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Es wn’d das transsomsche Stromungsproblem als Varlatlonsunglexchung ‘in einer konvexen

Menge behandelt die durch eine geeignete Entropiebedingung, eine Schranke fiir die Gas-

geschwmdlgkelt und durch.Randbedingungen fiir das Geschwindigkeitspotential gegeben ist.

Diese Variationsgleichung wird unter Verwendung der Kat¢hanov-Methode und der Kompakt-

heit der konvexen Menge gelost Weiterhin wird ein Resultat iiber Stromungen im Unterschall-
) berexch angegeben. . :

i ) . N
PaccMaTpHBaeTCA 3aaua OKOJO3BYKOBOrO TeYEHHA KAK BapHAIHOHHOE HEPABEHCTBO B
HEKOTOPOM BHAYKJOM MHOMKECTBE, KOTOpOe HNAETCA TOAXONAIMM. yCJIOBUEM ODHTPONMM,:
rpaHuied IJA’ ra3oBoi CKOPOCTH M TPaHKYHLIMH ycnommmu ANA NOTEHUMANA CKOPOCTEH.
ITO BapHALMOHHOE HEPABEHCTBO PEIIAETCA C MOMOM[bI0 MeToxa Hauanosa u wOMOAKTHOCTH
- BBEleHHOro BHIIYKJIOr0o MHOMecTBa. IIpMBOXMTCA | TaK:He OUIH PeayJIbTaT 0 TeYeHUAX B J0-
' -3ByKOBOH 061acTh. , , Ly :

The transomc flow problem is handled as.a variational inequality in a convex -set which is.
, given by a suitable entropy’condition, by a _bound for the gas velocity and by boundary
" conditions for the velocity potential. Using Katr'hanov s method and the compactness of the
, convex set this varmtlonul mequahty is solved. Furthermore, a result on flows in the subsonic-
region is given. :

L

- 1. Introduction
We consider an érrotatiOnal, steady and isentn')pic flow of a noﬁeviscoiis, c‘ompfessz'blé,
- fluid in & bounded, simply connected domain 2= R¥ (N = 2). This flow can be
described by the equat,lon for the velocuy potentml u (0= Vu - gas veloczty) in gas
dynamlcs o . .
N

Z.ai(e(‘lwl-”)a—u)=0. o G B

= ! \

Here pressure p and density o are glven by the relations p = ple) and g = g(|Vu|2)
respectlvely, and Bernoulli’s law is used [5: 10—11, 489). For a pol Jtropw gas we

have p/p, = (0/0s)", and hence _ . -

=e(|Vu12>=eo'(1-—'Z—“P)”"'." R ' (1:2)

for/

. . 2 = — . . . .
VAP <gni= 5o | . , (1.3)
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i ’ ;s

“with constants 00> Po > 0 x> ] It is we]l known tha,t (L.1)is -

4

x — 1
+ 7 Im (subsomc regzon),

hyperbolic for |Vu|2 > qc (supersonic'region)

elliptic for |Vu]2_< gc:=

If we consxder atmnsonzc flow, then we have to take into account that there exist
supersonic regions as well as subsonic ones in 2 and the transitions between them
are usually dlscontmuous There shocks with jumps in v, ¢, p occur where a entropy
condition must be satisfied. In this paper we confine ourselves to the case that this
condition can be formulated in the form , : :

— f Vu Vhdz < f Ill(x uz))hdx for all h € (Co°°(!2)) S (1_.4) ,
with
(Co>(2))s = {h €C®(2) ] supph Ehz 0}.

This is a mmthematlcal generahmtlon of the fuct that the entropy condmon of the physmal
model in the one-dimensional casc implies d®u/dz® < + oo [5: 380—385; 3: 213—214].: The
condmon'(l 4) with M = M(z) was used by GLowiyskI [3] in numerical studies. FEISTAUER
and NEGas denote it for M = const as “snmplrfred form” [1]. A “natural form” of the entropy °
_*condition js given in [1] by ' : - . -

~

f o’ (1Vu[?) [Vu|2 Vu Vh dx SM[h dx for a.ll ‘he (Co°°(.Q))+ ) (L.5) - .

2 ) _ Q N .
First of all, FEIsTAUER and NE&as proved existence and uniqueness results for weak ‘solutions
" of (1.1) by Katchanov’s method [1]. This method known also as secant modulus method especially
in elasticity [9] consists in the construction of a suitable functional whose minimization is
equivalent to the solution of the boundary value problem considered. In the case of a transonic
flow this functional is non-convex, without any compactness properties. Therefore in [1] it was

necessary to assume a posteriori conditions for a minimizing sequence to ensure its convergence

" to.a solution. These conditions were a convenicent entropy condition ((1.4) with M = const or.
(1 .5)) and some regulanty assumptlons (for example (1. ‘*))

In this paper we use the same ideas like in 1 but we minimize the functional over
convex sets whose elements satisfy a priori (1.4) and (1 3). It is clear so we get
" solutions of variational inequalities which are generalizations of (1.1): We are using

. .again Katchanov’s ‘'method represented for variational inequalities in [10]. The

entropy condition (1. 5) will not be considered in this paper because its left-hand
side in.non-convex in u.!) It is easy to see that the u,bulbs of [1] remain valid if
mstead of the' entropy conditions (1 4) (1.5) v with M. = const those ones with func-
tions M(:c u) are' used: . o

2. Formulatlon of the problem as a variational mequahty .

' We assume that the boundary 6!2 of thc (sufflclently ]arge) domain Q is Llpschxt,l,
continuous and has the- ‘representatlon 002 = 8, uS, uS uMN where §,,7 S, and. S
are open subsets of d2-and uy_(N) = 0, uy_, the (N — 1) dlmensmnal Lebesgue

1) Uslng the entropy conditions (1.5) or (1.4) with M = const the transonic flow problem is
‘handled as a minimum problem by similar methods in [11].
\ . . :

'
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measure on 3.Q Then typlcal boundary conditions for the potentlal u are the following
ones ,

Casel: u =0 .on §,,

N

/

e(qu12>3“——g on 8usz

, Exam ple: If g'= 0 on’ S g<OonS, and .Q is like in Figure 1 then we geb the sntuat,lon
corresponding to a channel flow th,h the inlet Sz and the outlet S,. :

G aw T @ T

Fig. 1

i

Case 2: py.i(S,) =0,

g(|Vui‘2) ﬁu— = gi on &2, where fgdo =0 is aequmed
Yy

As weak formulatzons of these boundary value problems we have There is to flnd
canu €V such that

i
-

f o(|Vul?) Vu Vo dz = f gv do forall we v, e (2.1)
with . o ‘ S v .
V= {v E le(.Q) |v = 0 on S, in trace. sense}, ' ", (2.2)

R = SuSz

i.n Case 1 and

,If,= {v 6, le(Q)]vad:c = 0},. ) " : , (2.3)

R = 20

in Case 2, rcspectlvcly

Remark 2.1: The condltlons for v in the above definitions of V can be consrdered
normahzatlons because the. velocity potential is determined only up to a constant.:
In both cases V is a Hilbert space with norm {jp|| = ( [ Vo2 d:c)”2 and [,( v) f gv do

o is a2 bounded lmear functional on V (we wrlte I, € V*yif g € L3 R) is assumed
Equatlon (2. 1) ‘s the Euler-Lagrange equatlon for the variational problem

Vo)

< F(v) -—f fg(q dq da:—fgvdo—.xMin. '
113 2N

R :

Now, we minimize F(v) overallv € V, which addltlonally satisfy the constraints (1. '%)
and (1.4), that means:” ' B -
F(v) — Min i ’ L . C : o (2.4)

.. Y€K
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with - , : : :
K ='K.,M = {v € V | v satisfies (1.4), [Vo| =< a a.e. on Q}. (2.5)
K is a non-empty closed convex subset of V if the followmg assumptions for the
function M 2 X R — R are fulfilled :

1) M (u) = M(x, u) is concave in u for a.a. = € 2.
il) M (u) is_continuous on R for a.a. z € 2,
M (x).:= M(x, u) is.measurable on 2 for all u €. R’
(Carathéodory property). . .
iil) There are numbers B > 0, p =1landa function 4 € L2(Q) such that

|M(z, w)| < A(z) + B |'u,|1’/2 foraa.z€ Qandallu ¢ R

(growth condition).
iv) M(z,0) = Oa.e. on L.

_ Remark- 22 K is a bounded subset of ¥ n W,°°(.Q) : V* and every v € K
is a.e. equal to a function from C® l(!2) [8: 25 —29). From ii), 11i), the continuity
of the N (»myckn operator

N LF(Q) — Lz(Q)
H@) (@) = Mz, vz) .

1

~ follows [2: 53—54]. Condition iv) just ensures K = 0 (0 € K).

Remark 2.3: To_exclude solutions without physu,al sense the relatlon a¥ < gn
is necessary. We will choose a? > ¢, to admit indeed transonic flows. (The case
a® < g, will be briefly handled at the end of Chapter 4.) Furthermore we must take
into account that the physical model of the irrotational, isentropic flow is only
.valid for stream fields with the Mach number m = |o|/c < 1.6 (c-local sound speed,

. ¢? = 9p/dp). Here the so-called weak shocks occur only so that the changes in entropy
. +and vorticity are negligible [1; 5: 377 —380, 488 —489]. .

If w€ K is a. minimum point of the variational problem (2.4) then « satisfieé
for all v € K the vartational inequality . '

DF(u,u — v)y= [ o(|Vul?) Vu V(u —v)dz — [ glu —v)do < 0. (2.6)
. . Q . . , ‘R ' P .
It is easy to see that a solution u € Kofit also satisfying equation (2.1) if . ;o
|V';4| <a <a ae.on® - ‘ o -2,
and ' ' '
.- f Vu Vhdx < f M'(z) h(x) dz - for all he (CO°°(.Q))+ (2.8)

with M'(z) < M(x, y(:c)) - e(A (z) + 1) a.e.on 2,¢ > 0.

3. Katchanov’s method for variational inequalities

Now we are going to reprcsenb this method in the abstract formulablon due to [10].
Let V be a Hilbert space with norm |- and F,: V — R a functional with the Gateaux

differential DF,(u, -) at every u € V. For each u € V let us consider the bilinear ’

form B(u; v, w), symmetric in v, w € V, with the following properties (u, v, w € V;

P
B
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€y, Ca: constants)

1B(u; v, w)| = e [loll IIwII, ’ - (3.1)

B(u; v, yZelplf (>0, . - (3.2)
DF,(u, v) = B(u;u, v), ) , _ } '(3.3) '
—;— (B(u‘; v, v) —.B(;L, u; u)\) > F,(v) — Fi(u). ' (3.A4)

Moreover, let K be a closed convex subset of ¥ and [ € V*. For u € K we denote by
~w = w(u) € K the unique solution [4: 24] of the linear variational inequality

B(u; w, w — v) < Yw —v) forall we K. (3;5)
Theorem 3.1: For t_ke‘/uncti;mal v, _ | | -
p) = Fy(w) = Fiww) — o — w@), - o (3.6) '
we/have~ o : ' ° ‘ o
a) (u) = = llu — w(u)|® for all u € K, S ' \

. b) inf {zp(u) | u € K} = 0, and {u, defmed by u,m = w(u,,) € K, ug € K ar(nt/az ¥,
is a minimizing sequence.
) Each minimizing sequence {u,} = K for p is bounded and |lu, — w(u ,,)|| — 0.
) If for-v,we K the functional By ,(-) := B(-;-v, w) 1s eqmcontmuous (that
: means mdependent of v, w) on K then every limit point oj a mintmizing sequence /rom
K for. v is a solution of the problem to find an u € K such that

\'  B(u;u, u—v)Sl(u—v) \for all vEK ~ . _‘ 3.7
. Proof: a) According to (3 2) we have o - - .
Collu — wlf < Blu; v —w,u —w) = B(u; u,u) + Blu; w, w — 2u). (3.8)

For v € V we introduce the notations L '

F(v) = Fy(v) — U(v) - o ‘ - (39)

. apd 5 . / N .

. . 1 o 1 ' -

II,(v) = Fx(u) + < Bluso, v) = 5 Blusu, u) —Uv).
Then (3.4) yiclds I1,(v) = F(). On the other hand we have - ;-

w(u) = F(u) — F(w(u)) . o

2 F(u) —_H(w(u)) =lw —u) — 5 B(x; w,w) + 5 B(u; u,u).

Hence, using (3.5) we obtain" - ' A '

w(u)z'B(u;w,w—u)—EB(u;w,w)-i-é-B(u;u,u),‘ -,

which togethér with (3.8) gives the assertion. ‘
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v

b) In the first step we prove that F igcoercive and bounded from below From (3.4)
with » = 0 and (‘3 2) it follows that

Fu) 2 F\(0) + & B(u u, u) — l(u) 2 Fy(0) + == II H2 — [eftve HuII

The inequality 2 Wiy llull < et IIKIIV. + € |lul]?, for all & > 0, ylelds

k .
F(u) = Fy(0) + - Ii II2 - — Hlllvo LT (3.11)

if we put & = 02/2. Let us consider the sequence {u,} = K defined above. From (3. 10) .
and a) it follows that {F(u,)} is monotone decreasmg, and hence, this sequence is
convergent and y(%,) — 0.

¢) There is a constant ¥ = 0 such that

llwu)HSy forall we K. N - (312)

Thls fo]lows from (3.2), (3,5) Aand (3.1). Indeed if we fix v, ¢ K then -
¢ lw(u)lF < B(u; w, w) = B(u; w,w — Vo) + B(u W, Vg)

< lw — ) + o I]wH lfooll < ”l“w (el + voll) + ¢y ol 1l

< Wl ol + = (e ool + Hve)? + 5 ol
v N .
. for .all £> 0. 'I‘ho laet inequality with a suitable. ¢ implies (3 12). If
w(u,) — inf {y(u) | v € K} = 0, then a) yields |ju, — w(u,)l| = 0. Hence, using (3 12)
"~ we have |fu,|| < flu, L w(u,)|| + Jw(u,)l] =1 + y for sufficient large 7.
d) Let us consider a sequence {u,,} < K with y(u,) =0 and U, —u in I’ which
implies « € K. From a). it follows immediately. :

wn == w(y) = u. - . 313)
To pass to the llmlt n — o0 In (‘3 5) with 4 ='u, we observe ‘
|B(%n; wn, w0, — v) — Bu; u, u — o) '
< 1Bt wa, 0y — v) — B(us wg, w0y — 0)] + [B(u; 0, — u, w0, — )
+ |B(u; u, w, — )|’

The first term on the nght hand side of thl% mequallty is less than ¢ for n = no(s)
because we have , .
\Blua; 9, 2) = Blus g, )l < ¢ forall g7 € K, n 2 nofe)

in view of. the assumption layed on B. From (3.1) and (3.13) it- follows that the two
other terms on the right hand side are convergmg to 0, too. Using l(w, — v) — l(u — )’
* we obtain finally (3.7) & . !

Corollary: If additionally the condition _ .
DFy(v + h, k) — DF\(v, k) = ¢ [BIP ~ for all v,0 + h € K (3.14)

“holds with a constant ¢; > 0 (independent of v, k) then the functzonal F de/med by (3.9)
has a unique minimum over K. The sequence {u,} from part b) is com;ergmg to the
mmzmum point u € K. : '
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Proof: From (3.11), (3.14) xb follows bha.t F is. coercive, bounded from below,
K weakly lower semi-continuous and strictly convex on K. Hence, the existence and
umqueness of a minimum point % € K for F is easy to verify [2: 16 —19]. Thén »

is also the solution of (3.7). Using'(3.14), (3.3) .and (3.7) we obtain

. C3 ||u — ul® < DF (U, up — u) — » DF \(u, uul— u)
= B(u,; u,, wy — u) — B(u; u, u,. —u) -
< Bt tny e — )+ Ut — ).
. f\([oreo_ver, we have ‘ . b, ' . . . " o ..
Byt g —w) + Yu—w) S
= B(’“m Up — Uniyy Uy — w + Unia) + B(%n; Unirs Uner — )
. + Urper — %,) + l(“ - @uh)
S By Uy — Ynrss Y — U s Una) F+ Ulhggr — %)
by, virtue-of (3.5). From this and (3.1), (3.12) it follows that
&3 lltn == Wl < (e Ity — % + Upiall 4 Wlive) ttwer — 2all -
< (ealliull + 27) + By +) f2nia —wl

and ¢) yiclds the convergence u, —>~u I : oL

4. Appllcatlon to transonic flow probluns

Now, we will apply results of Chapter 3 to the variational mequalltv (2 6) with
K = V defined. by (2 2) (or (2 3)) and (2. 5) Here we put -y .

(Ve ¢

1(1’) —f f dq dIC,

L - L @
z(p) = l,(v) ;fgvdo,- Blu; v, w) f@(]V'u,l ) Vo Viv dr T -
R o ' -

- pisa give}l function with the following proporties:

i) 0 <o, Solg) = 0o < 00, (4.2),

ifi) —0, = 0'(9) =0

for all q € [0, 00) with constants Qoo’ o, 01 It is easy to verlfy that then the assump-
tions (3.1)—(3.4).ar¢ satisfied. Here g'(¢) < O is the fundamental condition which ~
" yields the inequality (3.4) because of the concavity-of the funct;ibn [1: Example 3.16]

i) ¢ and ¢’ are continuous in [0, co0), }

‘I(g) = fe(a)da (Mg =e@=0). = - e

_Such a function g.can be obtained in the following way: o(g) is defined by (1 2)forg e [0 a?).
For qE€ [q,,,, o) we put'g(g) = const =: g, with 0 < g, < ¢(a?). In the interval (a2, q,.,,] the
function ¢ is, extended suitable smooth and monotone decreasing [1] (cf. Flgure 2). It is not

~ necessary that o has the form (1.2) in [0, a?]. Each other function which is eontinuous dif-
. ferentiable, positive and monotone decreasing in [O a*] yields such a p wlth 1)—111) if we extend
the function in an analogous way. .

We, can use Katchanov’s method (3. 5) as a lmearlzatlon of problem (2.6) and we
have the assertions a)—d)-of Theorem 3.1. Here the assumption in part d) is satisfied

’

r' " . ' . .\
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because we obtain '

" |B(w; v, w) — B(@; v, w)] < f lo(192[%) — o (IVael?) )| Vo] |Vuw| dee

~

~

< o1 [ |IVulz — Va2 |Vo|| \Veo] ds
g ‘

o f IV — ) V(u + @) V0] [V dz

by virtue:of the mean value theorem and the propertv iii) of ¢. Therefore, from the
definition (2.5) of K it follows that

~

IB(u3 v, 20) - B(ﬁ, v, w)l = 2910‘3 (/I;V(Q))l{z ”u _ ﬂ” (11,, w, v, w E K)'

4
Qo

L0=glg)

oo

M
. . . ! . -
0 . . a Im ‘. A
- Fig. 2

The Corollary vxclds immediately a result for subsonic flow probl(,ms in © without
any entropy condition: If we choose a? < g then K = {v € V| |Vv| < a a.e. on 2}
is again a non-empty closed convex subset of V. On K° the condition (3.14) is satis-
fied. This follows from the inequality o(q) + 2go’(g) > 0, for ¢ € [0,a?] [1: Remark 3.28]..

To obtain an existence result for transonic flow problems we will apply Theorem
3.1/d). For this we else need a compactness rcsult for mxmmlzmg sequences from
K for y. .

- 5. A compactncss property "
Usmg the same ideas as in [1; Chapter 4] we will prove a resu]t whlch is really more
than we need.
Theorem 5.1: For p > 2, p = P let
Ve=VnaW,2) and |pllyv> = (f [Vo|? dx)‘/l’
. 2

Then the subset K = Ky py:= =f{ve Vp | v satisfies (1.4), |vlly» < b} is compact in V.

Proof: a) Let us COnSldCI‘ a sequence {v,} = K. Then \Vlthout loss of gcnerahty
we can assume that .

v, > in Ve W2Q)? . ' ; (5.1)

’ 2) — denotes the weak convergence in the corresponding space.

]
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, '

aqd/ v, = v in LP(Q), if n > o0. AccOrding to Relnark 2.2 lve_obtain .
T M) > H@) in YD) ' ' T (5.2)
For the functionalé '@,, G € V* defined by ) v . ‘
G (k) = f M(z, v,,(x)) hdx + f Vo,, Vh d:z:,l
2 2

G(h) = [ M(z,v(x)) hdz + [ Vv Vhdz
2 : 2

17 follows bhab

¢, > @G in V* andin (W Q))* 4)

" Moreover, we have G a(h) = Oforh € (C‘o (_Q)) virtue of (1,4), so that the Theorem
of MURAT [7: Theorem 1] ylelds ¢, -G in (lg]"(!))); for all q > 2. From (5.2) it
follows that </V(v,,) — N (v) in (W ”(.Q))* and hence — H in (ll’ 902 ) where

H (k) : va,, Vh dz and HH(h) - va Vhdz. - 7

b) We also have H — H in (VP)*, The prove of thlS asserbnon is contained in a
part of the prove of Theorem 4.30 in [1]. There the Meyers resnlts from [6] are used.
Our prove is fully the same one and we omit the details.5). : - 4

c)- By virtue of the definitions of H,, H it follows that
o Huw) — HO) S [(Hy — H) (02)]+ [H(v, — )]

S 1Hy = Hiwr Ioalvs +| [ 90 Vkvn — v) da|.

Usmg b) and |jv,lly» < b (see the definition of Jf) we obtain that the first term on'the
right hand side is converging to 0: Since (5.1) yields the same fact for the second.terri |
we have [[v,||2 = H,(v,) = H(v) =|v||2. Hence, using (5.1) again we obtain v, — v
inV,ifn—>o0 ) : :

Theorem 5.2 (Existence theorem for the variational inequality (2.6)): Fach
. Mminimizing sequence from K for v (with the notations (2.2) (or (2.3)), (2.5), (3.6), (4.1))
- has a limit point which is a solution of (2.6)._

Proof: We have K = KaMC JCbM for a suitable &. Thcrefore, Theorem 5.1
implies the compactness of & minimizing sequcncc {u,} = K in ¥ and Theorem 3.1/d)
' yields immediately the assertion @ . ~

Remark 5.1: The existence result is also a consequence of the fact that F = F, —I-
is ‘a continuous functional on V. Since K is closed and compact,,in V according to
Theorem 5.1 it is easy to see that F has a minimum on K in % € K which satisfies.

.(2.6).. But in this paper we ‘were just representing an existence proof based on
Katchanov’s method because in this way we got addltlonally an approximation
method for the solution. of (2.6) by the linear variational inequalities (3.5). With
the same arguments as for the minimum we obtain that ¥ has a maximum on K
3) The conélition p = P can be weakened with the help of imbedding theorems for Sobolev
spaces (see for example [8:25—381]).

4) Cf. footnote 2.

-6) Applying Lemma 2.1 in [11] to the funcmona.ls G,, G ¢ (W 32))* defmed above a.nd using
(5.2) we can also get the same result.

s

.‘,,.
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. . )
in a4t € K:, too. Hence, uV is a solution of the variational inequei»h:t,y

[ e(IVul?) Vu V(u — 1<)‘dx 2 [ gu —v)do forall ve K. (5.35
2 T ‘ TR :

If u satisfies (2.7), (2.8) then w1, is also a solution of equation (2- 1). However, it is

not possible to solve (5.3) by Katchanov’s méthod because the functlon —p does_

not satisfy the’ necessary assumptlons (4.2).

’

Remark 5.2: It is clear, that we have also solutions of the variational prc;blem (2 4)
and of the variational inequality (2.6), respectively, if we use J mst,ead of K bécause

K is again & non-empty, closed, convex and compact subset of V. But, in this case

it is possible - that solutions w1thoub phvsncal sense (that means: they are not
satlsfymg (1.3)) occur. .
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