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Abelian Theorem for the Distributional Stieltjes Transform

S. Pripovié and B. Smﬁxowé : '

‘

Unter Verwendung des Begriffes des quasiasymptotischen Verhaltens’der temperierten Distri-
butionen im Unendlichen wird ein Satz vom Abelschen Typ firr die distributionentheoretische
Stieltjes-Transformation gegeben. Dieser umfaBt sowohl alle bekannten Ergebnisse als auch
einige neue. - o ~ : o :

[Moab3ysch MOHATIICM KBAa3NACHMIITOTHYECKOTO NOBEAEHNA TEMNePHPOBARAKX AUCTPHGYLMiL
B 6€CKOHEYHOCTH A0KA3HBAETCA TeopeMa ASeda o AMCTPUSYHOHHOM Tpancpopmannu CTUIBT-
beca. Ona BKITIOYaeT B ceGe I BCe M3BECTHHIE PE3YIbTATH M HEKOTOPHE HOBHIE.

. 4

Using the notion of quasi-asymptotic behaviour at infinity of tempered distributions, we give
an Abclian theorem for the distributional Stieltjes transform. It includes all known results, as
well as some new ones. . < . : .

\

\

1. Introduection o

It is possible to define the Stieltjes transform of a distribution in different ways. We
will mention only the one given by J. LavorNE and O. P. Misra [3], which is related
to a subspace of tempered distributions with supports in [0, co) and which is used by
many authors. We modify the definition of the Stieltjes transform slightly in such
a way that it is available for the whole space of tempered distributions defined on
M with supports in R, In the case n = 1 this definition includes the mentioned
definition from [3]. Using the notion of quasi-asymptotic behaviour at infinity, we
prove a theorem of Abelian type. It includes the known results, as well as some new
ones.

'

2. Notations and definitions  °

N is the set of natural numbers and R, = N v {0}. R is the n-dimensional Euclidean :
space and €" is the n-dimensional complex space. If a, b € R" and z € §*, then

n n n
<a’ b> = Z; a‘ibi: 'a’l = Zl |ax:|: = n = xia':
Y = =

i=1
ar = (a,z,, ..., a,z,) and || = <a,’ ay;a =0 fnesms a; =0,

.~ a >0 meansa; > 0and a - co(0*) means a; — co(0%) for all 5.
WesetR,% = (z € R": 2> 0}, and its closure in i is denoted by R,*; R_ = (—o0, 0].
HfaeRandxe N, then (o + 1), = (¢ + 1) (& + 2) ... (« + #); (¢ 4+ 1)y = 1. We
set e = (1,1,...,1). If a € R" and k € N,", then (a + ¢), = (a, + g, (@2 + 1), ...

'@+ i, / C : : :

T
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By D7, p € R,", we denote the partial differential operator 0P+ P[0z, ... Ox,Pn.
‘The space of §°(R")-functions ¢ for which all the norms

Il = sup {(1 + %) IDPo(E)}),  m€ Ro,

lpism

are finite is denoted by F(R"). Its dual &'(R") is the space of tempered distributions.
The completion of S(R") with respect to the norm ||:[|, is denoted by ™, and its
dual by (#m). The pairing between ¢ and f from a testing-function space and its
dual is denoted by (f, ¢) = (f, ¢), ¢'is the conjugate function for ¢. The space-of
tempered distributions f with support supp f contained in &, is denoted by & ,"(%").
For a fixed element s € € let A(s) be the space of £=(R")-functions 7 such that:
. n(t) € [0, 1], ¢ € R"; for every p € M» thereis a ¢, > 0 such that |DPy(t)] < c,, ¢ € R*;
there exists an ¢ > 0, 2¢ < |Re s;| for i = 1, 2, ..., n, such that n(t) = 1 if ¢ belongs
to the e-neighbourhood of R, and 7(t) = 0 outside the 2e-neighbourhood of R.o.
We introduce a family {f, : @ € R} = &£,/ (R"). Firstly, for « € R we set [9: p. 85]

H(z) 71/« for & > 0

D sy m() fora <0, +m >0 (rE,ER)

fa(x) = {

. 3

where H is the characteristic function of R, and m € RN. It is easy to see thatf_,(z)
= 6"(1), T € R, n € N, where § is the Dirac distribution. Further, for a € R we set

fult) = Il faft)s ¢ €.
‘Denote by K¢, a € N1, the operator on &,'(R*) defined by

(Kof) () = (fal) * 1)) (), wE R,

where * denotes the convolution in &'(R") (see [9: § 5.6]). In case a € N, K¢ = D°.
Tt is well known that .’ (R") is a commutative ring with respect to the operation of
convolution. The unit element is § and K-%(K°f) =dx*f, f € LR, a € R*. Be-
cause of that, for a € R|y* we set K¢ = D% So we have D3(D-°%f) = f, a € N",
f€ L (R"). :

A real-valued measurable function I defined on (0, o) is called slowly varying if
(l(ur)/l(r)) — 1 when 7t — oo, for each u > 0 [6]. We shall always denote by L a
function of the form L(t) = I,(¢,) Lo(te) - .. Lu(tn), ¢t € Re™, where Uy, Ly, ..., I, are slowly
varying., A ) ' '

Now, we shall define the asymptotic and the quasi-asymptotic at infinity.

" . Definition 1: Let F € L}oo(R"). If for some g € £loe(%%), 9 & 0,a € Rand L .

li'm F(kt)
k—o0 kaL(ky

\ -

and for some Ty > O and M >0

=g(t) foraa.t € R," (kR - )

;-

F(kt) | ‘ ' . ’
L) l SM, teR 2T, k>, ..01), o (2)

then we say that F has the asymptotic at oo with respect to k°L(k) with the limit g.
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Definition 2: Let f € &,’(R"). If for some g € J’+’(I_ER"), g+0,a €Rnand L-

’

—

im ( i (’) ¢(z>> =g, ¢0) (ke R ' (3
for every ¢ € 54 (M), then we say that f has the quasz-asymptotzc at oo with respect to
kS L(k) with the limit g.

In both definitions a is called the power of the asymptotm resp. quasn asymptotlc
behaviour. ] i . .

Remarks: 1. For g from Definition 2 we have g(bt) = bog(t), t € ER"' beR"and b > 0;ifgis
continuous,.then ¢ = Cf,,,, @ > 0, for some C + 0. Indeed, taking into account the propertles
of L [6] we have ) .

b%g(t), dE)y = klim (ba%. ¢(¢))

= lim (,ij(k),¢(z)) = (gbt), d(1), &€ ("),

So for t > 0, g(t) = ts (e) By using the fact that its support is in ‘R+", wé have g = C/aﬂ
2. If we compare the quasi- asymptotic from Definition 2, in the case n > 1, with that defined

*.in (2] we see that our definition is-slightly more restrictive. This is motivated by the fact that

we need in our investigations the exact form of g. If n = 1 both, definitions are the same,
_ Let s €.@n, 7€ R weR "andne(ﬂ(s) We set
Onwra(t)'=7(t) (exp(—w, ) (s +8)777¢,  teR"
Obviously, 65.4r,, € S(N). If f € £, (R") and #,, 9, € oi(s), then
U Ovornd = o | O
Definition ‘3 Let € LN, w € R and r € R, If for any s € (& \R_) the

limit

.

fris) = lim  (f(8), Oy..1(8))

© exists, ‘then the functlon 8§ — f'(s), s€ (@I N JRo)m, is called bhc S -tmnsform of'f.

Beca.use of (4) fr(s) does not depend on 7 € A(s). For every / € J’ ‘(M*) there exists
an r for which the 8,-transform is defined ; this follows from the fact.that there exists

an m € N such that f € (F™) ) n ISR (see [9: p. 91)).

3. Connection behveen the asymptotic, quasi-asymptotic and S,-transform

; .
The proofs of the followmg two propositions are similar to that of the correspondmg
assertions in [2], so we give these proposMons without proofs. In [2] L(x)

k= (% ..., k) and instead of R,” a cone is observed,

Proposition 1: If F € £],(R") kas the asymptotic at oo with respect to k*L(k),
a > —e,with the limit g & 0 and has its support in R, then F has the quasi- asymptotic.
at co wzth respect to k®L(k) with the limit g. Moreover, F(kt)/(k“L(k)) converges to g(t)
in (™) for m > |a| + n. . .
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Proposition 2: If f € £,/(R*) has the quasi-asymplotic at co with respect to k°L(k)
with the limit g € £, (R"), then there exists a p € R such that p 4+ a > 0 and (D~?f) (1)
has the asymptotic at oo with respect to kP*°L(k) with the limit Cfa,,,ﬂ, C == 0; in this
caseg = Cfoye

Note that Remark 1 enables us to give in Proposmon 2 the explicit form of g.
Before we give a connection between the qua.31 asymptotuc and S,-transform, we |
: .have to prove the following lemma.

Lemma. 1: Suppose that f € J’+ (ER") [ = DPF, u,kere PE ‘J?o", Fe floc(iﬁ") _and
supp F = ER,,” If for some ' € R* and To >0

POl ,, _ S N
ek U I . G
Ttz T . : '
then there exists f r forr = 7' and ‘
- ' F(t ‘ . ‘ '
i'(s) =,(’r —_{—»e),, (5‘——{-%: dt, - 8 € (@: \‘9{_)". (6)
. . ﬁ,” . -
Pr/oof: For a fixed s € (€ \ R_)" we have

: i'(s) = (=11 hm (F( t>, DP0y00s(t))

where the ehpressmn (-, -) is a sum with members of the form . v .
t) exp (—w, t) ' , :
(7'+€-)hW(“ s o (M
ﬁ«»" . . : ) '
and. , ) . : \
' ' o [Ft)exp({—w,b) B ' '
_Ckw”"f—(ﬁ_m—kﬂdt, Oéké'% . (8)

where C, are suitable constants and for at least one i = iy, k;, < p;, holds. When
w — 0%, the member (7) converges to the integral in (6) beca,use of the property glven )
in (5).

.Obviously, for any o« > 0, § > 0 max {ute~f:u > 0) = x*f %" ThlS implies .
that for every w > 0 and ¢ > O there exists a Ty > 0 such that fof D = {t € R

= To} ]
5 t)exp(—w )
ot [ Aot 0
|F(t)] , [ IF()] - -
o F) Ty 420wt e
2

’

where p — k = 0 and for at least one coordinate Pi, — k,-o > 0. This shows that all
the members of the form (8) tend to zero when « — 0+ 1.

Propos1tlon 3: Let f € £ (") }uwe the quasi-asymplotic at oo with respect to
ke L{k) with the limitg. Then f has the S, transform for r > a and there exists a conlinuous
function F, with the support inR.;and p € 920 ,p+a>0,s0that f = D*F and F
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has the asymptotic at oo with respect to Ic"*"L(k) with the limit C/aﬂm, C = 0; particu-
larly, we have g = Cf,., and

T(3) = _.I’l)__ ',..‘ ’ Ry
fr(s) = (7 + o) f i A
. m* ) N . I

"Proof: The assumptions on f and Prop()blt,lon 2 imply that therc cxists a pE ‘R"
_such that,p +a > 0 and that D-?f = F is a continuous function with the support in
RF has also the asymptotic at co with respect to k**PL(k) with the limit Claspre
Now, for7 > a and for a suitable T, > 0 we have that F(t) t-7-?-¢,|it|| = T, isan inte-
grable function and f = DPF. Now, the proposxtlon follows from Lemma 11

Remark: J. LAVOI\L and O. P Misra [3] defined the Stlcltjes transform in one dimension
for distributions belongmg to a space J’(r) of distributions 7' having supports in [0, c0) and
admitting the decomposition T = B.+ D*F, k € R,, where F is a function having the support

“in [, oo) for some finite numbera (@ > 0) such that F(x) z—r—%—1¢ £}(R), and B is a distribution
having the support in [0, a). Every such distribution 7' € J’(r) is a tempered one and has by
Lemma 1 the S,-transform. J. Lavoine and O. P. Misra defined its Stieltjes transform in the
following way: ‘

-

Fit) —
S,(T) (B(‘)s( -H)'*‘) + (7'+ 1), f(_—k—t—mdt’ on 0;\9{",’

They remarkcd that T € 7’ (r) is equivalent to 77 = D™G, m € i)?n, if G(x) = 0 forz < O and if
the integral
/

: f [G’(;c)] (z + b)y~m1dz, b>.0
0.

exists. It ie easy to see that S,(7) = pr.

\ ° 1
) .

4. Abelian thcorem for the S,-transform ‘ :

To prove the next theorem we use the followmg lemma Wwhich is a direct consequence
~ of a theorem from [6: pp. 64—65]. ) .

Lemma 2: If 8 > 1, then -

o

fL(u) u# d'lu ~ ; i

z . . }

1:1:1""L(:r:), z—>0c0, z€R.

Theorem 1: Suppose that f €.5F,'(R®) has the quasi-asymptotic at co with respect to
Ic“L(k) with the limit g € &,' (‘R") Tken g = Cfose and for r > a, r, = —m, m € N,
t=1,...,n, we have .

i 1)
@
aéﬁw

.where w € 6", |lw; ” =1, argw =*,=7z, i=1, ,n and A, = {s = kow: k € R}, If
n=1and L{z) =1, the convergence is umform in the closed domain Q, = {5 € C:
—ateZargs<=m —e¢he>0.

n I’(;" a;) - : . .
im (i +1)° o= (k- Jsal), ' o
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Proof: We shall spllt the proof int6 two parts. We use the same notatlons as in
Section 3.

The case r; — 1 < a; < r; for at least one i: From Proposition.3 it follows that
N OEY When §—>00,8 € A Let m be the first mteger = |r + p + e|. Proposition 1

implies
] _ iﬂ-a( s) _ F(t) 0) |
ey R 2‘””( FLE) (ks +t>,+,,m>
— lim ( + (kt) - n(kt) .
_kl-lgo(r + 2 (k‘”PL( k)’ (s + t)r+p+2e)

' n*(¢t)
=(r + 2€)pv <0/a+p+e(l), W)

P e IS
B 0&:1‘ Tri+2) ° (. 77 € 4(8))'
“Sonif k; = kg, § = 1, ..., n, then

' n Plr. —a;
f'“(ks) = (1 + s(ks)) C I=]l _ﬂ}TC_E_‘i)H (ks)a—r—e L{k),

where e(ks) —> 0 when k'— oo and s €. 4,. Taking into a.c(,ount, that fr(s) — 0 when
§—> 00, sEA,,,,weha,ve :

x4

A (ks) = sr + e)° f f if“

ky kn !
_ . I'(ri! - ai“*’. 1) a-¢ il r a—r—1 ’
= C'Q ——]T*_T 8 '.I=_Il Uy L(ui) du,»
. . o
> . + f f e(su),u“f";L(u) dug. A
’ . & kn .

In order to prove the statement of the theorem we only have to use the fact that
e(us) = 0 when u — o0, s € 4, and to apply Lemma 2,

‘Thecasea < r — e:Let m bean integersuchthat |[r + p 4+ el >m =la + p + €.
The function F from Proposition 3 belongs to (™) and the family of functions

(9(t)/(s + t)y*Pre:s € A,, 5 € A(s)} belongs to S™. Hence, for s € A, n € A(s), we
have

I ({0 Ft) () -0 -
:l’n; m =(r+ e)p lim <ka+pL(k) (s + z)r+?+6> .

=C(r +e) (fa+p+e(¢), 'M_—WY)E;,T,>

a)

1)

s-tr—a),

=oll 7

o
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Let us remark that in the proof we used the well-known' equa‘lity

C j’ 0 e L@ P+ DI —at )
; N (S +t)1+ﬂ+2 . 11(?,+p + 2) A ’

whereaéﬂ%,ﬁem,SEC\g{_,a+p>—1,r+p+2>.—'1.~

At the end, the uniformity of the limit process follows from Montel’s theorem:
. If {(z)'is regular and bounded in the angle between two rays and f(z) — a as z — oo on
one ray in the interior o/ the angle then f(z) — a uniformly in any interior angle I

We shall give several éxamples to ‘illustrate the advantages which we- obtained by intro- -
ducing the quasn asymptotic. ' :

1. The functions F m(t) = H(t — 1)t-™, t€ R, m = 2,3, ..., (H is the characteristic function
of R, = (0, o)) behave as e when t — co. But they all have the quasi-asymptotic at co with

6. Indeed, if ¢ € S (R), then

_ .

respect to k! with the limit’

lim (kf(kz), ®(z)) = lim ki-m [ ¢(z) =™ dzx

k—o0 k—»00 1/k

0,

' - =1imf¢(i)rmdx= 1 50).
k—>c0 k m — 1 .

1

From the main theorem follows

lim s*+1f (8) = , r> —1, (5eC\%i).
* 300 om—1 o
—~  'We obtain the same result for the classical Stieltjes transform. We sce that the power of the
asymptotic behb.viour of 7 does not depend on m = 2,/3, ... just as the quasi asymptotic does.
In the case m = 1, the function F,(t) = H(t — 1)¢t7, t € ‘R has the quasi- asymptotlc at oo-
with respect to k-1 In k with the limit 6, a.nd our theorem implies

m @
g—00 ST n |3

‘

~

=1, seG\F. ST .

. This result can be checked directly by using the classical definition of the Stieltjes tra,n,sforn‘lx

2. Let I' = DPF € &,/(R) such that F € £(R,). Then T has the quasi-asymptotic at co with
respect to &~P+) with the limit

) (—1)P (j F(t) dt) om,

0
Namely, for ¢ € S'(R) we have
lim AP+Y(T(kt), d(t)) = llm (—1)? k(F(kt), pPNt))

k—o0 )
- (—1)v tim [ rw) ¢ (%) dt = (—1)? $®)(0) f F) dt.

~
'

This example shows that a whole family of distributions has the same power of the quasi-
_asymptotic and consequently the asymptotic behaviour of theéir Stieltjes transform has the
-. same power, too. Let us remurk that F need not be of power growth [5].

~
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8. The distribution PF(1/z™),, m = 1, 2, ..., has the quasi-asymptotic at co with rcspect to
k—"‘L(Ic) with the limit (—1)™-1 §™)/(m — 1)1 Trom [7: T. I, p. 42] follows

—(PF(I/x'")+) ~ PR(=mfzm#), + (—y)n S

The assertlon follows from

11m k"'+1(6<"')(lct) ¢(e))

= hm E(—1)m <6(k¢), () = (—1)™ ¢™)(0) = <¢s(fn) ®)

and

.k R .
:Lm;g o (PRt 6(0)) m(D,(lI(kt) In ktf, o(t))

- _L'f In (t) &'(t) dt = B(0):
In k :
) ° "

Now, we can compare the results of our theorem, in the case » = 1, with the known
results on Abelian theorems at infinity of other authors. All of them started from the
space 7'(r) [3), which is'a subspace of &, (R). If T € J'(r), as we remarked, it has not
only the Stieltjes transform S,(7') in the sense of the definition of J. LaAvoIrNE and
O. P. Misra [3]; it has also the S,-transform P in the sense of our definition and

SAT) (s) = T7(s), s € € \R_.

Using the notations of our theorem, we can est,abllsh the followmg differences: In
[3]1J. Lavoixe and O. P. Misra proved the case L(x) = 1, @ > —1, s isreal number
and r > —1. In the next paper [4] they supposed T = B + g, where B is a distribu-
tion having compact support and g € PL(R.) such that g(z) ~ Az® logi z in the
usual sense as z — co; s is a real number and —1 < Rea < Re 7. R. D. CARMICHAEL
and E. O. Mictox (1] proved their theorem for L(z) =1, a > —1, s € = @x
={s=u+w:u>0,|v <Ku K=0}andr> —1. A. TARAC [8] generalized this
result, omitting the supposition @ > —1. V. Mar1¢, M. SKENDZI6 and A. TAKASI [.')]
proved the case Rea > —1,s = real and Rer > —1 :

In a forthcoming paper we shall give similar results for the case of the quasi-
asymptotic at zero and the corresponding Abelian Theorem for thc St,leltjes brans-
form.
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