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Studies On Transónic Flow Problems by-Nonlinear Variational Inequalities 

H.-P. GITTEL	 S	

- 

Es wird das transsonische Stromungsproblem als Variationsungleichung in einer konvexen 
Menge behandelt, die durch eine geeignete Entropiebedingung, eine Schranke für die Gas-

• . geschwindigkeit und durch.Randbedingungen für das Geschwindigkeitspotential gegeben ist. 
Diese Variationsgleichung wird unter Verwendung der Kaanov-Methode und der Kompakt- - 
heit der konvexen Menge gelost. Weiterhin wird em Resultat uber Stromungen im Unterschall- 
bereich angegeben. -	-	

tëh

-	 -	 - 

PaccMaTpusaeTcR 3aaqa OK0JI03BKOB0F0 Te qeHIlfi HK BHIHOHHOO }IBHCTBO fl - 
HeHoTopoM BhIHKJ1OM MHoHecTBe, KOTOpoe Aa6TcH UOXOH1W5M YCJIOBIICNl 311Tpornlu, - 
rpaHHJef nRra3OBOtl cHopocTu H rpailwillblMll YCJIOBHF IIMH J .mH noTeHuuaa cHopocTetl. 
3T0 BapuaLHoHHoe HBHCTBO pewaeTcR C flOM011blO MeToa Haatioua it 1oMnahTHocTlT	- - 
noexeitiioro BSIIIYEJIOrO MlloHecTBa. flpHHOJtI-ITCH TaHHe O(flH PC3yJlbTaT 0 Te qeHufix B )J.O-
oByHoBotl o6JlacTu.	 -	-	 - 

The transonic flow problem is handled as.a variational inequality in a convex'set which is. 
given by a suitable entropy condition, by a bound for the gas velocity and by boundary 
conditions for the velocity potential. Using Katchanov's method and the compactness of the 
convex set this variational inequality is solved. Furthermore, a result on flows in the subsonic 
region is given.	 - 

-	.	1. Introduction	 - 

We consider an irrolational, steady and isentropic flow of a non-viscous, compressible. 
- fluid in a bounded, simply connected domain Qc 1V' (N 2). This flow can be


	

•	described by the equation for the velocity potential u (o = Vu - gas velocity) in gas 
dynamics:	 -	- -	 -	-. 

N	 an 
--- (eivui --) = 0.  
ax 1	 x,	 --	-	- 

	

•	Here pressure p and density Q are given by the relations p = p (s) and e = (IVuI2), 
respectively, and Bernoulli's law is used [5: 10'-1I, 489]. For a polytropic gas we 

	

•	have p/po = (eleo )x , and hence
S	 •	 -	 •	

•	 ( 1;2) 

for'  
-	S	 Vuj2<q:=12	 •-	 (1.3) 
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with constants ,	> 0, x > 1. Ttis well known that (1.1) is 

elliptic for IVU12< q :=	q	(subsonic region), 

-	hyperbolic for IVU12 > qc (supersonic region). 

If we consider a transonic how, then we have to take into account that there exist 
• supersonic regions as well as subsonic ones in Q and the transitions between them 

are usually diseontin'uous.. There shocks with jumps in , , p occur where a entropy 
conditionmust be satisfied: In this paper we confine ourselves to the case that this 

• condition can be formulated in the forni	•, 

Vu Vh dx f M(x, u(x)) h dx for all h € (C0°°(Q))4,	(1.4)


with
(c0 (Q))+ = {h €C'(Q).i supph	£7, h ^ 0). 

This is a mathematical generalization of the fact that the entropy condition of the physical 
model in the one-dimensional case implies d2u/dx2 < + [5: 380-385; 3: 213-2l4]. The 
condition (1.4) with M = M(x) was used by GLoviNsIu [3] in numerical studies. FEISTAUER 
and NEèAS denote it for M = const as "simplified foIm" [1]. A "natural form" of the entropy 
cotiditionis given in .[l] by 

•	 I e'(I u I 2) IVuI 2 VuVhdx	Mfhdx for all h  (C 00 (Q)).	 (1.5) 

First of all, FEISTAUER and NEAS proved existence and uniqueness results for weak solutions 
of (1.1) by Katchanov's method [1]. This method known also as secant mod i.tlu method especially 
in elasticity [9] consists in the construction of a suitable functional whose minimization is 

•	equivalent to the solution of the boundary value problem considered. In the case of a transonic 
flow this functional id non-convex, without any compactness properties. Therefore in [1] it was 
necessary to assume a posteriori conditions for a minimizing sequence to ensure its convergence 
toa solution. These conditions were a convenient entropy condition ((1.4) with M = const or. 
(1.5)) and some regularity assumptions (for example (1.3)). 

In' this paper we use the same ideas like in [1] but we minimize the functional over 
convex sets whose elements satisfy a priori (1.4) and (1.3). It is clear so we get 
solutions of variational inequalities which are generalizations of (1.1); We are using 

• again Kátehano's method represented for variational inequalities in [10]. The 
entropy condition (1.5) will not be considered in this paper because its left-hand 
side in non-convex in u.') It is easy to see that the results of [1] remain valid if 

:. instead of thi entropy conditions (1.4), (1.5) with M . = const those ones with func-
tions M(x, u) are' used; 

2. Formulation of the problem As a variational inequality 

We assume that the boundary aQ of the (sufficiently large) domain £7 is Lipschitz 
continuous and has the 1 representation lQ = S1 u S2 u S u fl where S, S2 and S 
are open subsets of aQand UN_ 1(1) = 0, z 1 the (N— .1)-dimensional Lebesgue 

') Using the entropy conditions (1.5) or (1.4) with M = const the transonic flow problem is 
handled as a minimum problem by similar methods in [11].
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measure on Q. Then typical boundary conditions for the potential u are the following 
ones:  
Case l:u=Oon S1. 

(JVu12)=g on SuS2. an 
Example: If g 0 on 8, g < 0 on 82 and Q is like in Figure 1 then we get the situation 

corresponding to a channel flow with the inlet S2 and the outlet S. 

S. 

IIIEEIIIIIIIIII 
Fig.1	 .	I 

Case 2:	_(S ) = 0,	 . 
au -.	(jVu12)	=	on aP., where f gdo = 0 is assurnd. 

\ 
As weak formulations of these boundary value problems we have: There is to find 
an u € V such that	.	 . 

- f (I VuI) VuVv dx	 do for all, v € .V,	.•,	 (2.1) 
R  

with	.	.	 . 
V = {v E W1 2(Q) Iv = 0 on S, in trace. sense),	

22 
R=SuS2	 L 

in Case land  

V = jv € W,2(S2)1 f v dx = 0,	 . 
J.	..	 ..	..	(2.3) 

R=Q 
in Case 2, respectively.	.	.	 .	. 

Remark 2.1 1 : The conditions for v in the above definitions of V can be considered 
normalizations because the. velocity potential is determined only up to aconstant. 
In both cases V is a Hubert space with norm lIv II = ( f JVv dx.\"2 and 19(v) = f gv do 

/ 
is a bounded linear functional on V (w write l, E V*) if g € L2(R) is ssurned.


Equation (2.1)is the Euler-Lagrange-equation for the variational problem 
VvI	 - 

F(v):= 4f(f()d) dx _fvdo_Mifl.  

NOw, we minimize F(v) over all v € V, which additionally satisfy the constraints (1.3) 
and (1.4), that means:' 

F(v) -> Mm	 .	.	 .	( 2.4)	--
vEK 

29*
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with
K = KO M = IV E V I v satisfies (1.4), IVvI	a a.e. on Q}.	 (2.5) 

K is a non-empty closed convex subset of V if the following assumptions for the 
function M: Q)( R —> R are fulfilled: 

i) M(u) := M(r, u) is concave in u for a.a. x € Q.	- 
ii) M(u) is . continuous on R for a.a. x E Q, 

M(x).:= M(x, u) is measurable on Q for all u 
(Carathéodory p'roperty). 

iii) There are numbers B > 0, T9 ^! 1 and a function A € L2(Q) such that 

M(x, u)I ;5 A(x) + B uI'2 for a.a. x E Q and all u E B. 

(growth condition). 
iv) M(x,O)^ Oa.e. on Q.  

• Remark 2.2: K is a bounded subset of V n W1 (Q) =: V and every v E K 
is a.e. equal to a function from C°'(Q) [8: 25-291. From ii), iii), the continuity 
of the Némyckii operator  

•	 jV: L(Q) -- L2(Q),  

•

	

	X(V) (x) = M(x, v(x))	 -


follows [2: 53-541. Condition iv) just ensures K 4 0 (0 € K). 

Remark 2.3: To exclude solutions without physical sense the relation a 2 ' < q,,, 
is necessary. We will choose a2 > q to admit indeed transonic flows. (The case 
a2 <qe will be briefly handled at the end of Chapter 4.) Furthermore we must take 
into account that the physical model of the irrotational, isentropic flow is only 

• valid for stream fields with the Mach number m = j I/c < 1.6 (c-local sound speed, 
G2 = p/). Here the so-called weak shocks occur only so that the changes in entropy 
and vorticitv are negligible [1; 5:377-380,488-489]. 

If 'u'E K is a minimum point of the+ variational problem (2.4) then u satisfies 
for all v E K the variational inequality 

DF(u, u — v)= f (IVuI 2) Vu V(u - v) dx — f g(u — v) do 0.	(2.6)

n 

It is easy to see that a solutior u €K of it also satisfying equation (2.1) if 

Vul a' <a a.e. on Q	 -	 (2.7) 
and

- f Vu Vh dx < f M'(x) h(x) dx for all h € (C0'°(Q))+	 (2.8) 
Q	.,	1.D	.:	 • 

with M'(x)	M(x, u(x)) • e(A(x) + 1) a.e. on Q, e > 0.	• 

3. Katchanov's method or variational inequalities 

' Now we are going to represent this method in the abstract formulation due to' [10]. 
Let V be a Hubert space with norm and F 1 : V -- R a functional with the Gâteaux 
differential DF 1(u,.) at every u E V. For each u E V let us consider the bilinear 
form B(u; v, w), symmetric in v, w € V, with the following properties (u, v, w € 1';
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C 1 , C2 constants): 

IB(u; v, w)l	c l jjvjj llw ll,	 (3.1) 

B(u; v, v)	c2 j jvjji	(c2 > 0),	 (3.2) 

DF(u, v) = B(u; u, v),	 (3.3) 

- (B(u; v, v) - B(u, i; u))	F 1 (v) - 'F(u).	 (3.4) 

Moreover, let K be a closed convex subset of V and 1 E V*. For u E K we denote by 
w = w(u) E K the unique solution [4: 24] of the linear variational inequality 

B(u; w, w - v) :!E^ l(w - .v) for all v E K.	 (3.5)


Theorem 3.1: For the functional 

(u) = F 1 (u) - Fi (w(u)) - I(u - w(u)),	 (3.6) 

we have::	 - 

a) (u)^ -v-- u - w(u )11 2 for all u E K, 
h) inf {(u) I u E K} = 0, and {u} de/iied by u, = w(u) E K, .u6 E K arbitrary, 

is a minimizing sequence. 
c) Each minimizing sequence u) K for ip is bounded and ftu - w(u)II -> 0. 
d) If for v, w € K the functional B, , .( . ) := B(-;-v, w) is eqicontinuous, (that 

means: independent of v, w) on K then every limit point of a minimizing sequence from 
K /or ip is a solution of the problem to find an u € K such that 

B(u; u, u - v) ^5 l(u —.v) for all v € K.	 (3.7) 

Proof: a) According to (3.2) we have	 0	 - 

C2 IJU - w112 < B(u; u —w, u - w) = B(u; u, u) + B(u; w, w - '2u). (3.8) 

For v E V we introduce the notations 

F(v) = F1 (v) - 1(v)	 (3.9) 
and	 j 

•	 TI(v) = F1 (u) + -- B(u;v, v) - -- B(u; u, u) - 1(v). 

Then (3.4) yields TI(v) F(v) On the other hand we have	 - 

?p(u)=F(u) - F(w(u))
1	 1	•	 (3.10)


^ F(u) _jI(w(u)) = l(w - u) - -- B(u; w, w) + -- B(u; u, u). 

•	Hence, using (3.5) we obtain'	
0	 - 

(u) ^B(u;w,w— u) - B(u;w,w) + B(u;u,u), •	 -:	 - 

hich together with (3.8) gives the assertion.
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b) In the first step we prove that F is 'coercive and bounded from below. From ç3.4 
with v = 0 and (3.2) it follows that 

F(u) > F1(0) ±	B(u; u, u) —1(u) > F 1 (0) +	llull - lltllv' lull. 

The inequality 2 ll lllv lu ll	s	Iilll. ± s JJU112, for all s > 0, yields 

F(u) Z^ F1(0) ±	llull -	IlIl?,.	 (3.11) 4	C2 

if we put = 62/2. Let us consider the sequence {u} K defined above. From (3.10) 
and a) it follows that {F(u)} is monotone decreasing, and hence, this sequence is 
convergent and v(u) —>- 0. 

c) There is a constant y > 0 such that 

1w(u)II ^-. y for all u € K.	 (3.12)


This follows from (3.2), (3.5) and (3.1). Indeed, if we fix v0 € K then 

62 llw(u )112 	B(u; w, w)	B(u; w. w — v0) + B(u; w, v) 

< l(w	V) -f- C llw ll Ilvoll	11 1 11v .(ll v ll _f llVoll) -f- ci jJu,j llvll 

11 1 11v livoll ±	(c jv	+ 11111v * ) 2 + j llwIl 

for all	> 0. The last inequality with a suitable e implies (3.12). If 
inf {(u) I u € K} = 0, then a) yields 11u,, — w(v,)lI - 0. Hence, using (3.12) 

we have llu ll 5 11u.-'— w(u)Il + lIw(u )!I =, 1 + y for sufficient 1arè i. 
) Let us consider a sequence {u} K with (u) - 0 and u,, — u in V which 

implies u € K. From a) it follows immediately 

w:=w(u)—u.	 (3.13)


To pass to the limit n —> co in (3.5) with u =u we observe 

B(u;w,w —v) —B(u;u,u — v)l  

B(U,,; w, w, - v) - B(u; w, w - v)I + lB(u;w - u, w	v)I 

+lB(u;u,w—u)l.' 

The first; term on the right hand side of this inequality is less than e for n	n0(e) 
•	because we have  

lB(u; p, z)	B(t; 99, x)l. •<	for all	€ K, n	n0(e) 

in view of-the assumption layed on B. From (3.1) and (3.13) it-follows that the two 
other terms on the right hand side are converging to 0, too. Using l(w - v) -"- l(u — v) 
we obtain finally (3.7) I	 .•	 - 

Corollary: If additionally the condition	-. 

DF1 (v + h, h) - DF 1(v, h) ^ c3 11h 11 2 for all v,•v + h € K	 (3.14) 

'holds with a constant 63 > 0 (iniependent of v, h) then the functional F defined by (3.9) 
has a unique minimum over K. The sequence {u} from part h) is converging to the 
minimum point u € K.
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• Proof: From (3.11), (3.14) it follows that F is- coercive,, bounded from below, 
weakly lower semi-continuous and strictly convex on K. Hence, the existence and 
uniqueness of a minimum point u E  forF is easy to verify [2: 16-19]. Then u 
is also the solution of (3.7). Using - (3.14), (3.3) and (3.7) we obtain 

• 63 11U^ - u 2 <'DF 1 (u, u - u)— DF 1(u, u - u) 
= B('u0 ; u,,, u,, - u) _- B(u; u, u,, - a)	 - 

Moreover, we have  
B(u;u,u —u)+l(u—u)  

B(u; u - u, 1 , u - u+ u, 1 ) + , B(u; u, 1 , u 1 - u)	 S 

+ l(u;'i - 'an) + l( - u,41 )	 - 
;5 B(u; . 0 —u +i,u —u +,u+1) +l(u +1 —un) 

by virtue-of (15). From this and (3.1), (3.12) it follows that 
C3 11U..- uI1 2 < (c IIu - U ± U.+,11-+ IIl IIv*) II Un+I - UflhI 

< (cj(u -4- 2y) + hilly.) lu.+ , -' U 

and c) yields 'the convergence u -- u  

4. Application ,to transonie flow problems 

Now, we will apply results of Chapter 3 to the variational inequality (2.6) with 
K	V defined-by (2.2) (o (2.3)) and (2.5). Here we put 

	

(	 '	S 

F1(v) 
=	f (f e(q) d) dx, 	

(4.1)	•. - 

' 1(v) = l(v) =f gvdo,	B(u; v ', w) =f e(lVul2)Vv Vjvdx.
 

o -	is a given function with the following proportiés: 

i) and ' are continuous in [0, co), ) , 
ii) 0 <'	 (q)	< cc,,	 .	 (4.2) 

•	iii) -	'(q)	0  
for all q E (0; cc) with constants e, eo . it is easy to verify that then the assump-
tions (3.1)—(3.4)are satisfied. Here '(q) 0 is the fundamental condition which 
yields the inequality (3.4) because of the concavity-of the function [1: Example 3.16] 

q 

- F(q) 
= J (a) da	(T"(q) = '(q)	0).  

- - Such a function can be obtained in the following way: (q) is defined by (1.2) for q E O, a2.]. 
For q E cc) we put - g(q) = const =: with 0 < < (a9. In the interval [a2, qj the 
function L9 is extended suitable smooth and monotone decreasing [1] (of. Figure 2). It is not 
necessary that 0 has the form (1.2) in [0, a 2]. Each other function which is continuous dif-
ferentiable, positive and monotone decieasing in [0, a2] yields such a 0 with i) — iii) if we extend 
the function in an analogous way.	 S •	- 

• '

	

	 W; can use Katchanov's method (3.5) as a linearization of problem (2.6) and we

have the assertions a) -r-d)of Theorem 3.1. Here the assumption in part d) is satisfied 

I	'	•	 -
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because we obtain	 - 

• IB(u; v, w) - B(; v, w)j	f l(IV. 1 2) - (IV11 2 )I Ivy! jVwI dx 

1. f III - VzJ2 IVVII VwI dx 

= Q1  IV(u —i)V(u+i)JIVvIIVthIdx 

by virtue of the mean value theorem and the property iii) of 9 . Therefore, from the 
definition (2.5) of K it follows that 

B(u; v, w) '- B(iZ; v, w)I	2 1 a3 (/t(Q))1/2 Ilu	il	(u, 1, v, w E K). 

et 

q0 

Fig. 2

U-

The Corollary yields immediately a result for subsonic flow problems in Q without 
any entropy condition: If we choose a2 < q then K° = (v E '(I IVyj a a.e. on Q} 
is again a non-empty closed convex subset of V. On KO the condition (3.14) is satis-
fied. This follows froni the inequality e( q) + 2q'(q) > 0, for q ( [0, a2] [ 1: Remark 3.28].. 

To obtain an existence result for transonic flow problems we will apply Theorem 
3.1/d). For this we else need a compactness result for minimizing sequences from 
K for .	 .	 • 

5. A compactness property	
. S 

Using the same ideas as in fl .:-- Chapter 4] we will prove a result which is really more 
than we need. 

Theorem 5.1: For p> 2, p 	let 

VP = V n W P(Q) and IIvII = (1 I V )I P dx)) 

Then the subset X = XbM := {v .E V 'v satisfies (1.4), IIvIIvp ;S b} is compact in V. 
Proof: a) Let us consider a sequence {v}	X. Then without 'loss of generality


we can assume that 

v	v in V	W 1 2(Q) 2)	-	 •	( 5.1) 

- ?)	denotes the weak convergence in the corresponding space.	 -
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and v. -. v in LP(Q), if n - oo. According to Remark 2.2 we obtain 

iV(v,,) -> A/(v) in L2(Q).3)
	 (5.2).


For the functionals 0,,, 0 E V* defined by 

d,,(h) =1 M(x, v,,(x)) h dx + f Vv. V/i dx, 

.G(h) =j M(x, v(x)) h dx + f VvVhdx 

it follows that 

0,, - 0 in V* and in (12(Q))*4) 

Moreover, whave G,,(h) ^ 0 for  E (C(2))+ by virtue of (1,4), so that the Theorem - 
of MURAT [7: Theorem 1] yields G. ->0 in	for all q >2. From (5.2) it 

follows that iV(v,,) -> X(v) in(141(Q))*, and hence, E,, - H in (*1 Q(Q))*, where 

H,,(h) := f Vv,, V/i dx and H(h) :=fVv V/i dx. 

b) We also have H. -> H in (VP)*. The prove of this assertion is contained in a 
part of the prove of Theorem 4.30 in [1]. There the Meyers' results from [6] are used. - 
Our prove is fully the same one and we omit ,he details. 5 )	-	-	 - - 

c) By virtue of the definitions of H,,, H it follows that 

- ll(v)I ^S (H,, - II) ( v ,,)I + IH(v,, - v)I 

IIH,, - H I(vp) s J Jv. JJ v. + I f Vv V(v, - v) dxj. 

Using b) and J lvJvp b (see the definition of X) we obtain that the first term on the 
right hand side is converging to 0 Since (5.1) yields the same fact for the second term. 
we have IIv ,,11 2 = H,,(v,,) ->H(v) =-11v 11 2. Hence, using (5.1) again we obtain v,, -> v 
inV,ifn -+oo I 

Theorem 5.2. (Existence theorem for the variational inequality (2.6)): Each 
minimizing sequence from K for ip (with the noiatioiis (2.2) (or (2.3)), (2.5), (3.6), (4.1)) 
has a limit point which is a solution o/(2.6).. 

	

Proof: We have K = KG Mc XbM for a suitable b. Therefore, Theorem 5.1	- - 
implies the compactness of a minimizing sequence {u,,} K in V and Theorem 3.1/d) 
yields immediately the assertion U 

Remark 5.1: The existence result is also a consequence of the fact that F = F1 - 1.- 
is a continuous functional on V. Since K is closed and compact, in V according to 
Theorem 5.1 it is easy to see that F has a minimum on K in u(°) E K which satisfies. 
(2.6).. But in this paper we were just representing an eistence'proof based on 
Katchanov's method because in this way we got additionally an approximation 
method for the solution. of (2.6) by the linear variational inequalities (3.5). With 
the same arguments as for the minimum we obtain that F has a maximum on K 

3) The condition p	can be weakened' with the help of imbedding theorems for Sobolov 
spaces (see for example [8: 25-31]). 

4) Cf. footnote 2. - - 
6) Applying Lemma 2.1 in [11] to the functior{als C,,, GE (W12(Q))* defined above and using 
(5.2) we can also get the same result.	-
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S	 / 

in j(') € K, too. Hence, u(') ig a solution of the variational inequality 
f(IVu! 2)VuV(u —v) . dx fg(u — v)do for all vEK	 (5.3) 

If u( 1 ) satisfies (2.7), (2.8) then u( 1 ). is also a solution of equation (2.1). However, it is 
not possible to solve (5.3) by Katchanov's method because the function - does 
not satisfy the necessary assumptions (4.2).	- 

Remark 5.2: It is clear, that we have also solutions of the variational proleni (2.4) 
and of the variational inequality (2.6), respectively, if we use X instead of Kbécause 
7C is again a non-empty, closed, convex and compact subset of V. But, in this case• 
it is possible . that solutions without physical sense (that means: they are not 
satisfying (.3)) occur.	 . 
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