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On Polyharinonic Riemannian Manifolds 

K Scnmnmco and J. KowoLi 

Eine naturliche-Verallgemeinerungder harmonischen Mannigfaltigkeiten wird behandelt: eine 
Riemannsche Mannigfaltigkeit heiBt k-harrnonisch oder polyharmonisch, falls sie eine nur vom 
geodätischen Abstand r = r(x, ) bzw. von der Syngeschen Funktion a = a(x, i) abhangige 
nicht-konstante k-harmonische Funktion - d. h. eine Losung F von A kF(a) = 0 - gestattet. 
Bestimmte Theoreme veraligemeinern sich von harmonischen auf polyharmonische Mannig-
faltigkeiten. 

PaccMa'rpssBaercn ecTeücTBeIIuoe o6o6iueiiue rapMoHu'iccnx MHoroo6pa3uil: piauoeo 
MHoroo6paaHe IIaaLIBaeTcH , k-rapMoIlH'IecKIlM IIJIII noJInrapM0Hsl4ecHHM, ecisi 0110 u03B0JufeT 
HenocTosHuylo k-1'apMOHMeCIyI0 (l)yl1 JUl11 JO, 3Bh1C5Ulfl TOJIbRO OT reoe811 qecHoro pacc'ros- 
itun r = r(z; y) uiu or YH1UIMM CuHra a = . r(z, y), lJJl q uT - peweitue ypaaueia zl"F(a) = 0. 
HexoTop1,c TeopeMl.I 0 rapMoHIl'IecfclIx Mlloroo6pa3IlflX o6o6IuaI0Tcfl Hano11I'apM0HuecIue 
MHoroo6pa3ua. 

A natural generalization of the harmonic manifolds is considered: a Riemannian manifold is 
called k-harmonic or polyharmonic if it admits it non-constant k-harmonic function depending 
only on the geodesic distance r = r(x, y) or rather on Synge's function a = a(x, y), i.e. a solu-
tion F of A"F(a) = 0. Certain theorems are generalized from harmonic to polyharmonic mani-
folds. 

Introduction 

Consider a smooth n-dimensional Riemannian manifold (M, g), the metric g = g. 9 dx' 
Xdx(x, fl. = 1, 2, ..., n) being of any signature, i.e. properly orpseudoRiemannian. 
Denote by V = dx' V the Levi-Civita derivative to g acting on tensor fields and by 

g-P V V the Laplace oprator, where (gfl) := (gd) -I . Further, Syng'e's two-point 
function o = o(x, y) is essential here; it is defined (with the help of the exponential 
map, cf. § 1.) for points x, y E M which are not too far from each other. For properly. 
'Riemannian manifolds 2a equals. the square of the geodesic distance between x and y: 
2o = r(x, y) 2 . Thus, d is the natural generalization of r2/2 to manifolds of arbitrary 
signature. We ask for non-constant smooth local solutions F of the differential equation 

4kF(a) = 0,  

i.e. for non-trivial k-harmonic functions which depend n the point. x E M only 
through a = r(x, y). Here and throughout the paper k denotes a positive integer, 
4k = 44... 4, and differential operations refer to the first argument x. The term 
"smooth" means differentiability class .C. Distinguished signatures of g are the 
properly Riemannian case, i.e. signature (± +	+) or (- - ... -), and the Lorentz-
ian case, i.e. signature (±-	-) or (-+	+). Our problem (1) is a plausible
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generalization of the following two problems which have already been studied to some 
extent (but not yet completely solved!) and which will serve here as a guide-line: 

the theory of harmonic Riemannian manifolds, that means the problem (l)'for 
k=1; 

- the search for Riemannian imianifolds in which a power of or is k-harmonic, that 
means the problem (1) for F(a) = al or rather F(a) = jaJ'. 

While there is a rich literature on harmonic manifolds, cf. H. S. RUSE, A. G. 
WALKER and T. J. WrLLMORE [12] and-A. L. BESSE [1] and the citations given in 
these books,. the problem 

Ak oi' = 0,	 (2) 

which had been suggestd by A. GRAY to our knowledge,. has. ben studied only 
recently in a series of papers by R. CADDEO, P. MATZEU, L. VAN1-IECKE, J. ETCH-
HORN, R. SCIHMMENG [2-4, 6-8, 131. 

We call a Riemannian manifold k-harmonic or polyharmomic if it admits a local 
solution'F	const. of (1). Particularly, 

1-harmonic = harmonic, 2-harmonic = : biharmonie. 

It is to be noted that, unfortunately, the term "k-harmonic manifold" has already 
been used with another meaning [15, 161. We think that our new terminology is a 
natural one and that there will not arise misunderstandings. As the first step towards 
the problem (1) the possible types of functions F should be found out and classified. 
We restrict ourselves here to the class of functions F(a) which behave for a -- 0 
Asymptotically like some power lal l , in asense which will be made precise in § 2. The 
real power exponent 1 is called the order of the function F and also the order of the 
polyharinonic manifold (M, g). We show that only the following discrete spectrum 
of orders 1 is-possible: for given k and n =: 2n?. + 2-the number 1 has one of the values 
01 1, ..., k - 1; —m, 1 - m, ..., k - 1 - m. For odd dimension nhalf-integer orders 
1 may occur; for n 3 negative orders 1 may occur. The whole order spectrum effec-
tively occurs in any simply harmonic manifold. 

We call a Riemannian manifold simply k-hdrmonic or simply polyharmonic if (2) 
holds with some real number (the order) 1	0. Particularly, for n > 3 

simply 1-harmonic of order - in = simply harmonic. 

- For certain situations, i.e. assumptions on k, 1, it and the signature of g, we derive in 
§ 3 necessary conditions on the curvature of the polyharmonic manifold. We sunima-
rize the main results in a list; the assumption on k, 1, n, g is followed by the conclusion 
on the curvature of the manifold. 

1. 1 = k - m— I or 1= k - in —2, and 1<0 or n odd: Eiiistein manifold. 
2. k, '1, n as above, g Lorntzian: constant curvature. 
3. 1 = k - 1 > 0: constant 'scalar curvature. 
4. 1 = k - 1 > 0, n = 2: flat manifold. 
5. 1 = —I, k :E^ m: vanishing scalar curvature. 
6. 1 = —1, k = m: Ricci-flat manifold. 
7. 1 = —1, k= m, g Lorentzian: flat manifold. 
8. 1 = —I, k = m, n ^! 6, g properly lliema7inian: flat manifold. 

We obtain these necessaiy conditions by means of a version of the "method of coin-
cidence limits", which.has been developed by J. , L. SvGE [14] and B. S. DE WITT 

and R. W. BREHME [5], combined with the calculus of symmetric differential forms.
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At the present state of knowledge on polyharmonic manifolds two major problems remain' 
open:

I. Characterize all possible types of functions F in the equation (1); give a complete 
classification of polyharmonic manifolds. 

II. Either prove that every polyharmonic manifold is harmonic or simply polyharmo-
nic, or find a counterexample. 

The second problem signals that ther"e are good results on necessary conditions, hut not so on 
sufficient conditions.' Namely, all examples of polyharmonic manifolds which are known until 
now are harmonic manifolds or simply polyharmonic manifolds. Note that there exist simply 
polyharmonic manifolds which are not harmonic ones; in § 2 we present a new class of examples	- 
for that. 

§ 1 Preliminaries	 I 

The two-point scalar field a = a(x, y) can be defined by more than one way. Our 
definition differs from [14, 5, 12] and coincides with [11, 131. 

Definition Let N(y) be a normal neighbourhood of y E M, i.e. the exponential 
map with origin y, expy : x i- . x, is a diffeomorphism fron the tangential space 'ofy 
onto N(y) or, equivalently, N(y) is the domain of a normal coordinate system x -+ 

-> (x)	(x*), x 2 , ..., X-t1). The quantity	- 

/	cr(x, y) = -j- g(y) (expy ' x, exp 1 x) = -- g(y) (x* , x*) = -- g(y) XX*P 

f6r x E N(y), is called Synge's two-point function. From a there are derived 

e=e(x,y):=signa(x,y), 

:= Vga, a := gap, 0. p := V Vga. 

The two-point scalar fields a and u are ingredients of the "method of coincidence 
limits" [14, 5, 131. The limit for x ->- Y, if existing, of a two-point quantity is called its 
coincidence limit. The equality of the coincidence limits is an equivalen'ce relation 

'between two-point quantities and will be denoted by	One-point quantities and 
constants may be interpreted as special two-point quantities.	- 

We adopt the following notations and conventibns.	
0 

- A symmetric differential form of degree p
 

U *= u =	
. 

dx" dx" .. . dx"v	 0 

is a special notation for a symmetric covariant tensor field of degree p with local 
0 components	 0 

-. The trace tr of a symmetric p-form with respect to the metric g is given by 

- true = tm 1 = 0, tru2 = g"u,p,	
0 

tr u, =	 dx"' ... dx"p for p ^t 3. 

- The trace-tree part of u, with respect to g is denoted by u9. 
- The symmetric differential of u is du :	dx" dx"' ... de'. 
- The p-th power or iteration of d is d = dd ... d.
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- The curvature tensor of (M, g), J?ieni = R,(dxA dx) (dx's A dx'), is defined by 
the Ricci identity for vector fields v= v , 

- From Rern there are built 

Ric = RpdXa dx" = Ricci tensor :=	dx", 

R = scalar curvature : = 

(Riem)2 :=R 10 R,, dxl dx" dxM dx', 

Riem 2 := Ra;M,.R", lRicI 2 := RRaP. 

The following list of "coincidence relations" is needed: 

o0, o,0, arg,p, da0, dag, dPuO for p3, 
• da	de, df 0 for p 2, ,u 0, d	0, - 3d2	Ric, 

—4du 3d Ric, —15du 18d 2 Ric + 4(Riem)2, 
—3z1,u	R, —2d4,u dR,	154 21u	12zlR + 2 ( I Riem I 2 - Rid2). 

/ For the derivation of these expressions cf. [14, 5, 12, 13]. 

§ 2 Definition and classification of polyharmonic manifolds 

Now we define the notion which gives our paper the title. 

Definition 2.1: A smooth n-dimensional Riemannian manifold (M, g) is called 
otyharmonic if there exist a neighbourhood N of the diagonal of M x M,a smooth 

real function F == const. and a positive integer k such that 

(i) o is defined oi N, 
(ii) F o a is defined on. N- = {(x,y) E Na(x,y) + 0}, 

•	(iii) L1".F(a) = 0 in N-.. 
More precisely, (M, g) is then called k-harmonic. 

In the spirit, of the primordial definition of a- harmonic manifold [12, 11 one would 
alternatively define a polharmonic manifold as following: there exists a function 
F(a, y) such that for each y € M and each normal neighbourhood N(y) of y 

A kF(a, y) = 0 in N(y) = {x € N(y) I a(x, y) = 0). 

• In [12] it is made clear that for analytic manifolds and for k I the two definitions 
are effectively equivalent. The version choosen here is better suited to our purposes. 
Roughly speaking, two cases are possible for the function F: F(a) behaves either 
regular or singWar for a 0. Just in order to include the singular case into the defi-
nition we demandF(a) = 0 only in N- and not in the whole of N. Now we intend to 
refine the classification of polyharmonic .manifolds.  

Definition 2.2: In the situation (i), (ii) of Definition 2.1 and with a real number 1, 
the function F is said to be of order 1 if i' F(a) has a smooth extension /(c) from 

•	N to N such that	 .	 . 

/(0)	1im jI - ' F(i) + .0 •	 , -
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If (iii) is satisfied too then (M, g) is called a polyharmonic manifold of order 1 or a 
k-harmonic manifold of order 1. 

This notion of-an order does not cover all' possible behaviours of polyharmonic 
functions F(a). Thë simplest counterexample is LV'(log a) = 0 in Euclidean space R2. 
We conjecture that power and logarithm functions' and certain combinations of 
them will suffice for a complete description of the possible types of solutions F of 
J kF(a) = 0. The recursive calculation A k(IaJ I 1(a)) = z1[z1 c_1(Iaj 1 1(a))] is made precise 
by the following scheme.	 - 

Proposition .2.1: In the situation of Definition 2.2 the recursion with respect to 
k=0,1,...	 -	-

(2.1) 
defines smooth two-point scalar fields q'' = Ipk'(x, y) in N. With these there holds 
(e/J)!c (I aI 1(a)) = 2k a'" 9k' in N. 

The proof is done by means of mathematical induction with respect to k I


	

Proposition 2.2: Define numbers ak' for k 0 and k'(p, q)'f or k	1 as 

ak1=(k!)2(k)(),

	r c'(p,q) 
rl
	 r) 

1]2 (:z) ( ±) (1 —r + 1)a, 

where s:= 1 + q, £	1 +m + p + q. In any manifold there hold inthe coincidence 

limit

97k i	ak'/, dpk'	0,	 '	 (2.2) 
c'(2, O) 1-d 21u,	 (2.3)


c'(0, 1) fzlfL + ak"'4/.  
In an Einstein manifold there holds 

= ck'(4, 0) td4u.	 ' '	 (2.5)

In a Ricci-flat manifold there holds 

ck'(O, 2)f42 + ak' 2zi 21. '	 '	'	 (2.6)

Proof: Successive differentiation of (2.1) gives for any manifold 

(1 - k) (I - k± m)', dq4 1	(1— k) (1 - k + m -j-- l)dq', 
-d2 4. 1	(1 —k) (1—k +m+2)d 29 k' +(l—k)d2up',  
z1g +1	(l — k+ 1)(l—k+ In' + 1)Jk'+(l —k)zJpck',


and for an Einstein manifold 

97k 1 (1 -v k) (1 - k + m + 4) d4 k' + (1 -' k) d4i9', 
and for aRicci-flatmanifold 

-a- (1 - k + 2) (1 - k +m . + 2)	+ (1 - k) 2k•'
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These recursion equation systems with respect to k = 1, 2, are completed by the 
initial values 

990 1
	 d0'	O,	d 29 0 1 =0, z1'4/,	d4 p0 1 O,	129101zl21. 

Considering that the numbers ak', Ck' = Ck'(p, q) are the unique solutions of the re-
cursions

a0'=1,a+1=(l—k)(l—k+m)ak', 

= 0, c,' = i; c. 1 = (s - k) (t - k) Ck' + (1 - k) ak', 

we verify that (2.2) —(2.6) are indeed the solutions of the recursion equation systems 
under question I 

Note that the numbers Ck'(p, q) are the same ones as in [13]. Note further that 

2Ck'(O, I)	k(21 - k + 1)a_1, 

2Ck'(2,0) = k!(k —2) !k(21 -F 2m + 3—k) () (-) for k	2. 

Our method of derivation of necessary conditions on polyharnonic manifolds will be 
the following. The two-point condition /i k(IoI 1 1(a)) = 0 in N is continued to the 

/ equivalent two-point . condition q' = 0 in N. The latter is evaluated through a set 
of necessary one-point conditions, narnelydq'k ' zr 0 for p = 0, 2, 4 and A T  0 
for q == 1, 2. Our first result obtained this way is a restriction to the values of the 
order 1.	 - 

Theorem:  If a k 7harmonic manifold of dimension n = 2m -1- 2 possesses an order 
1 then 1 is an integer with 0 1 k —1 or 1 + m is an integer with .0 1 + m 

roof: Considering (2.2), from ipk i = 0, /(0)	0 there follows () = o or 
(1 ± m) 

The question arises whether all orders compatible with the theoreni effectively 
occur. It is answered to the positive by the following examples. 

•	Example 2.1 [13]: Every simply harmonic manifold fulfills 

0 for k = 2, 3, ...,	 (2.7) 

k---1 = 0 for k = 1, 2, ...	 (2.8) 

Example 2.2: Every generalized plane-wave manifold, which is characterized by 
a metric of the form 

g = 2dx1 dx2 + g,,(x1 ) 'dx1 dx (i, j = 3 4, ..., n),	 (2.9) 

•	fulfils (2.7). 
Proof: A procedure analogous to the proof of Proposition 2.1 shows that there 

exist smooth functions 1k l (x 1 ) of the first coordinate only such that 

(eA)k (I aI') = /k' (X ') al'.	 (2.10) 

The special properties of the metric (2.9) are used in the iiduction step. Particularly, 
1u is a function of x1 only and every smooth function of x' only is a harmonic function, 
Cf. P. GUNTHER [9]. As a consequence of (2.10), 4'o depends on x1 only and is 
therefore a harmonic function, i.e. A11(o1) = j(Ak_1a11) = 0 U
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From (2.7) there follows for 1 = 0, 1, ..., k .- 1 and for any polynomial (with constant co- 
efficients) / of degree k - 1 - 1 that 4k(ct/(cl)) 0. Analogously, the last follows from (2.8) 
for I + m = 0, 1..... k - 1 and / as above. While Example 2.1 has been quoted in [13], Exam-
ple 2.2 has been given in [13] only for k = 2. The generalized plane-wave manifolds may have 
any dimension a 3 and any signature different from the properly Riemannian one. They 
are non-harnonic simply polyhlLrmonic manifolds. Another class of non-harmonic simply bi-
harmonic manifolds of order I = 1 has been given by R. CADDEO and P. MATZEU [3]: these are 
products of three-dimensional manifolds of constant curvature and had 'been suggested by 
A. Gray. 

§'3 Necessary conditions for polyharnionic manifolds	 - 

Every harmo'nic manifold is an Einst'ein inanifold [12, 11. This well-known fact has a 
generalization to polyharmonic manifolds. 

Theorem 3.1: Every k-harmonic manifold of negative or hall-integer order 1 = k - m 
- 1 or 1 ='k - m - 2 is an Einstein manifold. 

Proof: For k = 1 the mentioned theorem on harmonic manifolds emerges. For 
k ^! 2 exactly under the assumed conditions on 1 the-factor ck'(2, 0) in —3 -d2q,'


	

c*1 (2, 0) f(0) . -Ric  does not vanish. Hence d 2.pk'	0 implies Ric = 01 
Example 3A: Every biharruonic manifld of negative orlialf-integer order isan' 

Einstein manifold. 

As A. LICHNEROWTOZ and A. G. WALKER [10] found out, every harmonic manifold 
with a Lorentzian metric is of constant curvature. This important theorem too has a 
generalization to polyharnionic manifolds. 

Theorem 3.2: Every Lorentzian k-harmonic manifold of negative or half-integer order 
1 = k - rn - 1 or '1 = V- m - 2 has constant curvature. 

Proof: Theorem 3.1 tells us Ric = 0, d Rc, = 0, —15d 4,u 4(Riem)2. Thus the 
necessary condition based on (2.5) reads 0 —lSd4 2k' 4'(4, 0) f(0) -(Riem)2. 
For Ic = 1 the mentioned theorem on Lorentzian harmonic manifolds emerges. For 
k = 2, 3 a direct calculation shows that each of the numbers c2I—m(4, 0), c2 m(4, 0), 
632-1(4, 0), c3 m(4 , 0) does not vanish. For Ic 4 we have'the situation of [13: Prop. - 
2.6/(iv)]; hence ck'(4, 0) =1= 0. Summarized, Ric = 0, (Riem) 2 = 0 holds for every Ic. 
In the Lorentzian case this implies constant curvature [10, 12, 13] I 

Example 3.2: Every Lorentzian biharmonic manifold of negative or half-integer 
order has constant curvature.	 ' 

Clearly, the Einstein condition in Theorem 3.1 ithplies R = const. There is also an-
other situation with R = const.. 

.Theorem 3.3: Every k-harmonic manifold of order 1 = Ic - 1 > 0 ha_j constant 
scalar curvature. 

Proof: The factor c k '(O, 1) in ckk_l (O, 1) f(0) 1?	3akk(zlf) (0) - 3J kk_t does 
not vanish. Hence k	0 implies R = const I 

Example 3.3: Every two-dimensional kharmonicmanifoldoforderl = Ic - 1>0 
is flat.  

Proof: Theorem 3.3 tells us 11 = con st. A calculation for a two-dimensional mani-
fold of non-vanishing constant curvature, following e.g. [2], shows: either contains 

22 Analysis Bd. 0, Heft 4 (1087)	 -
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the solution F(a) of 4 kF(a) = 0 logarithmic terms or F(r) = const. Both these cases 
are not allowed here; hence B = 0 I 

Theorem 3.4: A k-harmonic manifold of order 1 = —1 with k ^ m has vanishing 
scalar -curvature and even dimension n > 4. 

Proof: The order 1 = —1 can occur only for even n ̂ ! 4. For k :!^ m the factor 
Ck'(O, 1) in Ck'(O, 1) /(0) B	3ak°(1Jf) (0) - 3k' does not vanish, while ak° 
= 0. Hence '-k1	0 implies B = 0 I 

Theorem 3.5: An rn-harmonic manifOld of order 1 = —1 is Ricci-flat. A Lorentzian 
rn-harmonic manifold of order 1 = —1 is flat.	 - 

Proof: Both the Theorems 3.1 and 3.4 apply to the present situation k =m, 
1 = —1. Analogously, both the Theorems 3.2 and 3.4 apply to the situation k = rn, 

- 1= —1,gLorentzianl 
Theorem  3.6: A properly Riemannian rn-harmonic manifold of order 1 = —1 and 

even dimension n	6 is flat.	-	 - - 

Proof. Theorem 3.5 tells us Ric = 0. Thus the necessary condition based on (2.6) 
reads  

0	15J 2 
99m	15am'"(z121) (0) - 2m'(0, 2) f(0) lRiemI 2 .	- 

Here the factor Cm ')(O, 2) does not vanish for k = ni 2 according to [13: Prop. 2.61, 
- while am' = 0. Hence IRiemI 2 = 0. In the properly Riemannian case this implies 
flatness I 

Example 3.4: A six-dimensional hiharnionic manifold of order 1 = —1 is Ricci- 
flat. A Lorentzian or properly Riemannian six-dimensional biharmonic manifold of 
order 1 = —1 is flat. - 

Inspection of the formulas (2.4), (2.6) together with il/ rnf'(0), A 2f	n(n ± 2) /"(0)

± 2z1if'(0) shows that more theorems on polyharmonic manifolds could be produced by making 
the assumption f'(0) = 0 or = 0. We omit here such considerations because they are less 
interesting at the moment. We think that neither the "method of coincidence limits" is ex-
hausted by the present paper nor is it the only possible approach to polyharmonic manifolds. 
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