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Es wird ein . zufalliger Fixpunktsatz vom Leay-Schauder-Typ für zufallige mengenwertige 
nach oben haibstetige 1-verdichtende Opera toren bewiesen. Die Definitionsbereiche warden 
als zufällig voraisgesetzt. Das Resultat verailgeineinert versehiedene zufallige Fixpunktsätze 
und impliziert elne stochastische Version eines Fixpunktsatzes von' Petryshyn für mengen-
wortige Abbildungen. 

L01;a3HBaeTcR Teopema 0 Hen0BI1xH01 Toq xe BIIiI JTepe-fflayepa iina CJ!y1aflHISIX 51HOrO-
3HaqHb1x noiyuciipepainnux 1-ynJ10'FHHI0IIIHN 0To6paHeHI!fl. PaccMaTpHBaloTca ciryaftin5ie 
o6JIacTH onpej1eJeLIlsn. Pe3y1bTaT o6o6uaeT IaaBecTHbIe reopeihI 0 cJly'4allHhIx !leHOLBIflH-
HSIX ToMHax H B}O4T B Ce6H, H aK iaCTIMA caiy'iafl, oiHa TeopeNla fleTpHuJHIIa JJIH MHO['O-
3Ha4HbIx cJiy'iaflllux 0To6paneIIH.	 - 
A random fixed point theorem of Leray-Schaudei type for multivalued upper semicontinuous 
1-set-contractions is prved. The domains are allowed to be random. The result generalizes' 
several random fixed point theorems and implies a stochastic version of a fixed point theorem of 
,Petryshyn for multivalued mappings. 

1. Introduction 

The studyof random operator equations was initiated by. the Prague school of proba 
bilks-around 8pa6ek and Han g in the 1950's. The survey by ,BHARUCHA-REID [1] 
initiated an essential improvement of the theory of random fixed points. Especially 
the papers by ENGL [5, 61 and NOWAK [14, 15] contain very general fixed point theo-
rems. Theorem 6 in [6] assures the existence of a random fixed point of a random ,pon-
tinuous multivalued operator with stochastic domain provided that the corresponding 
deterministic fixed point-problem is solvable. Many iandom fixed point theorems (cf. 

' [5, 10, 11]) are contained in this result. However, this general theorem is unknown for 
the important case of the uppr semicontinuous multivalued random operators. There-
fore it is useful to prove special random fixed point theorems for such random opera- T 
tors. In this paper we prove such a result by use of an idea of ENGL [5]. Our theorem 

- generalizes results of ENOL [6] for compact and of ITOH [12] for condensing random 
operators.	

S 

2. Definitions and preliminary results  

Throughout this paper let E be a real separable Bãnach space, (17, ; 1u) a a-finite 
complete measure -.space and 58(E) the a-algebra of Borel sets on E. By S x 58(E) 
we denote the smallest a-algebra containing {S x B: S E S, B E 58(E)). 

Let M 9 E. By 'M M, aM and mt ill we dnote the closed ccnvex hull, the closed 
hull, the boundary and the interior of M, respectively. We define 2E = {X E: 

(



-	282	S. Hiiu' 

X ø}, Cl(E) {X E 2: X is closed), C(E) = {X E Cl(E) : X is convex), KC(E) 
= {X E C(E) : Xis compact} We define for M E, N E, a € E, r > .O and t E R: 
a+M = {a±x:x€M},tM={tx:xEM}M+N{x+:x€Mand y€N} 
and Kr(a) = {z E-E: lIz - a ll <r}. Let D be a set and A " : D 	2 he a (tnultivalued)
mapping. The graph of A will be denoted by Gr A = '{(x, y) € D XE: y E A(x)} and 
for 	Ewe define A- 1 (G) = (x E D: A(x) n ' G.0 ø). The set A(D) = U {A(x): x € 1.)) 
is called the range ofA : D -- 2.	 - 

Definition 1: Let A: Q --Cl (E). A is called measurable if for all open C 9 E ! we 
have A- 1 (G) € .  
Remark I [9: Th. 3.5 (iii)]: The, mapping A:Q	Cl(E) is measurable iffOrA E x(E) or
iff A I(B) E S for all B € (E). 

Definition2 [4]: Let A: Q	A is called separable if it is, measurable and
there exists a countable set Z E such that for all w € Q we have A() = Z n A(w). 

Remark 2: 1. If A: Q -+ 2 F is separable, then A(w) € Cl (B) (wE Q)2. if A(w) = A 0 € Cl(E) 
for all w  Q, then A is separable. 3. If A(w) = mt A(w) and A : Q	2E is measurable, then A 
is separable. Especially: lfA(w) is convex and closed with mt A(w)	0 (wE Q) and A : Q - 2 
is measurable, then A is sepirable [6: p. 70]. 

Definition 3 [4]: . Let A : Q >.2E and F: GrA — Cl(E) are mappings. Fis called 
(niultivalued) random operator with stochastic domain A if A is measurable and if for 
all x € E and open C El E we have {w € 12: x E A(w) and F(w, x) a C 0}.E 

For A 0 E Cl (B), F: 12 x A 0	2 k', F is especially .a random operator (hut with 'deterministic' 
domain) iff F( . , x) is measurable for all E B. 

Definition 4: Let A:Q .> 2E and F: GrA — . Cl(E) be a random operator with 
stochastic domain A. A measurable function x: 12 - E is called random fixed point of F 
if for all w € 12 we have x(w) € A(w) and x(w) € F(w, x(w)). 

The following result is a fundamental lemma for the proof of random fixed point 
theorems. 

Lemma 1 [13]: Let P : 12 -^ Cl (B) be a measurable multivalued mapping. Then there 
exists a measurable function x: 12 -> E such that x(w) € P(w) for all w € 12. 

Definition 5: Let M Eand F: M_>2E . F is called upper semicontinuons if 
for all x € M and all open C E with C Q F(x) there exists a neighborhood U of x 
such that for all z € U. n M we have F(z) c C. F is called-closed if Or F is closed in • 
the product topology. F is called compact if F is closed and F(M) is compact. 

Remark 3 (cf. [2]): Let M E and F: Al - 2E J If  is upper setnicontinuous and F(x) 
is compact for all x € M, then F is closed. 2. If F is closed and F(M)is compact, then F is upper 
semicontinuous. 3. F is upper semicontinuous iff for all closed A	B, F-'(A) is closed. 

Definition 6: Let A : Q 2E and F: Or A ->- 2 be a random operator with 
stochastic domain A. F is called upper semicontinnou.s (closed, compact) if for all w € 12 

• '

	 the mapping"F(w,.) is upper semicontinuous (closed, compact). 
Let 

B be a hounded subset of E. We define y(B), the set-measure of noncom pactness 
of B, by y(B)	inf {d > 0 : . B can be áovered by a finite number of sets of diameter 

-	. 
Remark 4: Let B and  be bounded subsets. Then the following result is well known: J

y(B) = 0 iff B is compact. 2. y( B) = y(B). 3. y(B n {a}) = y(B) (a E E). 4. B c C implies 
Y (B)	y(C). 5. y(B + C) 5 y(B) + y(C). 6. y(tB)	I l l y(B) (t € B).	.
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/ Definition 7: Let k ^t 0, A 9 E and, F: A - 2E be an upper 'semicontinuous 
mapjing with bounded range. F is called k-set-ontraction (1-set-contraction) if for all 
bounded B A we have y(F(B)) ;5-ky(B) ((F(B))	y(B)). F is cal-led condensing 
if for any bounded B A with y(B) > 0 we have y(F(B)) <y(B).	 - 

Each k-setcontraction has compact values, F: A - 2E is a (closed) 0-set-contraction 1ff 
F is compact and F is condensing if F is a k-set-contraction with ic < 1. 

J)efinition 8: Let A : Q - 2E and F: Gr A -- 2E he a random operator with 
stochastic domain A. F is called a random 1-set-contraction (a random condensing 
operator) if for all w € Q the mappings F(w, .) are 1-set-contractions (condensing 
operators). - -	 - 

3. The-main result
 

- Let A : Q _2E be separable, Z a countable set-such as appears in Definition 2 and 
F : Gr A -> 2 a random operator with stochastic domain. Following ENGL [5, 61, we 
define	-	-	 -	-	 - 
- -. -	H(w,x)=fl{F (w,x) : nEN}	((w,x)€GrA) 
with-	 -	 - - 

-	F(w, x) = cotJ (F(w, z) z € Z.n A(w) and liz - xli < 1/n}. - 

.Letnnia : Let F: Or A -> KG (E) be a random upper semicontinuou-s operator. 

	

- Then we have /or H : Or A - 0(E) the following pro peities:	 - 
1. F(w; x)	Ii(u, x)	0 for all (w, x) € Gr A.	-	-	- 
2. Let k ^! 0 and let F be a random k-set-contraction. Then H is a random. k-set-

contract-ion and II(w, x) € KC (E) for all (w, x) € Or A.	-	-	-	- 
3. Let T(w; x) := x. H(w, x) ((w, x) € Gr A). Then T'-'(D) €	(E) for all coni-

pactDE.	 - 

- Proof: I'roH [12: Lemma 1.1] - proved statenient I and that H(w, .) is upper

	

semi-
continuous  for, all w € Q. In the proof of statement 2 we choose w € Q fixed (but	- - 
arbitrary). Therefore we do not write the argument w. Let B be a hounded subset - 
- of A. Then	 -	--	-	 - 

•	H(B) = U {H(x) : x € B}	U {F(x) : x € B} 
U ë {F(K114 (x)) : x € B} 9 ZZ F(B + K 11 (0)) (n € N). - 

	

- 'Because F is a k-set-contraction we obtain with Remark 4 -	 - 

y(H(B)) y(F(B + K11 (0))) 5 ky(B + K 110)) ky(B) + ky(K11(0)) 

for all n € N. With n -- oo we have y(H(B))	ky(B) and therefore H(w, .) is a k-set- - 
contraction for all w € Q. This implies H(w, x) € KC (E) for all (w, x) € Gr A.	- - 

Now we prove statement 3. Let G E be open and n € N. Then we have (cf. Rem. 1 - 
and .'Def. 3)  

• S	 —xli <})nG=0} 

U lQXxE E: IIx -zil <—HOGrA	 S	 -- - 

-	 zezL	l	 nSJJ	-	 -	 -	- 

n [{w € Q: z € A(w), F(w, z)n G + 0} x E] € S x(E).	 -	-
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Now we.apply'[9: Prop. 2.6 and Th. 9.1] and get that F is measurable on GrA, 
(S X 3(E)) n Or A). Let Tn(io, x) = x — F(w, x) ((w, x) E Or A). Then T is measur-
able on Or A, too. With Remark 1 we have, especially, 

{(w, x) E Or A: T(w, x) n D ø} E G X 8(E) 
for all compact D C7 E. Now we have 

T(w, x) = x— ( {F(w, x) : n E N) = fl {T(w, x) : n € N} ((w, x) € Or A) 
• and wepply[9:Cor.4.3]. Therefore {(w,x)E GrA : T(w,x)nD + ØE X(E) 

for all compact D c E I 
For the .proof of our main result we need the following deterministic fixed point 

theorem, which is a corollary from [8: Th. 6.1.6]. 
Lemma 3: Let K be closed, convex and U an open suh.et of E with U n K + 0. Let 

• A =UnK and H:A —> C(E) be a mapping with H(A) K. Wes'uppoe: 
1. H is a 1-set-contraction,.  
2. If (x) c: A and (zn ) with z, € H(z) die sequences with x, — z,, —> 0, then there exists 

an x' € A with x' € B(x'). 
3. There exists an a € U  K such that fix + (1 fi)a .H(x) (x E O U n K, fl> 1). 
Then there exists an x0 € A with x0 € H(x0) (we can find a similar result for instance 

in[16], though only for .K = E and point-valued mappings). 
Definition9: Let A c E: WècallH:A —> 2-' demicornpact in 0 if for bounded 

sequences (Xn) c A and (zn ) with z,, € H(x) and x,, — Z .--O there exists an x  E and 
a subsequence (x) with x,-- x for k -- oc.	 I 

We can easily see that any condensing (especially, any compact or any k-set-con-
traction with k < 1) mapping is demicompact in 0. 

Now we can prove our general fixed point theorem. 

Theorem: Let A : Q —> 2 E be separable and F: Cr A - KG (B) be a randoni1-set-
contraction with random domain A. We suppose:	 - 

1. For all w € Q the mappings F(w, ) are deniicom pact in 0.	- 
2. For all w € Q there exist an open subset U(w) 9 B and a set K(w) € C(E) with 

A(w) = U(w) n K(w), U(w) n K(w) =J= 0 and F(w, x) K(w) (x € A(w)). 
3. For all w € 12 there exists a(w) € U(w) n K(w) such that the Leray-Schauder condi-

tion fix + (1 -fi) a(w) 4 F(w, x) (x € aU(w).n K(w), fi >1) holds. 
Then F has a random fixed point.	- 

Proof: Let Z be a count-able set such as appeal-s in Definition 2. We define II: 
GrA —C(E) as before Lemma 2. Let P(w) = frE A(w):x € H(w,x)} (wE Q). We 
apply Lemma 2 ith k = 1 and get that H(w,.) is a 1-set-contraction for all w E 'Q, 
H(w, x) K(w) for all w E Q and x € A(w), and 0, + Il(w, x) F(w, x) for all 
(w,'x) € Or A. Because of assumption 3, for all wE Q there is an a(w) E U(w) n K(w) 
with fix + (1 — fl) a(w)' F(w ), and therefore fix -- (1 — fi) a(w) q tI(w,-x) 
(XE aU(w)nK(w),s> 1). Letw E  he fixed (but arbitrary). Now we show that con-
dition 2 from Lemma 3 holds for H(w, .). Let-(x) A(w) and (zn ) are sequences with 
zn E H(x) and x, — Z — 0. Because H(x) 9 F(x) we have z, € F(x) (n E N). F is 
demicornpact in 0 and therefore there exists a subsequence (xflk) of (xe) with z,, 
—^ x' E A(w). Then we have Zflk —> x'. Because z € H(xflk) (k € N) and H(w, .) is closed, 
we obtain x' € H(x'). Therefore we can apply Lemma 3 and for all w € 12 there exist
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an x(w) € A(w) with x(w) € H(w, x(w)) and P(w) rl= 0.- ll(w,.) is closed, and then' 
P(w) is closed. Therefore F: .Q —> Cl(E). We prove that P is measurable and apply 
Lemma 1. Let T(w, x) := x — H(w, x) ((w, x) E GrA). Then we obtain 

Or P== ((w, x) E Or  :x € H(w,x)} = T-1({0}). 
Because of Lemma 2 we have T'({O)). E G x (E) and P is measurable (Rem. 1) 
Because of Lemma 1 there exists a measurable function x 0 : Q — E with o(w) € P(w) 
for allw E Q. Then x0 is a random fixed point for F, since x0 (w) € A(w) and x0(w) 
€ H(w, xo(w)) 9 F(w, xo(w)) I	 - 

Corollary 1: Let U 9 E be open, K E be closed and convex with U  K = O.and 
F: Qx (U nK) —> C(E) be a random condensing operator with F(Q x (U n'K)) K. 
We suppose: For all w € Q there is an a(w) E U n K with /9x + (1 — /9) a(w) 4 F(w, x) 
(x € 3U n K, /9> 1). Then F has a random fixed point. 

Proof-- F(w, .) is deinicompat in 0 because F is condensing. 'Then we apply the 
Theorem and Remark 2/21	.. 

Corolla ry.2: Let A : Q -- C(E)be separable and F: Or A —>'KC(E)be amultivalued 
random operator. with' stochastic domain A. We suppose: For all x € A(w) we have 
F(w, x)	A(w) (w € Q) and for all w the mappings F(w, .) are k(w)-set-contractions 

- with k(w) < 1. Ohen F has a random fiaed point. 
Proof: If w € Q with mt A(w) = 0, then the conditions 2 and 3 in our Theoreri 

Are, realized for U = B, since A(w) = A(w). If w € Q with mt A(w) + 0; then the 
conditions 2 and 3 in Our Theorem are realized for'K = B, since A(w) = U(w) is con-
vex and-then the Rothe condition implies the Leray-Schauder condition. F is a ran-
doni 1-set-contractidn and all F(w, •) are demicompact in 0, because they are condens-
ing. Now we apply the Theorem I	 1 

Corollary 3: Let A:.Q—>-C(E) be separable2 and measurable, F:GrA -^KC(E) 
• be a multivalued random compact operator and G: G r A —> B a random . operator. We 
I suppose /or all w Q: F(w, x) + G(w, x)	A(w) (x € A(w)), there exists k(w) € [0, 1) 
with IIG(w, x) - G(w, )iI	k(w) lix - ll (x, y € A(w)) and G(w,.) has a bounded
range. Then F + 0 has arandom fixed point. . 

Proof: For all w € Q, F(w,.) + G(w, .) is a k(w)-set-contraction with k(w) < 1 
/ and we apply. Corollary 2 1 

Corollary 1 generalizes for U = E or for K = E the main theorem of the Rothe type for 
condensing 'andom mappings from [12]. Corollary 2 generalizes the stochastic versions of the 
fixed point theorem by Kakutani, which was proved by ENGL [5, 6] and by Nowx [15] for 
compact mappings. Corollary 3 is a multivãlued version of Corollary 9 in [6].	- 
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