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'I 

Es seien X und V 1 komplexe Hilbert-Räume, mit topologischer Eirbettung von V 1 in X, und 
V 2 ein komplexer Prähilbertraunl. Es wird die Existenz einer Losung X = XQ E Y(V2, V') der 
Operatorengleichung 

A 1 XA., - B I XB2 + XDX +XEXFX-= Q 

im Raum der (beschriinkten oder uiibeschränkten) linearen Opera&en in Ide in der Situation 
A 1 , B1 E .(V.'. 7e), D, E, F E 1(V', V 2), A,, B2 : V 2 V 2 linear und Q E (V 2, X) em-
dimensional erörtert. Unter gewissen Vora ussetzungen wird ein iteratives Niherungsverfahren 
für die Existenz soich Amer Losung 'angegeben und zwei Beispiele werden gebracht. 

llycrb X If V' HoMnJ!eKcHble I'IlJiböepToebI npocTpaucTna, V 1 TonoiorH'ieciH H,rIoeHo 
B X, u V 2 140171.neIcHoe npe1i'1,1Ju6epT0I10 rlpocrpauc'rIlo. .06cyIaeTca cyu.wcTBoaaIlHe 
peiiieiiun X = X0 € Z(V 2, V') ouepaopiioro ypannenun	 -	- 

A 1XA2 B1XB2 -;- XDX ± XEXFX = Q 

B nppcTpaHcme (orpaHu'IenhII1x IIJ1II HeorpaIIlr4eIIIiuX) OHepaTOpOB B 3e B CHTyaUHH 
A 1 , B 1 € . (V', 7C); D, E, F € .(V','V 2 ), A2, B2 : V 2 -V2 Jinhlefihihi ii Q € !(V, X) o,no- 
Mephlo. 110 HIOTOWM1I ripej no!o%hcehInnMH galOTCFI UTeLH0HHb1 MeTOA AJM cr0 
peweiam if flPBBOI.HTCH ABa npltMepa.  

Let X and V' be coplex Hilbert spaces, with V' topologically included in X, and V 2 a 
complex preHilbert space. There is considered the existence f a solii'tion 'X.= X Q E (V 2 7 V1) 
of the operator equation 

A 1 XA 2 — B 1 XB., +XDX + XEXFX = 

in the space of (bounded or not) linear operators' in 3e under the data A 1 , B 1 € Y (V', ,), 
D, E, F E 1(V 1 , V 2); A'2, B2: 7)2 -* V 2 linear and Q € .(V 2 , X) one-dimensional. Under some 
hypotheses, an iterative analytic metiod to arrive at the existence of such a solution is given.. 

- Two example'si are given.  

§ 1 Introduction 

The purpose of the present paper is to show how certain pertubation techniques 
coupled with results of [4] lead us to existence of operator solution X of Riccati-type 
equations of the form 

A 11A 2 - B IXB2 +XDX + XkXFX = Q	 •	 (1:1) 

in.which A 1 , A 2 , B 1 , B2 , D, E, F, Q are given linear operators that may be bounded or 
unbounded in an underlying Hubert space, Q having one-dimensional range. The 
"niagnitudes"of'oneorthe other of the operators D, E, F, Q will be small enough so
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that the terms involving them may be looked upon as perturbations to the linear part 
A 1 XA 2 - B1 XB2. We mention [6], in passing, where problems with rank Q = 1 
have been treated in the context of Lyapunov equations and its generalizations. 

We find, in [2], that problems such as (1.1) above are dealt with from a purely algebraic 
point of view in.a finite-dimentional matrix setting, whereas our approach will be largely 
analytic. In [7] also, we find such problems treated in relation to the theory of backscattering 
of a travelling beam of particles. If, in equation (1.1) above, we take E or F to be zero, we 
obtain the familiar equation A 1 XA 2 - B1 XB2 + XDX = Q, which has been dealt with in 
widely differing contexts in literature (of. [1-3, 5]) We particularly mention [3] in the context 
of feedback c'ptimal control theory of distributed parameter systems, in which the setting is 
infinite-dimensional and D is non-zero, with R or F zero. In this context, the restriction 
"rank Q = 1" would signify that the observation operator or the detection mechanism has 
one-dimensional range. In the transport theory, such a restriction on Q might describe some 
kind of special relationship among the various probabilities that a moving particle has in 
changing over from one state to another.	 - 

Our approach to the problem at hand is different from those found in any Of the references 
above. We permit the possibility that one or the other of D, E, F may be zeo, Q remaining 
non-zero. We have tried to give a unified approach to classes of problems somewhat similar 
to the problems appearinl in the references above. Whether our methods are directly appli-
cable to the actual problems arising in practice remains to be investigated. 

§ 2 Notations 

Let C denote the set of complex numbers and N the set of natural ones. X will denote 
a complex Hubert space with norm I . Ix and inner product (., )x V I a complex Hilbert 
space with norm 11 . 11, and inner product.((., •)) such that V' is a dense subspace of X 
with continuous inclusion injection from V' into X. Consequently, there exists a con-
stant y > Osuch that 

I v ix	y jjvj j l for all v € V'.	 (2.1) 

V2 will be a complex pre-Hilbert space with norm 1 • 112 and inner-product ((•, •))2. 
If X is a'normed linear space and Y a Banach space, ther1 .'(X, Y)will denote the 
Banach space of bounded linear operators from X into Y, with the usual norm 
topology on it. The suffixes to the norm notations indicative of the space in which 
the norm is taken, will usually be omitted, because the space is often clear from the 
context. Let 7 = (V 2, 3'C), W = J(V2,- Vi). Considered given in our problem are 

A 1 , B1 € .f(V', X),	D, E, F E .'(V', V2),	Q E 7 

and
linear operators A 2 ,B2 : V2 - V2. 

(We may look upon A 2 , B2 as elements of (V2, X) for an appropriate Banach 
space X). Because of (2.1), the possibility is kept open that A 1 , B1 are unbounded 
linear operators in X. If V2is also asubspace of , as we will have in examples in 
§ 5, X will be our underlying Hubert space; and then the rest of the operators above 
may also turn out to he unbounded in 
- With domains and ranges laid out as above, equation (1.1) is now well-defined. 

Our concern of proving existence of solution X = XQ € ?&' of equation (1.1) under a 
suitable set of sufficient conditions will now be precisely stated as the main result in 
the next section. The proof given in § 4 will consist of an iterative approximation 
prodecurc converging to the solution X0.
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§ 3 Tle. main result 

'We start by listing the hypotheses we will work under.	 .	V 

(Hi) Q has one-dimensional range; say Q(V2) ='{c' h: a € C}, denoted by [h], -for 
some h E X with IhIx = 1. 

(112) [h] c V'; A 1 ([h]) = [h] = B1([h]). 
We will use the notations AIh, B 1 ,, respectively, for the restrictions of A 1 ,B 1 to [h]. 

(H3) There exists an orthonormal basis 2 = {b : i E 1N} of V 2 such-that . each b i is an 
eigenvector of both A 2 and B2 belonging to eigenvalues 2, 'and , respectively. 

We will denote by V 2 the subspae of V2 generted by b 1 , b2 , ..., b,. A 2 , B2 , Q 
are restrictions of - A2, B2 , Q to V2. W(n) is the set of restrictions to V, 2 of all those 
X E 2' such that Xb 1 = 0 for all i > n and Xb 1 € [h] for all i < n. W(n) will be 
considered isomorphic to .T(V 2 , [h]), as can be easily seen to be the case. Also, we will 
use the notation ?&'h = . ( V 2 , [h]); Both Y(V2, [h]) and 91h will be' considered to have 
the subspace topology of W.	 V	

V V 

(H4) There exists a constant P > 0 such that for all nonzero YVE Wh, there eit.s a 
(P• € V2 safisfyi'ag the dominance relation	 V	 V	

V 

V	

(AIhYA2 - B 1 hYB2) yIx > fl IlI' llYII2.	V 

This condition is obviôusly V anextension of the well-known concept of ellipticity or coercivity 
(cf. [3]), and may be called aonesided coercivity condition, in § 5 we will indicate a class of 
examples for which (H 4) may be verified. A direct consequence of (H 4) is the following 
condition, utilized in [4]: 

Ther exists a constant fl > 0 such that for all a € N and for all nonzero Y € ?fJ(n), there 
exists a	€ 'V 2 satisfying the dominance relation 

I(A l,h YA2,fl - B1 hYB2fl) YiX > 9 II Y I?V 11(1)15112, 

We note in passing that if Y € 21'(n), then, 11 YIj(n) = II Yllw,, = II Y11, and if X € ?V; then 
Il X II	IIXII, with the norms defined via the usual suprema.	 V	

V 

In the sequel, sc will frequently use the notations (sec (2.1)) 

1Q11 i 1 lI,	0'2= -- 1Q11 2 lIlI II1'11	
V 

IIQII always Vnleaning lJQlJy, and norms of D, E, F being always taken in 1(V', V2). 

V 

(115) There exists a LI > 0 such that 1 )- a I + a2 <zI and 1 + a 1 z1 2 + a 24 3 <LI. 

This condition delineates in what sense the part XDX + XEXFX of (1.1) may be considered 
as perturbation to the part A L XA 2 — B 1 XB2 . II D1I, hEll, IIFII. though. need not be small if lQi - 
is small enough. A small hIQi might correspond to a weak observation or detection process in 
optimal control theory. A small ID!1 might indicate that the feedback process is weak. Iii 
nuclear transport theory, a small I!QII might indicate a low probability of moving particles 
changing over to particles in different states moving in the opposite direction. 'Examples of 
validity of (H 5) are not difficult to come by. For example, if LI =2, a < 1/8, a2 <1/16. 
then (H 5) is satisfied. Or else, if zl > (i + V)12, a < ó1/z12, cx < 52/z1 3 where 6 1 and O2 are 
such that 5 + 6 2 < LI — 1, then also (H 5).S satisfied. The estimates (H 5) lead to a suc-
cessful existence theorem. It is not claimed that they are the best possible estimates.
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(H6) There exists a fixed number/c0	1 such that	 S 

(i) k0(a1 +a2 ) < 1,	 .. 

	

2a 1	3140(a1 ± a 2 )	 3a2 
1 - k0 (a 1 + a2) ± 1 - ko(a i ± a2) + [1 - k0 (a 1 + a2)]2 

+ a 1 k0(a i + 012) + 01 2[ko(a 1 + a2 )]2	+ a2 ),	- 

(iii) if A > 2, then	a'	 a2
 /c0 (a 1 + a2 )]2	[1 - ./c0 (a 1 + 0'2)] 

An example when these conditions are valid is obtained by taking a 1 < 1/18, a, < 1/61, 
Ic0 = '1/2(a 1 + a2). indeed, we have the following proposition11) 

Proposition 3.1: a) For an arbitrary 4 > 1, there exist a 1 > 0, a2 > 0 sich that (H 5) is 
sati8 lied whenever 0 e a 1 < a1, 0 :!^ a2 < a2. 

b) For arbitrary k0 > 2 and i> 0, there exists .an rn, > 0 such that if 0 < a, <rn, and 
a2 = a 111,'then (H 6) is satisfied. 

c) For arbitrary 4> 1 and Ic0 > 2, there exist a1 > 0 and r > 0 such that if 0 a < a1 
and a2 = a 1 1+', then both (H 5) and (H 6) hold;  

Proof: It suffices to prove statement b). First we show the vakdity of the inequality. (H 6)! 
(ii) which may be alternativ'èly written as (9n division 'by k0 (a1 + a2), since 04 2 . 	a11±') 

2'	+	3a1	,'	 '; 
•	k0(1 ± a 1t ) [1 - k01 (1 ± a 1 ')]	

1 -- 
k0a j (1	,	0 

	

-	 3a1'	 - a 1 + a 12+'k0(1 +a1 ')	1.	 (3.2)

a k0 (1 '4- a 1 ') 11 - k01 (1 -+ a')]	 S 

The first term on the left side of this inequality. approaches 2/k0 a's a1 -^0, 'whereas the other 
terms tend to zero. Since, by hypothesis, (2/k 0) < 1, we have the inequality (3.2), and hence 
(H 6)1(u), true for a 1 small enough, say a1 < m,. To complete the proof, one has now to take 
care of arts (i) and (iii) of (H 6). This can be easily done U 

Let us note here that the hypothesis (H 6) above takes a simplified farm if a2 
= 

0, Le.,-if
the term XEXFX does not appear in the original equation (1.1). We also become unpleasantly 
aware of the fact that if we want to apply our methods to a still higher dimensional Riceati-
type equation, namely one that includes a fourth degree term in X, then the complexities of our 
estimates will grow rapidly..  

Now we are ready to state our main result. 

Theorem 3.2: ,Under the hypotheses (II 1)—(H 6) 'above, there exists a solution 
XQ E ? ) o/ the equation (1.1) I 

We can put a regularity feature on this-solution X Q . For all i E N, define ti E 2€' by 
= aô'h for all j E N, where a E C, b 1 's are given by (U 3), and	-=,O if


i == j, c5 jj = 1. Let W 1 be the set of alifinite linear combinations of the1 1 's over C. 
The topology on ?V is the one inherited from W. Lot ?V he the closure \of ?V in W. 
Clearly	?&. Let V2 be the completion of V2 .	- 

Lemma 3.3: ¶/]) 1 is isomorphic to the Hubert space V2, and so	is separable and 
S	reflexive.  

The proof consists of standard methods of functioñ?i analysis, anis omitted I. 

1) The author thanks the referees whose suggestions led him to this proposition.  

)	'	5,
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Theorem 3.4: Under the hypotheses (H 1) 7 (H 6)' above, equation (1.1) has a 
SO1UtZOflXQ E 9,.- 

It is evident that Theorem 3.4 includes the result' of Theorem 3.2. 
-	I 

' 4 Proof of Theorem 3.4 

We repeatedly apply the following existence — uniqueness theorem taken from [4]: 

Theorem 4.1: Under the hypotheses (H1)—(H4) above, there exists a unique 
solution X = X E FV, of the equation 

, (A 1 XA 2 — B 1XB2) = QO for all 0 £ V2 .	 ( 4.1) 

Moreover, X( Q) has the same range as Q has, and II X.Ili	IIQll/P .	 - 

We now proceed with the iterative proof of Theorem- 3.4. We I irt construct a 
sequence of "approximate solutions" of equation (1.1) with the following lemma. 

•

	

	Lemma 4.2: Under the hypotheses (H 1)—(H 6) above, there exists a sequence 

such that 

(i)	A1X(')A2 — B 1 X(')B2 = Q,  

•	(ii)	A1X()A2 -- B 1X()B2	 .-	 - 

= Q - X('-1)DX('1) -. X(')EX('1)FX('')	for all n > 1, 
(iii) X('') has the same range as Q has, /br all n> 1, 

(iv) IX(')llw	1Q11,	 -' 

(v) IIX(2)llw <	IIQII T2 , where T2 = 1. + a 1 + a 2 <4, 

(vi) for all n >3,	 - 

• IlX "')ll	-- 1Q11 T 1 , where T 1 = 1 + ajT_2 + 012T_2 '4,	- 

(vii) for all n > 1, the right side of (ii) is non-zero and, consequently (keeping (iii) 
in view), has the same range as Q has,	 -	 S 

(viii) IIX( 2) — X'll 
< k 17 a2) 

1Q11  

(ix) 11X(11 	X(' > Ilw < 
[k(a 1 ± a2)]' 

1Q11 for all i	2, 

• (x)	IIX'Ilw <-- JJQJJ win (a,.	
1	for all n	2 

•	1 - k0(a1 +'0'2)) 

Proof: Let X(') £ W, be the solution of equation (4.1) obtained by applying Theo-
rem 4.1. It is non-zero because  is. Also, from Theorem 4.1 we have that 

IlX(')lI	-	1Q11 .	 •	 ( 4.2) 

and X(') has the' same range as Q has. We can now see that Q '- X(')DX(') 
- X( 1 )EX0)FX( 1 ) is &nzero, so that it has the same range as Q has. Indeed, if it
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were iero, then, using (4.2), (3.1) and (H 6)/(i), 

1Q11	lxr(11_1).x(1) -f- ..X(1)EX(1)1'.X(')IIy 

y IId1Ilw IID II 4- v jjX( 1 )jJV 3 UEII IIF'II	1Q11 (LXi -I- 2) C I IQI1, 

an inpossibility. This allows us to consider the gecond approximation X( 2) € W, which 
is the solution given by Theorem 4.1 of the case n = 2 of equation (ii). It has the same 
range as Q has, and, as seen above and by (H 5), 

3- 
IIQ - X( I)DX( l) - .X(')EX( 1)FX( 1 )11 2-

3- [IIQII +IIQII (i + 2)1 =3- 1Q11 T2, -	-


T2=1+txi+cr2<z1. 

	

•	Let us note in passing that if X(2) = X('), then X( 2) )s a solution of equation (1. 1), and 
we do not need to proceed any further. So weassume that X(2)	X(1). To prove (viii), 

we subtract equation (i) from the case n = 2 o equation (ii). We get 

	

•	-	 A 1(X(2)	X(')) A 2 - B 1 (.X(2) - X(')) B2 = —X(')DX( 1 ) -
(4.3) 

• Since. X(2) - X(1) 4- 0, there exists 02.1 E V2 such that (see (H 4)) 

ft 11X3 - X(41 , 1102,1 112 '< I[A1(X(2) - K(1)) A 2 - B 1 (K( 2) - 

II A 1( X2 - X(')) A 1 - B1 (X( 2) --- _K(')) B211 y 1102, 1112, 

and so, using (4.3), (4.2), (3.1) and k0 ^! 1, 
fl IIX ( 2) - X( 1 )II	<IlXII	II D II IlX(')Il	+ IIX (')Il	11 E11 Il X(')JlilF ll IIX(')llw 

y IX( 1 )I1w 2 1 1DII + ' IlX IIw3 hEll IIF I1	101 (c ±


k0 ( 1 + 2) IIQIF. 

Now we' proceed with inductive reasoning. Suppose, the elements X( 1 ) , X(2), 

	

•	•X('') have been constructed in the prescribed manner. By Theorem 4. 1, equation (ii) 
has a unique non-zero solution X(') € 9, having the same range as Q has. If X(') 

X(''), then this is a solution of equation (1.1), and we need not proceed any 
further. So, we assume that X( t2 ) - X("')	0. By Theorem 4.1 again, using (2. 1), 

3- [IQ - X(-')DX('-') - 

3- [PIQII + y llX 1 )II 2 IID II + y jjX("- 1 )jjw 1 hEll UFII] 

-	3- [i + -	1Q11 2 11 1)11 T_ 1 +	11Q111 JJEJJ hlFhI 

-	 S 

• where, by inductive hypotheses and (H 5), 

= 1 + x 1T_ 1 + x2T_ 1 < 1 +- izl 2 + a2 J3 < LI.
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We have , have thus proved that	 - 

IIX iIw < -- 1Q11 4 for all n E iN.	 -	 (4.4) 

Next, we assucne that the inequality (ix) is true wheneer 2 i n. Before we 
prove that this inequality is true for i = n + 1 also, let us note that as a conse-
quence of this inductive assumption, we have, for all i = 1, 2, ..., n, 

•	 II_Kll,	..^'	- gu- 'll' -.. .g1, 

[k( 1 + 2)] ' 1Q11 +	IIQII <	
- k0 ( 1 + 2) 

IIQII 
\ H	 (4.5) 

because .0< k0( 1 + 2) <1. Inequalities (4.4) and (4.5) together yield (X). 
We next let X. = X() - X(-') and write, using Theorem 4. 1, 

A 1X(')A 2 - B 1X(')B2 = Q - X(')DX(') —X(')EX(')FX(') S 

= Q - (X('') + X) D(X(') + X)	 -S


- (X(1) ± X)E(X(" 1 ) ± X") F(X(-' ± X).. 

Expanding.the right hand side, and subtracting equation (ii), we get 

A 1 (X(+') - X(")) A 2 - B 1 (X(") - X()) B2 

=	XDX(-) - XDX8 - X('')EX(-')FX 

- 

	

X(")EXFX(fl-1) - X('')EXFX,.	 - 

-	 XEX('')FX(-')	XEX(- 1 ) FX 

- XEXFX(-') - XEXFX. -
	

(4.6)


We assume that X("") + X('", otherwise we would gçt a solution of equation (1.1) 
right away. By Theorem 4.1, X(1) € FP,. By (H 4), there exists a	€ 11)2

such that

P II K	 IIn+1.nI12	,	 S 

< A 1 (X(91). - X(l)) A 2 - B 1 (X('') L X(")) B21x IIfl+I.fl1I2 .	(4.7) 

since inequality (ix) is assumed to be true for 2	i	n, we have 

[k0 (0 1 + 01 2 )]n_1	S 

ll X Ilz <	 IIQII. 

Combining this with (4.5)—(4.7), ve get 

	

- X()llw<Y	
1—ko(x+:2) 

IIQ 2 IID 1I	 •	

0 

[k0 ( 1 + a2)]2?t2 
Q 2 D	

[k0(x1 + '01 2)1'_'
 IQ 3 E F - +	2	 T

[1 -	+ '2)J
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+	
[k(	+ 2)}2T2 QI hEll	+ 

[k0(1	
llQl hIl IIFII] 

	

#3 1 - k0 ( 1 + 0 2)	 P 

= [k0(1. + 2)1	
k0(o 

IIQI! [
	

+ 1 [k0 ( 1 + 2)]' 
• ,	 1 -	+ 2)	. 

• +
30C2

2+ 

32[k01+x2)]"' 
• 

x 2 [ko(o 1 +'Xi)]22 
•	 [1 -	 0)]	1 - k0 ( 1 + 2) 

	

[k	+2)]' hlQ11.4(1	,2) 

because of the hypotheses (H 6)/(i) and (ii). This completes the inductive proof 
of (ix).	

0 

To complete the proof of the Lemma, it remains to show that 

Q - X(n)DX(n) - X()EX()FX() +0.'.  

If that were not the case, we 'would have.  

.IIQII = 11X )DX() ±	 . 

	

Y hl ..X hl' llDhl -I-	 IIFII 

wlenceve conclude both (1) and (IT) below:  
(I) By (4.4), (3.1) and (H 5), J jQjj < J JQJJ (L12 + a fl < llQll (J - 1), which 

yields 4> 2.	1 ' 

(II) By (4.5) and (3. 1), hlQll<	
i 1 1Q11 ___

2+	
, 2 11Q11,

	^ 1Q11. [1 - k0(x 1  +7-

	

I- 2)1	[1 - L0(x 1 1'OC2)] 

This is impossible. Hence (4.8) is true !	. 

We continue with the proof of Theorem 3.4. Indeed, the " rest of the proof is 
very easy as pointed out by the reviewers of this paper, to whom the author's thanks 
are due:  

Since V' is complete, so is W. Therefore, is complete. Next we observe that (ix) 
of Lemma 4.2 together with (i) if (H 6) imply that the sequence {X(')} is Cauchy in '1&, 
and so converges to some XQ E FV, in the norm operator topology. Now, in '(ii) of 
Lemma 4.2 we pass to the limit in the norm operator topology as n -> oo, and end 
up with	,	-	

0	 • •	 •	 • 

A 3XQA 2 - B1 XQB2 = Q— XQDXQ XQEXQFQ ,	 •0 • 

solving equation (1.1). Furthermore, it is clear' from (X) of Lethma 4.2 that 

•	hlXQhl ;S p —IIQII mm	4, 
'	• 1 - k0 ( 1 +.2) 

5 Examples -,	 0	 •	

'	 •' 0

	 0 

Our first example is taken'frorn [2] where a solution is provided for the finite-dimen-
sional equation (1.1) with	-	 ' • 0

1.A 1 B2 
= [	], 

A2 = _ 

= [ 

	

==	
]	

0	 •	 .	

'	 : 

D=_E= 	F=[	].Q=[]'.	•0• 

0	 '
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In this example Q has one-dimensional rang. We can now pose the question: For 

°] 
does the aforementioned example have a solution? The whichQ's of the from [  

results of the previous section provide us with at least a * partial answer, namely that 
a solution exists for all sufficiently small lF consistent with the hypotheses (H 5) 
and (H 6). We are going to see below how this conclusion is arrived at. As a matter 
of convenience we take V' = V2 = X = the space of all two-dimensional vebtors. 
(We could have taken, though, X = the sequence space 12 with basis {b 1 } IEN given 
by b 1 = (1, 0, ...), b2 = (01 1, 0, ...) etc., and then redefine A 1 , A 2 , B1 , B2 , D, E, F, Q 
by-extending them by zero, e.g. define A 1 by A 1 b 1 = 2b 1 , A 1 b2 . —b2 , A l b,, = 0 

•	forall n ^! 3, etc.)	 - 
•

	

	Clearly, conditions (H 1) and (H 2) are satisfied with h = [0, l]T. Condition (H 3)

is also satisfied with b 1 = [1, 0J, b2 = [0, 1]T. To see that (H 4) is satisfied, we note 

I
1

that a Y € ?e1 isof the form Y = 	d 
00

f
 
If Y is non-zero, then choosing	= [c - 

we have I(A 1 YA 2 - B1 YB2) yIx = c2 + 2d 2, and 11Y11 1103'112= T/b2 + d2 1/c2 .+ d2 - 
= c2 + d2 , so that (H4 ) is satisfied with any P < 1. In this example, ' y = 1. Any 
choise of D, E, F, q consistent with the hypotheses (H 5) and (H 6) will give us an 
equation possessing solutions.	 - 

Our next, example is the infinite-dimensional example given in [4], which We, 
reproduce here. Let X'= L2(Q; C), where 12 = (0,27.) X (02i). dC is a.Hilbert space 
under the inner product, - 

(u v)x = f fu(x y) v(x y) dx dy, 

• where v(x, y) is the complex conjugate of v(x,,y). Let e ,1(x, y) = e(x) ej(y) where 
e0() = (2z)_ 1I2, e2_1() = —1/2 sin nE, e2() = —1/2 eos n for all it € N.- Let 
bp.q = Yp.qp.q where yare constants so chosen as' to make 2 = {bp. ,: p € N, q E N) 
an orthonormal set in the 'Sobolev space X 3. Let us recall that if visa positive integer, 

• then X' is the set of all those elements of X whose distributional derivatives of 
all order not exceedingv are again elements of X. 7C' is known to he a Hilbert space 
tinder the inner product  

•	((u, v))	= Z (tn

 

-

	

	 rnn=O	. 
m±n 

where	are the distributional derivatives. Let V2 be the subspace of de3 consisting 
• of all finite linear combinations of the bp . q'S. Let V 1 = = the set of all those 

elements of X 2 which, together with their first distributional derivatives, vanish at 
the boundary of 12. X 0 2 is a Hilbert space under the same inner product. . under 
which X2 is a Hubert space. They of inequality (2.1) may obviously be taken to be 1: 
We now construct the example by setting 

A 2u = —a e 2 ,u + k 1u, where a > 0, k1 > 0, 

B1u = —b a 2', where b > 0,	. 

A 2 = a 2v -J- 9 2v — - v,	•	 •	

'	 .	 -	 '• 

-	 B2v = ax6V + 0,4V + k2v 1 where k2 >0, - 
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for all u E V', v € V2 . This is typical of a class of similarly constructed examples to 
which ourmethods may be applied.  

	

Condition (H 3) is clearly satisfied.— .	 . 
As- an example of a Q € 2 with one-dimensional range, we may take the one 

defined by Q) = d53h where h € X is given by'h(x,y) = e5(x) e(y), and. 

(2) (x, y) =	d,,	(xi) with d € Cl-b E V2 
p,q=O 

Clearly, (H 1) and (112) are stisfi'ed, and llQII'	1.	 - 
Let us now verify condition (H 4). Take, an arbitrary non-zero Y € ?IY. Suppose 

Ybp•q .= p.qh with p.q E C. Then, . Y M ^ Ybp,q I j = lp,qI Let p.q denote the 
complex conjugate'onjugat of ep,q. Let r, s be arbitrary positive integers. In what follows we 

r,8	.	r	3T,8	, 

write Z ' to. mean ' !':and E to mean '. Z. if v = ' pqbq,q € V2, then 
P=O q-O. .	 p=O q=O	 - 

Yv= —T. kp.qj 2 h, and so  

IIYvII 
fr.s	11/2  

	

11- -	-	.	II!	
11V112[.L' Ip.gI 2j	IVilIi .	'	 .	.	(5.1) 

Y9 . 
•	This is true for all r and all s. Thus, converges s.r —> cc, s — 00, and 
• jCO 3 W	if2	.	 .	 . 

	

• .
	II Y lI	I X IE9,F2)	1h11 1 . Noting that 

Ii	= sup L' p.q qp.q lihII	
[	pq2}	thu1 

WE V (2) 
w-#o I 

'Where w =	p,qbpq is -an rbitrry eleuent of V2, we see from (5.1) that IIY!l 
11/2 	' 

= I I pq2j thu 1 .- If 0 < < 1, then finite positive integers r, s exit such that 
\i/2 / 7,8	\112	 - 

•	II 'IIz'= 6	,'. p,qj2)	tI 1hIIi < IE k.I 2)	thu!1. 

7.8 

	

-' With this r, s, let v0 = E	Then, exactly as in [4: Section 31, we get 

•	

-	 .'I(A1YA2—B1YB2)volx	-	,	- .• 

1	-	 7.8 ' •	 1/2	7.8	 1/2	 •	 -	 - 

(9a + k 1 ) + 4bk2'](I I41q2) (
	ip;q)	 • 

>	

(9a +,k1 )	4bk2] 
6	

1IV0112.	,'	• 

So, we may take = s[2''.(9a + k1 ) + 4bk2 ]/!!h!u 1 for a convenient e, and then (H 4) 
•	is satisfied.	 •	S •	 .	. 

- We also note that	'-	-•	 -	 •	 '•	 - 

•	 hi2 .	 1hu3 
1Q11	-	 . '
	

2 ' and 	
-_ 1Q11 2	_1	

1 

-	• - 
2 [..(9a + k)'-f 4bk2 ]	 (9a + k 1 ) + 4bk2]
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Thus, if a, b, k1 or k2 are chosen largeenough, or D, E, F are chosen with their magni-
tudes , small enough,, then hypotheses (H 5) and (H 6) 'will be satisfied, and. 'the 
operator Riccati-type equation  

(—a 02 + k 11) X (32 + a, 2- i) + (b a2) X(3 X, + a,4  

±XDX+XEXFX=Q, 
with 1 representing the identity operator, has a solution X whose norm does not 
exceed the right member of the inequaIit () of Lemma 4.2. The actual values of 
zi, a, a2 will depnd on what exactly D,E, F are. The constant'k0 plays no essential 
role - it is retained solely for possible computational . advantage in a numerical 
situation.	 . 
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