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On Certam Higher Order Rlccatl -Type Operator Equatlons w1th
Possnbly Unbounded Operator Coéfficients . :
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-

T. MAZUMDAR

Es seien J und ‘U‘ komplexe Hilbert- Raume, mit topologlscher Einbettung von 'l}l in J¢, und
V? ein komplexer Prihilbertraum. Es wird d1e Ex1stcn7 einer Losung X XO € .Y’(?}2 ‘I/‘) der
‘Opemtorenglcnchung
N

,XA — B,XB, + on + XEXFX__ Q - , .
im Raum der. (beschriinkten oder unbeschrankten) linearen Opcmtoren in [36’ in der Situation
A,, B, € £(V, ¥), D,E,F ¢ £V, V), 4, B,: V2 — V? linear:'und ' Q € ¥ (V?, J) ein-
dimensional erortert. Unter gewissen Voraussetzungen wird ein iteratives Naherungsverfahren
fir die Existenz solch einer Lésung angegeben und zwei Beispiele werden gebra.cht
Ilycre H u Y1 KoMMTeKCHEE ruabGepTosH npocTpancTa, U! TONONOrMYECKH n:loméno
B J, n V2 KOMUJEKCHOC NpPeyIrnasGepToso npocTpancTso. OBCYHIaeTCA CylecTOBaNNE
-pewienua X = X € £(V?, V') onepaTopHoro ypaBrenus .
i : . . : 1

4,X4, ~ B, XB, -+ XDX' '+ XEXFX =@
B npOc'rp'lm,TBe (OPpaHUUCHHKIX HIIK Heor‘pduuqcnuux) onepatopoB B J B (;VITVaLU"!
4, B, € £V, ¥), D, E, F € £(V',V?), .42,8 U U nuueiun u Q € £(V2, ) onmHo-
\1epuo Mot HeKOTOpHMH ILPEINOIO:KECHNAMH nalo"rcn mepauuouﬂmﬁ \:e'lon AJIA .ero
peweunﬂ u npunorm'rcn NBa mpumepa. . .

~

Let, J and ?}‘ be complex Hilbert spaces, thh 'U‘ topologically included in J, and V2 a
‘complex pre-Hilbert space. There is considered the existence of a solutlon X=X, € £(V?, ?/‘)
of the operator equation :

1 AlXA2 - B,‘\'B + \DX + XEXFX = Q

.ini the space of (bounded or not) linear operators in J under the data A4,, B, € £(V!, ¥),
D,E, F € £(V', V?); 4,, B,: U* — V? linear and Q € £(V?, J) one-dimensional. Under some
hypotheses, an iterative analytic metiiod to arcive at the exnstenc“ of.such a solution is glven
J‘wo examples are glven

iy

‘ ' . N ‘(

§ 1 Introduction - ) ‘

The purpose of the present paper is to show how certain pertubation techniques
coupled with results of [4] lead us to ex1stence of .operator solution X of Riccati-type
* equations of the form .

\

A,XA, — B,XB, + XDX + XEXFX — Q R (1.1)

_in‘Wlllich A,, Ay, By, By, D, E, F, Q are given linear operators that may‘be. bounded or
unbounded in an underlying Hilbert space, @ having one-dimensional range. The:
“magnitudes’” of ‘one or'the other of the operators D, E, F, @ will be small enough so
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that the terms involving them may be looked upon as perturbations to the linear part
A, X4, — B,XB,. We mention [6], in passing, where problems with rank @ = 1
have been treated in the context of Lyapunov equations and its generalizations.

* We find, in [2], that problems such as (1.1) above are dealt with from a purely algebraic
point of view in a finite-dimentional matrix setting, whereas our approach will be largely
analytic. In [7] also, we find such problems treated in relation to the theory of backscattering
of a travelling beam of particles. If, in equation (1.1) above, we take E or F to be zero, we
obtain the familiar equation A, XA, — B, XB:, + XDX = @, which has been dealt with in
widely dlffermg contexts in hterat,ure (cf. [1 —3, 5)): We particularly mention [3] in the context
of feedback optimal control theory of distributed parameter systems, in which the setting is
infinite-dimensional and D is non-zero, with £ or F zero. In this context, the restriction
“rank @ = 1" would signify that the observation operator or the detection mechanism has
one-dimensional range. In the transport t,heory, such a restriction on @ mlght deéscribe some |
kind of special relationship among the various probabllltles that a moving partlcle has in
changing over from one state to andther.

Our approach to the problem at hand is different from those found in any of the references
above. We permit the possﬂ)lhty that one or the other of D, K, F may be zero, @ remaining
non-zero. We have tried to give a unified approach to classes of problems somewhat similar
to the problems appearmg in the references above. Whether our methods are directly a.pph ’
cable to the actual problems zmsmg in practicé remains to be investigated.

$ 2 Notations

“Let € denote the set of complex numbers and N the set of natural ones. J€ will denote

a complex Hilbert space with norm |-|s and inner product (-, -), V' a compléx Hilbert
space with norm ||-||, and inner product. (( ))l such that V! is a dense subspace of J

with continuous inclusion injection from ¥! into J€. Consequcntly, there existsa con-
“stant y > 0 such that

'['u]x <yl forall ve V. : (2.1)

V2 will be a complex pre-Hilbert space with norm |-, and inner-product ((-, ). -
If X is a'normed linear space and Y a Banach space, then £(X, Y) will denote the
Banach space of. bounded linear operators from X into Y, with the usual norm
topology on it. The suffixes to the norm notations ||-||, indicative of the space in which
the norm is taken, will usually be omitted, because the space is often clear from the
context. Let & = .Y’(‘U2 ¥), W = £(V%; V*). Considered given in our problem are

Al:BlEf(?}l ), D,E,FE-Y’(‘U‘, V%), QeX
and .
linear operators 4y, B, : ?]2 — ?/2

N

(We may look upon 4,, B, as element,s of (V% K) for an appropnate Banach
space X). Because of (2.1), the possibility is kept open that 4,, B, are unbounded
linear operators in J. If V? is also a-subspace of J, as we will have in examples in
§ 5, ¥ will-be our underlying Hilbert space; and then the rest of the operators above
may also turn out to be unbounded in J¢.

With domains and ranges laid out as above, equatlon (1.1) is now well-defined.
Our concern of proving existence of solution X = X, € % of equation (1.1) under a
suitable set of sufficient conditions' will now be precisely stated as the main result in

_ the next section. The proof given in § 4 will consist of an _iterative approxnmatlon

prodecure converging to the solution Xo

RN
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T §3 Tﬁe. main result

"“We start by listing the hypotheses we will work under.

(HY) Q has one-dimensional range; say Q(‘Uz) ={ah:x € C} denoted by ([k], for
some h € J€ with |h|g = 1. :

(H2) [R)= V; A([R)) = [A] = By([h)). ‘ )
We w111 use the not,at,ions A, by By, respechively, for the restrlctions of 4,, B, to [h]

(H3) There exists an orthonormal basis B = {b; : © € N} of VU2 suchthat-each b; is an
ezgen’uector of both A, and B, belongmg to etgenvalues 2 and u;, respectively. '

" We will denote by ?/ 2 the subspace of V2 gcnerated by bl, b, ..., b, A, e B2 - @n
are restrictions of A4, B,, @ to V2. ?ﬁ(n) 18 the set of restrictions to V,2 of all those
X € % such that Xb; = 0 for all ¢ > n and Xb; € [2] for all 2 < n. % (n) will be
considered isomorphic to 7 (V.2 [*]), as can be eaqily seen to be the case. Also, we will
use the notation &, = £(V?, [k]): Both .Z’(?/,F, []) and %, will be consndercd to have
t,he subspacc topology of %. .

1 ..

(l{ 4) There exists a constant g > 0 such that /or all nonzero Y € ?W,,, there e"czalts a
- Py € ‘212 satisfying the dommance relation .

l(d1s YAy, — B,y 3 Y By) Byl > B | Ylw [®yll-

This con/dit,ion is obviously-an-extension of the well-known concept of ellipticity or coercivity
“(cf. [3]), and may be called a‘one-sided coercivity condltlon In § 5 we will indicate a class of
examples for which (H 4) may be VCl‘lflCd A direct consequence of (H 4) is the following
condition, utilized .in [4]:
There exists a constant 8 > 0 such that for all n ¢ N and for all nonzero Y 6 ‘W(n) there
exists a Py € V2 satlsfymg the dominance relation -

- I(An hYAzn - Bl hYBz n) ¢Yi.7E> ﬁ”Y“‘w ||¢) [l

‘We note in p.issmg that if Y € W(n), then, || Y|lpwm = | Yy, = |]Y||w, and if X € Wj; then

1 X, = ||X||ry/, w1t,h the norms defined via the usual supremu i

In the sequel we will frequently use the notat,lons (sec (2 1)) .
a'= T IQNIDL, e = 2 QIR 1BV IFY, N 8

el always-n‘ioaning 1Qllg, and norms of D, E, F being always taken in £(V!, 2).

7

A (H5) There exzsts a 4> 0 such that 1 4- «, + &g < 4 and 1 + A% + A% < A

'lhis condition delincates in w hut sense the part X.DX -+ XEXF X of (1.1) may be considered
as perturbation to the part 4, X4, — B, XB,. ||Dl, {|I£l, IFil. though need not be small if ||Q]] .
-is small enough. A small |[¢]] might correspond to a wedak observation or detection process in
optimal control theory. A small [|D! might indicate that the feedback process is weak. In '
nuclear transport theory, a small [|Q}{ might indicate a low probability of moving particles
changing over to particles in different states moving in the opposite direction. Examples of,
validity of (H 5) are not difficult to come by. For example, if 4 =2, &, < 1/8, &, <"1/16,

then (H 5) is satisfied. Or else, if 4 > ( + V’S)/Z oy < 6,/4%, &y < 0,/4% where 6, and J, are
such that 4, 4- 9, < 4 — 1, then also (H 5) 'is satisfied. The estimates (H 5) lead to a suc- .
.cessful existence theorem. It is not claimed that they are the best possible estimates. ¢
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(HG) There exzsts a fixed number. ko = 1 suck that .
W) ke +a) <1, SO ‘
‘ 20, 3a2k0(a, + &) ) 3,
1 — ko(oy + oxg) 1 — kofoy + oxg) [ — Kooy + &) K ‘
+ 0‘1k0(“1'+ 4?‘2) + 0‘2["0(“1 + 0.‘2)]2'I§ kO(‘x‘l + &), ‘
‘ o ’ g L
[1 - ko(o‘l + 0‘2)]2 [1 — ko(oey + 0‘2)]3 B

An example when these conditions are valid is obtained by ta.kmg o, < 1/18 X < 1/61
ky = 1/2(x; + &,). Indeed, we have bhe follomng proposition,’) '

(i)

(iii) L/ 4> 2, tken

" Proposition 3.1: a) Foran arburary 4> 1, there exist a, >0, a; >0 such that (H o) is N
satisfied whenever 0 < &, < a5, 0 < oy < @y,
b) For arbitrary Ico >2 and T> 0, there exists.an m, > O such tkat if 0 <<y <'m, and
oy = o, 147, 'then (H 6) 18 satisfied.
c) For arbitrary 4> 1 and ky > 2, there exist a, > O (md T > 0 such that if 0 < &, < a,
and o, = &7, then both (H 5) and (H 6) hold:

. PAroof: It suffices to prove statement b). First we show the vahdity of the inequality- (H 6)/
_ (ii) . which may be alternatively written as (on division by kg(oy 4+ &), since oy = o 1+7)
K . . . - ) . . .
! 2 : o+ 3oy -
ko(1 + o) [1.— Kooy (! + )] 1 — koo‘x(l -+ “1‘)'
, . !
i o 3a,®

' R + kol +- &) [1 — kozx,(l + o ‘)]

I

+ocl + oz1~+'k( tan st L (3.2)

The first term on the left side of thls 1ncqua.hty approaches "/L as «, —> 0, whereas the other

"terms tend to zero. Since, by hypothesis, (2/k) < 1, we have the mequahty 3.2), and hence
(H 6)/(ii), true for «, small enough, say &, < m,. To complete the proof, one hdS now to take
care of parts (1) and (iii) of (H 6). This can be eaﬁlly done 0 »

Let us note here that the hypothesis (H 6) above takes a simplified form if zx2 = 0 ie., l.f

the term XEX FX does not appear in the original equation (1.1). We also become. unpleasantly

" aware of the fact that if we want to apply our methods to a still higher dimensional Riccati-

type equation, namely one that includes a fourth degree term in X, then thc complcxmcs of our -
estimates will grow rapidly.

Now we are ready to state our main result

Theorem 3.2: ,Under the hypotheses (H 1)—-(H 6) - above there exzsts a solunon
Xp€ ‘Wofthe eqmtzon(l 1 1 . . :

We can put a regularlty feature on this'solution X, For alli € 1\ defme /, € % by
/,(sz,) = océ,,h forall j€ N, where « € C, b;’s are given by (H ‘3), and §;;-=.0 if
t347,0; = 1. Let ¥, be the set of all finite lmear combinations of the Ji’s over C.
The topology on %, is the one inherited from %. Let %, be the closure of ¥W,in ¥W.
Clearly W, =W, Let ‘1}2 be the completion of V2. .

~ Lemma 3.3: ‘Z[V, 18 zsomorphzc to the Hzlbert space P2, and 80 @, is separable and
reflexive.

\

" The proof consists of standard methods of functional analysis, and is omitted LR
: : . 7 . e

!) The author thanks the referees whose suggestions led him to this proposition.
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Theorem 3 4: Under the hypotheses (H 1)—(H 6) above, equatzon (i.l) “Has a
solution Xo'€ W,. .
It is evndent that Theorem 3.4 mc]udes the result’ of- Theorem 3.2.
r

§4 Proo'f of Theorem 3.4 . o ' ‘ ‘
We repeatedly apply the following exfst:ence — uniqueneés theorem t,‘a.ken from [4].

Theorem 4.1: Under the hypotheses (H 1)—(H4) above there e:usts a unique
solutwn X = X0 ¢ D, of the equation . .

, (A Xd, ~ BXB,) &' =Q® for all & ¢ ?/"2‘ - T @
4 Moreowr X@ has the same range as Q has, and IIX(Q)”w = |]Qﬂ/ﬂ

. We now proceed with the iterative proof of Theorem: 3.4. We flrst construct 2 -
. sequence of “approwmate solutions” of equation (1 1) with the following lemma.
L.emma 4.2: Under the hypotheses (H 1)—(H 6) ‘above, there exists a sequence'
{X(‘)},EVC 7[71 such that .

() A,X04, — BXOB, = Q, )
(i) A X<n>A2 — B,X(™B, ‘ o - oo )
=@ — Xt-)pXe-h _ Xn- 1)1«:2((" DEX®-D . forall n > 1, ,
(iii)- - X1 has the same range as @ has, for alln > l, Ce ‘
. . } ) 1 x . .. .

(1v) XMy < B—_IIQII,
wx.|mww<panwuhmTf=Lwn+%<A;' - o
(vi) forallm > 3,

\ ‘ ”X("ﬂ)”W F “Q” T,-1; where T a=1 + 0‘1T2—2 + O‘ZT?l 2 < 4, '

C (Vii) for all n > 1, the right side of (ii) is non-zero and consequently (keeping (m)
SRR n view), has the same range as @ has, .

 (viii) MM—wa<ﬁ@%$4wg C

(ix) - IXG - X Y, WL}@]—HQII forall i 22, .
. i\ o

: (\() C X D|lgy < [3 el mm( ——kom) forall n = 2.

Proof: Let X (M) € @, be the solution of equation (4. 1) obtained by applymg Theo-
rem 4.1, Ib is non-zero because Q is. Also, from Theorem 4.1 we have that

lwwwsfmn- ' o N
and X has the same range as @ has. We can now - see that Q - XMWDXM
— XWEXMFXM is fon: -zero, so that it has the same range as @ has. Indeed, if it-

/
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were Zero, then, using (4.2), (3.1) and (H 6)/(i),
QI = | XWDX® 4+ XHEXOFX W4
L= 7 IXOll? ID] + ¥ IXO® 1B} IFI] < QI (21 + o2) < 1QI,

an mpossnblhty This allows us to consider the second approximation X® ¢ %, which
is the solution given by Theorem 4.1 of the case n = 2 of equation (ii). It has the same
,range as ¢ has, and, as seen above and by (H 5),

||X<2)||,, < — ﬁ Q — X(l)DX(n — Xﬂ)EX(‘)FX(l)”g

’

< 5 Q0 + 101 (s + o] = 5 101 T,

T2—1+(X1+a2<A

Let us note in passing that lf X® = X®, then X(z) Jis a solution of equation (1.1), and
we do not need to proceed any further. So we assume that X(® £ XM, To prove (viii),
- we subtract equation (i) from the case n = 2 of equation (ii). We get

A (X® = Xm) 4, —Bx(Xiz) — XMW) B, = —XHDXM) — XOEXOFXM,

) (4.3)
Since X — XM == 0, there exists @, ; € V2 such that (see (H 4))

BIIXE — XW|jgp 1Dy, ,fl; < |[A1(X® — XM) A, — By(X® — XD)B,1®, |
= [l 4 (X® — XM) A - By(X® = XM) By 1Pz 1]l '
and so, using (4.3), (4 2), (3.1) and k, = 1, '
: BlIX® — X“’Ilw < | XD ID]] I XDllep + IX O (Bl IIX‘”Hw NEIIX Mg
< y IXOY@? D] + 7 XDl 1B IF] < 1@l (x T o)
- = kole + o2) [1QU-

Now we' proceed with inductive reasoning. Suppose, the elements X, X®
X1 have been constructed in the prescribed manner. By Theorem 4.1, equation (ii) -
has a unique non-zero solution X € %, having the same range as Q has. If X
= X1, then this is a solution of equation (1.1), and we need not proceed any
further. So we assume that X — X®-1) 3= 0. By Theorem 4.1 again, using (2.1),

Xy < ? 1 — Xe-ppxw-H — X<"~1>EX<."-’>FX<"-*>:|g |

é [IIQH + Y HX"' R% HDII + 71X "Ilw E]| IlFlll

[n@u L QIR DI TR 1oF 11171 73 ]

52 ﬁ“
- QN T, L

“%

where by inductive hypotheses and (H 5),
) T—l—{—zx,T"_ +zx2T"1<l—i—a1A2+oc2A3<A

’
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We hav;e, thus proved that
- . 1 . .
. IX™M]ep < vl l@ta forall »€ N. : : ) (4.4)
Next, we assume that the inequality (ix) is true whenever 2 < ¢ < n. Before we

prove that this inequality is true for ¢ = n & 1 also, let us note that as a conse-
quence of this mductlve assumptlon we have fot all's =1, 2 » My

IIX“’Ilw gz X — X‘i'“llv + ”X‘”lleb

j=2 . o -
i . 1 1
_— é: ko(M + x)J- ”Q” + = ﬂ ||Q|| <-me el
v - (4.5)

because .0 < ko(x, + ag) < 1. Ineq‘ua]ities (4.4) and (4.5) together yield (X).
We next let X, = X — X1 and write, using Theorem 4 1, .

- A X4, — B X("DLB, =@ — X®DX®™ — X(")LX(">FX(")
=Q — (XD 4 X,) DX0-) 4 X,) | L
— (X*h + X)) E(X*h + X7 F(X(" b + X,).
Expanding.the right hand side, and subtractmg equatlon (u), we get N
A (XB+) _ Xm) 4, — B(X+D _ X)), b
= —Xt-1WDX, — X, DX»-) — X DX.‘ —"X("'.“)EX("“)FX,,

A X(n I)E’X FX("' ) — X-vLEX, FX . IR ‘ .
—_ X EXtn- l)FX(" l) - X, E’X(n 1) FX ) :
—XEXFX(" ‘)—XEXFX : ‘ (4.6)

We assume that X("“) + X(") ot,herw1se we would get a solution of equation (1.1)
rlght away. By Theorem 4.1, X("+1) ¢ 9, By (H 4), there cxists a Dpyy,n € V2
such that - - :

B.IXxe=n — X""Ilw 1Prir,nlle . ,
< |A,(XD. — X™) 4, — B (Xwn — X®) Bl 19, - BCUE
Since mequahty (ix) is assumed to be true for2 <4 S n, we have - -

‘[o( 1+¢X2)]-1
B

Combining this with (4.5)~(4.7), we get

Xl < IQIl. o

QI IDI

, n+ n ; E [kO(‘xl + 0‘2)]"_1
BIIX 1 — .X( N <y [ﬂz 1 — ko(xy + cip)
k ‘O . 2n A2 % k 1 n-1 3 ;
e L v o + 3 [f oo b2l yare i i
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/ . 2 ‘ e . - ’

o b ke s ]
+ 71 ——_ or + on) IIQII &l ||1’H + Y R ol IIEII [ra]
2 .
= [kq(“r ‘l‘ 0‘2)]"_.1 e [% + 0‘1["’0(0‘1 + 0‘2)]" !
' '30‘; i /_*_3“2[]50(0‘1 + o ]'l !

+ [1 — koo + 0‘2 i 1— ko(‘xr ‘l‘ 0‘2)
I S [ko(o‘l +. o) ]* ! llQll ko(o‘1 'l‘ az)

 because of the hypotheses (H 6)/(i) and (ii). This completes the ‘inductive proof
- of (ix). B
To complete the proof of bhe Lemma, it remams to show that

Q — XWDXm — XmEX(n)FX(n) 4 0. . | L (4,§j\
'If that ‘were not the case, we would have. A )
Q] = I X®DX® + X®EX®F Xz
< 7 IX™lp? ID]| + Y IX ™ | El IIFII,

whencc Wwe conclude both (I).and (II) below :

(I) By (4.4)," (3.1) and (H 5), el < el (xd* + azds) < IIQIl (4 — 1), which
yields 4 > 2.

_aallQl w0 QI
(IT) By (45) and (3.1), € <[ e, TP T T o <o

This i is 1mp0881blc Hence (4 8) is true a

+ 0‘2["’0(“& + Q"z)lzf'_z]

/

“We continue with the proof of Theorem 3.4. Indeed, the rest of the proof is

very casy as pombed out by the reviewers of this paper, to whom the author’ s thanks
are due:

Since V! is complct,e so is %. Therefore, W, is complete \Text we observe that (1x)
of Lemma 4.2 together with (i) if (H 6) imply that, the sequence {X 9} is Cauchy in @,, -
* “and so converges to some Xg € %, in the norm opérator topology.. Now, in/(ii) of

Lemma 4.2 we pass to the limit in the norm operator topology asn — 00, and end
up Wwith :

A 1Xqdy — B 1XoB; = @ — XoDXq — XoEXoF,, 4 L
, solvmg equation ( 1 l) Furthermore, it is clear from (X) of Lemma 4.2 thab
L
X <_; LS min 4, ————
1l 5 1@l 2.5 i )
§5 Examplés, : '.' S

,‘ Our first exa,mple is taken'from 21 where a solutlon is provxded for the flnlu, -dimen-
sional equation (1.1) w1th ~ ‘ r :

| 2 0 L [ro
\A1=Bz=[ ]: A2=—Bl=|:0 1]

o1 . [too] 0o o}
pcref ) P oo
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ln this example @ has one-dimensional range We can now pose the questuon For -

which @’s of the from [g

~ results of the previous section provide us with at least a ‘partial answer, namely that -
a solutlon exists for all sufficiently small |g] consistent with the hypotheses (H 5)
and (H 6). We are going to sce below how this conclusion is arrived at. As a matter
of convenience we take V! = V% = J = the space of all two-dimensional vectors.
(Wé could have taken, though, J = the sequence space I, with basis {b;}ien given
by b, = (1, 0,...),b, = (0 1,0,...) etc., and then redefine 4,; 4,, B,, B;, D, E, F, Q
by -extending them by zero, eg defme A, by Ab, = 21),, Aby,-= —bz, A b, =0
forall n = 3, etc.) '
Clearly, condmons (H 1) and (H 2) are satisfied with & = [0, l]T Condltxon (H3)
-is also satisfied with &, = [1, O|%, b, = [0, 1]T. To sec that (H 4) is satisfied, we note

thata Y € %, is of the form ¥ = [S

0] does the a.forementloned example have a solution? The

d] dfYis non-zero, then choosing @, = [¢, —d]*
. we have [(4,Y4, — B, YB,) ®ylze = ¢ + 2d?, and || Y| 1Dyl = ch + d? ]/c2 + d*
.= c% + d?, so that (H,,) is satisfied with any B < 1. In this example, y = 1. Any
choise of D E, F, q consistent with the hypotheses (H 5) and (H 6) will nge us an
equation possessing solutions. )

Our next, example is the 1nf1mte-d1mensnona.l example given in [4] which we
- reproduce here. Let 3= L"(.Q C), where 2 = (0, 2;1) X (0.27). K is a. Hilbert space B
under the inner product, ‘ h

27 2n RN ' \

(2, V)3 —f f (, y) v(z, J)dxdy,

~

J

" where v(z, y) is the complex conjugat,e of v(z,y). Let e iz, _/) = e;(x) e;(y)- wherc
eo(§) = (2n)12, ey 1§) = a~Y2gin ng, ey, (&) = w2 cosné for all =» € N.-Let
bye = Vp.obo.q where ¥p.q are constants so chosen as to make B = {b, ,: p € N, q € N}
an orthonormal set in the Sobolevspace J3. Tiet usrecall that if visa positive integer,
. then J¢ is the set of all those elements of J ‘whose distributional derivatives of
all order not exceeding.v are again clements of Je. 3 is known to be a Hilbert space .

under the inner product
{ 1

((, 2)ser = 2 (8™ 3%, 0," ay"v)x,

!
m,n=0"
m4-nsSv .
where 2, 9, are the distributional denvablves Let V2 be the subspace of J6° consisting v
of all fmlt,e linear combinations of the b, ;’s. Let U = J,® = the set of all those
elements of J¢2 which, t,oget,her with their first distributional derivatives, vanish at
the boundary of Q. J,* is a Hilbert space under the same inner product- under
which J€2 is a Hilbert space. The y of inequality (2.1) may obv1ously be taken to be 1.
We now construct the example by setting .

Au = —a d,%u + kyju, where a >0,k >0,
B = —b 9%, where b>0, '

‘ . 1
A = 3% + 9 — 3

Bzv;—.' a,l'v + 9% + kv, where k, >0,

27 Analysis Bd. 6, Heft 5 (1087)
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, “for all u € ‘2}1 v € V2. This is typical of a class of sxmllarly constructed examples to.
which our'methods may be applied. .
Condition (H 3) is clearly satisfied.-
As-an examplé of a Q € & with one- dimensional range we may take the one
. defined’ by QP = d; sk where h € J is given by’ k(x y) = e, (x) e.,(y) and .

v -

(?ﬂf’) (x, .7/) Z dp oby. q(xs ?/) with d, . € C; D€ ?/2‘ :

Pg=0
Clearly, (H 1) and (H 2) are samsflcd and I[Qll = 1.

Let us now verify condition (H 4). Take an arbitrary non-zero Y € ?!7,, Suppose
C Yy =6, ok with & € C. Then, [|Y]| = ||¥by |l = 1&p,4! IRl Let &,., denote the -
: complex conj ugate of 5, v Let 7, s be arblt,rary posmve mtcgers In what follows we

_writie Z to. mean Z‘ Z’and ): to mean Z Z 1f v_Z'&pqqu?} then

=0 g=0. . . p=04q=0
Yv._2|qu] h, and so ' !
‘ | Yv R .
C e = b5 |s,,q|2] . T ey

= el Il
ThlS is true for all » and all s. Thus, Z‘ |,,M|2 converges as 7y — 00, s — 0o, and

(e (Z IEp.qP) A Ithx- Nobmg that

S h
Yl = sup oL 1,

ol (ZI |)"z _[Z lépqlz] Whlly
w0 Mp.q : . e

r% ) ’
‘where w = }/ 77,, p. ' is -an arbltrary elcment of ?/2 we see from (5.1) t,hat “Y“w

[Z 1£p.ql2 ] ”h”l If 0 < &< 1, then fmlhc pos:’olve mtegers 7, 8 exist such that
1 = e (Fi) it < (F i) “w.

- .Wit,h this 7, 5 let vy = f;,,l,b,,;q. ffhen, exgcply as in [4: Seetion 3j, we get

A Y4, — BFB)ole - | -

> [% (9;1, -f- k) + 4bk2’]~p(§ .|4":p.tr|2')”u‘z (E |§pi;c|2‘)1/2

-

> [i (90 +.Js) + bty | Sl .

So, we may take ﬂ = 5[2 1(9a + k,) + 41)1(:2]/||h||l for a convement &, and then (H 4) ’
is sa.tlsfled . . !

. 'We also note that - o . _‘ e B _',”'
[
<,
£3 [—E (9a + k) + 4_6562]

IRl
N 2
et [-§- ‘(9a + k,) 4bk2]

“and - ;— ol <

-
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Thus, if a, b, k, or k, are chosen large enough, or D, E, F are chosen with their ina'gni.-
tudes small enough, then hypotheses (H 5) and (H 6) - will_be satisfied, and. the
operator Riccati-type equation - o

(—ad?+ 15,1) X (a,z + 9,2 — %1) + (9,2 X2 + 0,0 )
+ XDX + XEXFX = @, : .

with I representing the identity operator, has a solution X whose norm does not
exceed the right member of the inequality (X) of Lemma 4.2. The actual values of
"4, &, &, will depend on what exactly D, E, F aré. The constant k, plays no essential
role ' — it is retained solely for possible computational advantage in a numerical

situation. . ) '
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