'ERRATUM to

S.Gähler: Contribution to the Theory of Generalized Derivatives. Z. Anal. Anw. 5 (1986), 367-376.

On page 368 and 369 some of the symbols \mathcal{D} , <, = which are printed normal according to the manuscript had to be set in another way. The text is correct as follows:

II. Now let S be an ordered inner product space and (\cdot, \cdot) be its inner product. (The fact that the symbol (\cdot, \cdot) is also used to denote the open interval cannot lead to any confusion.) Let us write

$$f(q) \begin{cases} \geq_K \\ =_K \\ <_K \end{cases} 0 \quad \text{if} \quad (f(q), K) \quad \begin{cases} \subseteq [0, \infty), \quad \text{but} \neq \{0\} \\ = \{0\} \\ \subseteq (-\infty, 0], \cdot \text{ but} \neq \{0\} \end{cases}$$

where $(f(q), K) = \{(f(q), k)/k \in K\}$. Let $f(q) ='_K 0$ if there exists a neighbourhood Uof the point 0 in R with $q + U \subseteq Q$ and $(f[q + U], K) = \{0\}$ where (f[q+U], K) $= \{(s, k)/s \in f[q + U], k \in K\}$. Moreover let $f(q) >'_K 0$ $(<'_K 0)$ if not $f(q) ='_K 0$, but if there exists a neighbourhood U of the point 0 in R with $q + U \subseteq Q$ and $(f[q + U], K) \subseteq [0, +\infty) ((-\infty, 0])$. For arbitrary $g: Q \to S$ let

$$\mathcal{D}g_{f}(q) = \begin{cases} D_{l}g(q) & \text{if } f(q) >_{K} 0\\ D_{l}g(q) \cup D_{u}g(q) & \text{if } f(q) =_{K} 0\\ D_{u}g(q) & \text{if } f(q) <_{K} 0\\ \emptyset & \text{otherwise} \end{cases}$$
$$\mathcal{D}'_{f}(q) = \begin{cases} D_{l}f(q) & \text{if } g(q) >'_{K} 0\\ D_{l}f(q) \cup D_{u}f(q) & \text{if } g(q) ='_{K} 0\\ D_{u}f(q) & \text{if } g(q) <'_{K} 0\\ \emptyset & \text{otherwise} \end{cases}$$

Theorem 1: If g is continuous at q, then.

 $(f(q), \mathcal{D}g_f(q)) + (\mathcal{D}'f_g(q), g(q)) \subseteq D_l(f, g)(q).$

Proof: Assume $\mathcal{D}g_f(q)$ and $\mathcal{D}'_f(q)$ are not empty. Let $f(q) >_K 0$ and $g(q) >'_K 0$ and for arbitrary $\gamma \in D_l g(q)$ and $\phi \in D_l f(q)$ let $\psi = (f(q), \gamma) + (\phi, g(q))$. Then

Hence we have $\psi \in D_l(f, g)(q)$ which proves the assertion of the theorem in the case $f(q) >_K 0$ and $g(q) >'_K 0$. The other cases can be proved analogously **1**