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On Polyliarmoniq Riemannian Manifolds

/

R. ScemMmiNG and J. KowoLix

" - Eine natiirliche-Verallgemeinerung-der harmonischen Mannigfaltigkeiten wird behandelt:.eine
Riemannsche Mannigfaltigkeit heiBlt k-harmonisch oder polyharmonisch, falls sie eine nur vom
geoditischen Abstand r = r(z, §) bzw. von der Syngeschen Funktion ¢ = ¢(z, y) abhingige
nicht-konstante k-harmonische Funktion — d. h. eine Lésung F von 4¥F(o) = 0 — gestattet.
Bestimmte Theoreme vemllgememern snch von harmomschen auf polyharmomsche Mannig-
faltigkeiten, ' : i

PaccMATpPHBAETCS  €CTEHCTBENTIOE 0606meune rapMOHHMUYECKHX - Muorooﬁpasmi pUManoBo
MHOrooGpasie HaBLIBAETCA k-FapMOHHUCCKUM 1M TIOJMTAPMOHHYCCKHM, €CIIH OHO TMO3BOJAET
HENOCTOAHHYIO k-rapMOHMYECKYI0 GYHKIMIO, 3ABICALIAA TOIBKO OT FE0XE3HYECKOTO pacc'ron-.
1517 = r(z; ¥} nau or yunuun CuHra 6 =z, y), anaunt — peurenue ypasHenus 4F (o) =
Hel(OTOpHC TEOPEeMEI 0 rapmomi-lecmm MHOroo0pasnsax 060061ATCH HA TIOMHT apwonuqecmie
MHOI‘OOUpaJMH

A natural generalization of the harmonic manifolds is considered: a Riemannian manifold is

- called k-harmonic or polyharmonic if it admits a non-constant k- harmomc function dependmg
only on the geodesic distance r = r(z, y) or rather on Synge’s function ¢ = o(z, y), i.e. a solu-
tion ¥ of A¥F(o) = 0. Certam theorems are generalized from harmomc to polyharmomc mani-
folds.

=

.. ! ) . .
Introduetion o o . .
.

Consider a smooth n-dimensional Riemannian manifold (M, g), the metric ¢ = g,sdz*
Xdz? (x,8=1,2, ..., n) being of any signature, i.e. properly or pseudo-Riemannian. .
Denote by V = dx’ V the Levi-Civita derivative to ¢ acting on tensor fields and by
A= g*¥V,V; the Laplace opgrator, where (9*) := (g.5)™". Further, Synge’s two-point
function ¢ = ¢(x, y) is essential here; it is defined (with the help of the exponential
map, cf. § 1) for points z, y € M which are not too far from each other. For properly -
Riemannian manifolds 20 equals.the square of the geodesic distance between z and y:
20 = r(x, ). Thus, ¢ is the natural generalization of 72/2 to manifolds of arbitrary -
signature. We ask for non-constant smoothlocal solutions F of the differential equation
4kF(g) = 0, R - SR (1)
i.e. for non-trivial k-harmonic functions which depend on the point, z € M only
through ¢ = o(x, y). Here and throughout the paper k& denotes a positive integer,
A% = AA... A, and differential operations refer to the first argument z. The term
“amooth’ means differentiability class.C®. Distinguished signatures of g are the
properly Riemannian case, i.e. signature (44 --- 4)or (— — --- —), and the Lorentz-
* lan case, i.e. signature (+— .-+ —) or (—+ .-+ 4). Our problem (1) is & plausible
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generalization of the following two problems which have already been studied to some
extent (but not yet completely solved!) and which will serve here as a guide-line:

" = the theory of harmonic-Riemannian manifolds, that means the problem (1) for
k=1,
— the search for Riemannian mamfoldq in which a power of o is k- harmonic, that
" means the problem (1) for F(¢) = o' or rather F(o) = |o}.

While there is a rich literature on harmonic manifolds, cf. H.S. RusE, A.G.
WaLKER and T. J. WILLMORE [12] and¢A L. BEsse [1] and the citations given in
these books the problem: :

A% lo|' =0, 4 (2)

which had been suggestéd by A.GRrAY to our knowledge, has. beén studied only
recently in ‘a series of papers by R.Cappeo, P. MaTZEU, L. VANHECKE, J. Eica-
HORN, R. SchamMing [2—4, 6—8, 13].

We call a Riemannian mamfold k-harmonic or polyharmonic i it admlts a local
solution'F == const. of (1). Particularly,

1-harmonic = harmonic, 2-harmonic = : biharmonic.

It is to be noted that, unfortunately, the term “k-harmonic manifold’’ has already
been used with another meaning [15, 16]. We think that our new terminology is a
" natural one and that there will not arise misunderstandings. As the first step towards
the problem (1) the possible types of functions ¥ should be found out and classified.
We restrict ourselves here to the class of functions F(o) which behave for ¢ —0
asymptotically like some power |o]', in a'sense which will be made precise in § 2. The
rcal power exponent  is called the order of the function F and also the order of the
polyharmonic manifold (3, g). We show that only the following discrete spectrum
of orders [ is possible : for given kand » =:2m + 2 the number! has one of the values
0,1,..,k—1;—m,1 — , k — 1 — m. For odd dimension n-half-integer orders
! may occur; forn = 3 negatlve orders I may occur. The whole order spectrum effec-
tlvcly occurs in any simply harmonic manifold.

We call a Riemannian manifold simply k-harmonic or simply polyharmomc if (2)
holds with some real number (the order) I 5= 0. Particularly, forn = 3.

! ~“simply 1-harmonic of order — m = simply harmonic.

For certain situations, i.e. assumptions on k, I, » and the signature of g, we derive in
§ 3 necessary conditions on the curvature of the polyha,rmonic manifold. We summa-
rize the main results in a list ; the assumption on k, I, n, ¢ is followed by the conclusion
on the curvature of the manlfold

v

lLl=k—m—1lorl=k—m—2,andl < 0 or n odd: Eigstein mam'fold.
= 2. k, 1, n as above, g Loréntzian: constant curvature.
3.1 =k — 1 > 0: constant scalar curvature.
=k — 1> 0,n = 2: flat manifold.
—1, k = m: vanishing scalar curvature.
—1, k = m: Ricci-flat manifold.
—1, k = m, g Lorentzian: flat manifold. -

4.1
5.1
6.1
7.1
8.1l = —1,k=m,n = 6, g properly Riemannian: flat manifold.

b

We obtain these necessary conditions by means of a version of the “‘method of coin-
cidence limits’’, which, has been developed by J. L. Sywae [14] and B. S. DE WiTT
and R. W. BREuME [5], combined with the calculus of symmetric differential forms.
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’

At the present state of knowledge on po]yharmomc ‘manifolds two ma.jor problems remain
open:
L. Characterize all possible types of functions F in the equation (1); give a complete '
classification of polyharmonic manifolds.
1I. Either prove that every polyharmonic manifold is harmonic or simply polyharmo-
nic, or find a counterexample.

The second problem signals that thefe are good results on necessary conditions, but not so on
sufficient conditions.' Namely, all ‘examples of polyharmonic manifolds which are known until
now are harmonic manifolds or simply polyharmonic manifolds. Note that there exist simply .
polyharmonic manifolds which are not harmomc ones; in § 2 we present a new class of examples
for that.

§1 Preliminaries - Y

The two- pomb scalar field ¢ = o(z, ) can be defmed by more than one way. Our
" definition differs from [14, 5, 12] and coincides with [11, 13].

Definition: Let N(y) be a normal neighbourhood of y € ]ll ie. Lhe exponentlal )
map with origin y, exp, : ¥ > 2, is a diffeomorphism from the tangentlal space of y
onto N(y) or, equivalently, N(y) is the domain of a normal coordinate system z > x¥
> (%) = (2¥, 2*2, .., x*"). The quantity -~

1 ' 1 '
o(@,y) = 5 9(y) (exp,* z, exp,~' ) = & g(J) (x*, 2*) = 5 9a8(y) A Aly

for z € N(y), is called Synge’s two-point function. F rom ¢ there are derived

N -

. . 1 .
e = e(z,y) :=signo(z,y), ﬂ=l‘(x:?/)3='§(40—n), :
1= Vo, 0* 1= g*fay, a,,; =V, Vgo.

The two-point scalar ficlds ¢ and u are ingredients of the “method of coincidence
limits” {14, 5, 13). The limit for x — ¥, if existing, of a two- pomt, quantity is called its
coincidence lzmzt The equality of the coincidence limits is an equivalence relation

+ between two-point quantities and will be denoted by ==. One-point quantltles and
_constants may be interpreted as special two-point qua.ntxt,les .

We adopt the following notations and conventions.
— A symmetric differential form of degree p’ A
U= Up = Ug,a,..a, dT* d2™ ... d2®>

is a special notation for a symmebrlc ‘covariant tensor field of degree p with local
components %, q,...a,-
— Thetrace = tr of a symmetric p- form with respect to the metric g is glven by

“trug = truy =0, tru, = g*fu,,
tr up, = ¢g*%uapa,..a, dz® ... dz* for p = 3.

— The trace-free part of w, with respect to g is denoted by ~u,,.
— The symmetric differential of u, is du, := Vgu,, .o, d2® dz™ ... da».
— The p-th power or iteration of d is d? =dd ... d

N .
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— The curvature tensor of (M, . g), Riem = R,ﬁ,‘,(da: A daf) (da+ A do), I8 defined by
the Ricci identity for vector fields » = v* 0, ' ‘ :

(Va Vs —VpVo) vk =: R _f 0"
—_ ];‘rom R%em’there are built . .
Ric = Rup c/ix“ dx? = Ricct teﬁsor = Q“’Rgﬂ, gdz* da?,
R = scalar curvature := g“"Rl,,,,
' (Riem)? =1 ciesR,. o dne dzf dur da
!RzemP Ruﬁ,,,R“""" |Ric|?:= R,pR*f.

v -

The followmg list of ““coincidence relations” is needed: ‘
020, 6,20, Gup=gos, do =0, d2% =g, dPoc =0 for p g’;,- .
‘do* = da*, dP¢* =0 for p =2, u=0, du=0, —3d%u = Ric,
—4d% = 3d-Ric, —15d% = 1842 Ric + 4(Riem)?, C
—34p = R, —2dAu =dR, —154% = 124R + 2(|Riem|* — |Ric|*).

For the derivation of these expressions cf. [14, 5, 12, 13]. ‘

8 2 Definition and classification of polyharmonic manifolds

" Now we define the notion which gives our paper the’ tlt]e

Definition 2.1: A smooth n-dimensional Rlemannlan manifold (M, g) is called
polyharmonic if there exist a neighbourhood N of the diagonal of M X M .a smooth
real function F' 5= const. and a posmve integer k such that

(i) o is defined on N . ,
(ii) F o o is defined on. N~ {(x, y) € N|oz,y) + 0},
(iii) 4*F(¢) = 0in N~.

More precnsely, (M g) is then called k- harmomc

1

In the spirit. of the primordial definition of a.harmonic manifold [12, 1] one would
alternatively define a polyharmonic manifold as following: there exists a function
F(o, y) such that for each y € M and each normal neighbourhood N(y) of ¥

AF(o,y) =0 in N(y) = (z € N(y)| o(z,y) + 0}.

* In [12] it is made clear that for analyt,ic manifolds and for k = 1 the two definitions .

_ are effectively equivalent. The version choosen here is better suited to our purposes.
Roughly speaking, two cases are possnble for the function F': F(c) behaves either
regular or singular for ¢ — 0. Just in order to include the singular case into the defi-
nition we demand 4*F(g) = 0 only in N~ and not in the whole of N. \Tow we intend to
refine the classification of polyharmomc mamfolds

Definition 2.2: In the situation (i), (ii) of Definition 2.1 and with a real number,
the function ¥ is said to be of order lif |¢1| ~t F(o) has a smooth extension f(o) from’
N- to N such that

1(0) = lim [0 F(o) + 0
o—0 * N

\
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If (iii) is satisfied too then (M g) is called a polyha.rmomc manifold of order L or a -
k-harmonic manlfold of order 1.

This notion of-an order does not cover all’ p0331ble behaviours of polyharmomc '
functions F(o). The simplest counterexample is 4%(log o) = 0 in Euclidean space R2.
We conjecture that power and logarithm functions and certain combinations of
them will suffice for a complete description of the possible types.of solutions F of
- 4*F (o) = 0. The recursive calculation 4|s|" flo)) = A[A* et f(a))] is made precise
by the followmg scheme.

Pro pOSlthD 2.1: In the situation o/ De/mmon 2 2 the recursion with respect to
k=01 .

. A1
ol = /,<P£+1= [(l — k), —k+m+ﬂ) + (l,—k)a“V; +504]%‘
o | o

’ de/mes smooth two-pomt scalar fzelds ¢! = pil(=, y) tn N. With these there holds
(ed)* (|o)! /(0)) = 2k |g|i~k in N-. - .

The proof is done by means of mathematlcal induction w1th respect to k i

Proposﬂnon 2.2: Define numbers a' fork =0 and c,‘(p, g)fork = 1as

e

alp,q) = Zuk—nm('fg(; y%—%+hwxh

where s:=1+4q,t:=1+m+p+gq. In any mam/old there hold tn.the comczdence '
+ limat

el = = alf, doi' =0, o : ' ' (2.2)
L cdig = ol(2, 0) fdu, - ©(23)
gt = o0, 1) fAu + a4y . C e
In an Einstein 'mani/oldlthere kolds o - o _
~d'gt = 64, 0) fd4u. o . (2.5)
In a Ricci- ﬂat mamfold there holds o
L2 = ¢/(0, 2).f4% + ak‘+2A2/ S (2.6)

Proof: Successive dlfferentlatlon of (2.1) gives for any ma.mfold ‘
| wﬂ—a—ma—k+mwhdm“—a—ma—k+m+nwh'
v P ==k (U —k+m+2) d¥p + (1 — k) ~dupy, '
o AR ==k 00—k 1) gt 4 (L — &) dug,
and for an Emstem manifold ’
‘d"q)kH ==kl —k+m+ 4)y-dig} + - k) “dAup,
and for & Rlcm-ﬂ&t manifold

Awﬂ—a—k+ma—k+m+amw,+a—m4m%
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These recursion equation systems with i‘espeét'to k=1,2,... are completed by the
initial values ‘ . : : .

gl = f, dgyt =0, “die! =0, dp!=4f, “dig!=0, Lg= A4
Considering that the numbers a;!, ¢! = ¢,'(p, gi) are the unique solutions of the re-
_ cursions o . ’
' a0‘=1, a2+1=(l—k)(;—k+m)ak‘, -
=0, ¢f=1;, cy=1(s—k) (t—k)ck‘—f—(l—k)a,‘,
we verify that (2.2) —(2.6) are indeed the solutions of the recursion equation systems
. under question B - N

~

Note that the numbers ¢;!(p, g) are the same ones as in [13]. Note further that
© 2640,1) = k(2 — k + 1)@k,

20(2,0) = ki(k —2) (21 & 2m + 3 — b (llc) (ﬁct”zb

) for k= 2.

Our method of derivation of necessary conditions on polyharmonic manifolds will be
the following. The two-point condition 4¥(|o|’ f(e)) = 0 in N~ is continued to the
equivalent two-point condition ¢,/ = 0 in V. The latter is evaluated through a set
of necessary one-point conditions, namely ~d?g;' = 0 for p = 0, 2, 4 and Mept =0
for ¢ == 1, 2. Our first result obtained this way is a restriction to the values of the
order . : , L .

Theorem: If a k:harmonic manifold of dimension n = 2m -+ 2 possesses an order
I then 1 is an integer with 0 <1<k — 1 or I 4 m s an integer with 0 <1+ m

. . : l l+m
Proof: Considering (2.2), from ¢, = 0, f(0) == O there follows el = Oor %
=00 - . . :

The question arises whether all orders compatible with the theorem effectively .
occur. It is answered to the positive by the following ex%mplcs. :

Example 2.1 [13]: Every simply harmonic manifold fulfills -
Akt =0 for k=2,3,..., - : (2.7)
Mrot-m1 =0 for k=1,2,... ' (2.8

.Example 2.2: Every generalized plane-wave manifold, which is characterized by
a metric of the form ‘

g = 2zt dat | g(@)deidai (5,7 =3,4..0n), (2.9)
fulfils (2.7). ) ‘ '

Proof: A procedure analogous to the proof of Proposition 2.1 shows that there
exist smooth functions f!(z!) of the first coordinate only such that

() (jo)) = fi'(=!) [ol' . - (2.10)

The special properties of the metric (2.9) are used in the induction step. Particularly,
u is a function of z* only and every smooth function of 21 only is a harmonic function,
of. P. GUNTHER [9]. As a consequence of (2.10), 4¥"1¢*"1 depends on z' only and is
therefore a harmonic function, i.e. 4%(c*™1) = A(4¥20*"1) =00 ,
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From (2.7) there follows for I =0,1,...,k — 1 and for any polynomial (with constant co-
efficients) f of degree < k — 1 — that 4¥(¢'{(c)) = 0. Analogously, the last follows from (2.8)
forl 4+ m =0,1,...,k — 1 and f as above. While Example 2.1 has been quoted in [13], Exam-
ple 2.2 has been given in (13] only for k& = 2. The generalized plane-wave manifolds may have
any dimension » = 3 and any signature different from the properly Riemannian one, They
are non-harmonic simply polyharmonic manifolds. Another class of non-harmonic simply bi-
harmonic manifolds of ogder! = 1 has been given by R. CADDEO and P. MaTzEG [3]: these are
products of three-dimensional manifolds of constant curvature and had been suggested by
A. Gray. T, .

$3 Necessary conditions f(')i' polyharmonic manifolds

Every harmonic manifold is an Einstéin manifold [12; 1], This well-known fact has a
generalization to polyharmonic manifolds, )

Theorem 3.1: Every k-harmonic manifold of negative or half-integer orderl =k —m

—lorl ="k —m — 2is an Einsteir manifold. .

Proof:_For k=1 the mentfoﬁed theorem on harmonic manifolds emérges. For .
k = 2 exactly under the assumed conditions on I the.factor a'(2, 0) in —3 ~d2g,!
= ¢;/(2, 0) f(0) ~Ric does not vanish. Hence ~d%p,! = 0 implies ~Ric = 0 I .

- Example 3.1: Every biharmonic manifold of negative or half-integer order isan -
Einstein manifold_. B ; : )
. ] : ' -
As A, LicuxerowIcz and A. G. WALKER [10] found out, every harmonic manifold -
with a Lorentzian metric is of constant -curvature. This important theorem too has a
. generalization to polyharmonic manifolds. _ )

Theorem 3.2: Every Lorentzian k-harmonic mam/bld of negative or half-integer order

l=k —m —10rl =k —m — 2 has constant curvature.

Proof: Theorem 3.1 tells us “Ric = 0, d Ric,= 0, —15d‘u = 4(Riem)?. Thus the
-Decessary condition based on (2.5) reads 0= —15-dip, = 4¢,/(4, 0) f(0) ~(Riem)?.
For k = 1 the mentioned theorem on Lorentzian harmonic manifolds emerges. For

= 2,3 a direct calculation shows that each of the numbers c'~m(4, 0), ¢,”™(4, 0),
. €3*"™(4, 0), ¢3'~™(4, 0) does not vanish. For k = 4 we have'the situation of [13: Prop. -
2.6/(iv)]; hence ¢,'(4,0) &= 0. Summarized, ~Ric =0, ~(Riem)? =0 holds for every k.
In the Lorentzian case this implies constant curvature [10, 12, 1311 '

Example 3.2: Every Lorentzian biharmonic manifold of negative or half-integer
order has ‘constant curvature. ’ .

Clearly, the Einstein condition in Theorem 3.1 implies R = const. There is also an- -
* other situation with B = const. A

Theorem 3.3: Every k-harmonic manifold of order 1 =k — 1 > 0 has qoﬁstdnt
scalar curvature. : ' :
. . , \
Proof: The factor ¢,4~1(0, 1) in ¢ *—1(0, 1) f(0) B = 3a,%(4f) (0) — 34k~ does .
not vanish. Hence Ag,*~! = 0 implies B = const I ' o S

'Example3.3: Every two-dimensional k-harmonic manifold of orderl=%k—1>0
is flat. o '

Proof: Theorem 3.3 tells us R = const. A calculation for & two-dimensional mani- .
fold of non-vanishing constant curvature, following e.g. [2], shows: either contains

22 Analysis Bd. 6, Heft 4 (1987)
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the solution F(¢) of 4*F(c) = 0 logarithmic terms or F(¢) = const. Both these cases
are not allowed here; hence R =01 '

'Theorem 3.4: A k-harmonic Mnifold of order 1 = —1 with k < m has vanishing
scalar curvature and even dimension n = 4.

Proof: The order I = —1 can occur only for even n = 4. For k < m the factox;
=10, 1) in ¢;~1(0, 1) f(0) R = 3a,%(4f) (0) — 34, "D does not vanish, while &,°
= 0. Hence Ag,"V = 0 implies R = 0 B ‘ , '

Tfleo rem 3.5: An m-harmonic manifold of order | = —11s Ricci-flat. A Lorentzian
m-harmonic manifold of order 1 = —1 is flat.

Proof: Both the ThqoremsA 3.1 and 3.4 apply to the present situation k =-m,
1 = —1. Analogously, both the Theorems 3.2 and 3.4 apply to the situation k = m,
I = —1, g Lorentzian il

Theorem 3.6: A properly Riemannian m-harmonic manifold of order l=—1land
even dimension n = 6 is flat. - ‘ . o

Proof. Theorem 3.5 tells us Ric = 0. Thus the necessary condition based on (2.6)

reads - . .
0 = 1542¢, "~V = 15a,'~ (4%} (0) — 2.~ 1(0, 2) f(0) | Riem|®. -

Here the factor ¢, =V(0, 2) docs not vanish fork=m=2 according-'go [13: Prop. 2.6],
_while a,,~0 = 0. Hence |Riem|? = 0. In the properly Riemannian case this implies
flatness @ ' : '

Example 3.4: A six-dimensional biharmonic manifold of order I = —1is Ricci-
flat. A Lorentzian or properly Riemannian six-dimensional biharmonic manifold of
order I = —1is flat. - '

Inspection of the formulas (2.4), (2.6) together with Af = 2f(0), 4% = n(n + 2) 17(0)
4 24uf'(0) shows that more theorems on polyharmonic manifolds could be produced by making
the assumption f(0) = 0 or f(0) = 0. We omit here such considerations because they are less
interesting at the moment. We think that neither the “method of coincidence limits” is ex-
hausted by the present paper nor is it the only possible approach to polyharmonic manifolds. '

~

REFERENCES

[1] Bessg, A. L.: Manifolds all of whose Geodesics are Closed. Berlin: Springer-Verlag 1978.

[2] CappEO, R.: Riemannian manifolds,on which the distance function is biharmonic. Rend.
Sem. Mat. Univ. Politecn. Torino 40 (1982), 93—101.

{3] CabpEo, R., and P. MaTzEU: Ricmannian manifolds with 42 = 0. Preprint, Universita
di Cagliari 1983. .

[4] CappEO, R., and L. VANHECKE: Does %4> = 0 on a Riemannian manifold imply flat-

. ness? Period. Math. Hung. 17 (1986), 109—118. '
- (5] De Wirr, B.S., and R. W. BREEME: Radiation Damping in a Gravitational Field. Ann.

Physics 9 (1960), 220—259. o .

[6] Eicumorx, J.: Lokale Geometrie des Radius in Riemannschen Mannigfaltigkeiten I.

"~ 7 Beitr. z. Alg. u. Geom. 18 (1984), 41—48. v

{7} Ercamory, J.: Lokale Geometrie des Radius in Riemannschen Mannigfaltigkeiten 11.
Beitr. z. Alg. u. Geom. 18 (1984), 177—189.

{8] ErcumORN, J., und R. SCHIMMING: Riemannsche Mannigfaltigkeiten, bei denen cine Po-
tenz des Radius k-harmonisch ist. Potsdamer Forschungen, Naturw. R. 43 (1984), 74—80. -

- . \




" On Polyharmonic Riemannian Manifolds 339

(9] GE~THER, P.: Ein Beispiel einer nichttrivialen Huygensschen Differéntialgleichung mit

vier unabhingigen Verinderlichen. Arch. Rational Mech. ‘Anal. 18 (1965), 103 —106.

[10] LicuNEROWICZ, A,, et A. G. WALKER: Sur les espaces riemanniens harmoniques de type

- hyperbolique normal. Compt. Rend. Acad. Sc. Paris 221 (1945), 394 — 396.

[11] PELESKA; J.: Zur Charakterisierung isometrischer und konformer Abbildungen zwischen
"pseudo-Riemannschen Mannigfaltigkeiten. Dissertation. Universitit Hamburg 1982,

[12] Ruskg, H. S., WALKER, A. G., and T.J. WiLLMORE: Harmonic Spaces. Roma: Edizioni
Cremonese 1961, o ] :

[13] ScEmmNg, R.: Riemannian manifolds for which a Power of the Radius is k-harmonic.
Z. Anal. Anw. 4 (1985), 235—249. o BN

[14] SYNGE, J. L.: Relativity. The general theory. Amsterdam: North-Holland Publ. Comp.
1960. . . s

(15] WriLLmoRE, T. J.: 2-Point Invariant Functions and k-Harmonic Manifolds. Rev. Roum.
Math. Pur. Appl. 18 (1968), 1051 —1057. .

(16] WrLLMORE, T. J., and J. EL Hab1: k-harmonic symmetric manifolds. Rev. Roum. Math.
Pur. Appl. 15 (1970), 1573 —1577. ' ‘

< )

Mn»nuskriptéingang: 23. 05. 1985

- VERFASSER: ' : ‘
Doz. Dr. sc. RAINER SCHIMMING : .

- Sektion Mathematik der Ernst-Moritz"Arndt-Universitit
Friedrich-Ludwig-Jahn-Str. 15a, DDR-2200 Greifswald

47 Dr. Jax KowoLx - . ' :
Instytut Matematyki, Wyzsza Szkola Pedagogiczna »
= . ul Oleska 48, P-45-052 Opole R ‘

-

22*



