linearer Superpositionsoperator und S ein linearer singulirer. Integraloperator ist. Bildet der
Operator F den ,,kleinen** Hélderraum H,° oder einen Raum Je g von Funktionen, die einer
Holderbedingung in Tntegralform geniigen, in sich ab, so ist er unter recht allgemeinen Bedin-
gungen k-verdichtend, so daB die obige.Gleichung wenigstens fiir kleines 4 eine Losung besitzt..
Andererseits kann man unter diesen allgemeinen Voraussetzungen den klassischen Fixpunkt-
satz von Schauder nur bedingt und den von Banach-Caccioppoli gar nicht anwenden; es wird in
der Tat gezeigt, daB sich das Banach-Caccioppoli-Prinzip nur dann anwenden li3t, wenn die
obige Gleichung linear ist. Dariiber hinaus wird gezeigt, daB man zur Untersuchung der obigen
Gleichung auch die topologische Abbildungsgradtheorie fiir Vektorfeldcr mit verdichtenden
Opera.toren heranziehen kann, -

f

B cratbe obcysapaerca BQ3MO\}HHOCTb"!lCl'IOJIBBOBaHHn ANA OOKA3ATENLCTBA Pa3peiunMoCTH
HeJIMHElHHX CHHTYJIAPHHX HMHTErpadbHLIX YpaBHeHuil Bupa x* = ASFz (3nece ¥ — Hemu-
HelfHRIl onepaTop cynepnosuunun, S — auneliHuli cumvmpumﬂ'umerpanbuun oneparop)
npuHuMna HenodBitxkHol Touku B. H. Cagosckoro. Ecan oneparop F peitctByet B ,,Manom*
npocrpancrse [énviepa H,° uau B npocrpanctbe PyHkuilt Jqg, YHORJIETBOPAIOWNX UHTE-
" rpasbHOMy ycnoruw I'éabaepa, To okasHBaeTcA, YTO OH, BOOGIIE TOBOPA, ABIAETCA k- -ynnoT-
HAWOWHM, YTO I MO3BOJIAET YCTAHOBHTB PA3PEIUMMOCTL PACCMATPHUBAEMOTO YPABHCHWA 10
Kpaiueit mepe’;uiA Madawix A. C pyroit CTOPOHB, B YCIOBHAX ITHX TEOPEM KIACCHMUYECKH N
npunittn HemofsHKHoOl Touky Ulaynepa rpyano, a npuniin Banaxa— Rauunonnoai pooGume
- HENbL3A NPUMEHATR; B CaMOM Jielle, [IOKA3aHO, YTO BO3MOMHOCTL NPHMCHEHUA NMpPUHIHNA
Banaxa— Kadunoninoan B paccMaTpuBaeMoM cayudae 03HAYAELT; YTO paccMATPUBAEMOe ypaB-
HEHile OKa3nBacTCA JuHehnbiM. Kposme Toro, B craTbe MoOKa3aHA TaKue BO3MOMHOCTD JUIA,
UCClel0BaHNA yPABHEHUI DACCMATPHBAEMOro TUMA MCMOJbL30BATH TEOPHIO BpaUleHHA - BeK-
TOPHBIX MOl ¢ YNIOTHAIHMME ONEPATOPAMH.

This paper is concerned with the applicability of Sadovskij’s fixed point principle to the sol- !
vability of nonlinear singular integral equations of .the form z = A8Fz, with # being a non-
linear superposition operator, and § a singular linear integral operator. If the operator F acts
in the “little” Hélder space /.0 or in some space J, g of functions-which satisfy an integral-
type Holder condition, F”turns out to be k-condensing under fairly general hypotheses such |
that the above equation has a solution at least for small A. Ori the other hand, under these gene-’
ral hypotheses the classical fixed point principles of Schauder does not apply immediately, and
that of Banach-Caccioppoli not at all; in fact, it is shown that the Banach-Caccioppoli principle
applies’ only if the above equation is lmear Moreover, in this paper it is shown that the above
.equation may be studied as well by means- of the topological degrce theory for vector fields
involving condensing operators.

13 Analysis Bd. 6, Heft 3 (1087)

’



K4

194 " J. APPELL, E. DE PASCALE and P. P. ZABREJRO . o

\
!

0. Introductlon . S
| :
Let X be a real Banach space and A .a nonlinear operator in X, Recall that 4 is

v

‘called Ic-condensmg if the estimate

(AM | X) Skp(M|X) (Me $(X)) (1)

holds, where zﬂ(X ) denotes the famlly of all bounded subsets of X; and y(- | X) is
some measure of noncompactness in X. Sadovskij’s fixed pomt, prmcnple states that
a continuous condensing operator 4 has fixed points in cach closed ball B, (x,)

={z € X:|x -z | X|| = r} which is mapped by 4 into itself, provided that k& < 1
([34, 36], see also [17]). Since both compact operators and contractions (in the norm
of X) are condensing (for example, with respect to the Hausdorff measure of non-
compactness, see below), this result generahzes Schauder’s classical fixed point
principle as well as the contraction mapping principle of Banach-Caccioppoli.

The purpose of the present paper is to apply Sadovskij’s fixed point principle to
the nonlinear smgular integral equation

()_;f (”)( 2(t)) dt. . @)

0 . . . . . [

‘

This equation can be written as operator equation

. g = 28Fs, : R . (3)
where ’ . _ : o ’
Fat) = f(t, z(0)) o v W@
is a nonlinear superposition operator, and ‘
' . 1 . N N 4 :
s = [ XD ymar | S ©)
y 0 :

" is a linear singular operator. The problem of verifying condmon (1) for the non-

linear operator A = SF, as well as that of finding an invariant ball for 4, obv10usly
leads then to the correspondmg probl(,ms for the superposmlon operator (4), smcc

_the contribution of the linear part (5) is compleétely described by its' “essential norm”

#(S) and its usual norm ||S|], respectively. Consequently, the natural problem arises
to find conditions for the superposmon operator to be condensing, as well as upper
estimates for its growth on a given ball.

. . .
- Let us mukc some observations on the first point. The most useful and appropriate measure
of noncompactness in applications is the so-called Hausdorff measure of noncompactness

7(M | X) ='inf E(M), S ©

. where E (M) denotes the set of all positive reals e for which M admits a finite e-net. As already.
mentioned, a sufficient Condition for some nonlinear operator A to satisfy (1) is a' Lipschitz

condition with the same constant k. “Unfortunately”, it may happen that the converse is also
true: a Lipschitz condition with constant k may turn out to be necessary for (1). This means,

- as a matter of fact, that the application of Sadovskij’s fixed point principle does not give new
', results in comparison with the classical Banach- Caccnoppoh theorem. This situation occurs, for

instance, if one considers the superposmon operator (4) in the space C of continuous functions -

‘on [0, 1], with the usual maximum norm. In this case onc can show [1] that condition (1) (for
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the measure of noncompactness (6)) is equivalent to both
IFz — FPyiCll S klle —y | Cll (2,y€C)
s, u} — fs, V)| Sk |u ~o (wvER).

A similar statement holds in the space L of all measurable functions which are p- mtegrable on
[0, 1] (see again [1]). '
It turns out, however, that the ‘situation is quite different.in other functlon spaces. For
example, if one consnders the operator (4) in the Holder space H,, equlpped with the norm
t . ’

|lz(s) —z(t)] -

fle | Hyjl = |x(0)| + sup Tl , . , 1)

then condition (1) is satisfied for a reasonable class of functions, while F is Lipschitz in _this °

norm only if the function f has the form f(-, u) = g(-) u + &(:), i.e. is linear in u! -

- 1t is interesting to notice that the Holder spaces H, are fundamental in the study of singular
mtegml operators. (Singular integral operators do not act in the space C'; they do act in L, for
1 < p < oo, but there are ““too few”’ nonlinear operators acting in L,: in fact, the superposition
operator F maps L, into itself only if the generating function f is sublinear in u [22: p. 349)).
To summarize, Hblder-type spaces like H, are the right ‘‘candidates” to provide “essential”
applications of Sadovskij’s fixed point principle to nonlinear singular integral equations.

It is worth-while mentioning, by the way, that the advantage of using Sadovskij's principle
rather than the Banach-Caccioppoli theorem is already evident by the fact that, in order to
verify condition (1) for the operator 4 = SF, the contribution of § is given by the essential
norm g(S), while for a Lipschitz condition one must take into account -the operator norm |jSjj.
In most applications the difference between thesc two norms is considerably large. This fact

- allows one to strengthen existence theorems for nonlinear singular equations like (2) not only

in Hélder spagces H,, but even in Lebesgue spaces L, (actmg conditions for classncal singular
linear operators in H, can be found e.g. in [32], in L e.g. in [‘33]) '

The plan of the paper is as follows: In the first section e introduce and study a

class of spaces J,53 (0 <ax=1,0<B < o) consisting of continuous functions x '

on [0, 1] whose modulus of contmmty w(z, o) is mt,egrable with some weight in ¢
(B < o0) or is controlled by some power of ¢ (8 = o0); in particular, the space J,

coincides with the Hélder space H,. Special attention will be paid to the study of
the Hausdorff measure of noncompactness (6). Section 2 is devoted to properties
of the superposition operator (4) in these spaces; in particular, we shall be inter-

_ested in condition (1). Fmally, some applications.to nonlinear singular integral

equations will be indicated in Section 3, and some pOSSlble extensions will be discussed
at the end of the paper. - -

1. The spaces Jap

Throughout this section, let 0 <« <1 and 0 < 8 < co. leen a continuous func-
tion z on [0, 1], let
w(x, 6) = sup {|z(s) — z(t)]: 0 < Sts1ls—H < o}

denotc its modulus of continuity. We wnte x€J, 5 (B < oo) if

Jo.8(x) = fa“ﬂ“’w(x‘, o)fledo < co.
]

For B = « the set J, 5 with the norm I | Ja.gll = max {||- | Cll, 7a.5(-)*/} is ‘a Banach
space. Similarly, we write x € J, , if w(z, 06) = 0(0°), i.e. jo, () = sup {o~*w(z, 0):
0 <o = 1} < co. The set J, o, with the norm |- | J, |l = max {[|- | C|l, ja ()} is &

13* .

’
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'

- Banach space. Observe that J, ., is nothing else than the Holder space H,; the

equivalence of the norms || | J, .l and |- | H,|| is a simple consequence of the esti-

mate |z | C|| < |2(0)] + fa.o(2). Moreover, we remark that J, g coincides with Muh-

tarov’s space I, , (see [21: p. 79)) for @(6) = o'—° and p = f/«. .
For each subinterval (a,.b) S (0, 1], define a linear operator P, , by

. ‘2(a) if 0<s<a, | e
PO‘D‘?(S) = x(s) if a é 8,§ b, ] (8)
w(b) if, b<s <. _

Obviously, P, acts in each of the spaces J. .p» and has norm 1. For 0<f <00, let
J° be the subspace of all functions z € J, g for which

© o lim g g(Pg ) = 0. ' : N (9)
b—a—0 S~ . . .

1t is not hard to see that, for f < oo, J9 5 coincides with the whole spacc J‘x g- On the other
hand, the subspace J9 5 (0 < & << 1)-consists precisely of those functions z € J, o for which
w(x, 7) = o(¢®) as o — 0, and hence coincides with the “little” Holder space H,%; finally, for
& = 1 the sibspace J9 o contains only constant functions. (We remark that the “Ilttle” Holder
space H,® (0 < & < 1) can be characterized equlvalently a's closure of the space C! of conti-
nuously dnfferentm.ble functions on [0, 1] with respect to the norm (8), see’(38], and has impor-
tant applications in both partial differential equations, see [25], and singular-integral equations, .
see [21] and below.) S

"Let us_point out an analogy between the spaces J, g and the Lorentz spaces L ¢ w hich arise’
- naturally in interpolation theory for linear operators (sce e.g. [5, 23, 31]). Ln fact, if for some

measurable function z on [0 1}.we denote by w(z, ¢) the measure of the Lebesgue set {s: [z(s){~
1

< 1/a}, the-condition f 6~ Dyy(z, 6)9'P do < oo holds if and only ifx belongs to the Lorentz space

. Ly, 4 (in particular, the Lebcsgue space Ly, for p = q); mmularly the condntnon sup {oPw(z, 0):
0 < 6 £ 1} < oo holds if and only if z belongs to the Maréinkiewicz space M, = L, « (sce,
e.g. [16 41]) Moreover, if the operator (8) is rcpldced by the multiplication operator

PDx(s) = /D(s) z(s), : - _ (10)

) where «p denotes s usual ‘%he characteristic functlon of D € [0, 1], and if (9) is replaced by the
analoguous condition lim [|[Ppz.| L, | = 0, then instead of J% 4 one obtains the space L}, ¢ of

. ~mes D—0
all functions z € L, , with absolutely continuous norm.

~ Let us still remark that other choices of the function w(z, -) (in terms of measurable or con-
tinuous z) lead to other well-known function spaces. For example, Ietblng

w(x,o)=sup{f|x(t)]dt:0§a<ﬁ§ l,ﬁ—aga},

one gets a class of spaces which contains in particular the Morrey- Campanuto spaces (which
are fundament.al in the theory of elliptic systems, see e.g. (24, 29)). Similarly, letting

8

f z(t) dt

a

(=, a) = sup{

:0§a<ﬂ§1,ﬁ—cx§a}, -
one obtains a useful generalization of the Bogoljubov spaces (which occur i averagmg methods
for ordinary differential cquatlons, see e.g. [40]

As for the Lorentz spaces L, the: spaces J. pare “decre'asing” in « and “increas”
mg” in 8; more precisely, the following holds.

PropOSItlon 1: ForO <e<x<1,0< B < oo, and 0 <y = oo the lmbeddmgs
J,p_J° C o & J,e, hold.




;o . . B. N. Sadovskij’s Fixed Point Principle 197

Prqof' First, for x € J, 5 we have
9- N f =Nz, 1)fl* dr = o(1) (0 — 0)

and hence w(z, 6) = o(c°) as, o —> 0. The second inclusion is tnvxal Fmally, for
2 €J, , wWe ha.ve .
1 .
7:A——t.}'(x) § ja,m(x).//(a_.‘) f 6—(y+l)aay/(a——t) dU‘
\ 0 ’

1
= Jlo.l@)?6=) [ ori=stale-0ds < 00; -
0 ‘

~
K]

- and ~hencke the third inchision holds i

In what follows, the notion of a measure of noncompactness will be of fundamental
importance. Following the axiomatic settmg of B. N. Sapovskiy [36], we call a real
nonnegative function y(- | X) which is defined on the system #B(X) of all-bounded
subsets of a Banach space X, a measure of noncompactness, if it has the following
propertles (M denotes the closure and co the convex hull of M):

(i) “p(M | X) = 0iff M is compact, N : . R /
(i) , pEM|X)="pM)|X), o *
(iii) - (Mo N|X) = max {yp(M | X), p(N | X)},

(iV')b W(‘M:*-le)éw(MlX)-f-W(N}X),

(v) w(’M | X) = Al p(M | X),

(Vi) (M| X) S p(N | X)if M SN.

v

" For example, the Hausdorff measure of noncon1pactness (6) satisfies all these pro-
perties, but 1t is also often convenient to_invent new measures of noncompactness
which are in‘some sense “natural” for the problem under consideration (see, -for
example, the monograph [4]). ~ :

The next theorem provides explicit formulas for the Ha,usdorff measure of non-
compact,ness in the spaces J, 5 (x £ 8 < o0) and J9,

Proposnt,lon 2: The equality

KM Jop) = wo s M) (M € B, p) e ‘
holds, where ' '
! alp :
L W p(M) = Tim sup {f t““”w(x 7)ble dt} ; \
0—>0 zEM

Y,

C M) ) = W M) (M € B))

- holds, where

simila‘rly, the equality

¢ .
¥ oo( M) = lim sup o—*w(z, 6).
o—0 TEM
Proof: Let us prove the second equalit,y, the analogous first equality is proved
in ‘the same way with only a few minor changes. So let, n > y(M | J? ), and
let {z,, ..., z,} be a finite »-net for M in J9 . Fix 2 € M and choose z; such that



198 J. AppELL, E. DE PascaLE and P. P. ZABREJRO ~

Jo.00ol® — 2;) = sup o~ w(xr — x;,06) = 7. Since z; € Jaoo,we have o~ *w(zj, 0) < ¢ for o

sufflclent,ly sma.ll and hence Yool M) < 2(M|J°) + & Since ¢ is arbitrary,
have 40 (M) < 2(M | J°.).
- .On the other hand, given ¢ > 0, we can find 6 € (0, 1) such that ¢~°w(z, o)
LYl (M) +eforo < 6(umf0rmly inze€ M) SmceMls bOunded inJ? ,itis compact
in C; thus we can find a finite ¢d*net {x,, ..., z,} for M in C which consists (with-
out loss of generality) of functions z; € M, 1e fulfllls 6~ *w(x;, 6) < ¢ for ¢ < 6 and
j=1,...,m. Givenz € M, choose x; such that ||z — ;| Cll < eé“ We have then
’
a‘“d)(x—xi,a)g{ _2l]x_x,-|ci]1_§2£ - for 0> 6
. . 0~ "w(z, 0) + 6 °w(z;,0) = (n +¢) + ¢ for o =4.
Thls shows that H:v — z; | O oll £ max {56" 7 + 2¢f = 9 + 2¢, and hence y(M | J% )
< y)a OO(‘IM) 1 o

Let us remark that, by the Arzela-Ascoli thcorem, the function

tpoo(M) = lim sup w(z, ) ) . (11) .
o—0 ZTEM - . .

~

is 2 measure. of norfcompzlptness in C; it is already mentioned in [36] in the form
) ’ ’ .
Yool M) = Tim sup max |z — z, | C|[,- . ' 12y
o—0 ¥eM 1<o . - \ .

) where z, is the shift

(s)-— x(s—{—r) for 0s=<1—r,
LT 2(1) for. 11—t <s<1.

(The equality of (11) and (12) follows from the fact that the maximum in (12) equals w(z, o).)
By standard techniques one can show that the two-sided estlmate 2~ ‘zpoo(M) S (M| 0)
= 2y(M) (M € B(C)) holds.

One could expect that similar estimates can be obtained for the Hausdorff measure of non-
compactness in the Holder space J, o = H, (which is not covered by Prop. 2). It turns out,
however, that this is not possible. Moreover, the compactness criteria in the space H, (or even
more general spaces) with can be found in the literature (as e.g. (19, 21, 28]) are false In fact,
in the book [21], for instance, the authors claim that a necessary and sufficient condition, for a
set M to be compact in the space H, is'that M be closed and bounded, and that the family of

functions of two variables /
z%(s, t) = w G+0 (13)
s — t|= .

(for 2 running over M) be equicontinuous either on each closed subset which is entirely contained
in the upper triangle Ny = {(8,8):0 < s <t <1} or lower triangle A_ = {(s,8): 0 St <s

< 1}, or on the union A,u A_. (As a matter of fact, this equicontinuity condition is formulated
“not very precisely in the above mentioned papers, and the error is just due to the confusion
between these two conditions.) Tt is not hardto see that the equlcontmunt) condition on each
closed subset of A, or A_ is necessary for the compactnéss of A in H,. Nevertheless, it is not
sufficient, since it is satisfied already by any set M which is compact merely in the space C. On
the other hand, the equicontinuity condition on the whole set A, u A_, together with closedness
and boundedness, is certainly sufficient for a set A to be compact in /{,. Nevertheless, it is not
necessary, since it fails to hold even for the singleton M = {x}, where 2,(t) = ¢ [sint~}|* € H,.
In fact, considering the sequences '

(8q5 tg) = ([2n7 + 721, [2nn + n]f‘) and (8, t,") = ([(2nn]Y, (27 + n=/2]71),




one obviously has (s, ¢,) — (3,", ;") — 0, but '

- . « « l1+a
|26 (Sqs t) — Zo® (80”5 L) = 20 (2n + 1)® 4 (20) - 2t = 0,
~ . ne 1\« R A
| ers)

and hence the function (13) can not be uniformly continuous on A, u A.*.

Let_ us observe that a similar situation occurs in the Marcinkiewicz space M, = L, : One

does not know any simple compactness criterion in this space, nor any appropriate measure of
noncompactness. : :

~ Let us return to the spaces J, s, and comparé bep. 2 with what one can say in
the spaces L, ,. Recall that a subset M — L, , is called absolutely bounded [41] if

Tim sup [|Ppz | Ly 4l = 0, b

mes D0 TEM ;

where P, is defined in (10). Absolute boundedness is'essentially weaker than.com-
pactness: Indeed, the imbedding of L, , into L,_., (in particular, of L, into L,_,) is
absolutely bounded, but not compact. On the other hand, Prop. .2 shows that the
relation - } . i -
Iim Sup Ja,p(Papz) =0 * N

b—a—0 zeM

" (where P, , is how given by (8)) describes preciscly the compa'ct subsets M of JOg:in __

" particular, one verifies easily that the imbedding of J,,5 into J.Z.,, is compact. It
is due to these facts that the behaviour of the superposition operator in Holder
spaces is quite different from that in Lebesgue spaces. A detailed analysis ‘of the
superposition operator in the spaces J, s and J,,, will be carried out in the follow-
ing section. ’ ‘ ‘

2. The superposition operator .

Let f be a real function on [0, 1] X R, and let Fx(s) = f(s, x(s)) be the correspondhié
superposition operator. If one considérs the operator F between two normed spaces
X and Y, many of its analytical and topological properties can be described by
means of the growth function : R '

up(r) = sup {[|Fz | Y]|: ]z | X|| = 7}

For example, the relation urp(r) = O(r) gives information on invariant balls for F,
while the relation ug(r) = o(r) (r = 0 or r — o0) means, roughly speaking, that F is
differentiable, respectively, at zero or infinity. o :

- Itis eflsy to see that the operator F maps the space C into itself if and only if f is continuous
on the product [0, 1] X R (see, e.g., [37]); moreover, in -this case F is-always continuous and
bounded, and up(r) = max {|f(s, u)|:.0 =s =1, |u| £7}. This shows that the operator F
exhibits in the space C a similar behaviour as in Lebesgue spaces, where-also the acting condi-
tion F(L,) € Ly (g < o) implies already the boundedness and continuity of F (see e.g. [22:
§.17]). In Holder spaces H,, however, the situation is completely different: In fact, the acting
condition F(H,) S Hjy does not imply the continuity or boundedness of F (see [6, 10]). More-
over, if Frmaps /, into Hp, the generating function f need not be continuous, and hence F does
not act in the space C [10]. If the function f does not depend on s, however, the acting condition
F(H,) S Hj does imply the boundedness of F, but F may still be discontinuous [3, 6]. Let us
remark that the superposition operator has been studied in Holder"spaces by several authors
[3, 6— 14, 18, 27, 30, 39] but the analysis is far from being complete. For instance, one does not
know necessary\and sufficient conditions for the continuity of F on the whole space H,.

B. N. Sadovskij’s Fixed Point P;inciple 199
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[ I3
[N

Let us recall the following basic result [13, 14] which we shall need in the sequel.

Proposition 3: The superposztwn operator F whwh 18 generaled by the function f
.maps H, (o7 H,%) into Hy and is bounded if and only if the relation

y(r):= supr 5W(r T, n’“) <oo . (14)
o<tr= . .

holds for any r > 0, where ‘ .
< W, 7, &) = sup {If(s, w) — &, )] :

15)
Oés,tgl with |8 —t] < 1; OS|u|,[v|Sr with lu—v]SS} (
In thzs case the growth function pp is given by .
- ] L ’
' pr(r) = max {g(r),p(r)}, . ' : (16)
where : o ’ . ,

. @(r) = sup {|f(s; %)I 0=s=1,ul <. — : (17)

/. We point out again t,hat the boundedness of the opemtor F does not follow from the fact that
F maps H, into Hy; consequently, Prop. 3 does not provnde just a necessary and sufficient
-acting condltlon F(H,) S Hp (or F(H,°) & Hg). Moreover, under thé hypotheses of Prop. 3 the
operator F need not, be continuous on IIa, as mentioned above,” global continuity criteria for F
in tcrms“of the function f are not known.

.

: Snﬁllarly, the following holds.

Proposntlon 4: The superposztzon operator F which is genemted by the function f
maps H,® (or H,) into H® and is bounded if and only if, in addmon to (14), the relation

lim v=8W(r, 7, ex ) — O (resp lim t=fW(r, 7, r1*) = O)
T,e—=0 —0

holds for any r > 0. In this case, the growth /unction tr.is again given by (16), and F is
continuous (resp scompletely continuous).

We now pass to the problem of characterizing the functlons f which genera,te a Lip-
schitz continuous superposition operator; we confine ourse]vcs to the case x = 8.

Proposition5: The superposztwn operator F which is qenerated by the function f
satisfies a Lipschitz condition in H, (or H.) if and only if f has the form f(-, u)
- . =g()u + k(-) with g, h € H, (resp. H.%).

Proof: Thefact thatsuch a function generatesa Lipschitz contiruous superposition
" operator in H, and H,° is obvious. Conversely, suppose that F satisfies a Lipschitz
condition in the norm, (7), re.

|F2(0) — F?/(O)l + %, m(Fx - F?/) = L[]x 0) —y(O) + Jo.olz —x)]  (18)

'; for anyx y€H, Fl\ g, 7€[0,1}, ¢ <"r and Uy, Us, V1, Vg € R, and define two func- -
tions z, and Zz, by

u; ' f 0<s<Zo0,

U — v

zi(s) = (s )+v, if o<s=n,

lo —zj* "
v . f s
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(¢ = 1‘, 2). dbviously,
[z, — 1'2) (s) — (2, — z) (8)|

=Tl e 6 =t — (i —w) (s — 7 A

rl" ‘ .
- (uy —vy) (¢ - ) 4 (4, — w) (t — 7)°) - ) A
< = rr' s =23 — s + ) (s — 7)* — (¢ — 7)°]

foro = ¢ =t < 7;since ](s —)— (=) = |s — t]*, it follows that j Ta., w(x, — T,)
= Uy — vy — Uy + wofflo — 7| Substituting z = z, and y = x, in (18) glves

100, ) = 0, ). 22 =10 2) = Jr o) /2

[uy — vy — %y +’Uz|]

lo — z|°

=L ['ul — up| + N
Multiplying both sides of this mequallty by |6 — z|* and let,tmg |o — zi bend to zero
ylelds (by the contmmt,y of f(:, w)) .

|f(°' ul) - f(o %) — f(o, v) + f(" '02)| =L qu — U — 'Ul + g T (19)

Now define the function ¢, on R by @(w) = f(o, w) — f(, 0); setting u, = a + b,
Uy = a, v; = b, v,-= 0 in (19), we get p,(a + b) = p.(a) + @,(b), i.e. @, is additive.
Further, setting.v, = v, = 0 in (19) gives |g,(u;) — @.(us)] <L |u, — sy, i.e. @, is
continuous. Thus ¢, is linear which’means that g,(w) = g(s) w, hence, as claimed,
f(s, w) = @.(u) + f(s, 0) = g(s) w + h(s), where both functions h = FO and g = F1
— F6 belong to H, (with 8 being the zero functlon)

In-case F' maps H,° into itself the proof remains almost unchanged; the only differ-
ence is that instead of the functions z, and z, one must consider functions z,* and ",
defined by -

o if 0=s=<o,
uU; — v v
(or—'r)"+‘(

v : if r<sg1,

z¢(s) = 8 — r)“+“+lv.- if e<s<0,.

with & positive r

We remark that the basic idea of this proof is taken from [26), where an fmalogous result is
proved in the space H, of Lipschitzian functions,

\

We are now interested in condmons on f which ensure that F is condensmg with*
“respect to the measure of noncompactness (6) in H,°; we confine ourselves again to the
case x = f.°

Proposi tion 6: Suppose that the superposition operator F which is generated by the
function f acts in H,° and s bounded. Then F is k(r)-condensing on the ball B,(0), where

k(r) = sup lim o~ v=*W(r, , 01*) C . " (20)

0<esar 1—0

with W given by (15).
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Proof: Let M be a subset of B,(0) and a = (M | H,°) its Hausdorff measure of

" . noncompactness. Further, given % > 0, choose 7, > 0 such that t=*W(r, t, p7°)

S(k(r) +n)e (0 <7 <7t)and w(zr,7) S (@ + 7)) (€ M,0 << 1)
Then for any x € M the inequality , .

r‘“w(]f’x?'r) < t'“W(r, 7, w(z, 7)) = Wi, T, (@a+n) )= (k(r) + n)(a +n)

holds (0 < 7 < 7,),”and hence, by Prop. 2, y(FM | H;°) does not exceed (k(r) + )
- (@ + 7). Since 7 > Ois arbitr&ry, we have Z(FM | HO) < k(r) (M | HGD) as claimed 1

As already pomted out above, the operator F is k-condensing in the space C iff it satisfies a
Lipschitz condition (\nth Lipschitz constant k). The preceding two propositions show-that in
the space H,° the operator F may very well be k-condensing without satisfying a Lipschitz
condition. To give a very simple example, already such a ‘‘harmless’™ nonlinearity like f(u) = |u|
generates a superposition operator, F' which is 1-condensing, but does not satisfy a Lipschitz

. condition, by Prop. 2, in any of the spaces i, or I ° (the latter fact may be proved also directly
. by considering thé functions z,(s) = s — 1/n and y,(s) = s). . ' -

Let us now consider the superposibion‘operatbr in the spaces J, g (6« =< B < -o0).

Propos1tlon 7: Let the function f be contmwms on [0, 1]>< R and let (xé = By.
Suppose that for any r € (0, co) the estimate

T CHOW(r, 7, 7%) S olr, T, A) + At‘lgﬂ/“ (1€ A(;), 0 <7) (21)

holds for some set A(r) < (0, 00), where W is given by (15), and c(r, -, 4) is integ/able on
[0, 1] for r € (0, o) and A € A(r). Then the superposztzon opemtor F whzch is generated
by [ maps J, ginto J, s, is bounded, and satzs/zes oo~

pr(r) < max {g(r), p(r)}, - S o : (22)

where @ is again given by (17), and .
L 1. . L
p(r) = inf [fc(r, 7, Ay dr.+ ).rﬁ/“] .
- learyLo ‘ '

Moreover, F is continuous and k(r)-condensing on each ball B,(0), where

k(r) < inf A(r). I (@)

Proof: Choose z € J, g with ||z | J, 4l < r. For 2 € A(r) we have -

1 1 -
f T Dgy(Fx, 1)%7 dv < f T—+n W(r, 7, w(z, r))"/" dr
0 ) o . S

‘-

1 1 : 1 )
< fc(r, T, A).dt + 7 f T B+ (z, T)e dr = fc(r, 7, 2) dv + 2. 4(%),
0 0 o .

N .
hence -~ . . . _ )

c . ) 1
Fxed,s; and j,o(Fz) < [ e(r, v, 2) dv + 2. p(2). .
. N o .
. q :

Since f is continuous, we have ¢(r) < oo, and thus (22) holds.
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We show now that F is k(r)-condensing on the ball B,(6), with k(r) as in (23). To this
end, choose M & B,(6), and let a > y(M | J, g). Given z € M and A € A(r), we have

[ = C+0(Fz, v)87 de g fc(r, t,2)dt + A [ =P+ (z, T)fldy.
0 o 0

For ¢ sufficiently small, the rlghb -hand s1de of this inequality does not exceed

. fc(r 7, 2) dz + Jafl*, by Prop. 2; but this means that ‘ \
0
lim sup fr“"*”w(Fx ) dr < 2all?, -
6—0 zEM © -
and hence, again by Prop 2, /(FM | J,, 6) < Aa. Smcea > #(M | J,,p) is arbitrary, we
have 7(FM | J,.8) < k(r) /(M | Jo.p) as claimed. )
It remains to prove the continuity of F. Since F is condensing, it suffices t6 show
that F maps any sequence which converges in J, s into a uniformly convergent
sequence. But thls follows from the contlnmty of f U

- We do'not know if equality holds in the estimates (22) and (23), and-whether or not
condition (21) is necessary for F to map J, 4 into JM

.To illustrate Prop. 7 we consider the case when the function (15) sumsﬁes an est,lma.te

W(r, 7 &) < alr, ) + b(r) & S . (24)
for some x € (0, o0). Then condition (21) leads to the two relations
ST A . .
[ vap, rdr < oo - - C 25)
0 .
and . : . B
’ © L b(r) TRV BeRdly < ofr, 7, 2) 4 ArIgPle 0=e=1), , + (26)
where N
1 , X .
f(;(r, ,2)dt < oo (r€ (0, 00), A€ A(r)). : @en”
0

The first relation is simply analyzed: In fact, it holds for y < y, and 8 = §,, with two
.positive numbers y, and ‘§,, possibly except for.the extremal values Yo and.d, themselves.
The second relation (26) is harder to analyze; for sake of defmlt,eness let us introduce the auxil-
iary function

D(u, v, u, 4, v} = max {up# — Arlp’}. N
0sesr N : \

‘If c(r, - }.) is integrable\, as claimed in (27), relation (26) may' be written as

1 - . -~

f¢(§é,£,b(r)t“(5*l’+*ﬁ,l, T)d‘t<00. o (28)
Yy o«

T .
“Hence, this integrability condition has to be verified in order to prove (26 ). By an elementary
calculation one obtains the explicit formula ’

urk — A=y ' if x4 <vandvir—s < uur

D, v, u, A1) = (v — p) (la)v=s) (e el iy < v and vArTE > pur
. max {0, ur* — Ar1rY) v if >0,

: , 1 (29)
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By means of this forinula, it is possible to analyze condition (28) more exp]icitly:

s

s The case xx.> y: If 3 <1, the condition v»2r*—# > uur appearing .inv (29) reads ¢
< Ar(1=9812[xb(r) and hence implies that, for any 2 > 0 and sufficiently small z > 0,

D]y, BI&, b(r) T=8+1+x8 } ) = “—.’(a-g1—xﬂ)/u—x)+x/u—x;
with some constant ¢ > 0. Since —(8 + 1 — %8)/(1 — %) + #/(1 — x) > —1, condition (28)
holds, and A(r) = (0, o0). On the other hand, if x > 1, the expression url‘ — JAt~'r* under the
maximum sign in (29) becomes negative if and only if v < /u—lr"‘l‘, it follows that, for any

A>0and sufflcxently small 7 > 0,

D(xd]y, Blo, b(r)/'r_”‘-'”*'j", A7) =0.
Conscquently, condition (28) holds again, and A(r) = (0, ). To summarize, under the hypo-
theses xx > y, (24) and (25), the operator F' maps Ja gintoJ 4 and has the properties mentioned
in Prop. 7.

The case o = y: The formula for @ shows that then ®(xd/y, f/x, b(r) 7=+ D+%B 2 ) = cr-1
for sufficiently small T > 0 (with some constant ¢), and hence integrability fails except for,
¢ = 0. The latter condition holds only if x = » or, equivalently, if d = and wrt-< Az~

~hence 7 = B6-1b(r) r'¥-PV=, Consequently, the operator & maps J, 4 into J,s in this case only
for 4 = B, and the set A(r) reduces to the interval [6-1h(r) rt¢— /’)/“ 00).
The case xax < y: The formula for @ shows immediately that the function @(xd/y, f/x, b(r)
T—0+1=x8 ) 7)is never integrable on {0, 13.

We may summarize our discussion as follows: Condition (24) guarantees tkat the mperposmon
operator F maps, "Jop into J, g if either xx >y, or xx = y and & = B. In the first case F' is com-
pletely continuous, in the second case only condensing.

~
7

3. Singular integral equations

Combining the results of the previous section on the superposition operator with
houndedness results on linear singular integral operators (more precisely,” upper
estimates for the norm and the radius of the essential spectrum. of such operators in
- spaces of type.J, 5), one obtains various existence theorems for the singular equation
(2). In this section we shall give just one simple result which, however, cannot be
obtained by the classical theorems of Schauder and Banach-Caccioppoli. Consider the.
nonlinear mtegral equation (2) or, equivalently, the nonlinear operator equation (3).

Suppose that the kernel k of the Imear part (5) satisfies the following assumptions:

(SH) k is continuous on [0, 11X [0, 1] with k(0, 0) = k(1, 1) = O;
(S2) ks, 0y — k(s”, 0)] |In |s" — ”'|| = o(}s" — s” *) as |s' — s —=0;
'(SS) (0, ¢") — k(O ) | =o([t' —t"|*)ast" —t''| = 0.

These conditions ensure the boundedness of the operator (3) in the “little” Hélder spucé
. H (0 <« < 1)[21: p. 188]). In order to apply Sadovskij’s fixed point principle to equation
("), it is necessary -to find estimates for both the norm and essential norm of the operator (5)
which are, in general, different. Without gomg into details, we just mention that, for example,
the classical Hilbert operator . ,

1 T
Sy(s) = fcot n(s — t) y(t) dt -
o .

has essential norm »(S) = 1, while the operator norm ||S|| heavily depends on the space involved
(see [32] for Holder spaces and [33] for Lebesgue spaces) and may be, generally speaking, much
'Iarger than #(S).
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Suppose now that the condition _
'lim T;“W(T, 7,e1°) = 0 ’ -
holds, with W glvcn by (15). By Prop. 4, this implies that the superposmon operator
" F acts in H,% and is continuous. Let ¢ be defined as in (17), and let

y(r) = sup r“W(r 7,77°) and k(r) = sup im o~ 1z=*W(r, t, 07°); -
0<t§l 0<psr =0

by Prop. 4 and 6; F is bounded in H,° if yp(r) < oo, “and condensmg in H ° xf k() < oo.

= Applying Sadovsku s fixed pomt principle to the operator. equation (3), we arrive at

the following existence result. - !

Proposttlon 8: Suppose that, for some r > 0, the inequalities. '
lSHe) <7, 2SIwn <7, S kO <1
hold Then equation (2) has a solution in the ball |z | H,O|| < r. o v

Smnlarly, using Prop 7 instead of Prop. 4—6 one obtains e:ustence theorems for
smgular equations in the spaces J, 55 we do not dlscuss this in detail.

Let us still make an dddmonal remark. In this paper we dlscusqed only the applicability of

“Sadovskij’s fixed point, principle to cquation (2). However, one-could arrive at similar concln- .

sions by means of the topological degree theory for condensmg vector fields developed by
SADOVSKIJ in [34— 36]. Moreover, for studying equation (2), one could use analogues of the
Leray —Schauder. alternative prmc:ple of Krasnosel’skij’s fixed point principlé for asympto-
tically linear operators, or of various bifurcation theorems, and similar methods which build ‘on
differentiability conditions. To this end, riccessary and sufficient dlfferentlablllty criteria for
the superposition operator (4) in Hélder spaces, as given in [2], are useful.

Ini this conncction, the follo“mg fact is worth mentioning: In the.case of “classical” singular.

mtcgrul operators S which act in Lz, the composite operator 4 = SF is completely continuous
(as operator in L,) on each ball in H,, by classical compactness criteria in Lebesgue spaces.

Consequently, for such equations one gets solvability results already by means of the Schauder
principle. On the other hand, not every singular integral operator acts in L,: just consider opera-

tors of the form § = S, + ), where'S, is ““classical”, and 8, is a compact operatorin H, which
"is not defined on L,. Furthermore, we point out that, in order to apply topologlcal degree
tcchmques one must deal with domains which are representable as closure of open séts; this
excludes the possibility of considering compa.ct, sets of the above mentloned type (1 e. balls in
H,) as subsets of Lebesgue spaces. s

4

! ’

4. Coneluding remarks ' _ ' ‘ -

,

In this final section we want to lndlcate a possible extension of the preceding results
to spaces of smooth functions which are suitable for (ordinary or partial) differential
equations. More precisely, let us consider the space H,, , (= C"+¢) of all functionsz € C»
for which the norm : ) o

Mz | Ha ol = max {|lz | Cll, [l | H.|l)
makes sense and is finite, or the space JJ, , g of all functionsz.€ C" for which the nz)rm

iz | Jnopll = max {llz | CYl, |z | Jo 4l il

. makcs sense and is finite. We do not describe here in detail how the results of the flrst

section carry over to such spaces; it just suffices to replace = by ™, . o

' A . : .

~
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It is natural to search for acting conditions (sufficient or necessary) for the super-
position operator (4) in such spaces. This is a rather delicate problem; in particular,
the results of the second section do not carry over immediately. Sufficient conditions,
of course, are easily found. For example, from the formula for higher derivativ\es of

. composite functions' (see e.g. {20, 22]) -
d—('zf(s z(s)) = o 2 - A -1/‘V°‘°+“‘+"'“"" [s, 2(s)] 2'(8)" -+ 2™(5)m
ds(m) ’ _ao+3‘+20:+~~.4—ma =m " aa'u“ﬁ_ma"' 5% 8) 8) "z (8)

(with 4, = [oo!(11)™ 0, ..o (m1)em & 1}/m 1) it follows that the operator F acts be-
tween H, , and H, ;if either n > m orn = m and « = §, provided all partial deriva-
tives fim)s (x + B = m) of the function f are continuous. In this case F will be automat-
ically - bounded; C(])nbin uous, and condeénsing; an exact computation of its g’rowth
function ur, however, has not been carried out yet.
. vy .

We still point out that the existence of the partinl derivatives /;f."u’ﬂ (x + B =m) of fis, in
general, not necessary for the acting condition K(H, ) & Hp g, but only under the additional
assumption that F be bounded. In this connection, we refer to the necessary and sufficient con-
ditions for F' to be bounded in the space C! given in [11]. Moreover, we recall a recent result of
J. BruNING [15] which states that, if the function f generates a continuous superposition opera-
tor F from C™ into C™ (m < @), it must be m-times_continuously differentiable on thé product

[0, 1] X R. : , . -
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