.(1)

Operational Calculus and Boundary Value Problem for an Abstract Differential Equation

E. MIELOSZYK

Es wird die abstrakte Differentialgleichung

 $S^2x = f$ mit $s_qSx = x_{1q}$ und $Bx = x_B$

betrachtet, wobei $B: L^2 \to \text{Ker } S, x \in L^2, f \in L^0 \text{ und } x_{1q}, x_B \in \text{Ker } S \text{ ist.}$

Рассматривается абстрактное дифференциальное уравнение

 $S^2x = f$ c $s_qSx = x_{1q}$ in $Bx = x_B$,

где $B: L^2 \to \text{Ker } S, x \in L^2, f \in L^0$ и $x_{1q}, x_B \in \text{Ker } S$.

The abstract differential equation

 $S^2x = f$ with $s_qSx = x_{1q}$ and $Bx = x_B$, is considered, where $B: L^2 \to \text{Ker } S, x \in L^2, f \in L^0$ and $x_{1q}, x_B \in \text{Ker } S$.

Suppose we are given the operational calculus $CO(L^0, L^1, S, T_q, s_q, Q)$, where L^0 and L^1 are linear spaces, S, T_q, s_q are linear operations called derivative, integral and limit condition, respectively, so that $S: L^1 \to L^0$ (onto), $T_q: L^0 \to L^1$ and $s_q: L^1 \to \text{Ker } S$ $(q \in Q)$, where Q is the set of indices. Let us assume that the operations S, T_q, s_q satisfy the following properties:

 $ST_q f = f$ for $f \in L^0, q \in Q$, $T_q Sg = g - s_q g$ for $g \in L^1, q \in Q$ (see [2-4, 7, 11]).

For $L^1 \subset L^0$, $L^2 = \{x \in L^1 : Sx \in L^1\}$ (see [3, 4]) and $B : L^2 \to \text{Ker } S$ a linear operation, let us consider the abstract differential equation

 $S^2x = f$ with $s_g Sx = x_{1g}$ and $Bx = x_B$,

where $x \in L^2$, $f \in L^0$ and x_{1q} , $x_B \in \text{Ker } S$.

Theorem 1: Problem (1) has

a) at least one solution if $B|_{\text{Ker S}}$ is a surjection onto Ker S,

b) at most one solution if $B|_{\text{Ker S}}$ is an injection,

c) exactly one solution if $B|_{\text{Ker }S}$ is a bijection onto Ker S.

Proof: Operating on the equation $S^2x = f$ with the operation T_q^2 and applying the axioms of the operational calculus and the condition $s_qSx = x_{1q}$, we obtain $x = T_q^2 f + T_q x_{1q} + c$, $c \in \text{Ker } S$. The condition $Bx = x_B$ leads to $Bx = BT_q^2 f + BT_q x_{1q} + Bc = x_B$. Thus we have obtained an equation

$$Bc = g, x_B - BT_q x_{1q} - BT_q^2 f = g \in \text{Ker } S$$

with an unknown c. Now the thesis of the theorem follows directly from this equation \blacksquare

Corollary 1: If $B|_{\text{KerS}}$ is a bijection onto Ker S, then Problem (1) has only one solution which is given by the formula

$$x = T_q^2 f + T_q x_{1q} + (B|_{\mathrm{Ker\,S}})^{-1} g, g = x_B - BT_q x_{1q} - BT_q^2 f.$$

Theorem 2: Let the following assumptions be satisfied:

- (i) L^0 , L^1 , L^2 are commutative algebras with unity $e \in \text{Ker } S$,
- (i₂) S(cx) = c(Sx), $T_q(cf) = c(T_qf)$, $s_q(cx) = c(s_qx)$, where $c \in \text{Ker } S$, $x \in L^1$ and $f \in L^0$,
- (i₃) Be = e,

(i₄)
$$B(cg) = c(Bg)$$
 for $c \in \text{Ker } S$ and $g \in L^2$.

. Then the operations $\hat{S}, \hat{T}_q, \hat{s}_q$ defined by the formulas

$$\begin{cases} Su = S^{2}u, \ u \in \dot{L}^{2}, \\ \dot{T}_{q}f = T_{q}^{2}f - B(T_{q}^{2}f), \ f \in L^{0}, \\ \hat{s}_{q}u = (s_{q}Su) \left[T_{q}e - B(T_{q}e)\right] + Bu, \ u \in L^{2} \end{cases}$$

satisfy the axioms of operational calculus: \hat{S} is a derivative, \hat{T}_q an integral and \hat{s}_q a limit condition.

Proof: \hat{S} , \hat{T}_q , \hat{s}_q are linear operations. We must show that \hat{s}_q

$$\hat{S}\hat{T}_q f = f(f \in L^0)$$
 and $\hat{T}_q \hat{S}u = u - \hat{s}_q u(u \in L^2)$.

Indeed, from the fact that the operations S, T_q , s_q satisfy the axioms of the operational calculus and from the assumptions, we have

$$\hat{S}\hat{T}_{q}f = S^{2}T_{q}^{2}f - S^{2}B(T_{q}^{2}f) = f$$

and

$$\begin{split} h_{q} \hat{S}u &= T_{q}^{2} S^{2}u - B(T_{q}^{2} S^{2}u) \\ &= u - s_{q}u - T_{q} s_{q} Su - Bu + B(s_{q}u) + B(T_{q} s_{q} Su) \\ &= u - (s_{q} Su) T_{q} e - Bu + (s_{q} Su) B(T_{q} e) = u - \hat{s}_{q} u \: \blacksquare \end{split}$$

Theorem 3: If the assumptions (i_1) , (i_3) , (i_4) of Theorem 2 are satisfied, then Problem (1) has only one solution which is given by the formula

$$x = T_q^2 f + T_q x_{1q} + x_B - BT_q x_{1q} - BT_q^2 f.$$
(3)

Proof: From the assumptions it follows that *B* transforms every element from Ker *S* onto itself; so $B|_{\text{Ker }S}$ is a bijection onto Ker *S*. The application of Corollary 1 ends the proof \blacksquare

Remark: If $B = s_q$, then we obtain an initial value problem.

The operational calculus obtained in Theorem 2 enables us for instance to solve abstract differential equations of the type

$$\sum_{i=0}^{n} R_i S^{2i} u = f$$

with

$$s_a S^{2i+1} u = u_{1ia}$$
 and $B(S^{2i} u) = u_{iB}$ $(i = 0, 1, ..., n - 1),$

applying the methods presented in [1-4, 7, 11, 12]. The coefficients of the equation can be scalars (numbers), commutative or non-commutative operations with derivative S, integral T_q and operation B.

(2)

Examples: A) The differential equation

$$y'' + 2py' + (p^2 + p') y = \{f(t)\}$$

with the conditions

$$y'(t_0) + p(t_0) y(t_0) = \alpha$$
 and $\int_{t_0}^{t_1} y(\tau) d\tau = \beta$,

where $y \in C^2(\langle t_0, t_1 \rangle, \mathbf{R})$, $p \in C^1(\langle t_0, t_1 \rangle, \mathbf{R})$, $f \in C^0(\langle t_0, t_1 \rangle, \mathbf{R})$ and $\alpha, \beta \in \mathbf{R}$, has only one solution, because the operation B,

$$By:=\left(\int_{t_0}^{t_1}y(\tau)\ d\tau\right)\exp\left(-\int_{t_0}^{t_1}p(\tau)\ d\tau\right),$$

and $B \left| \operatorname{Ker} \left(\frac{d}{dt} + p \right) \right|$ is a bijection onto Ker (d/dt + p).

B) If Ker $S \neq \{0\}$, then the abstract differential equation

$$S^2x = 0$$
 with $s_aSx = 0$ and $s_aSx = 0$.

where $x \in L^2$ has, apart from a zero solution, the solution x = c, $c \in \text{Ker } S$. The operation $B|_{\text{Ker } S} := s_{q_1} S|_{\text{Ker } S}$ is not an injection.

-C) In the case of operational calculus with the derivative

$$S\{u(x, y)\} = \left\{b \frac{\partial u(x, y)}{\partial x} + \frac{\partial u(x, y)}{\partial y}\right\},\$$

the integral

$$T_{\boldsymbol{y}_{\bullet}}\{f(\boldsymbol{x},\,\boldsymbol{y})\} = \left\{ \int_{\boldsymbol{y}_{\bullet}}^{\boldsymbol{y}} f(\boldsymbol{x}-b(\boldsymbol{y}-\tau),\,\tau) \,\,d\tau \right\}$$

and the limit condition

$$s_{y_0}\{u(x, y)\} = \{u(x - b(y - y_0), y_0)\},\$$

where $u \in L^{r} = C^{2}(\mathbf{R} \times \langle y_{1}, y_{2} \rangle, \mathbf{R}), f \in L^{0} = C^{1}(\mathbf{R} \times \langle y_{1}, y_{2} \rangle, \mathbf{R}), y_{0} \in \langle y_{1}, y_{2} \rangle, b \in \mathbf{R}$ (the case for the function of *n* variables is presented in [6]), the derivative \hat{S} , integral $\hat{T}_{y_{0}}$ and limit condition $\hat{s}_{y_{0}}$ are defined by the formulas

$$\begin{split} \hat{S}\{u(x, y)\} &= \left\{ b^2 \frac{\partial^2 u(x, y)}{\partial x^2} + 2b \frac{\partial^2 u(x, y)}{\partial x \partial y} + \frac{\partial^2 u(x, y)}{\partial y^2} \right\}, \\ \hat{T}_{y_0}\{f(x, y)\} &= \left\{ \int_{y_0}^{y} (y - \tau) f(x - b(y - \tau), \tau) d\tau \right\} - B \left\{ \int_{y_0}^{y} (y - \tau) f(x - b(y - \tau), \tau) d\tau \right\}, \\ \hat{s}_{y_0}\{u(x, y)\} &= \left(s_{y_0} \left\{ b \frac{\partial u(x, y)}{\partial x} + \frac{\partial u(x, y)}{\partial y} \right\} \right) (\{y - y_0\} - B\{y - y_0\}) + B\{u(x, y)\}, \end{split}$$

where $u \in L^2$ and $f \in L^0$ if the operation $B: L^2 \to \text{Ker}(b \ \partial/\partial x + \partial/\partial y)$ satisfies assumptions (i₃), (i₄) of Theorem 2. The partial differential equation

$$\left\{b^2 \frac{\partial^2 u(x, y)}{\partial x^2} + 2b \frac{\partial^2 u(x, y)}{\partial x \partial y} + \frac{\partial^2 u(x, y)}{\partial y^2}\right\} = \{f(x, y)\}$$

with the conditions

$$\left\{b\frac{\partial u(x, y_0)}{\partial x} + \frac{\partial u(x, y_0)}{\partial y}\right\} = \left\{\varphi(x)\right\} \text{ and } \left\{\int_{y_1}^{y_1} u(x - b(y - \tau), \tau) d\tau\right\} = \psi,$$

where $u \in L^2$, $f \in L^0$, $\varphi \in C^2(\mathbf{R}, \mathbf{R})$ and $\psi \in \text{Ker} (b \ \partial/\partial x + \partial/\partial y)$ has only one solution which is given by formula (3). In this case B,

$$B_{t}^{u} := \left\{ (1/(y_{2} - y_{1})) \int_{y_{1}}^{y} u(x - b(y - \tau), \tau) d\tau \right\},$$

satisfies the assumptions of Theorem 2.

D) Into the space $C(\mathbf{N})$ of real sequences $x = \{x_k\}$ let us introduce the derivative $S = \Delta$ according to the formula $\Delta\{x_k\} = \{x_{k+1} - x_k\}$. The limit condition s_{k_0} corresponding to Δ has the form $s_{k_0}\{x_k\} = \{x_{k_0}\}$. The integral T_{k_0} corresponding to Δ and the limit condition s_{k_0} has the form (see [5, 9])

$$T_{k_0}\{x_k\} = \begin{cases} 0 & \text{for } k = k_0 \\ \sum_{i=k_0}^{k-1} & \text{for } k_0 < k \\ i = k_0 & \\ -\sum_{i=k}^{k_0-1} & \\ -\sum_{i=k}^{k_0-1} & \text{for } k_0 > k. \end{cases}$$

The operation

$$B\{x_k\} = \left\{ \sum_{i=0}^{\infty} \alpha_i x_i / \sum_{i=0}^{\infty} \alpha_i \right\},$$

where $\{\alpha_k\} \in C(\mathbb{N}), \{\alpha_k\}$ is a sequence in which the finite amount of elements is different from zero and $\sum \alpha_i \neq 0$, satisfies the assumptions of Theorem 2. On the basis of this theorem we can define the derivative $\hat{S} = \Delta^2$, the integral \hat{T}_{k_0} and the limit condition \hat{s}_{k_0} . The difference equation

$$\Delta^2 \{x_k\} = \{/_k\}$$
 with $x_{k_0+1} - x_{k_0} = a$ and $\sum_{i=0}^{\infty} \alpha_i x_i = b$,

where $a, b \in \mathbb{R}$, $\{x_k\}$, $\{f_k\}$, $\{\alpha_k\} \in C(\mathbb{N})$, $\{\alpha_k\}$ is a sequence in which only a finite amount of elements is different from zero and $\sum \alpha_i \neq 0$, has only the one solution given by formula (3).

E) For $L^1 \subset L^0$, $L^m := \{x \in L^{m-1} : Sx \in L^{m-1}\}, m = 2, 3, \dots$ (see [3, 4]). If L^i $(i = 0, 1, \dots, 2n)$ are commutative algebras with unity $e \in \text{Ker } S$ and if the assumptions $(i_2) - (i_4)$ of Theorem 2 are satisfied, then the abstract differential equation

$$S^{2n}x = f,$$

$$s_q S^{2i+1}x = x_{1iq} \text{ and } B(S^{2i}x) = x_{iB} (i = 0, 1, ..., n - 1),$$
(4)

where $x \in L^{2n}$, $f \in L^0$ and x_{1iq} , $x_{iB} \in \text{Ker } S$ has only one solution, which is given by the formula

$$x = \sum_{i=0}^{n-1} (T_q^2 - BT_q^2)^i \left(x_{1iq} [T_q e - B(T_q e)] + x_{iB} \right) + (T_q^2 - BT_q^2)^n f.$$
(5)

Let us observe that problem (4) is equivalent to the problem

$$\hat{S}^n x = f$$
 with $\hat{s}_q \hat{S}^i x = x_{1iqB}, \quad i = 0, 1, ..., n-1,$

where $x \in L^{2n}$, $f \in L^0$ and $x_{1iqB} \in \text{Ker } \hat{S}$. Applying R. BITTNER [4: Theorem 6] and Theorem 2 we will get formula (5) for the only solution of problem (4).

REFERENCES

- [1] BERG, L.: Operatorenrechnung. I: Algebraische Methoden. Berlin: Dt. Verlag Wiss. 1972.
- [2] BITTNER, R.: Operational calculus in linear spaces. Studia Math. 20 (1961), 1-18.
- [3] BITTNER, R.: Algebraic and analytic properties of solution of abstract differential equations. Rozprawy Mat. 41 (1964), 1-63.
- [4] BITTNER, R.: Rachunek operatorów w przestrzeniach liniowých. Warszawa: Polish Sci. Publ. 1974.

254

- [5] BITTNER, R., and E. MIELOSZYK: Properties of eigenvalues and eigenelements of some difference equations in a given operational calculus. Zeszyty Naukowe UG w Gdańsku, Matematyka 5 (1981), 5-18.
- [6] BITTNER, R., and E. MIELOSZYK: Application of the operational calculus to solving non-homogeneous linear partial differential equations of the first order with real coefficients. Zeszyty Naukowe PG w Gdańsku, Matematyka 12 (1982), 33-45.
- [7] DIMOVSKI, I.: Convolutional calculus. Sofia: Bulg. Acad. Sci. 1982.
- [8] MIELOSZYK, E.: Operational calculus in algebras. Publ. Math. Debrecen 34 (1987).
- [9] MIELOSZYK, E.: Partial difference equation. Acta Math. Hungarica (in print).
- [10] MIELOSZYK, E.: Operation $T_{x_n}^k$ and its application (in preparation).
- [11] PRZEWORSKA-ROLEWICZ, D.: Shifts and periodicity for right invertible operators (Res. Notes in Mathematics 43). Boston (Mass.): Pitman Adv. Publ. Program 1980.
- [12] TASCHE, M.: Funktionalanalytische Methoden in der Operatorenrechnung. Nova Acta Leopoldina 231 (1978), 1-95.

Manuskripteingang: 10. 01. 1986; in revidierter Fassung 03. 06. 1986

VERFASSER:

Dr. ELIGIUSZ MIELOSZYK

- Institute of Mathematics of the Technical University,
- Majakowskiego 11
- P-80-952 Gdańsk