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Two-Sided Estimations for Nonlinear Parabolic Systems with Funét-i'onals‘ o

W. VoiagT

Es werden nichtlineare parabolische Systeme untersucht, bei denen sowohl die Differential-

gleichungen als auch die nichtlinearen Randbedingungen zusitzlich Funktionalternie enthalten.

Auf unbeschrinkten Gebieten werden zweiseitige gleichmiiBige Abschatzungen fiir die Losungen

von Differential-Ungleichungen, die obigen Systemen entsprechen, hergeleltct wobei das

asymptotische Wachstum der Lésungen vorgegeben ist. Aus-den Abschatzungcn folgen Ein-
deutigkeits- und Stabxllmtsaussa.gen : .

.

.I/Iccneuylo'rcn Hemmenuue napaﬁomlqecuue ‘CHCTEMH, ¥ ROTOpbl‘( I 'lu(bq)epenuuanmme
YPABHEHUS # HEJIMHEHbE rPaHiutible YCIOBHHA COJePHaAT nononmnenbuo GyHKUMOHANBHbIE
sHpanenns. Jag HeorpanuueHnux oGmacTei AIOKA3EIBAOTCA Any\c'ropomme paBHOMEpPHBIE
OueHKH JUIA -pemeiiiti ANPGCPCHUMATBHEX "HEPAREHCTR, - COOTBETCTBYIOWINX HA3ZBAHHEIM

. cucremam, npuqem aCMMNTOTHYECKHIT pocT pemenun 3anau N3 onenox (,.nenyxo'r YTBEPHACHHA
00 eMHCTBEHHOCTH M YCTOMUMBOCTH .. .

Nonlinear parabolic systems are investigated. The different‘ia,l cqua.tions as well as the non-
lincar boundary conditions involve additionally functional terms. On unbounded domains,
two-sided uniform estimates are proved for the solutions of differential inequalities correspond-
ing to the mentioned: systems, while the asymptotic growth of these solutions is gn en. The
estimates provide uniqueness and stability. . :

‘ O. Problems with coupling of a partial differential equation or a boundary condition

with functional terms become more and more significant. One of the domains where -

mathematical models of this kind can be derived is the theory of epidemics (cf.
Pao [4]), where integral terms are involved in the system of the Kermack-McKen-
drick equations. If thermoelastic displacements are investigated (cf. Day [2]), then
* integral terms occur in the boundary conditions. Generalizing these problems, we
obtain functional-differential equations with functional-boundary conditions. Then
* other types of functionals, for.instance delayed arguments, are also admitted. For
functional-differential equations of parabolic ty pe many results have been published
by REDHEFFER and WaLTER (cf. [3, 6] and other papers). Functional-boundary

conditions have been investigated by REDHEFFER and WALTER [5] and Voiar [8] for -

bounded domains and by Vorar [7, 9] for uribounded domains. Results for functional-
differential equations of elliptic type are due to'AvanTacGiaTt and MaLEC [1] and

MaLEc (cf. [3] and other papers). In the present paper the results from [9] related'. ¢

to two-sided estimates for parabolic problems with functionals are carried out for
nonlmear parabolic systems with functionals. Let us remark that here, like in other .
papers in this field, only weakly coupled systems and boundary condmons are
admitted. . ‘

1. Forze I ={1,...,m) let G* < Rn+1 (n = 1) be any connected and clo_séd'set
of all points (t, z) € G¥, x = (), ..., z,), for which real numbers T; and T exist with
the properties

oo <inf{:(t,z) € GY = —T; <0 <supft:(t,2) € Gy =T < oo.
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Let G = n{Gi:i ¢ I). By G we denote all the pomts (t x) € G for which a number

x = /(t x) > 0 exists with -

{(zr, ) : ¢ — xlt, x)<r$t}CG and {(t,, z): Ix—”cf<,<(t x)}(:G’

‘ Here the notation |z|? = |Z4[2 + --¢ + |24)? is used. Let

inf {¢: (¢, :v)EG'}—O and sup {t: (¢, x)EG}

~W1t}V1 ¢ we define I't = Gi N\ G. If for any point {t,z) € I'a sequence {(t N =G

exists with (¢, ) — (t; x), we say that a (generalized) normal 5(t, ) in (¢, x) exists
(cf.[10]). We denote all the points of I, for which such a normal »(t, z) exists, by It
Eventua]ly, we define I}t = F' NI, Jo = (0,T),dJ = [0 T] and Jk {t:(t,x)€ I,i}-
0 E,I k =1,2). '

/

. For a function ui: G — R, let, %' be the one-sided derivative from below with

i respect tot,u,fthe gra.dlent and u}; the Hessian. For (¢, x) E I'yi we'definea denvatlvc

“in the followmg sense:

Where

,,(t x) = llm (u‘(t Wy — u'(t x))/|x(’) —al,

J—oo - l. .

- where the sequence {(¢,- 2} provxdes a normal »(t, x). For the sake of brevity we

write u, He, ). = ws (¢, x). By Ut we, denote the set of funcblons ut defined on G w1th
the propertles . :

u‘ € C(G*), u;,,k € C(G); the derxvablves\ u, and’ u,} exist in & and on ]‘ i
respectlvely (z € I Bk =12, n)

Finally, weset U = U X .- X U™ and write u'= (ul ., um).
\Tow let us introduce operators
v
. Piu = u,‘(t x) — f (t, =, u, u,t, ey, U(- ))
© Riu =it z) — g, {t, @, w,u()), (tel)

~ Ryu = ui(t,z) — gz"(t, z, U, wf, u(-)),

f: GXR’"XR’H"XU—\R
g IViXRAX U —R, (It xR'"xRxU—\

" The already mentioned Kerniack-McKendrick equat,lons for instance, are. of/thls

‘type. We consider the Ptu ‘as components of the vector Pu:= (Plu , Pm™u),
Analogously, R,u and Rzu are defined. U'in the domains of definition of f‘ and gk'
expresses that /‘ and g,* are functionals of Volterra type with respect to u(-), i.e.
“for fixed (¢, z) € G the function uf can be used on the set {(z, z) € G : v < t}. Therefore «
retarded ¢, decaymg z, integrals of ! and so on are allowed. If i in the case G &= Gi

. the functlon ut is.not defmed for certain (¢, z) belonging to thé domain of defmltlon

of w (i % j), we consider Ryju to be independent of % in this (¢, x). Inequalxt,les )
" between vector functions are to be understood componentwise and ponntwnse ie. for
u, v € U holds u < v'if and’only if ui(t, ) < v¥(t, z) (¢t z) € G4, i€ I). /

For u € U we denote by Pu™ the set of all 1 = (f1, ..., f™) such that for any fl)\(,d
(t x) € G y = +1and ¢ € I with all real symmetrlc matrlces qg=0, :

AU RRR" S =+, u( )) = *'/‘(t 2,0, ut, wh, u(-))

~
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T

If te Py™, then the Operator P is called parabolic with respect to u. For u€U we
denote by JAy™ the set of all g, = (g,}, ..., g.™) siich thab for any fixed (¢, z) € T4,
.= xland i€l wxbh a]] real numbers s =.0

9 i, z, v, b 4 ys, u(‘))>yg2 (6, 2, u, u,,u( ).

Deflnltlon 1 (cf [6]) (Lo, xo) € G will be called Nagumo-point for -the funetion
ute Utif -

AY

Lu (to, xo) = O . u‘(to, ) < 0 and u‘(t z) < 0 ) ((t:,x)»é G¥, t< to).

Lemma t: If (to, o) is a Nagumo-point for wi, then :
(i) for (to, %) € G follows M (to, ) = 0,-ul,(t, xo) =0 a,'nd ut Uo: x) = 0,
(i) for ({0, ILO) € Iyt follows w,(t,, :co) =0. - . :

For S € R"' we set [s] = }s‘| |s'"}) With continuous functions xi = x¥(z),
- defined for all 2 with (¢, z) € G* and w1t,h the property ®i(z) 2 1, we defme

llaflhe (&) = sup {luk(h, 2)|/54(Z) : (1, ) € 648 < 1),
e ) = (lhe (), o lumhe ).

~For vectors p € R" and symmetric X n matnces q'we denote’ by |p| an a.rbxt,rary
: vector norm and by lg] an arbitrary matrix-norm, respecmvcly 1t can easily he seen

" from the contexb which kind of norm is meant.
.f\

3. For ng with T S Ny = m let the domain G be unbounded w1bh respect to Lhc
- €o-ordinates z;, 1 < ny, and be bounded with respect to z;, @ > n, (if they exist).
Further, let @ be a positive constant, which can be chosen so large that for Ny < m,
(¢, x) €@ u.-u G"' and jz| > a it yJelds

" I R

In the following - we need for i € / functions 2! - i) w1bh thc domain 1)(1‘)
='{z: (t z) € G, ]a:l > a} and df =d¥(t, :c) with the domain D(d%) = {(¢, x) € Gt: ]zll> a,

Zpy41 = --+ = x, = 0}. The functions i and d* and the derivatives 4, and di, arc
required to be continuous and 2(z) = 1, di(t, z) = 1. For |x| — oo and uruformlv '
with respect to t the asymptotic re]a.txons ~

= O(#z)) -and ~ i¥(z) =o(d¥t, x)) : S C(2)

are to be fulfllled Now we denote by Uf(if) the set of functions u* € U* with

Cut(t, x) = (/‘(x)) for |z] — oo and umformly with respect, to ¢ such that (2) is ful E
fllled Then we can define . .

U(l) Ul(/ll)x ><U"'(A"')

From now we dcnotc by p € R* vectors and by g symmetnc n X n- m&tnccs w1th
Pi'=qij =0 for 7,7 > n, Let s€ R™, 2€ R, and let ® ¢ U(k) be any arblt,ra.ry
function. Now we can formulate the first assumption

A,) Letve UR) be any given function and i € I. Assume the existence o/ /unctwns
0t Sy X Ry =R, o JEXRH SR (B=1,2),
s Ktz (t,x) € G) —~ R (k=0,1), ) K;‘: {z:(t,7) € Iy —R.
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such that the following inequalities for each (t, x) from the domains of definition of
the related functions are fulfilled: . :

sgn s"(/"(t, z, V48,0,  + p, v, + q, y(-) + ®(-))-— fit, z, v, v:zis.v;x) V(')))
= wo(t, [8), [P (1) + Ipl K@) + lgl Koi(=),

sgn sg:t, 2, v + 8, V() + ®()) — g1i(t, , v, v())
< o)t (8], I[P (1),

sgn s¥(ge'(6, 2, V + & 0.5 4 2, V() + D)) — gt 2, v, 0., ¥(-)))

s =L Ts) Rk ) + 12l Kef(e). |

One can casily see that some assumptions are formulated for a function u (parabolicity),
other assumptions like (A,) are formulated for a function v. Usually u is an unknown function
which is in some sense comparable with v, the so-called comparison function. Because the
function v is given, the assumptions with v are éasily verified. : .

The necessity of introducing different functions A,.differing in their asymptotic growth,.’
follows from (A,). On the other hand, this ussumpﬁion allows us to determine that function A
which has an asymptotic growth as fast as possible such that the given investigations are
possible yet. This is in a certain sense the “optimal” function A. If all the functional terms are
absent, it is not necessary to use functions A with different asymptotic growth. Then it suffices
to take Af(x) = exp (Llz|?) (cf. [9, 10]). For examples with respect to AL, Kit and x! we refer -
to (7, 9. . . : ° .

In that what follows we denote w = (W, Wy, w,) ‘with w, = (w;?, ..., ay™) for
k:Oa_l’?"- t o -

Definition 2: Let & be the set of all w for which a vectorp: J — R.™ existssuch -
that for i€ I, k = 1, 2 with given functions §,*: J, — R, §,': J — R, the following
holds: : ' ' C : ' ’
< (1) p(&) >0, ot is differentiable from below on J, with p’(t) = 0.
(i) p(E)= wylt, o, p) + Bo(t), t € J,. ’

(iii) o't) = wi(t, p, p) +. 8%(8), £ € Jif; 0¥(t) = 0%(0), ¢ < 0.

\

Definition 3: The vector w is called admissible if it has the following proﬁerties
((elik=0,1,2): , S ‘

‘(i) Fors,, s, € R™ the function w,i(¢, s,, 8,) is increasing with respect to s,/ forj €l
as well as s)7 for 5 € T \ {¢}. . ‘
(ii) For 8y, 8,,85,8, € R:™ with 0 <5, <5, and 0 < s, < s, there exist bounded °

functions " = wf(t), @Y = [, fi(t) with » ' -

(8, 80) — @ili(t, 8y, 8;) < I (/‘kii(t) (827 — &%) + E(E) (saf — Ssi))-
‘ . - jel
(iii) It holds | : -
¢:= sup {Z (p,""'(t) + [i,“'i(t)) (L€ Jk‘; t€l, k=1, 2} < 1.
jel )

‘The property (i) with respect to s, is usually called quasimonotonicity of w,t (cf. [10]).
Thq functions df are connected with the functions K,* by "incqualities., If ~ -
sup {|z| : (¢, z) € I} is finite for some i, then the constant a is to be chosen larger

than the values of these suprema. Then the inequalities in the second assumption
belonging to I;* are to be regarded as hot present.

b4 U
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(Ag) There exists a constant K = 0 such that for i € I
X mfdi 1 Ky + (i) Kot — df < K on {(t,2) € G: || > af,
jelj+i ’

2 MYt 1A Ky —df < Kon {(t,z) € Ty |a] > al.
yel YEall
By £,8 (k=1,2) we denote “disturbed” ma.ppmgs with the same domams of
definition as f and the g, respectlve]y They define the operators P and R,,

(A3) For any given function v € U(4) and i € I there exist functions n,* (k = 0, 1 2)-
such that the following mequalztzes on the domains of de/mztwn of the functwns f
and g are fulfilled : . .

I/ L, x, Vv, ?)z N vzz’ V(')) — 7i(t, x,‘v) vzi; vix: v('))l g 77(,)'“))
l92*(t, %, v, ¥()) — Gui(t, 2, v, V()| = ma0),
[92 (& 2, v, V5, v() — Gt 2, v, v.,v()|<172'(t)

4. Some given functions of ¢ are to be investigated more detailed. In the case of
admissibility of w we can derive further propertles of the functlons w1 and @, ¥,
Lemma 2: If the vector w is admissible, then

(i) mii(t) =0 forall 4,7, k, ¢; wH(t) =0 for g :# 7, all k, ¢
)y 3w < for all ¢ and k.
jer : . .
(ii1) ¢o := sup {Z ‘u,‘"(t)/ 1 — Z,u,("(t) teddiel k=1, 2}4< 1.
je1

Proof: (1) follows from Definition 3/(i). Wlth (1) and Definition 3/(iii) we obtam(n)
Finally, (iii) follows because of ¢ < 1 and the inequality '

LA (1= Zwd) S (o —inf Zowd) /(1 —inf Jud) <1 8

jel jer tks jeI ks jer

Let §; be the functions in Definition 2. "Further, let &:JuJ — R, (:€1) be
bounded functions and p an arbitrary solution of the mequahtles in Definition 2.

Dofnmtlon 4: By X2 we denote the set of functions §: J — R, ™ §(t) = C(O),forl
t< 0, in Jo differentiable from below, wrt,h the properties : '

= inf {¥(t) — we'(t, §, §). — 8oi(t) :t € Jop, i € I} > 0, . .
19k = inf (1) — wf(t, §E) — 8i(t) ite i ie [} >0  (k=1,2),
inf {'(t) — p'(t):t€ Jo} >0 and inf (§(t) — p(t): ¢ € Jo} > O.
Hence, 8 = min' {8, 9,, 192} > 0. The structure of the following lemma is due to [6]-
“Here a generalued version is used for functional-boundary conditions.

" Lemima 3: I/ the vector w € & is admzsszble and & < E = const, E>0 (2 € 1), then
(1) 2 is not empty, : .
|1)§S§/orall§€2'.’zmplzes§£p i :

Proof: Let ¢, € (¢, 1)'be an arbltrary, but fixed constant. With ¢, we definie the
following expressions: .

y = sup {Z; (crma®i(t) + moi(t)) : t € Jo, € I} )
BRVA .

O A

i) — o1 . _ 9 ~
offexp ey, ys<o, ®O=O U=2..m).
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- We regard only the case y > 0, the case y < 0 is to be treated analogously. Then
we can easily derive g,/ = ¢,0,_,, o' = 2y0_y, o' = c,"§ > 0, and

() < E < o(t) < 0d(t) + oi(t). S 3)
Now we show t,hat ) '

E < i + P provndes A LD ' - .(4)
With (3) this yields' g1 -+ p € L, i.e. Zis not empty, and (1) is proved For the proof
of (4) we dcnote o = o + p Using the admissibility of w; we can estimate

ot = wy(t, 6, 8) — 8t = 20t — )_',uo"g," — Z ;10‘7o’k_1 = ye k71 > 0.

Analogomnslyr,'we get on J,! o ) _

\ Giﬁwkit 6, E) — 8 = ¢*E(1 — ¢o/cy) (1 —¢) > 0.
The remaining -properties of o (cf. Def. 4) can easnly be shown Because of P —\O -
umformly ondJ follows§ L p I

5. Now the central thcorcm of the paper can.be proved.

Theorem 1: Let the /ollowm g assumptions be ful/zlled

1)fu vE U(7\) . ) . ) L :
(1n)fe$u,g2emm ) >
(ii1) (A;) holds for iz} > a, for Iz} < a with p = 0.and’ q = 0 Further, (Az) and {(Aj)

] hold.

(iv) Pu — Bv| =< 8(t) and |Ryu — Rkvl < Sk(t) (k = 1 2) on the domams of
defmmon v

(v) we&is ad?msszble thh 8,, =8+ (k= O 1, 2) : : s

'. ' Then : - : . v

lui(t, ) — vt )] = oX(¢) (m@emjen. _
Proof: We denote E(t) = |[u — V]|.(¢). Then E(T) < co. Let § ¢ X and with
arbitrary «y > 0 _ g ‘ . p
' %(0),. t<0 —
d(t,z) = L), t20,. jzi'sa () eG)
§0+aﬂaﬂ t=0, lz|>«a «zmea)
At fxr@t ‘the mequallty u—vl < ®is to be proved On F, even the mcquahty
- <t (el . o (5)

is valid. To show this, we suppose that there are i€ I and (t; x) € I'}t, with -
Jut(t, x) — v¥(t, 2)| = LY t) For such a fixed (¢, x) let , )
’ \
lui(t, 2) — vi(t, x)l — £i(t) := mak (Iu’(‘ z) — vit, x)| — C’(‘))
jel -

and lui(t, ) — vi(t, x)l = ui(t, x) — v'(t x). Then follows, with (Aj) and (Ay),
luf — o] < gi(t, 2, u, u()) — g5 (t,, v, - )) + 61‘(t)
< w,(t, [0 — V1, E) 4 5:0).
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Because of ¥ € Z, this ylelds : . .
[uf — ot — & < (e, [“—‘]’é)—wn(tCE) _
Every component of bhe vector [u — v] belongs to one of the- classes . ’
a) wi — gl =0,  b) [ —oi|l <&, o) [ — | > u. -
In a) we substitute |uf — v7| by ¢i. In b) we use the quasnmonotomcnby of w,t-for
getting ¢i. Writing 10 = {j: [Wi(t, x) — vf(t :v)[ > (i} and applymg Definition 3/(ii),
we obtain.  ~ ' . : o
ut —of] =" < Z m( t) (lw — v’l - C') = C(Iu' - ?«‘l =)
j€lo

“because of Lemma 2/(11) This leads to a contradlctlon and (5) is proved
Now suppose the existence of (¢, x) € G\ (uil'f:j € I}) and j € I with [w(¢, z)
— v’(t z)| = Pi(L, ). By I, we denote the set of § for which such (¢, z) exist. Then for
eachjel, a “Nagumo-point (t’ x’) exists for the function |ui — vi| — i Let I, be
the set of j € Il with |:z:7 J > a. Then with 9 from Defmmon 4 and K from (Ay),

follows .

. Lemma 4 [9]: If (t,., xin) is @ Nagumo-point for |u’ — 1/’] — & with |:z: | >a,.
then there exists an &) < o such that for every & < o:,’ a Nagumo- pomt (t ; 257) wzth
lzz| > a exists, and ' : . ' ]

&S 9/4K) and &diGad) S 94 - T © ()
For K = 0, the first: mequallt,y in (6) is to be omitted. If 12 is not empby, we can
set - ' .
« =min'a "and f, = mintf = tr.
jel, : j€h .
. Then (to;'xo) := (t,%, 2,%) is Nagumo-point, for |u" v"l :

Now let |z, > a and (¢, z,)'€ I*: With |u*¥ — o¥| = u" v“ (bhe reverse case is

to be treated analogously) and §'€ X we obbam . S '

0S€k—(.)2 tO’C g)—ag
= wo¥(to, [u —v], E) — wik(ty, §, E) 'l‘ |q>k; Kz — odk.

. Usmg the quasimonotonicity of w,* with respect to [i — v] and followmg Deflmtlon v
3/(11), the rlght -hand side can be further estimated:

7/

B S (o) axd¥(to, %) + ( Z p2¥(t) d¥(tg, %o) + 14| ‘sz(xo) — d"(tb» ‘to))

ielixk
. 3c0/4+ﬁ/4<a/2 : 3

(the mequahty w = c follows from Lemma 2/(i)). This contmdiction provides

(tO, xo) Q -1 k ’ /
Suppose (Lo, Zo) € G: Applying analogous methods. and assumpt,lons, we- obtam

' ¥ S Ck' - wok(to: C E) - 50 .
- S ot [u— V], §) - wet(ter €, E) + a(lds Y K+ (25 Kot —d) -
< acd¥(ty, ) + o ( X mofi(ty) df + 1d4 Kk 1dk) Kt —d#) < B2,

fel itk

Ve . - N
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Hence (¢, %,) ¢ G. Therefore we do not have any Nagumo-point with |z,| > a. The

assumption that a Nagumo-point (f, z,) with |z,] < a exists leads in an analogous

[

way to a contradiction. . :

Due to Lemma 4 we do not have any Nagumo-point for «g, i.e. the inequality
lu — V] < @ holds for any (¢, z) and arbitrary « < «,. For « — 0* in it, the ine-
quality {u — v| < ¥ follows. Taking the supremum with respect to z and 7 < ¢,
we obtain §,(¢) := {[u — v]|, (¢) < E(t). For xi = 1 (s € /), the assertion of Theorem 1
follows with Lemma 3. For the other x, the assumptions of Theorem 1 are fulfilled
with ,(¢) (cf. [6)). This.can be found by using the inequality E(t) < E,(¢) and the
monotonicity of w,!(t, 8,, 8,) with respect to s,i (j € I). Repetition of the proof with §,
- instead of § provides the assertion

In the case s4if < 0 (j € I; k = 0, 1, 2) it may be better to use the following assumption
instead of (A,):" : -

(AY) X ugHdi 4 | K 4 1) Ky — df < K,
. jeI - :

(teI).
L ufdl +1d 0 Kot — dE S K -
jer

If only some few gt arc negative, then we use.(Az’) only for these 7 € 1. One special case of
Theorem 1 for m =1 can be found in [9]. Further more specialized cases are regarded in [6]. .
I

6. Theorem 1 is the starting po

stability. For this, it is necessary to restrict the class &.

Definition 5: By &* we denote the set of w €.& having the following property:

For any quantity ¢ > O there is a 6 = 6(¢) = 0 such that for the functions d; in

Definition 2 with §, < é (i€ I; k= 0,1, 2) a function p from Definition 2 satisfies

the inequality ¢'(t) < e. Especially, for § = 0 the class &* is to be denoted by &y*.
Now, the solution u of the problem .

“Pu=0, Rju =0, R,u =0 ) (7)

- can be investigated. From Theorem 1 immediately follows

Theorem 2: For any two functions u, v € U(R), let the assumptions of Theorem 1

be fulfilled with & = 0 (k = 0, 1, 2). Let w € &,* Then u = v,

Finally, we obtain sta",bility results from Theorem 1. Let v € U(A) be such a function
that - ’ o : .

PV =8, RIS,  [Rys<8, . (8)

- , ' e
and (A;) hold. In the following Definition 6, four definitions are concentrated. In -

. each case, those components of the expressions in the braces belong to one definition
which are standing in the sane places. -

“Def initionZG: The problem (7) is called stable with respect to

P o =8 =M =0 (k=1,2)

- R, | . §,=8=n=0 (k=0,2)
if for ' ,
) R, No:=8=n=0 (k=0,1) |*

the solution) - A =0 (tk=0,1,2)

int, for investigations of uniqueness as well as

<
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o B .
and any quantity ¢ > 0, there is a 6 = d(¢) = 0 such that ) .
. <8 - . .
mW=E38 o I g
I ' implies I@ (brx) — v, 2)| S e ((t,x) E G’,,z € I).

8 =8 (k=0,1,2)

The stability of the problem (7) with respect to the solution u could be broken
down further. Thus for.instance it is possible that a function v* satisfies exactly the
condition on I'i* (§,! = 0), but with the operators R,/ (7 #=4) it produces non-
identically vanishing defects. Jt is obvious how to proceed in this case and shall not
be described further. ‘

Theorem 3: Let the assumptions of Theorem 1 be fulfilled /z;r the solution u € U(A) .
of (7) as well as v € UA) satisfying (8). Let w € &*. Then the problem (8) is stable
with respect to P, R,, R,, and the solution u. .
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