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The points and localisations of the topos of M -sets

Ilia Pirashvili

Abstract. In previous papers, we were able to prove that, much like in classical algebraic geometry,
it is possible to recover our monoid scheme X from the topos Qcoh.X/. This was achieved using
topos points and localisations of Qcoh.X/. With this philosophy in mind, the aim of this paper is to
study the topos of M -sets for non-commutative monoids, especially their points and localisations.
We will classify the points and localisations of M -sets for finite monoids in terms of the idem-
potent elements ofM and idempotent ideals ofM , respectively. Some of the results obtained in this
paper can already be found in previous works, in direct or indirect forms. See the last part of the
introduction.

1. Introduction

It is well known that the category of quasi-coherent sheaves over a quasi-separated scheme
(of rings) is an abelian category, from which one can reconstruct the original scheme [2,
7, 20]. We were able to prove a similar result for the topos of quasi-coherent sheaves over
a monoid scheme X , under some assumptions on X [17, 18].

One of our next overarching goals is to study “non-commutative monoid schemes”.
Much like in classical algebraic geometry, a sensible approach for this seems to be via
studying quasi-coherent sheaves over them. The reason for this is that in the affine case,
quasi-coherent sheaves are justM -sets, which is a topos irrespective of the commutativity
of M . Throughout the paper, we shall restrict ourselves to the affine (non-commutative)
case, though we will give a brief reminder of the non-affine commutative setting, in the
introduction. It should also be pointed out that monoid schemes can be seen as a natural
generalisation of toric varieties. As such, a better understanding of the non-commutative
case could also be seen as progress towards understanding “non-commutative toric vari-
eties”.

We recall the following: letM be a commutative monoid and Spec.M/ its set of prime
ideals. Like for classical schemes, one can define the Zariski topology on Spec.M/ as well
and it too admits a structure sheaf O, defined in much the same way as in classical algeb-
raic geometry. This is called an affine monoid scheme and one obtains monoid schemes
by gluing affine ones [6]. Monoid schemes play an important role in F1-mathematics and
K-theory; see, for example, [3, 5, 6].
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As we noted in [17], the category Qc.X/ of quasi-coherent sheaves over a mon-
oid scheme X , satisfying some finiteness condition, is a topos. In the case when X D
Spec.M/, for a commutative monoidM , the category Qc.X/ is the topos ofM -sets. Our
reconstruction theorem in the affine case says that if M is finitely generated and commut-
ative, there are bijections

Spec.M/! F.SetsM / and Off
�

Spec.M/
�
! Loc.SetsM /;

where SetsM is the topos of right M -sets and Off.X/ is the set of all open subsets of a
topological space X . For a topos E , we denote with Loc.E / the set of all localisations
of E and with F.E / the set of isomorphism classes of the topos points of E [17, 18]. The
structure sheaf OX , X D Spec.M/ associates with an open set U of X , the centre of the
localisation category corresponding to U .

Since points, localisations and the centre make sense for any topos E , we can try to
define a topology on F.E / by declaring a subset U of F.E / to be open if there exists a
localisation T of E such that p�.S/ 2 T , for any point p W Sets ! E of U and any
set S . Of course, we do not expect this to always work: F.E / or Loc.E / could be a class
and not a set, or on the other side, a topos might not have any points. But even under
the assumption of enough points, there are other difficulties as well. For example, when
E D Sh.X/ is the topos of sheaves over a sober topological space X , then F.E / is in
a one-to-one correspondence with the points of X . In general, however, there are more
localisations of Sh.X/ than the open subsets of X .

The problem of equipping F.E / with a topology is, of course, not new and already
appeared in [8, Section 2.6], where a topological space structure on the set F.E / is defined
based on the subobjects of the terminal object of E . In the case when E is the topos Sh.X/
of sheaves over a sober topological space X , the space constructed in [8, Section 2.6] is
homeomorphic to X ; see [8, Remark 2.6.2]. However, in many other cases, the above
topology can be quite trivial. Particularly, when E D SetsM is the topos of right M -sets,
the obtained topological space will only have two open sets, though F.SetsM / can be
arbitrarily big. Hence, it is natural to search for other topologies on F.E /.

In recent years, there was a considerable attention to the problem of understanding the
points and possible topological structures associated with the topos points of SetsM . For
example, Connes–Consani [4] and Le Bruyn [13] studied two interesting topologies in the
case whenM D N�C is the multiplicative monoid of strictly positive natural numbers. See
also a related paper by Hemelaer [9].

In this paper, we study the localisations and points of the topos SetsM of M -sets,
for M being a noncommutative monoid. We first consider the case when M is a left zero
monoid. That is, M D ¹1º [ S , where S is any set and the multiplication is given by
st D s for all s; t 2 S . We assumeM is non-commutative; that is jS j � 2. Then, the topoi
SetsM and MSets of right and left M -sets are quite different.

For example, the cardinality of the subobject classifier of SetsM is equal to 1C 2jS j

(see equality (4.4.1)), while the subobject classifier of MSets only has three elements
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(see Proposition 4.4.3). As it turns out, however, F.MSets/D F.SetsM / and F.SetsM / is
independent from S . In more concrete terms, we prove that both topoi SetsM andMSets
have exactly two points (up to isomorphism) (see Corollary 4.1.3 and Lemma 4.4.1) and
three localisations (see Propositions 4.4.2 and 4.4.3) and in both cases O is the constant
sheaf corresponding to the trivial monoid. This shows that, in general, even if F.E / is a
well-defined set, it carries limited information on E .

There are some interesting questions that arise from these results. One of these ques-
tions is: Are localisations (resp., isomorphism classes of points) of the topoi SetsM and
MSets bijective sets?

The main results of this work give an affirmative answer to the above question, for
finiteM . We achieve this by proving that for finiteM , the isomorphism classes of points of
SetsM is in a one-to-one correspondence with Green’s J -equivalence classes of idem-
potents (that is, eJf if and only if MeM D MfM ). We also prove that for a finite
monoid M , there is a bijection from the set of localisations Loc.SetsM / to the set of
all two-sided idempotent ideals of M . It follows that as topological spaces, F.MSets/
and F.SetsM / are both homeomorphic to the ordered topology of the poset of principal
idempotent ideals.

The paper is organised as follows: Section 2 recollects some classical notions and facts
related to localisations and points of a topos. In Section 3, we relate idempotents of a mon-
oidM to the points of the topos SetsM and recall classical constructions of a category of
idempotents 	.M/, also known as the Karoubi envelope of M , considered a one-object
category. In Section 4, we consider the case whenM is a left zero monoid. We completely
describe all the points and localisations of the topoi SetsM and MSets. Section 5 con-
tains our main result concerning the points of the topos SetsM for finite M : it says that
the categories 	.M/ and Pts.SetsM / are contravariantly equivalent. Finally, Section 6
deals with the description of the localisations of SetsM in terms of the idempotent ideals
of M and some of its consequences.

As pointed out by the referee, some of the results obtained in this paper were already
known and written either directly or indirectly. This was not known to me previously
and so, the proofs often differ as well. The aim of this paragraph is to give an account
of these results. More details on the exact relation to the previous work can be found
before each of the mentioned postulates: (1) Proposition 5.5.2; (2) Proposition 5.5.3 (i);
(3) Theorem 5.6.1; (4) Proposition 6.1.2; (5) Corollary 6.3.2.

2. Preliminaries

The aim of this section is to recall some classical facts and definitions related to topoi and
their localisations and points. It contains a small subsection (Section 2.3), following [17],
which explains the link between the prime ideals of a commutative monoid M and the
points of SetsM .
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2.1. General facts on localisations

Recall that a localisation T of a Grothendieck topos E is a full subcategory of E , such
that the following conditions hold:

(i) If x belongs to T and y 2 E is isomorphic to x, then y belongs to T .

(ii) The inclusion � W T ! E has a left adjoint � W E ! T , called the localisation
functor.

(iii) The localisation functor � respects finite limits.

It is well known that in this case, T is also a Grothendieck topos. We denote by
Loc.E / the poset of all localisations of E .

Let M be a monoid. The category of left (resp., right) M -sets is denoted by MSets
(resp., SetsM ). Both of them are topoi. The subobject classifier �M of the topos SetsM
is the collection of all right ideals ofM [14]. The action ofM on�M is given by .m;a/ 7!
.m W a/, where for a right ideal m and an element a 2M , we set

.m W a/ D ¹x 2M j ax 2 mº:

The “truth” map t W 1! �M is given by t .1/ DM 2 �M .
Let us recall the notion of a Grothendieck topology on a monoid and that of a sheaf

over said Grothendieck topology. A Grothendieck topology (or simply topology) on a mon-
oid M is a collection of right ideals F , such that

(T1) M 2 F ,

(T2) if a 2 F and m 2M , then .a W m/ 2 F ,

(T3) if b 2 F and a is a right ideal ofM with .a W b/ 2 F for any b 2 b, then a 2 F .

From these conditions, we get the following result (see, for example, [18, 23]):

(i) If a � b are right ideals and a 2 F , then b 2 F .

(ii) If a;b 2 F , then a \ b 2 F .

(iii) If a;b 2 F , then ab 2 F .

(iv) F is an M -subset of �M .

A right M -set A is called an F -sheaf if the restriction map

A! HomM .a; A/; a 7! fa;

is a bijection for every a 2 F . Here, a 2 A and fa 2 HomM .a; A/, where fa.x/ D xa,
x 2 a. We let Sh.M;F / denote the topos of F -sheaves.

The following obvious facts are well known: for any monoid M , there is a minimal
Fmin and a maximal Fmax among all Grothendieck topologies, where

Fmin D ¹M º; Fmax D �
M :

We also have Sh.M;Fmin/ D SetsM and Sh.M;Fmax/ Š ¹1º, where ¹1º is the trivial
category with one object and one morphism.
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It is well known (see, for example, [18, Lemma 2.4.1] and references therein) that
there is an order-reversing bijection between the set of localisations of Loc.SetsM / and
all Grothendieck topologies defined on the one object category associated with M . Under
this bijection, the localisation corresponding to a topology F is the category Sh.M;F /
of sheaves on F .

2.2. Points and filtered M -sets

Recall that a point of a Grothendieck topos E is a geometric morphism p D .p�; p�/ W
Sets! E from the topos of sets Sets to E . The inverse image functor p� W E ! Sets
preserves colimits and finite limits. It is also well known that conversely, for any functor
f W E ! Sets which preserves colimits and finite limits, one has f D p� for a uniquely
defined point p. We let Pts.E / be the category of points of E and F.E / the isomorphism
classes of the category Pts.E /.

Instead of Pts.SetsM / and F.SetsM /, we write Pts.M/ and FM . By Diaconescu’s
theorem [14], the category Pts.M/ is equivalent to the category of filtered left M -sets.
Recall that a left M -set A is called filtered, provided the functor

.�/˝M A W MSets! Sets

commutes with finite limits. The topos point of SetsM , corresponding to a filtered left
M -set A, is denoted by pA D .pA�; p�A/. The inverse image functor p�A W SetsM ! Sets
is given by

p�A.X/ D X ˝M A;

while the direct image functor pA� WSets!SetsM sends a set Y to HomSets.A;Y /. The
latter is considered a right M set via

.˛m/.a/ WD ˛.ma/:

Here, ˛ 2 HomSets.A;X/, a 2 A and m 2M .
The following well-known fact [15, p. 24] is a very useful tool for checking whether a

given M -set is filtered.

Lemma 2.2.1. A leftM -set A is filtered if and only if the following three conditions hold:

(F1) A 6D ;.

(F2) If m1; m2 2M and a 2 A satisfies the condition

m1a D m2a;

there exist m 2M and Qa 2 A, such that m Qa D a and m1m D m2m.

(F3) If a1; a22A, there arem1;m22M and a2A, such that m1aDa1 and m2aDa2.

Example 2.2.2. Clearly,ADM is always filtered and corresponds to the canonical point,
denoted by pM . Thus, p�M is the forgetful functor SetsM ! Sets.
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For a localisation T of E and p D .p�; p�/ W Sets! E a topos point of E , we write
p t T if p�.S/ 2 T for every set S 2 Sets.

Lemma 2.2.3. Let F be a topology on a monoid M and A a filtered left M -set. Then,

pA t Sh.M;F /

if and only if for any a 2 F , the canonical map a˝M A! A is an isomorphism. Here,
pA denotes the point of SetsM corresponding to A.

Proof. Since the direct image functor Sets! SetsM corresponding to the point pA is
given by S 7! HomSets.A; S/, we see that pA t Sh.M;F / if and only if HomSets.A; S/

is an a-sheaf. This means that for all a 2 F , the canonical map

HomSets.A; S/! HomSetsM

�
a;HomSets.A; S/

�
is an isomorphism. The map in question is the same as

HomSets.A; S/! HomSets.a˝M A; S/:

Since S is any set, Yoneda’s lemma implies that this happens if and only if a˝M A! A

is an isomorphism.

2.3. Points and prime ideals

If M is commutative and p is a prime ideal, then the localisation Mp is filtered. In this
way, one obtains an injective map

Spec.M/! FM :

Moreover, ifM is finitely generated, the map is a bijection [17]. The inverse image functor
corresponding to the point, associated with the filtered M -set Mp, sends a right M -set X
to the localisation Xp, considered a set.

For a monoidM , denote byM com the maximal commutative, and byM sl the maximal
semilattice quotient, respectively. As a semilattice is commutative by definition, we have
natural surjective homomorphisms M !M com !M sl.

According to [16], for any commutative monoid M , the induced map

Spec.M sl/
Š
�! Spec.M/

is bijective, and furthermore, there is an injective map [16]

M sl
! Spec.M sl/ Š Spec.M/:

This map is bijective if M is commutative and finitely generated.

Corollary 2.3.1. If M is a finitely generated commutative monoid, then

jFM j D jM sl
j:
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2.4. Induced points

Recall the following well-known fact.

Lemma 2.4.1. Letf WM!M 0 be a monoid homomorphism. For any filtered leftM-setA,
the left M 0-set M 0 ˝M A is filtered.

TheM 0-set constructed in the lemma is said to be induced fromA via the homomorph-
ism f . In this way, one obtains a functor

Pts.f / W Pts.M/! Pts.M 0/;

which induces the map
Ff W FM ! FM 0 :

3. Idempotents of M and points of SetsM

In this section, we show that any idempotent of a monoid M gives rise to a point of the
topos SetsM . This fact was recently observed in [10, 19]. One of our main results claims
that if M is finite, any point of SetsM comes in this way; see Theorem 5.6.1 below.
We will also recall the category of idempotents (see, for example, [22]) as it will play an
important role in this paper.

3.1. Points corresponding to idempotents

First, consider the case when M D ¹1; tº, t2 D t . Thanks to Corollary 2.3.1, we see that
FM has only two elements: one corresponds to the filtered M -set M and the other to the
singleton, which is easily seen to be a filtered M -set.

Take an arbitrary monoid M . Any idempotent e 2 M induces a homomorphism of
monoids � W ¹1; tº !M , where t2 D t , given by �.t/D e. The singleton, which is filtered
over ¹1; tº, induces a left filtered M -set; see Section 2.4. One easily sees that this is
isomorphic to Me.

As a reminder, M sl is the associated semilattice of M . That is, M sl D M= �, where
for all a; b 2 M , ab � ba and a2 � a. Denote by q W M ! M sl the canonical quotient
map. As we said, the induced map

Fq W FM ! FM sl

is bijective if M is finitely generated and commutative. In the noncommutative setting,
this induced map is not a bijection in general, even if M is finite. However, we will show
that jFM j is finite if M is finite; see Theorem 5.2.2 below. We also have the following.

Proposition 3.1.1. Let M be a finite monoid. The canonical map

Fq W FM ! FM sl

is surjective. In particular, jFM j � jM slj.
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Proof. Denote by Idem.M/ the set of all idempotents of M . Then, Idem.M/ 3 e 7!Me

yields the map Idem.M/ ! FM . Since Idem.M sl/ D M sl, the functoriality yields the
following commutative diagram:

Idem.M/ //

����

FM

��

M sl � // FM sl :

The bottom arrow is a bijection and the left vertical map is surjective, thanks to [22,
Lemma 1.6]. It follows that the right vertical map is surjective as well. The last statement
follows from Corollary 2.3.1.

3.2. Category 	 .M/

Letm2M be an element. We have a natural left idealMm, which can also be considered a
leftM -set. We have the following well-known fact; see, for example, [22, Proposition 1.8].

Lemma 3.2.1. Let e 2M be an idempotent. For any left M -set X , we have a bijection

eX Š HomM .Me;X/;

which sends an element ex 2 eX to the homomorphism ˛x WMe!X , given by ˛x.me/D
mex.

Proof. Take any morphism of M -sets ˇ W Me ! X . We have ˇ.e/ D ˇ.ee/ D eˇ.e/.
Thus, ˇ.e/ 2 eX and ˇ 7! ˇ.e/ defines a map HomM .Me;X/! eX , which is obviously
inverse to the map ex 7! ˛x .

Corollary 3.2.2. Let e; f 2M be idempotents. We have HomM .Me;Mf / D eMf .

We define the category 	.M/ as follows: objects are idempotents of M and a morph-
ism from e to f is an element of the form f me 2M ,m 2M . Another way of saying that
is morphisms are equivalence classes of elements ofM , wherem� n if f me D f ne. We
have

Hom	.M/.e; f / D fMe:

The composition is given by the multiplication in M ; i.e., .gnf / ı .f me/ D gnf me.
That is, the composite of arrows

e
fme
���! f

gnf
���! g

is equal to e
gnfme
�����! g. The identity morphism of e is just e D e1e. It is clear that

	.M op/ D
�
	.M/

�op
:
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Recall the Green relations L ;R;J . By definition, we have eLe0 provided Me D
Me0, eRe0 if eM D e0M and eJe0 if MeM D Me0M . We let IdemK .M/ be the cor-
responding quotient set, where K 2 ¹L ;R;J º.

It is clear that if eL e0 and fRf 0, then

Hom	.M/.e; f / D Hom	.M/.e
0; f 0/:

Lemma 3.2.3. The assignment e 7!Me induces a contravariant equivalence between the
category 	.M/ and the full subcategory ofMSets, consisting of objects of the formMe.

Proof. This is a direct consequence of Corollary 3.2.2.

Lemma 3.2.4. Idempotents e and f are isomorphic in 	.M/ if and only if there are
a; b 2M , such that ab D e and ba D f . This happens if and only if eJf . Thus, the set
of iso-classes of the category 	.M/ is bijective to the set IdemJ .M/.

Proof. A consequence of [22, Theorem 1.11].

4. Left zero monoids

In this section, we investigate the points and localisations of the topoi SetsM andMSets,
where M is a left zero monoid. Let us recall that we can define the product in any set S
by

st D s; s; t 2 S:

In this way, we obtain a semigroup and we let SC be the corresponding monoid, which
is obtained by adding the unite element 1 to S . Thus, SC D S [ ¹1º. Such monoids are
known as left zero monoids. It is immediate that SC is commutative if and only if jS j D
0; 1. Hence, we will assume that jS j � 2. The opposite monoids are known as right zero
monoids.

4.1. Points of SetsSC

Each element of SC is an idempotent. If s 2 S , then clearly SCs D S . It follows that
IdemJ .SC/ is a two-element set given by 1 and any s 2 S . Thus, we have at least two non-
isomorphic points of SetsSC , corresponding to the left filtered SC-sets SC and S D SCs.

Our immediate goal is to prove that there are no other non-isomorphic points of the
topos SetsSC . The proof uses the following fact.

Lemma 4.1.1. LetM be a monoid andM� the subgroup of all invertible elements ofM .
We set

I WDM nM�:

Any filtered left M -set A with A 6D IA is isomorphic to M as a left M -set.
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Proof. Choose an element a 2 A n IA and define a morphism of leftM -sets f WM ! A

by
f .m/ D ma:

We claim that f is an isomorphism. For surjectivity, take an element b 2 A. By (F3)
(see Lemma 2.2.1), there exist elements c 2 A and m; n 2 M , such that a D mc and
b D nc. Since a 62 IA, we see that m 62 I , and hence, it is invertible. So, c D m�1a

and b D nm�1a D f .nm�1/. This proves the surjectivity of f . For injectivity, assume
f .m/ D f .n/; that is, ma D na. By (F2), there are Qm 2M and b 2 A, such that a D Qmb
and m Qm D n Qm. Again, Qm is invertible since a 62 IA. Hence, we have m D n.

Theorem 4.1.2. If A is a filtered left SC-set, then A is isomorphic to either SC or S .

Proof. We set
yA D A n

[
s2S

sA:

Claim 1. j yAj � 1. In fact, take x; y 2 yA. By condition (F3) of Lemma 2.2.1, there exist
z 2 A,m1 2 SC andm2 2 SC, such that x Dm1z and y Dm2z. Since x;y 2 yA, we must
have m1 D 1 D m2. It follows that x D z D y, which implies the claim.

Claim 2. If sA \ tA ¤ ;, then s D t . Assume sa D tb, for some a; b 2 A. By (F3), we
have a D m1c, b D m2c and thus

sc D sm1c D sa D tb D tm2c D tc:

By (F2), there exist m 2 SC and d 2 A, such that md D c and sm D tm. So, we have
s D sm D tm D t , and the claim follows.

Claim 3. For any a;b 2A, one has saD sb. Once again, (F3) says that there arem1;m2 2
SC and c 2 A, such that a D m1c and b D m2c. Hence, we have

sa D sm1c D sc D sm2c D sb:

Claim 4. If yA D ;, then A is isomorphic to S . By assumption, A D
S
s2S sA. Claim 3

implies that each sA consists of exactly 1 element and Claim 2 states that the union must
be disjoint. This implies the fourth claim.

To finish the proof of the theorem, observe that if A is not isomorphic to S , then yA is
not empty, by Claim 4. It follows from Claim 1 that yA is a set with one element. We can
apply Lemma 4.1.1 to finish the proof.

Corollary 4.1.3. We have

F.SetsSC/ Š IdemJ .SC/:

In particular, both sets have exactly two elements.
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4.2. Points of SC
Sets

In this case, the singleton is a filtered right SC-set: while conditions (F1) and (F3) hold for
any monoid, condition (F2) is easily verified in this circumstance; see also Lemma 5.3.2
below. We will show that, conversely, any filtered right SC-set is isomorphic to either SC
or the singleton. Since sSC D ¹sº and SCsSC D SCtSC for all s; t 2 S , it follows that
any point of the topos of left SC-sets comes from an idempotent. In particular, the topos
SCSets has exactly two non-isomorphic points, and we still have a bijection

F.SCSets/ Š IdemJ .SC/:

Lemma 4.2.1. Any filtered right SC-set A is either isomorphic to SC or a singleton.

Proof. Let A be a filtered right SC-set containing at least two distinct elements a1 ¤ a2 2
A. By Lemma 4.1.1, it suffices to show that A ¤ AS . Assume A D AS . By (F3), we can
write ai D bmi , i D 1; 2.

Assuming m1 D 1, then a2 D a1m2. Since a1 2 AS , we have a1 D ct for some t 2
S . We obtain a2 D a1m2 D ctm2 D ct D a1, contradicting our assumption and, hence,
implying m1 2 S . The same reasoning implies m2 2 S . Since b 2 A D AS , we can write
b D ds for some s 2 S . It follows that

a1 D bm1 D dsm1 D ds D dsm2 D bm2 D a2;

once again giving a contradiction. The result follows.

4.3. Reformulation of the results

Recall that for a monoid M , the maximal commutative quotient is denoted by M com. We
have the induced map

FM ! FM com ;

which is bijective if M is a left zero monoid. As we will see, this map is not always
injective; see Example 6.1.5 (ii).

4.4. Localisations of SetsSC
and SC

Sets

Recall that there is a one-to-one correspondence between the localisations of SetsM and
Grothendieck topologies on M . Here, M is any monoid. Recall also that there are the
minimal and maximal Grothendieck topologies on M , denoted, respectively, by Fmin and
Fmax and defined as Fmin D ¹M º, Fmax D �

M . Their corresponding sheaf categories are
SetsM and the trivial category (with one object and morphism).

We wish to understand the Grothendieck topologies F , with F ¤Fmin and F ¤Fmax.
Throughout this section, we will assumeM D SC. For any setB , we can consider the right
M -act

i�.B/ WD Maps.S; B/;
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where the action of SC on i�.B/ is given as follows: take i�.B/ 3 ˛ W S ! B and s 2 S .
Define the map ˛ � s W S ! B by

.˛ � s/.t/ D ˛.st/:

Since ˛.st/ D ˛.s/, we have
˛ � s D c˛.s/:

where cb denotes the constant function S ! B with value b. This is known as the cofree
M -set cogenerated byB . We can extend this to a functor through composition in the usual
way. We will not need it, but let us mention that i� W Sets! SetsM is the push-forward
part of a topos point iD.i�; i�/ W Sets!SetsM , corresponding to the filtered SC-set S ;
see Section 4.1. The next lemma claims that the functor i� W Sets! SetsM is full and
faithful.

Lemma 4.4.1. Let B; C be sets and  W i�.B/! i�.C / a morphism of SC-sets. There
exists a unique map f WB!C , such that D i�.f /. In other words, for any ˛ 2 i�.B/D
Maps.S; B/, one has  .˛/ D f ı ˛.

Proof. Since  is a morphism of SC-sets, we have

 .˛ � s/ D  .˛/ � s D c .˛/.s/

for all ˛ W S ! B and s 2 S . By setting ˛ D cb , we see that  sends constant functions
to constant ones. It follows that there is a unique map f W B ! C such that

 .cb/ D cf .b/:

In fact, one must have
f .b/ D  .cb/.s/;

for any s 2 S and any b 2 B .
For any ˛ W S ! B and any s 2 S , we have

cf .˛.s// D  .c˛.s// D  .˛ � s/ D  .˛/ � t D c .˛/.t/:

It follows that f ı ˛ D  .˛/, and we are done.

Before we state our next result, observe that ifX is a subset of S , thenXS �X . Thus,
X is a right ideal of M D SC and

�M D ¹M º [B.S/: (4.4.1)

Here, B.S/ is the set of all subsets of S .

Proposition 4.4.2. Let F be a Grothendieck topology on M D SC, such that F ¤ Fmin,
F ¤ Fmax. Then,

F D ¹M;Sº:
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A right SC-module A is a sheaf over the topology F if and only if A is a cofree SC-set
and the functor i� induces an equivalence of categories

Sets Š Sh.M;F /:

Proof. The last statement is a consequence of the previous lemma. Next, we observe that
¹M; Sº is a Grothendieck topology, thanks to Lemma 6.1.1, because S is a two-sided
idempotent ideal of SC. If F ¤Fmin, F ¤Fmax and F ¤ ¹M;Sº, there must exist anX 2
�M , such that X is a proper subset of S . Choose any s 2 S nX . Then, ; D .X W s/ 2 F .
It follows that F D Fmax, and we obtained a contradiction. Hence, F D ¹M;Sº and the
first assertion is proved.

Observe that an SC-set A is a sheaf if and only if the restriction map

A D HomSC.SC; A/! HomSC.S; A/

is bijective. Set
B D ¹a 2 A j sa D a; s 2 Sº:

For any morphism f W S ! A of SC-sets, we have f .st/ D f .s/t . Equivalently, f .s/ D
f .s/t for all s; t 2 S . If follows that the image of f lies in B . This shows that

HomSC.S; A/ D Maps.S; B/ D i�.B/;

and hence, A is a sheaf if and only if A Š i�.B/, finishing the proof.

Consider the category SCSets. Denote by CS the opposite of the monoid SC. Clearly,
SCSets D Sets

CS .

Proposition 4.4.3. The following hold:

(i) We have
�CS D ¹;; S;CSº:

(ii) Let F be a Grothendieck topology on CS , such that F 6DFmin, F 6DFmax. Then,

F D ¹CS; Sº:

(iii) A left SC-set A is a sheaf on the topology F if and only if the action of SC on
A is trivial; that is, sa D a for all a 2 A and s 2 S . Thus,

Sh.CS;F / Š Sets:

Proof. (i) Assume I is a non-empty left ideal of SC. For any t 2 I , we have S D St � I .
Thus, either I D S or I D SC.

(ii) Since F is not maximal, ; 62 F , as otherwise by the first property of Grothendieck
topologies, it would have to contain everything. We also have S 2 F ; otherwise, F would
be Fmin. Using property (i) of the Grothendieck topologies again yields F D ¹CS;Sº. The
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fact that this really is a Grothendieck topology follows from the fact that S is a two-sided
idempotent ideal of CS , thanks to Lemma 6.1.1.

(iii) Observe that for any left SC-set A, the left SC-set structure on Hom
CS .S; A/ is

given by .s � ˛/.t/ D ˛.ts/, where s; t 2 S and ˛ 2 Hom
CS .S; A/. Since ˛.ts/ D ˛.t/,

we see that s � ˛ D ˛. Thus, Hom
CS .S; A/ is always a trivial left SC-set. Recall that A

being a sheaf over the topology F means that the canonical map

A D Hom
CS .CS;A/! Hom

CS .S; A/

is an isomorphism of left SC-sets. Hence, if A is a sheaf, the action of SC on A must be
trivial.

Conversely, assume the action of SC onA is trivial. The map ˛ W S!A is a morphism
of left SC-sets if and only if ˛.st/ D s˛.t/. Since st D s and sa D a for all a 2 A, we
see that ˛.s/ D ˛.t/. Thus, ˛ is constant, and it follows that A! HomCS .S; A/ is an
isomorphism, implying the proposition.

5. Points of SetsM , for finite M

5.1. M -congruences

For an equivalence relation � on a set S , we denote by q the canonical map q W S ! S=�.
Let M be a monoid and A a left M -set. An equivalence relation �� on A is called an

M -congruence if a � b implies ma � mb for all m 2M . It is clear that in this case, the
quotient A=� has a unique left M -set structure such that q W A! A=� is an M -set map.

We will use this terminology to distinguish between congruences on a monoid M in
the world of monoids and congruences on M , considered a left M -set, using the multi-
plication in M .

Lemma 5.1.1. Let �� be an M -congruence on a left M -set A. For any a 2 A, the subset

K�.a/ D ¹x 2M j a � xaº

is a submonoid of M .

Proof. Since � is an equivalence relation, we have a � a D 1 � a. Thus, 1 2 K. Assume
x; y 2 K.a/. That is, a � ya and a � xa. Since� isM -congruence, we have xa � xya.
It follows that a � xa � xya. Hence, xy 2 K.a/.

5.2. Finiteness of points

We start with the following observation.

Lemma 5.2.1. Let A be a filtered left M -set and a1; : : : ; ak elements of A. There are
m1; : : : ; mk 2M and c 2 A, such that ai D mic for all 1 � i � k.
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Proof. The case nD 1 is clear and nD 2 is just condition (F3). We proceed by induction.
Assume there are n1; : : : ; nk�1 2M and b 2 A, such that ai D nib for all 1 � i � n� 1.
By the case nD 2, we can choose c 2A and n0;mk 2M , such that n0c D b andmkc D ak .
We put mi D n0ni for i D 1; : : : ; k � 1 to obtain mic D ai for all 1 � i � k.

Theorem 5.2.2. Let M be a finite monoid.

(i) Any filtered M -set A is cyclic, that is, generated by a single element. In partic-
ular, we have jAj � jM j.

(ii) The set FM is finite.

Proof. (i) Assume there are k distinguished elements of A, say a1; : : : ; ak . By Lemma
5.2.1, we can find m1; : : : ; mk 2M and c 2 A, such that ai D mic, for all 1 � i � k. If
jM j < k, we see that there are i 6D j , such that mi D mj . It follows that

ai D mic D mj c D aj :

This contradicts our assumptions on the ai ’s. Hence, k � jM j. This implies jAj � jM j.
Moreover, by taking a1; : : : ; ak to be all the elements of A, we see that A is generated
by c, and hence, it is cyclic.

(ii) This is an obvious consequence of (i).

5.3. Right-collapsible monoids and right-collapsible submonoids

Definition 5.3.1. We call a monoidM right-collapsible monoid if for anym;n 2M , there
exists an x 2M , such that

mx D nx:

For more on this subject, see [12].

Lemma 5.3.2. Let M be a monoid. The terminal object of the category MSets (i.e., the
singleton) is filtered if and only if M is a right-collapsible monoid.

Proof. For such a set, conditions (F1) and (F3) always hold. Condition (F2) in this case
says that for anym1;m2 2M , there exists anm 2M , such thatm1mDm2m. This means
that M is a right-collapsible monoid.

Clearly, if M is a semilattice, then M is a right-collapsible monoid (we can take
x D mn). Another class of right-collapsible monoids (which is a generalisation of sem-
ilattices in the finite case) are monoids that have a right zero, that is, an element %, such
that x% D % for all x 2 K. Clearly, if such a % exists, it is unique and an idempotent. Our
next goal is to show that the converse is also true ifM is finite. We will need the following
lemma.

Lemma 5.3.3. Let K be a right-collapsible monoid. For any finite collection of elements
m1; : : : ; mk of K, there exists an x 2 K, such that mix D x for all i D 1; : : : ; k.
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Proof. We proceed by induction. Let k D 1. In this case, the assertion follows directly
from the definition of a right-collapsible monoid, by taking m D m1 and n D 1, where
m; n 2M are as in Definition 5.3.1. Next, consider the case k D 2. Since the assertion is
true for k D 1, we can find yi , i D 1; 2, such that miyi D yi , i D 1; 2. As K is a right-
collapsible monoid, there exists a z 2 K, such that y1z D y2z. Now, for x D y1z D y2z,
we have

mix D miyiz D yiz D x; i D 1; 2:

Let k > 2. By the induction assumption, there exists a y 2 K, for which miy D y, for
all i D 1; : : : ; k � 1. Since the result is also true for k D 2, we can apply it for y and
mk and conclude that there exists an x 2 K, for which mkx D x and yx D x. We have
mix D miyx D yx D x for all 1 � i � k. This finishes the proof.

Corollary 5.3.4. A finite monoid is a right-collapsible monoid if and only if it has a right
zero element.

A submonoid K of a monoid M is called a right-collapsible submonoid if K is a
right-collapsible monoid.

5.4. Saturated submonoids

A submonoid K of a monoid M is called saturated if for any m 2M for which mx D x
for some x 2 K, one has m 2 K. It is clear that to any submonoid K, there is a smallest
saturated submonoid containing K. This is the intersection of all saturated submonoids
containing K. (The fact that the intersection of saturated submonoids is again saturated
is readily checked.) We denote this associated saturated submonoid by yK and sometimes
refer to it as the saturation of K.

Example 5.4.1. Let M D ¹1; 0; a; b; abº, where a2 D a, b2 D b and ba D 0. The only
saturated right-collapsible submonoids of M are ¹1º; ¹1; aº; ¹1; bº and M itself. On the
other hand, ¹1; 0º; ¹1; 0; aº; ¹1; 0; bº and ¹1; 0; abº are non-saturated right-collapsible sub-
monoids.

5.5. Quotient by right-collapsible submonoids

Let H � A be a submonoid of a monoid A. We can define a relation �H on A by setting
a �H b if and only if there exist x; y 2 H , such that ax D by. This relation, however,
need not be an equivalence relation as the transitivity property need not hold. If it does,
however, then it is an M -congruence and the quotient, denoted by M=K, is a natural
M -set.

Lemma 5.5.1. LetK be a right-collapsible submonoid ofM andm;n 2M . The induced
relation �K is an M -congruence and m �K n if and only if there exists an x 2 K, such
that mx D nx.

Proof. First, we show that the two relations are the same. One side is clear by letting
x D y. For the other side, let x; y 2 K be elements for which mx D ny. Since K is a
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right-collapsible submonoid, we can find a z 2 K, such that xz D yz. As mx D ny )
mxz D nyz, the result follows.

To see that �K is anM -congruence, letm �K n and n �K k. That is, we have x; y 2
K, such that mx D mx and ny D ky. As K is a right-collapsible submonoid, there exists
a z 2 K, such that xz D yz. We have

m.xz/ D .mx/z D .nx/z D n.xz/ D n.yz/ D .ny/z D .ky/z D k.yz/:

Hence, m �K k with the first definition, and so, transitivity holds.

In general, the M -congruence �K is not a congruence (that is, the quotient M=K
need not be a monoid), even ifK is a right-collapsible submonoid. In fact, take once again
M D ¹1; 0; a; b; abº, where a2 D a, b2 D b, ba D 0, and let K D ¹1; bº. In this case, we
have three equivalence classes 1 �K b, a �K ab and 0. Since 1 � a D a 6�K ba D 0, we
see that �K is not a congruence relation.

We have shown that M=K is a left M -set. More is true, however.
The following can already be inferred from [10,12]. In [12, Lemma 14.13 (ii) and Pro-

position 16.6], it is shown that condition (F2) (called condition E in the said monograph)
is satisfied byM=K and that this condition agrees with “pullback-flatness” for cyclicM -
sets. Further, it is shown in [10, Proposition 1.10 (iii)] that in this case, pullback-flatness
is the same as being filtered.

Proposition 5.5.2. Let K be a right-collapsible submonoid of M . The quotient M=K is
a filtered left M -set.

Proof. The fact that M=K is a left M -set is just Lemma 5.5.1. To see that M=K is in
addition filtered, consider the canonical surjective map q W M ! M=K. Since M is a
monoid, M=K is non-empty and condition (F1) holds.

To show (F2), assume m1q.a/ D m2q.a/, with a; m1; m2 2 M . We have to find
m; Qa 2M , such that m1m D m2m and mq. Qa/ D q.a/. To this end, observe that

q.m1a/ D m1q.a/ D m2q.a/ D q.m2a/:

Hence, m1ax D m2ax for an element x 2 K. Since K is a right-collapsible submonoid,
there exists an element y 2 K, such that xy D y. So, we can take m D ax and Qa D q.1/.
We havem1mDm1ax Dm2ax Dm2m andmq.1/D q.ax/D q.a/ because axy D ay
and ax �K a.

To show (F3), take q.a1/; q.a2/ 2M=K. Then, a1q.1/D q.a1/ and a2q.1/D q.a2/.
Thus, (F3) holds with a D q.1/.

We have the following “inverse statement” to the above:
Part (i) of this Proposition can be found in [12, Lemma 14.14].

Proposition 5.5.3. Let � be an M -congruence on M , such that M= �� is a filtered left
M -set, and define

K� D ¹m 2M j 1 �� mº:
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(i) The subset K� is a saturated right-collapsible submonoid of M .

(ii) We have M= ��'M=K�.

Proof. (i) By Lemma 5.1.1,K� is a submonoid ofM . Take x;y 2K�. We have x �� 1��
y, by the definition of K�. Thus, q.x/ D q.y/, where q W M ! M= �� is the canonical
map. It follows that xq.1/ D yq.1/. Since M= �� is filtered, there are m; Qa 2 M such
that xmD ym andmq. Qa/D q.1/. The last condition implies that z WDm Qa 2K. We have
xz D xm Qa D ym Qa D yz. This shows that K� is a right-collapsible submonoid.

Takem 2M and x 2K�, such thatmx D x. Since 1�� x, it follows thatm�� mx D
x �� 1. Thus, m 2 K� and K� is saturated.

(ii) Assume m �� n. It follows that mq.1/ D nq.1/. By (F2), there are x; a 2 M ,
such that mx D nx and xq.a/ D q.1/. The last condition implies y D xa 2 K. Since
my DmxaD nxaD ny, we see thatm�K n. Conversely, letm�K n. That is,mx D nx
for x 2 K. We have q.mx/ D mq.x/ D mq.1/ D q.m/ and q.nx/ D q.n/. This yields
q.m/ D q.n/, which implies m �� n. This finishes the proof.

Corollary 5.5.4. LetK be a right-collapsible submonoid ofM and � the congruence�K ,
corresponding to K. Then,

(i) K�D¹m2M jmxD x; for an element x 2KºD yK, where yK is the saturation
of K,

(ii) yK is a right-collapsible submonoid,

(iii) if K is saturated, we have yK D K.

Proof. (i) By definition,m 2K� if and only if 1�� m. This happens exactly if there exists
an x 2 K, such that mx D x. This proves the first equality. Next, take m 2 K. Since K is
a right-collapsible monoid, there exists an x 2 K, such that mx D x. Hence, 1 �� m and
m 2 K�. This shows that K � K�. Since K� is saturated by Proposition 5.5.3, we have
yK � K�. To show the opposite inclusion, take any m 2 K�. Thus, 1 �� m. So, m D mx

for some x 2 K. Since yK is saturated and x 2 K � yK, we see that m 2 yK. It follows that
K� D yK.

(ii) This follows from part (i) by virtue of Proposition 5.5.3 and part (iii) holds by
definition.

Theorem 5.5.5. LetM be a finite monoid. Any filtered leftM -set is isomorphic toM=K,
for a suitable saturated right-collapsible submonoid K of M .

Below (see Theorem 5.6.1), we will prove a much stronger result.

Proof. Any filtered M -set is cyclic by Theorem 5.2.2. Hence, it is isomorphic to M=�,
where � is anM -congruence. Part (ii) of Proposition 5.5.3 says thatK DK� is a saturated
right-collapsible submonoid of M . It remains to show that

M= ��'M=K�;

which we already did in Proposition 5.5.3.
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Corollary 5.5.6. Let K and L be right-collapsible submonoids of M . Then, M=K '
M=L if and only if yK D yL. In particular, M=K 'M= yK.

5.6. Some examples

(i) Assume M is a right-collapsible monoid and take K D M . In this case, M=M is a
singleton. So, the terminal object of SetsM is filtered. Conversely, if the terminal object
of SetsM is filtered, then M is a right-collapsible monoid. In fact, the terminal object is
M= ��, where x �� y for all x; y 2 M . In this case, K D M , and hence, M is a right-
collapsible monoid, thanks to the proof of Theorem 5.5.5. In particular, the single element
set is filtered if M has a right zero or M is a semilattice.

The above example (i) can already be found in [12, Exercise 14.3 (4)].
(ii) Let e 2M be an idempotent. Then,K D ¹1; eº is a right-collapsible submonoid. In

this case,�K is the equivalence relation onM , defined by a �K b if and only if ae D be.
The left M -set M=K 'Me is filtered.

The following was indirectly shown in [1, Exercise 3.12 (b)] and [19]. In the first, it is
shown that every point of the topos of M -sets is essential, for a finite monoid M . In the
second, it is shown that essential points correspond directly to idempotents.

Theorem 5.6.1. Let M be a finite monoid. Any filtered M -set is of the form Me, for an
idempotent e 2M . Thus, e 7!Me yields an equivalence of categories�

	.M/
�op
Š Pts.M/:

Proof. We have already proven (see Theorem 5.5.5) that any filtered M -set is of the form
M=K, where K is a saturated right-collapsible submonoid of M . By Corollary 5.3.4,
K has a right zero %. Take L D ¹1; %º. We have L � K and K � yL. Since K is saturated,
we have K D yL. By Corollary 5.5.6, we have �KD�L. Thus, we can take e D %.

Corollary 5.6.2. Let M be a finite monoid. Then,

(i) jPts.M/j D jPts.M op/j,

(ii) if p is a point corresponding to an idempotent e, one has an isomorphism of
monoids

End.p/ Š .eMe/op;

(iii) there is a bijection
FM Š IdemJ .M/:

6. Localisations of SetsM

In this section, we assume that M is finite. We will show that there is one-to-one cor-
respondence between the localisations of SetsM and idempotent ideals of M . This fact
allows us to prove that the topology on FM defined by the localisations of the topos SetsM
is homeomorphic to the order topology of the poset of principal idempotent ideals.
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6.1. Idempotent ideals

Lemma 6.1.1. Let m be a two-sided ideal of a monoid M , such that m D m2. The set

Fm D ¹a j m � aº

of right ideals containing m is a Grothendieck topology on M .

Proof. The condition (T1) is obvious. For (T2), assume m� a andm2M . For any x 2m,
mx 2Mm Dm � a. Hence, x 2 .a W m/. It follows that m � .a W m/ and .a W m/ 2 Fm.
So, (T2) holds. For (T3), take b 2 Fm. Assume a is a right ideal, such that .a W b/ 2 Fm,
for any b 2 b. By assumption, m � b and m � .a W b/ for all b 2 b. Take any x 2 m.
Since mDm2, we can write x D yz, where y; z 2m. Since z 2m � .a W y/, we see that
x D yz 2 a. Thus, m � a and a 2 Fm, from which (T3) follows.

Proposition 6.1.2. Let F be a Grothendieck topology on a finite monoid M . There exists
a two-sided ideal m, such that m2 D m and F D Fm.

Proof. As M is finite, F is finite as well. We can also see that F contains a smal-
lest element m since F is closed with respect to finite intersection. Take x 2 M . Since
.m W x/ 2 F , it follows that m� .m W x/. Equivalently, xm�m, which implies that m is
a two-sided ideal ofM . We also know that F is closed with respect to the product. Hence,
m2 2 F . By minimality of m, we have m � m2, and hence, m2 D m.

It should be pointed out that in [1, Exercise 9.1.12 (c)], it was shown that for finiteM ,
every localisation is essential. In [11, Theorem 4.4], it was shown that this in turn corres-
ponds to idempotent ideals.

We will use the following well-known fact; see [22, Proposition 1.23].

Lemma 6.1.3. Any two-sided idempotent ideal of a finite monoid M has the form[
i2I

MeiM;

for a (finite) family of idempotents .ei /i2I .

Lemma 6.1.4. Let e be an idempotent of M and m � M a two-sided ideal, such that
m D m2. Then,

pMe t Sh.M;Fm/

if and only if e 2 m.

Proof. Assume pMe t Sh.M;Fm/. The canonical map

�m W m˝M Me !Me

is an isomorphism by Lemma 2.2.3. The surjectivity of this map implies that e D xme,
for some x 2 m, m 2 M . So, e 2 mM D m. Conversely, assume e 2 m. We have to
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show that for any right ideal a, containing m, the canonical map �a W a˝M Me ! Me

is an isomorphism. For any m 2 M , we have me 2 m � a. Since �.me ˝ e/ D me, we
see that � is surjective. The injectivity of � follows directly from the fact that �˝M Me

commutes with finite limits, hence respecting monomorphisms.

Example 6.1.5. (i) Let M once again be the monoid ¹1; 0; a; b; abº, a2 D a, b2 D b and
ba D 0. It has 4 idempotents 1; 0; a; b. Since M1 D M , M0 D ¹0º, Ma D ¹0; aº and
Mb D ¹0; b; abº, we see that they all define non-isomorphic idempotents. Thus, M has 4
non-isomorphic points corresponding to the filtered left M -sets ¹0º; ¹0; aº; ¹0; b; abº and
M . Since M1M D M , M0M D ¹0º, MaM D ¹0; a; abº, MbM D ¹0; b; abº, we see
that there are 6 idempotent ideals

;; ¹0º; ¹0; a; abº; ¹0; b; abº; ¹0; a; b; abº;M:

(ii) Let M D T3 be the monoid of all endomorphic maps ¹1; 2; 3º ! ¹1; 2; 3º. It has
33 D 27 elements. If f is such a map, the cardinality of the image of f is known as
the rank of f and is denoted by rk.f /. There are 3 maps of rank 1 (i.e., constant maps)
and all of them are idempotents. There are 6 idempotent elements of rank 2 and only
one idempotent of rank 3. All together, we have 10 idempotents. However, IdemI .M/ has
only three elements, as two idempotents are I -equivalent if and only if they have the same
rank. All two-sided ideals of T3 are idempotent, and they are

; � I1 � I2 � I3 DM;

where Ik D ¹f 2 T3 j rk.f / � kº, k D 1; 2; 3. Observe that in this case M com is iso-
morphic to the multiplicative monoid ¹0; 1;�1º. In fact, for a map f W ¹1; 2; 3º ! ¹1; 2; 3º
denote by Œf � the class of f in M com. Since nonbijective self maps form an ideal of M
and thus we have a well-defined surjective homomorphism M com ! ¹0; 1;�1º given by
Œf � 7! 0 if f is a nonbijective self map and Œf � 7! sign.f / if f is bijective. It remains
to show that all nonbijective maps define the same element in M com. Denote by ci the
constant map with value i . Then, for all i; j , we have

Œci � D Œci ı cj � D Œcj ı ci � D Œcj �:

This shows that all constant maps have the same image inM com. Moreover, since f ı ci D

cf .i/ and c ı f D c, we see that the class of constant maps define the zero element of
M com. Furthermore, denote by s; t 2 T3 the maps given by s.1/D 1D s.2/, s.3/D 2 and
t .1/ D 1; t.2/ D 2 D t .3/. Then, we have

Œc1� D Œs ı t � D Œt ı s� D Œs�:

Since any nonconstant and nonbijective map can be written as f ı s ı g with bijective f
and g, we see that all nonbijective maps define the same classes inM com. Since ¹0; 1;�1º
has two idempotents, we see that in this case, 3 D jF.SetsM /j 6D jF.SetsM com/j D 2.



I. Pirashvili 22

6.2. Distributivity of the lattice Loc.SetsM /

Denote by II .M/ the set of two-sided idempotent ideals of a monoid M . Our interest
in II .M/ comes from the bijection

Loc.SetsM / Š II .M/;

which is true for all finite M . This follows from Lemmas 6.1.1 and 6.1.2. In particular,
jLoc.SetsM /j is finite andˇ̌

Loc.SetsM /
ˇ̌
D
ˇ̌
Loc.SetsM op/

ˇ̌
holds.

Since the union of two-sided idempotent ideals of M is again a two-sided idempotent
ideal, we see that II .M/ is a join-semilattice, with I _ J D I [ J . Its greatest element
is M and least element is ;. In general, the intersection of two-sided idempotent ideals is
not an idempotent ideal (see (i) of Example 6.1.5).

It is well known that any finite join-semilattice L with greatest element is a lattice,
where

a ^ b D
_
x

x;

with a; b 2 L and x running through all the elements of the set

¹x 2 L j x � a and x � bº:

It follows that for finite M , the set II .M/ is a lattice.

Lemma 6.2.1. Let I and J be two-sided idempotent ideals. Then,

I ^ J D
[
e

MeM;

where e runs through all the idempotents of I \ J .

Proof. The right-hand side is a two-sided ideal, generated by idempotents. Hence, it is
an element of II .M/. If e 2 I \ J , it follows that MeM � I and MeM � J . Thus,S
eMeM � I ^ J . Conversely, assumeK is a two-sided idempotent ideal, such thatK �

I andK � J . By Lemma 6.1.3, we can writeK D
S
i2IMeiM for some idempotents ei .

We have ei 2 I \ J by assumption, which implies that I ^ J is also a subset of
S
eMeM .

The result follows.

Corollary 6.2.2. If M is finite, then II .M/ is a distributive lattice.

Proof. Take I; J;K 2 II .M/. We need to show that

I ^ .J [K/ D .I ^ J / [ .I ^K/:

By Lemma 6.2.1, we see that I ^ .J [K/ is generated as a two-sided ideal by the idem-
potent elements of I \ .J [ K/, while .I ^ J / [ .I ^ K/ is generated (as a two-sided
ideal) by the idempotent elements of I \ J and I \K. The result follows.
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6.3. Topology on FM

We start by recalling the well-known relationship between (finite) distributive lattices,
posets and topologies.

Any poset P has a natural topology, called the order topology, where a subset S � P
is open if y 2 P and x � y imply x 2 P . Thus, Off.P / is a distributive lattice and it is
finite if P is finite. It is well known that any finite distributive lattice L is of this form,
for a uniquely defined P (see, for example, [21, p. 106]), specifically, for P D Irr.L/, the
subset of irreducible elements of L (an element x 2 L is irreducible if x D y _ z implies
x D y or x D z).

The poset of our interest is FM , the iso-classes of the topos points of M , where M is
finite. According to Corollary 5.6.2, we have

FM Š IdemJ .M/:

This allows us to work with IdemJ .M/ instead. This set has a canonical order

e � Jf if MeM � mfM:

Thus, we have a canonical order topology on IdemJ .M/ and, as such, on FM .

Proposition 6.3.1. One has a bijection

II .M/! Off
�

IdemJ .M/
�
:

Proof. It suffices to show that the irreducible elements of II .M/ are exactly the ideals of
the formMeM , where e is an idempotent. This follows from the fact that for any element
I 2 II .M/, one has I D

S
e2I MeM , where e is an idempotent. If MeM D J [K,

then e 2 K, or e 2 J . We get that MeM D J , or MeM D K.

The following corollary can already be found as [1, Exercise 9.1.12 (c)].

Corollary 6.3.2. For finite M , the topology on FM defined using localisations is homeo-
morphic to the order topology of the poset of principal idempotent ideals.

Acknowledgements. I would like to thank the referee for pointing out several important
relations with previous works and for pointing out several inaccuracies and overall helping
to better the paper and its presentation.
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