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Stability Properties of Space Periodic Standing Waves 

B. SCARPELLINI 

\Es werden Oleichgewichtslosungen von parabolischen Systemen der Form it = Dzlu + F(ce, u) 
betrachtet, wo D cine 2 x 2-Diagonalmatrix, a cin Verzweigungsparameter, u = (u u2) em 
Zustandsvektor und F cine polynomiale Nichtlinearität bedeutet. Es wird angenommen, daB 
ein trivialer Lösungszweig u(ö) € 112 , 6 € I = ( — sr, c), vorliegt, d. h. F(c o + (5, u(6)) =0 für 
cin ao und alle 6 € I ist. Eine Periode L wird festgehalten, und unter passeuden Voraussetzungen 
werden Verzweigungsscharen von räumlich L-periodischen, stehenden Wellen konstruiert. Es 
wird gezeigt, daB these Scharen für L f cc generisch instabil werden, daB sie aber unter der 
Annahme d 5F(ao, u(0)) = 0 gegenuber nL-periodisclien Storungen (1 < n € N) stabil bleiben, 
falls dies für kleine 6 < 0 auf den trivialen Losungszweig u(0) zutrifft. Physikalische Spezial- 
fällc bilden die sogeñannten Landau-€inzhurg-Gleichungen. die in der Landau-Theorie der 
Phasenübergänge auftreten. 

PaccrüarpHaaloTcnpaBIloBecHue pemeirna napa(ioJmecux CUCTCM niuta it = D21u + F(a,u), 
re D - i.uacoiiaiiiias 2 x 2-slaTpIlI(a, a - napatep BeTajieHusi, u = (u 11 u2) - BexTop 
CoCTos11IHl it F - nojiuiiotnaiiia IIe21uhIellIocTb. flpelnoaraeTcH CYLUCCTBOBIIll 
HeTpIanHaJIaHofl ReTnil peweHusi u(6) € R2 ,-6 € I = ( — e. +e), T.e. F(a, ± 6, u(0)) = 0 jjis 
uexooporo 0, 0 U ncex 6 € 1. 'I' oi-ita HCHCTCH nepliog L it flpn flOjXojtRUiHX npe)-
noJ1oHelIMnx XOHCTH!OTCA pa3BCTBjieHHbie CeMeflCTBa !10CT1ICTBII1IO L-nepnoii-
q ecxllx CTOH4IIX BOJ1l! floxaal,InaeTca, 1TO 3Tll ceMefteTBa 6y(yT HeycTo114I1nblMu npn 
L ' cc. O,r iiaxo, npu YCROBIM d 5 F(ao, u(0)) = 0 011U OCTaIOTCH yCTOfl'IHBhIMII oTlIoduTeJIallo 
nL - nep ii ogs ecxtx Bo3Myu.1eIIUf (1 < n € N) ec.riit OTO. uMeeT MCCTO ailsi TpuBuaJ1iHoli 
BCTBII peweiiiin npii MaJmix 6 < 0. I )n3wlecxHe 4acTuble.cJly4au - 'rax Ha3lBaeue ypan-
iienun JIaWay-['HH36ypra, BCTpetiaembie B TCOHH a3onoro nepexojta JIaiiay. 

Equilibrium solutions of parabolic systems of the form it =Dzlu + F(a, u) are considered, 
where D designates as 2 x 2 diagonal matrix, a a bifurcation parameter, u =.(U 1 , u2 ) a state 
vector and F it polynomial nonlinearity. A trivial solution branch u(6) € 112, 6 € I = (—e, e), 
is supposed to be given, i.e. F(a o + 6, u(6)) = 0 for some ao and every 6 € I. Then it period L is 
fixed and under suitable assumptions space-L- periodic bifurcating standing waves are con- 
tructed. It is shown that these bifurcating branches become generically unstable as L T cc. 
Under the condition of dF(ao , .u(0)) = 0 however, they will remain stable against nL-periodic 
perturbations. (1 < n € N), provided that the trivial solution-branch u(6) behavcs alike for 
small 6 < 0. The so-called Landau-Ginzburg equations arising in Landau's theory of phase 
transitions constitute a special example in physics. 

1. Introduction 

1.1 Physical background 

In some parts of statistical mechanics, particularly in Landau's theory of phase 
transitions, one encounters parabolic systems of the form 

it i = 1,u1 1-+. .E(a, u, . . ., U . ),	i= 1, .. .,N,	1	 (1)
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where u = (u 1 , ..., u,,.) is a state vector, a is a one-dimensional bifurcation para-
meter. The Y j are elliptic second-order operators and F = (Fj ; f.., F,) designates a ,nonlineatit.y, polynomial in both in	and in the u 1 , i.., u. The dimension of the 
space on which the i''are operating is n 3 and the . and the F1 are independent 
Of x 1 , ..., x, 1, i.e.the system is invariant under transla'tions in space and time. The 
vector u(x, t) describes the state of a large body .Q, at the J?oint x E Q, for the time 

^.0, provided that x is far away from th boundary Q. It is a widespread belief, 
sustained by experience, that under these assumptions u has properties being largely 
independent of the conditions at the boundary. it is customary now to impose 
periodic boundary conditions on u, i.e. u has to he L-periodic with respect to each 
space variable and its period L should be small compared with the dimensions of Q 
and large compared with molecular distances but unspecified otherwise.. One expects 
the solution u t.o have properties essentially independent of L or to show a certain 
asymptotic behaviour as L T oc. Here was shall investigate a class of bifurcating 
solutions from this point of view. 

1.2 Bilureatioñ problems 

Let beN=2 for simplicity and .% 1 = rA with t >0, in general, where Z1 isdesignat-
ing the Laplacian. acting Son 1t2 . 'The parabolic system (1) gives rise to the elliptic 
equilibrium system vectorially written as	 S 

Yu + F(c, u) = 0.	 (2) 
Let I = (—c, ) be an intervall, U: I - R2 an' analytic mapping and a, a parameter 
value such that F(ao +'6, u(6)) = 0 for E 1. Then the family 

{u(0)}OEJ	 (:3) 

will trivially be an L-periodic branch of solutions of (2) for any L > 0. Although we 
are restricting ourselves to even solutions only, there is gerIerieally . a large number of 
solution branches'ranehe bifurcating from the trivial' branch (3) under familiar spectral - 
conditions. We shall invest•igate howthe stability of these branches is depending on - 
the period L: e.g. a L-periodic branch, being nL-periodic, too, for natural n, one may 
ask, whether it will remain stable against nL-periodic' perturbations if it behaves 
alike against L-periodic perturbations. It will be shown that all bifurcating branches 
become genetically unstable as n oo. Among many other bifurcating branches there 
is a distinguished set, termed as standing waves, being of the form ,v(2iL'k ..x) with V 
2t-periodic 'and k . x = k 1 x1 + k2x2 for- any integers k1 , k2 . For these branches we 
shall get a positiv&result saying that the branch will remain stable against large ' 
nL-periodic perturbations, provided that sonic, additional assu niptions are satisfied. 
For a precise formulation of these and of further results we refer to the text.	- 

2. Functional analytic bckground 

-	2.1 Soholev spaces 

Let C be the complex numbers, 1{ the real ones and let exp' denote 	he exponential 
function. For p	1, 2 define T(L) to he the set- of finite trigonometric sums 

L'Ck ep(i2iLk . x)' -

"I
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where Ck E CP and k . x = lc ! x I + k2x2 with x	(x1 , x2 ) E . 1t2 and Ic = (Ic 1 , Ic2), for
integers Ic 1 , k2 . We set. 

= D 1 azD2 a, =

	

	S	 - 

x1ex2 

with =	a2) being a multiindex and	= i ,	2. For u, ' E T(L) we define
the scalar product 

V1. = ff	(Du, D) dx2	.	 . L	IJm 
P0'	 - 

where (a, b) =	ab for a, b E CP. It gives rise to the norm 'rn = [., .]1/2. Now let
(Hrn(L), (., •Jm) he the Hubert space obtined from the pre-Hilbert space (T, (L), 
[, 1m) by taking the closure with respect to •1m Providing T(L) with another 
iscalar product	 -	.	. 

•	.	(U, v) =	(, 11k) (1 ±. (2L- l ) 2m k1 2m )	S. 

for	 . 
U = 57 exp (27rL'k x),	V = * exp (2rL- 1k' . x) 

with J kl	(1c 1 2 + k22 ) 112 we get it second Hilberi space (Grn(L), (', • )rn) with norm
by taking the closure of T(L) with respect to the norm II 'urn = ( :)mhl'2. 

Though m(L) and 0m('-) are not identical, they contain the same elements nd are bonn-
dedly Isomorphic to each other; Without running the danger of confusion we may identify both 
of them, thud writing 11,P(L) and considering it, provided with equivalent norms I -Im and 1•'1,,. The Mm( 1') are spaces of vector-valued L-periodic functions having generalized derivatives up 
to order m They admit a Fourier-series description asfollows: Each it € HmP(L) has a Fourier 
expansion /(u)	exp (i2L-'k . x) satisfying 

!' IkI (I .± (2L)2m ikI") < co,	kE CP.	-	 .	(4) 

Conversely, to each Fourier series / having this property there is a unique u € 1-1m P(L)61Tith - - 
/ = 1(v). Thus H P(L) may be identified with the set of all }ourier series satisfying (4), provided 
with the scalar product 'defined by - 

-	(u, v), =	(4, ?7) (1 + (2L-)2171 kI2m)  
If  

L'-k exp (i2.'zL-'k . r) and v = Z Ilk exp (i2iLk . x). -	--

The spaces Hrn(L) have some familiar properties. Set Q = {(x 1 , x2) 0 <x1 , x2 <L} 
and let-05'(Q), p = 1, 2, be the set of (eventually vector-valued) functions having 
uniformly bounded and uniformly continuous derivatives up to order n on Q, whose 
m-th derivatives satisfy aHölder condition of order 2 (0 <).:!E^ 1) on Q. By introduc-
ing a suitable norm, C m (Q) beconiesa'Banach space, for details see [1: pp. 9,101. The 
properties in quest-iod are the following: 

- (P1) H P(L) is compactly embedded in Hm(L) for ni < q [2: p. 1691.  
(-P2) HP (L) is continuously embedded iii C5i) for 0 < 2 < 1 [1: Theorem 5.4]. For 

the space diriiension,n = 3, 0 <2 < 1 has to be replaced by 0 < 2, ^ 1/2. 
(P3) H,' ( L) is a Banach algebra for m	2 with respect to the norms I 'm II' urn respec-

tively, i.e. if U, ,V E Hm'(L), then uv € H. 1 (L) and Iirn ^5 KJul m t'jm, !UVIIm 
^ K2 jU IIm IIiIm for suitable constants K1 , K2 depending on L [1: Theorem 5.23]. 

32*
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Since we will be working for the most part with the spaces Hm 2(L), we set Hm(L) 
= H.2(L) writing (., •) instead of (., •)2. 

2.2 Generators of semigroups 

-As a last preparatory step we show that the * elliptic- operators which may appear as 
Fréchet derivatives are wellbehaved. To this end let 

- D = (ôjmTj) with t, > 0, 

B,(x) and A(x) for j = 1, 2 and x = (x 1 , x2) 
be2 x 2 matrices, A(x) as well as B,(x) having entries in H2 1 (L) We introduce the 
operators E0, F1 , E2 and 3, (j = 1, 2) as follows:	 -	- 
E2 = Dzl selfadjoint is defined on114(L) by the equation 

E2(E Ck exp (i27rL'k . x)) = —!* 1k1 2 (2irL 1 ) 2 (D k) exp (i27rL 1 k . x). 
- , is defined on H3(L) by the equation 

)(E k exp (i2Lk . x)) = E i2nL:'k exp (i2L 1 k . x)	- 

Since 112 1 (L) is a Banach algebra, B,(x) and A(x) act as bounded operators on 
and so we may define	 -	 - - 

F0 = A(x),	E1 .=_Y Bj(x)  

L e ni ni a 1: The operator F = F2 + E1 + F0 is closed and generates a hülomorphic 
semigroup.	 -	- -	- -	- 

Proof: Set E 2 = mm (r 1 , T2), S > 0, and rewrite F in the, form F = —F. + M 
with F, = (2tL 1 )2 s21 - E2 and ill = F1 + E0 + (2L- 1 ) 2 e21, where I has the 
meaning of the identity. Evidently F, is positive definite, selfadjoint with Doni E, 
= H4 (L) and Dom E' E'2 = H3(L). According to [8: Lemmata 2.1 and 2.3] our lemma 
is piovecl, if we can show that	 - 

(i) Dom E'2 Dom M and  
(ii) II Mu112 ^5 c IIE'2uJJ2 for u € Dom E'. 

Now is Dom M = H3(L) by definition, Whence (I) follows. In order to verify (ii),we set 
= (2L-1)2 E21 - e2IL1 . The operator F, is positive definite, selfadjoint with 

Dom F, = H4 (L) and .Dom k2 = H3(L).-Moreover, II 2 ui12 ^ II E2uJk for u E H3(L). 
It thus suffices to prove (ii) with E 12 in plac6 of E2. By a straightforward computa-
tion-we obtain	 -	 - 

IIE 12u11 22 =	(, k) (2rL') 2 2(1 + 1k1 2 ) (1 + (2iL')4 jkI), 

11 a )u 1122 = 2' (k, k) I kjI 2 (2tL 1 ) 2 (1 + (2rL)4 jkI) 
for u = * k exp (i2iL 1 k . x) € H3(L), entailing the existence of a constant co with 

• IIaup 2 < CO II E '2uJJ2 for u € H3 (L). By property (P3) of H2 1 (L) there is another con-
stant c1 such that	 - 

IPBu II2 ;5 C 1 lIU112 and Il( A + (27L-1)2 e21) U 112	C1 IIUI2 
for -u € H2(L). Combining these results we will find a constant c such that IIMuII2

	

/ . c E,"2u 2 for u € H3 (L) verifying (ii) I	- -

I	 -
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Lemma 2:The resolvents o/ E are compact. 
Proof: Let 2 belong to the (non-empty) resolvent set of E, let for the moment 

114 '(L) be H4 (L), but provided with the norm 1112 . By Lethrna 1, E - 2 is closed, 
mapping its domain H4 '(L) onto H2(L). The operator E - 2 is then closed as a map-
ping from H4 (L) onto H2(L), because Jlu2 ^5 I jull, Since (E - 2)-' maps H2(L) onto 
H4 (L), (E - ).) 1 is also closed and consequently bounded, i.e. l(E - A)' u4 
< c Ju l2 for a suitable c. Now 11 4 (L) is compactly embedded in H2(L), by property 
(P1) in Section 1.1. By a combination of these facts the lemma-will be proved I 

F(a, u) being polynomial in a, U,, u, and H,(L) being a Banach algebra, known 
results on local existence and uniqueness apply to the evolution equation

•	(5) 
(see e.g. [9: Theorem 1.5/p. 187]); For v € H2 (L), let dF(a, v) be the Jacobian of F 
with respect to u at v. The operator K = E + dF(a, v) being of the same type as E 
consequently has the properties described in Lemmata I and 2. Therefore the prin-
ciple of linearized stability (see [6: Chapter 5]) applies to (5), i.e. if u0 E H4(L) is an 
equilibrium solution of (5), Eu0 + F(a, u0) = 0, then	 -	- 

(i) u0 is asymptotically stable if Re 2 < 0 for all 2 € a(E + dF(a, u0)), 
(ii) u0 is unstable if Re ), > 0 for some 2. E a(E ± dF(a, 'a.)).	 - 
Remark: If we considerE as an operator acting on J-10(L), with Dom E = H,(L), then B 

still has the properties stated by Lemmata 1 and 2. But, F is not a smooth mapping from H0(L) 
to I10(L). The principle of linearized stability then onlyholds under more complicated circum-
stances, involving fractional operators (see e.g. [8] for detail). One might expect some equili-
brium solutions u € H2 (L) - 1-14 (L) to 'get lost. However, slight extensions of the regularity 
results in [5: Lecture 5] exclude this possibility as can be shown. 

3. Bifurcating branches

FA 

3.1 The bifurcation problem 

Below the operators E2 = DA and c9i (j = 1,2) are the same as in Section 2.2. For 
a = (a,, a2 ) € 1t2 and / € H3 1 (L) we set 

(aV)/ = a, / + a2 94. 

The matrices B,(x) are now taken to be constant. The operator E1 = * B(x) a j can 
then be cast into the form 

B'= ((017)),	5" € R2	for	i, j = 1, 2, 

transforming -it = (u 1 , u2 ) € H3(L) into (E (017 ) z1 , !' (017 ) u,). The operator 
E0 will always be a Fréchet drivative 

E0 = dF(a, v),	v E 114(L), 

where F(a, u) = (F,(a, u,, 42), F2(a, 'a,, u)) is polynomial in a, 'it,, u21 of degree 
k -:^ 2 in u,, u2 . The period L is kept fixed in this chapter. 

We now .introduce the first of a series of assumptions enabling us to apply the 
apparatus of bifurcation theory.
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(A- 1)

	

	There, is anuber cco E R,an interval I = (—e, e) and an analytic mapping
U: 1 -± 1t2 such that F( 0 + b, u(b)) = 0 for all b e I. 

Based on this assunipion we define the operators 

T(b) = D4 + B + dF( 0 + & u(b)),	b € I; 

acting on H2 (L) with Doin T(b) = 114 (L). They have the properties listed in Lemmata 
1 and 2. Set'	 . 

• :	 .E(k) = g exp(i2rLUc . x) I E €9. 

• Since H2(L) = E(k), the operators T(b) are determined by their-action on the 
invariant subspaces E(k), which is described in terms of matrices B(k), ML(k, b), 
defined as follows:  

1. B(k) = (bIc), where b• k = b 1 'k+ b2k2,  
2. ML (k, b) = —(2iL 1 ) 2 jkj 2 D + i2L 1 B(k) + dF(ao + & u(b)); 
3. T(b) (' Ck exp (i2-rL 1 k. x)).=	(ML (k, O) ) cxi) (i2rL 1k x). 

After these preparations we state the following 

Lemma 3: The spectrum aL(T(6)) can be described in terms of the spectra a(Mj (k, b)) 
as	= U a(Mj (k, b)).	 S 

'(A 2) . :

	

	Among the matries ML (k, 0), Ic E Z 2 , there is exactly one; say ML(k°, 0),
such that 0 € o(ML (k0, 0)). Moreover we 'assume 
(i) 0 is a simple eigenvaluc of ML (k°, 0),  

•	 (ii) if jo'M(k°, 0) = 0, ML(k°, 0) o = 0 and ?lo, o -+ 0, 'then (?io, B 0 )	0 
• S	

-	 where B1 is the linear term in the expansion 

dF(ao + h, u(b)) =dF(ao,5u(0)) ,±'bB+ 0(62 ). ,	•.	•	
S 

The "wave" vector k°-and the eigenvectors	in this assumption' are kept'fixed 
hencefoi'th. By assumption (A2) there is a real analytic function 2, 2(b)	25 ± 0(62), 
such that	,	 ' 

(i) 2(b) is a simple eigenvalue of ML (k°, b), 
•	(ii) 2 = (io to) -' ('Jo, B10)'	0. 

Since ML(k, 0)	ML (k°, 0) if IkI 2 + 110 1 2 , T(b) has a real eigenvaliie 2(6), crossing 
• 2 = 0 at non-zero speed, while o L(T(b)) - {2(6)}. is hounded away from 2 = 0 for 

small b. By assumption (Al) on the other hand u(b), b € I, is a trivial solution branch 
of the equilibrium equation Dzlu + Bu + F(ao ± b; u) = 0. This suggests to look 
for non-trivial bifurcating solution branches and to investigate their stability. Two 
cases will be discussed:	

S 

(A) F(x, u) is a gradient, 10 = 0 and the operator B is symmetric, i.e. h'° = b 2 1	-, 

(B) F(a,u) and 1° == 0 are arbitrary but B = 0. • 

Case (A) is related to the Landau-Ginzburg equations treated in [3, 41. Case (B) has 
the most interesting features and is discussed at length. The general case B 0 is 
not considered since it , is "geneiically" simpler than case (B) 'and does not give new 
insights

-S	 •	 -'
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3.2 Liapunov-Schmidt equations 

Lemrnata 1 and 2, and (Al), (A2) enable us to introduce Liapunov-Schmidt equations. 
' Letk°, ..., k8 E Z2 be the list of all -different wave vectors such that ML(k°, 0) = ... 

= ML (1c8, 0). The eigenspace of the Fréchet 'derivative. T(0) at' the elgenvalue 0 is 
spanned by the elements f = exp (i2rL'k i . x), j= 0, ..., S. 

L e ni ma 4: T(0) has index 0 at the eigenvalue 0.	 -. 
Proof: Assume —2 E (T(0)) (with (T(0)) the resolvent set of T(0)); define 

01 = (T(0) +2)*. The lemma states, if (202 - 1)f = g and ().0) - l).g = 0, then 
(202 - 1) / = 0. Thus let /, g satisfy the first two equations. Then /, g E H4(L) and 
satisfy

T(0) g = 0,	 '	 ' '	(6) 

T(0)/'+Ag=O. '	 ,.	-	 (7)
B y (6),

	

= E x Co exp (i2iL'k . x)	for suitable x,. E C. 

With the Fourier expansion / = * exp (i2rL 1k . x) we can express (7) as 
o = !" ML(k, 0) exp (i2riL'k . x) 

•	+ Z (M(k0,0)	+	exp (i2-rL 10 . x)	'.	•	 (8)

where E' means the summation over vectors k q {k°, ..., k8 }. From (8) we get 

	

=O for: k{k°,..,k8},	ML(k°,O)k,+/o=0.	 (9) 

Now 2 + 0, o tML (ko, 0) = Wand	) 0 by (A2). This together with (9) implies 
a j = .9 and - ^kf 	jO for suitable fl j E C. Thus / =	9j exp (i2jrL 1 k i . x) is
itself an eigenfiinction of T(0) at 0, proving the lemma I 

Next we need some notation. Set / = m exp (i27L'k i. x), j = 0,*.., s.. The 
equations

= (/*, /i) (// ' /) h	and	K = I - P 
define houndd projection operators F, K onto the eigenspace' {g I T(0) g = 01 and 
range Ran 2'(0), respectively. Moreover T(0) Has a bounded inverse 0 = (T(0) K)' 
with l)oni 0 = Ran 0 = Ran T(0). Our aim is to find small pairs O, w sdlving the 
equation	 I 

DJw+ Bw + F(o+ö,u()+ IV) '=0.	 (10) 

By, using the decomposition Pw = E c'11 , Kw = g, we 6an replace (10) by the equi-
valent set of s + 2 equations  

(	-	,

	 I
g-+ GK -B(ô) (E c.:/ ± g) ± E R(5) (E ctf + (J)P = 0, 

p  2	- 	. 

(/j*, {B(o) (	+ g ±R(ô) (E a ili + Op 	0;	
•	 (ii)*
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Thereby;

E(ao + 6, u(ô) + . W) = F(ao + & u(ô)) + dF(ao + 6, u(6)) + Rp(ô)wP 
•	and	 S 

dF(c 0 + 6, u(o)) = .dF(ao, u(0)) + B(6). 
By well-known , theorems a sitiall solution pair 6, w of (11) is a small solution pair of 
(10) and conversely (see e.g. [lI, 12] for detail). If we look for solutions lying in a 
suitable invariant subspace H, we get Liapunov-Schmidt equations having exactly 
the same.form as (11), except that the set Uo,..., /} of eigenfunctions is replaced by 
another set which spans (/ .T(0) / = 0) n H. 

3.3 Standing waves 

Prior to coming to the topic of this paragraph, we quickly get rid of case (A) in Sec-
tion 3.1. A glance at the assumptions (Al), (A2) and case (A) shows that weareled 
to seek bifurcating solutions' of the equation F(ao + 6, u(6) ± w) = 0, w E R 2, a 
situation known as "bifurcation at a simple cigenvalue". We content ourselves sum-
marizing the facts and omitting the evident proof: 

Le iii ma 5: Under the assumption of case (A) the Liapunov-Schmidt equations (11) 
have a unique bifurcating solution branch, namely a real analytic pair '6(r) E R, w(r) € R2, 
with r from a neighbourhood of r = 0, which satisfies F(ao + 6(r), u(6(r)) + w(r)) = 0, 
for every r, and 6(0) = 0, w(0) = 0. 

In order to lessen the high degeneracy prevailing under the assumptions of case 
(B) we shall restrict ourselves from now on to the invariant subspace J12e(L) of even 
functions. An element u € H2 c(L) is given by its 'even" Fourier series 

u	cos (2iLk . x) 
where	-

and 11u 12 2 = -	 ( 1 +. (2tL- 1 ) 4 kJ). 

The action of T(ô) on u € 114(L) o H2c(L) is described by
T(6) u = E M(k, 6) k cos (2rL'k . x) 

•	where now	 S 

M(k, 6) = — (2nL 1 ) 2 1k1 2 D + dF( 0 + & u(6)). 

-' 'Next; let k°+ 0 be as postulated by (A2) and case (B). A set (k°, ..., k"}	Z 2 of 
"wave" vectors is called complete if  

1. 101 1 = Ik°1 2, I = I,..., N, 
2. 1k1 2 = 1012, k € Z2 , implies k= ±kj for some index 
3. there are no i j with k = +k. 

We assume a complete set to be given in a fixed way and define, for j = 0, ..., N,'
9 1 (x) =	cos (2nLk . x) and	*(x)	17, cos (2nL 1 k . x). 

The set (q, ...;	) spans the eigenspace H2 e(L) n It I T(0) / = 01, while the set 
{920*, .. .,.v *} fornis a dual basis in H2e(L). Moreover 

=	(no, o) (I + (2L)4 k0 1 4 ) öj.
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By proper scaling we achieve (q*, ,) = 6,,, what will be assumed hneeforth. 
For bifurcational purposes, H2 0(L) is still too large. A tool which provides suitable 

smaller subspaces is given by the lenmia below. For a set y Z2, let y Z2 be 
the smallest set containing x closed against :integer linear combinations. Let H2e(L/7) 
be the closed subspace of H20(L) comprehending precisely those elenients u E H2e(L) 
with a Fourier series of the form E cos (2L1., x), k € y*. 

L em ni a 6: With the help of the previous definitions we can stale: 
(i) If u € 112e(L/7) n H4 (L), then Dzlu € H2c(L/y). 

(ii) If u € H2e(L/j) , then Au € H2'(L/y) for any constant 2 x 2 matrix A. 
(iii) 1/ u€ H2e(L/y), then F(u) € H2 c(L/7).	- 
Proof: Clauses (i) and (ii) are evident. Since F ipolynoniia1, (iii) holds for finite 

sums cos (2rL- 1 k . x), k € y*. By the Banach-algebra property of the scalar 
sp'ace H2 1 (L) there is for -every co a c 1 such that IIF (u) - F(v)11 2 *^5 C 1 ' 11U - v12, provided; 
1 u l121 11v 112	co. Then clause (iii) can be proved by approximation for arbitrary 
u. € H 2 e(L/y) I	 - 

•	Standing waves are obtained by taking for x any of the sets Xi =. {k}, i= 0, ..., N. 
Evidently,	I T(0) = 0) n H2 e(L/ 1 ) = (aggi I a € Q. In order to find, bifurcating
branches of our basic equaton (10) in Section 3.2 which lie in H2 e(L/71 ) we formulate

• the Liapunov-Schmidt equations in H2e(L/Z) 

0 .= g + OK {B(6) (r + g) +X R (o) (r 1 +	-	 (12) 

0 = (ri" ,B(6) (r	g) +ER(6) (r + q)P).	 (13) 

Here, K and 0	(T(ô) K)7 1 are tacitly restricted to H2 e(L/y) and g € H2e(L/71)€
s satisfies(q,*, g) = 0. 

Theorem 1: In H2e(Lfy) the equation DAw + F( 0 + & u(6) +w) 0 has a 
unique, real analytic solution branch 6(r) = r2 (r), w(r) = rp1 + r2(r), with (q, (r)) 
= 0 and small r. The values f(0), h(0) are determined by the equations 

h(0) + GK- R2(0) q 2 = 0,
-	 (14)

f(0) (9j*, B1 p 1) + 2(q, R2(0) qh(0) + (9 9', R3(0) 93) = 0. 
Proof: We show that the Liapunov-Schniidt equations (12), (13) have a unique 

solution branch in H2e(L/71) with the required properties. By the Implicit Function 
Theorem, (12) admits a unique, real analytic solution g(r, 6). Inspection shows that 
g(0, 6) = 0. By setting g = rh we obtain from (12) the following equation for h 

o = h +. OK {B(o)	+ h) +R(6) r- 1( + h)P}.	 (15) - 

In -order to evaluate (13) we recall that B(6) = Bi b + B262 +	= B1 6-+ B2(6).
By inserting g = rh into (13) we - get after sonic rearrangements 

In 

0 = o(*, B1 ,	+	B2(6) Ti + B(6) h+R6)	± h)P). (16) 

SNow (), B 0) 0 and hence (*, B991) 0 by assumption (A2). A glance at (15) 
on the other hand shows that h(0, 0) = 0, i.e. h = rh1 + Oh2. From this and the Im-
plicit Function Theorem it follows that (16) admits a unique real analytic solution 
6 = 0(r) for small r, which satisfies 6(0). = 0. Thus 6(r) = rt(r) for real analytic r,
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and h(r, 6(r)) = r(h i + t(r) h2) = r!i(r). By i.nserting rr(r) into (16) and by comparing 
powers in r we obtain 0 = T(0) B1p1) + R2(0) 2). Since R0) is 
easily seen to vanish, -we obtain r(r) = ii(r)'for real analytic i. Equations (14) now 
follow if we substitute r!i for h in (15) nd r2f for 6 in (16) by comparison of powers 
inn 

Remark: If we setu = zt(6(r)) + w(r), then weobtain the standing wave solutions mention-
ed in the introduction. To make it evident, we observe that a has a Fourier series of the form 

cos (2xL 1pk x),	p EZ.	 . 
Thus if we set (i) =	cos (pz), p E Z, then u =	2Lk- x). Since '	< cc, (1) is 
in C2[0, 2i] and, being a solutidn of a suitable ordinar,' differential equation, it is also analytic. 
The stability of thee standing wave solutions will be our main concern. For simplicity we 
refer to the pair ó(r), w(r) € J12e(L1y . ) as the i-th standing wave branch or the standisig wave 
branch associated with k. 

4. \StabiitY properties	 - 

As pointed 'out in the introduction and elaborated in the next chapter, there is a 
tendency toward instability. Nevertheless positive results exist on standing waves, 
which h9ld if the nonlinearity F(x, u) satisfies an additional assumption. We recall 
that by assumptions (Al) and (A2) there is an analytic function 2, 2(6) = '26 + 0(62), 
suCh that 2(6) is a simple eigenvalue of ML(k°, 6). In order to establish the familiar 
context of stabilitywe need a further assumption	 - 

(A3)	2> 0 and aL(T(0)) - {O}	{z I Re  < O}. 

'This assumption may. hold for some period L but not for an other V L. We are 
.allowing for this fact, saying that T(6) satisfies (A3)in H 2 (L). For notational sinipli- 
city we assume in this paragraph	= 0 and u(0) = '0.	 5 

Let 6(r), w(r) be the standing wave branch associated with the wave vector kt 
according to Theorem 1. A stability analysis amounts to a study of the spectrum of 
the Fréchet derivative DA ± dF(61 (r), u(6 1 (r)) ± u 1 (r)) in a neighbourhood of 
r -' 0. The first step is provided by the theory of analytic perturbations of an iso- 
lated eigenvalue of finite multiplicity due to RELLICH [7,' 10]. To start with, we set 
dF(61 (r), u(6 1 (r)) + w1 (r)) = O(r) and observe that O(r) is an analytic family of 
hounded 1iner operators mapping H2e(L) into itself. Thus G(r) admits an expansiOn 
in powers of r 

G(r) = dF(0 0) ± D'(r),	D(r) = ?'Gr(0) ± _- rG(0) +	
S 

The perturbed eigenvaiue equation to study then is 

(T(0) ± Di(r)) (i;+) = (+ g),	 .	. 

S	

g) = 0 for j = 0, ._AT.	 .	. 

By a straigtforward computation omitted for reasons of space we obtain the equation. 
- for the perturbed eigenvalue 2	, 

0 = Det ().E + ((q21* , - Dr)' Pt +D1(r) (1 -. GK(;. - .Di(r)))_ 1 GKD'(r) ok))). 

In, a next step we will show that the matrix whose determinant is taken in this 
equation is in fact diagonal.
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L em ma 7: Let k°, 'X', k 2 E Z2 be wave vectors such that 
(i) k'++k2,  
(ii) 11C 1 1 = k ' 1 2 = 1k212, 
(iii) k° = ak' + ek2 for some a E Z and . ,- E 

Then a = 0 and k° = +k2. 
Proof: Let a, e satisfy (iii) and assuhw a	0. From (ii), (iii) and Schwarz's

inequality we infer  
jk 1 1 2 = 2 (k', k2)1 ^5 2 lk'l 1k2 1 = 2 101 2	 .	 (17) 

and thus J ai ^ 2. 
Case Jai = 2: According to (17) . we have (k', k2)l = lk'l lk2 l and thus bySchwarz's 

equalIty'case k' =ik' with 2 E {-1, 1} by assumption (ii) contradicting (i). 
Case jai	I: Since JEJ = 1 we immediately obtain from (ii), (iii). 

2 1( k ', k2)I = lk1 1 2 = k'l lk*l.	 (18) 

,Now let k' = (a, b), k2 = (c, d). Without loss of generality we may assume b ^! 0, 
d ^ 0. In addition let n, ,wand n, Lo be the polar coordinates of k' and k2, respectively 
(i.e. 712 '= k'1 2 = 101 2); without loss of generality we may also assume It < LO. Then 
W(', infer from (18) tan (a - ) = 1*.-  

Suhca8e a 0 and c 0: Since ad - bc = 0 w obtain by the Addition Theorem 
of Tangents dc' = (j'+ ba') (i - J/ba')' and thus j13 = (ad - bc) (ac ± bd)-1, 
contradicting the irrationality of C3. - •	- 
• Subca.se a =0: Here 'we have dc' = tan = —(J/3)', in contradiction with the' 
irrationality of j/ i	- 

Subcase c = 0: Then u= rf6 and tht,?5ba' = tan (-r/6) = 1/ff giving a contra-
diction again I 

FOr future use we introduce the following convention: An even element / from any 
of our Sobolev spaces is said to have its wave vectors in the set S	Z2 if its Fourier, 
series has the form /	4k cbs (2iL 1k . x), k E S. 

L e in ma 8: Let k, k1 (i j) be two wave vectors from the complete set and / E H2e(L) 
having its cave vectors in the set {ak + k a EZ}. Lt B = (bpq(x)) be a 2 x2 matrix 

'whose even entries belong to H2(L) and have their wave 'vetors in- fak i I a E Z}. Then- Kf, 
((1K)-' K/ and B/ will have their wave vectors in {ak' + k i I a E Z}, too. 

Proof: That K/and (GK)' K/ have their wave vectors in the set mentioned above, 
follows frot,i the fact that both K a'nd ((1K)- 1 K leave the subspaces { cos (2tL' 0 

X k x)	E C21 invariant for any k E Z2. In order to prove the lemnia.forB/itsuffice
s


to demonstrate that if a(x),b(x) are even members of the . scalar space'H,'(L) with a(x) 
• having its wave 'vectors in (aki I a € -Z} , and b(x) having its wave vectors in Jock + k 

a € Z}, then a(x) b(x) will have its wave vectors in {ak + k I a E 74.' Now this cvi-
'dently holds if a(x), b(x) are even trigondmetric polynomials. The general case then 
follows from the Banach-algebra property of H21 (L) by an approximation argument U 

	

L em ma 9: The spectrum of the Fréchet derivative T(0) + Di(r) in a neighbourhood	S 

of zero ,is decribed by a set {20 I Y = 0, ..., N} 
of 

functions, real analytic in a neigh-
bourhood of r = 0, such that  

(i) Aui(0) = 0,	 - '	 S	 • 

(ii) Ati(r) is the unique local solution of  
0 = 2 + (qj*, —D(r) q' + D(r) (1 - OK. —. Di(r)))1 OKD'(r) ). - '	'
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Proof: Set 

= —D(r) q + D(r) (1 - GK(;. - D(r))) 1 GKD(r) . 
As pointed out above, the spectrum of the Fréchet derivative T(0) + D(r) in a 
neighbourhood of zero is given by the solutions of the determinant equation 

0 =. Det (),E + ((*, fr'))), 
with E being the identity. The lerima is proved if we can show that the matrix 
(a). = ( ( j*, W)) is in faét diagonal. Thus assume p	j. For;., r snfall, 

(1 - GK(;. - D(r))) 1 = !' (GK(;. - Di(r)))t1. 

Now (GK(A - Di(r))) fl GKD(r) 99,, and Di(r) pp have their wave ve'ctors in the set 
{ak + kP I a € Z} according to Lemma 8. Since the space of elements in H2e(L) 
having their wave vectors in the mentioned set is closed, /pi has its wave vectors in 
this set; too. Since j p, k +k. Thus by Lemma 7, ak + kP +ki and hence 
K,*, f) = 0. From this, existence and uniqueness of the functions 2i follow im-
mediately from the Implicit Function Theorem I 

As preparation to the main theorem we note 

Lent ma 10: For the functions W the equations (d). i1dr) (0) = 0 hold, 
Proof' 	Lemma 9, ;.O (r) = 2 1 r + 0(r2). Front assertion (ii) in Lemma 9 we 

infer A 1 i = (;*, Dr(0) j) where 

==	-. = dF((r), u((r)) + w1(r)) 

± du F(61 (r), u((r)) + w(r))	+ 

Now (dô/dr) (0) = 0 and (dw/dr) (0) = 'T' i according to Theorni 1. Thus A1 = 
dF(0, 0)	which is easily seen to vanish I 

•	Theorem 2: Assume that besides -assumptions (A 1)—(A3) 

dF(0, 0) = 0 and (,°, dF(0, 0)0. 

(i) I/ the i-th branch of standing waves c5(r), w(r) is stable in H2 e (L1{kt}) for small 
r 0 (i.e. against small perturbations belonging to H 2(L/{k}), then it will be stable in 
H2 (L) and every other' branch of standing waves ôm(r), wm(r) will be stable in H2e(L). 

(ii) If ci flL (T(0)) - (0) {z I Re z < 01 for a particular integer n > 1 and the. -th 
standing wave branch 6 1 (r), w(r) is stable in H2e(L/{ki}), then every branch of standing 
waves 

cäm (r), wm(r) is stable in H2e(nL) (i.e. against nL-periodic perturbations'). 
Proof: To start with, we compute the coefficient 22uj in the expansion 1 1 r) = 22r2 

(see 1eninia 10), ignoring for the moment whether i = j or i	j. From
Lemma 91(u) we infer that 22 i has the form 

=	(ç 1 , D,(o) qj) - (q?1*, Dr'(0) GKD,(o) 92j). 

Here is, as before 

Di(r) = G(r) - G'(0) and Gt(r) = d0F(&(r), u(6 1 (r))+ w(r)).
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From the expression for Dr (= dDfdr) given in the proof of Lemma 10 it follows that 
/ D,,(= d 2DVdr2) is a sum ( + + 6 where 

•	t(r) - do6F(6 1 (r), /(r))	 S 

•	 t2(r) = d6611(ö1 (r), 11(r))(d3.)2

	dwi 13(r) = douF(ô(r), /(r))	
(	

+	
),	 S 

(4 (r) = du F(5 1 (r), f,(r))	
()2 +
	

() + 
•	 (5(r) = d6uuF(6(r),t1(r))	

(	
+	

), 

(6(r) = duuF(6 1 (r), 1(r)) (T6	 +
 dwi 2 

and where /(r) = u(&(r)) + w(r). Since dF(0,0) = 0 by assumption, it follows 
from Theorem 1 that i(0) = 0 for p = 2,3, 4, 5. It remains 

D(0) = 2d6F(0, 0) (0) + dF(0, 0).2 
• Now, as already shown, Dr4(0) = dF(0, 0) , i.e. Dr4(0) = 0 by our assumption. 

Thus we get 

•

	

	 = (q, d 6F(0, 0)	f(0) +	dF(0,.0) 29).	 (19) 

In order to evaluate this we recall the second equation in (14) defining f(0), and ob-
serve that 

•	R2(0) = dF(0, 0),	R3(0) = dF(0, 0),	 S 

du B1 = dF(0, 0) + dF(0, 0)	(0).	 * 

Since dF(0, 0) = 0 we find	 -	S 

f(0) = -(q'j, d 6F(0, 0)	(q,*, dF(0, 0) q). 
Inserting this into (19) and observing that	d6F(0, 0) q) = (q, dF(0, 0) q	• 

•	yields	 S	 - 

= ±(ç*, dF(0, 0) çg'))	dF(0, 0) j3).	•	•	 S 

By a further evaluation based on our definitions of the scalar product we obtain	 S - 

Tjj	dF(0, 0)	) (1 + (2L 1 )4 k);	 (20) 

Ifi+1,then	 S	 • 

=	(flo, duF(0, 0)	(i + (27tL 1 )4 101 4). ,'	 (21)
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Since I01 2	...* = kN I 2 we have	 - 
22 1t	22mm for rn = 0, ..., N1 

if p + q, i+	then j 2pq = 2'i.	 (22) 

(i): Since	dF(0, 0) 3) = 0, we have 22P5	0 for all p, q = 0;.. , N, by (20), 
(21). If the standing wave, branch 1 (r), w(r) is stable in H2e(L1{ki}) for small r	0,
thennecessarilv 2 2" < Oand thus.( 0 ,d,45F(0, 0) ) > 0 b (20). But (21), (22) then 
imply 22P < 0 for all p, q	0,'..., N what entails the stability of all standing waves 
óm( r), Wm(r) in H2e(L), for ni = 0, ..., N.	 - 

(ii): We first observe the facts 

Ink0 1 2 '= ... = In/cN I 2 ,	11IflL(nk, ô) = ML (k, 5),	k € Z2, 

1120(L/{k}) .= Ii2e (nL/{nk} ) forany k E Z 2 .	 - - 

This, together with the assumptions of part (ii) implies that (A1)—(A3) apply to the 
wave vectors nk°, ..., nkN . Thus every standing wave branch (r), w(r) (p = 0, ..., N) 
is also a tanding wave branch in H2e(nLf{nkv}), now belonging to the wave vector 
nfrP . Eventually the set {nk°, . . ., nk''} has to be extended into a complete set {k°, . . ., Jc-'} 
where N :!E^ M and k = nk for	N. The cigenfunctions associated with, are 

= 4eos (2r(ni) -1 k i . x),	= 77, cos (2z(nL)-' k . x) 

with	= q, * = q* for j f, N. Finally we have starding wave branches Ô(r), 
ü(r), p M, where 6 ,(r)'= ô(r), ü(r) = w(r) for p ;5 N. In order to determine the 
stability of the branches ó(r), ü(r) we compute again the coefficients 2 2 0, which, as 
before, are determined by the equations (20)—(22), except that the scalar product 
in H 2 (nL) has to taken now. But since (2J1L_ 1 )4 IktI 4 = (2z(nL),-1)4 17W1 4 we infer 

pq = J22" for all p = 0,..., M, p =.q, 
2	

2t ifp==q.p,q=0,...,M,i4j and j=0,...,N. 

Since 22" < 0 and 22 < 0 accordiig to the assumed stability of (r), w(r) in H 2 0(L) 
we infer the stability of all branches (r), ü'(r) (p = 0, ..., M) in J12e(nL) I 

Remarks: 1. A particular case with dF(O, 0) = 0 arises,	 — if F(0, —u) = F(0, u). . 
Whether Theorem 2 applies to solution branches other than standing waves is not known to. us. 
A verification see'ms to depend on non-trivial number-theoretic-properties of the sets ((x, y) 

'z2 + y2 = n, x, y € Z}. 3. 'Theorem 2 can be cast into a thumb rule as follows: 
(I) If dF(O, 0) 0 and if the standing wave branches O(r), w(r) are stable in H2C (L), then 

they will remain stable in H2e(nL), provided the trivial branch u() remains stable in 112C(nL)' 
or small d < 0. 

Put it the other way round: 
(ii) If dF(0, 0) = 0, then 5 1 (r). w(r) can only lose stability in 11 2e(mL) if the trivial branch 

v(à) loses stability in 112 (nL) for small 6 <'0. 

5. Instability results 

5.1 The gradient case 

The first situation giving rise to instabilities is provided by case (A) in Section 3.1.. 
Here we are back in the full space 112(L), the system to investigate is 

Dziu + Bu+ E(, a) = 0	- - .
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with B = ((0(7)) symmetric, i.e. b" = b', and where F is' a gradient., i.e. F(a, u) 
= VV(a, u) for some potential V. Now we have as in SectiOn 3 

M,(k, 6) = _(2L_1)2 k 2 D + i2rL'B(k) + d,F(ao ± 6, u(6)) 

with B(k) = ((b ik)), and the spectrum of T(ô) = DJ ± B + dF( 0 + & u(6)) 
is aL(T(6)) = U (M , (k, 6)).	 . .	. 

L em iii a 11: Let A, B be hermitean n -x n matrices, )* the largest eigenvalue' of A 
and ç an eigemval'ue of A,+ iB. Then Re ^ 2. 

Proof: Assume (A ± iB).x = x, (x; x) = 1, where (, •) is the usual hermitean 
scalar product. Then Re = (x, Ax)	I 

Lemnia 12: Let k° == 0 'in assumption (A2). Then there is a A E aL (T(0)) wzth'.'> 0. 
Proof: Since .F is a gradient., C = dF(ao, u(0)) is real and svninietric. Let A' and 

A be the largesteigenvalues of A = —(27L-1)2 I 0 1 2 I) + C and C, respectively. Since 
D is positive, 2* < 2. By assumption (A2), O'e a(ML (k°, 0)) where ML (k°, 0) = A 
+ i2zLB(k0 ). By Lemma 11, 0 < 2 < A. Since C = ML (O, 0), 2. € 6L(T(0)) I 

Theorem' 3: If 6(r), w(r) is any stable solution branch bifurcating from the trivial 
branch u(6), then w(r) must necessarily be spatially constant and satisfy Fl,ao ± 6(r), 'u(6(r)) ± w(r))	0 identically in r, i.e. 6(r), w(r) is itself trivial. 

Proof: Let k° be the wave vector in assumption (A2). If k° 4 0, then there is a 
A € o4T(0)) with A > 0 by Lemma 12. From this and a perturbation argutitent' it 
follows that for any bifurcating branch 6(r), w(r) the Fréchet.derivative 

DA ± B + dF(ao + 6(r), u(6(r)) + w(r)) 

has an eigenvalue in the vicinity of , provided r is small. But this would' imply 
instability. The theorem then follows from Lemma 5 I 

It was somewhat disappointing that the two-component Landau-Ginzburg equa-
tion investigated in [3] falls under the scope of Theorem 3.	. 

5.2 Generic instability' for large periods 

Our next aim is to show that although T(o) may satisfy assumption (A3) in H2e(L) 
for some L it will necessarily violate (A 3) in H2 e(nL) for large integers n, provided 
some, generic assumption holds. This means that the trivial branch u(6), 6 € I, be-
comes unstable in 112°(nT4as n T oo, and as a consequence of this, that all bifurcating 
branches become unstable in 11 2 e(nL) as n t co. To start with, we take it for granted 
that the assumptions (Al) and (A2) hold as before, but not necessaril y (A 3). Instead 
of it, we.suppose another "generic" condition, namely assumption 
(A') , (770 , D 0) + 0, with i°, o as in (A 2).  
As a preparation consider the matrix  

- ,	A(ô, e) = dF(6, ?t( 6))	((2jrL1)2. 1 01 2 + e) D 
with k° as in assumption) (A2). From (A2) and perturbational arguniients itollovs 
that there is an analytical function A = 2(6, e) defined in a neighbourhood of (0,'0)
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such that 
1. 2(0, 0) = 0, 
2. 2(6, e) is a simple eigenvalue of A(6, s), 
3. 2(6, ) = 26 + 22r + ..., where (io,	Al = (?o B10) 

and (, CO) 22 =	(*o, D0). 
From assumptions (A2) and (A4) we infer 

4. A + 0, A 2 40. 

Lem ma'13: For every sufficiently small e 0 4 0 'having the same sign as 22 there is a 
/1 > 0 and a /22 with 0 </22 < IeI such that 1(6, e)	e022 /4 whenever t6l	p 1 and l e - oI	hold. 

Proof: Assume e.g. 12 > 0. Sinc&A(6, e) =;.o+ (l2 + H(6, e)) with 11(0,0) = 0 
there is a z0 > 0 such that 12 + H(6, r)	322 /4 if 1 6 1, Je ^ p. Then for a fixed e0 
with 0 <  /20/2 there is a p 1 with 0 < ,u, ^5 po such that 2(6, ro) O2/2 if 
161< p 1 . The existence of /22 finally follows from the continuity of 2(6, ) in the rec-
tangle [—u 1 , P21 x [0 1 1u0 ] I 

Lemma 14: Let the assumptions (Al), (A2) and (A4) hold for L. There is an e0 #0 
and an no > 0 such that for every integer n ^! n o there is a wave vector k € Z2 with the 
property that M(k, 0) has an eigenvalue 2	IeoI 1221/4. 

Proof: Assume e.g. 22 > 0. We can chose e > 0 in the last lemma so as to satisfy 
'0 < EO - 1-12 < EO ± /22 <L- 2. For a given integer n > 0 let q > 0 be the integer 
deteritiiiicd by (q - 1)2 < 712 I kO I 2 	q2. From this choice of q, C01 /22 we infer 

(2	ik0 1 2 L-2.+ Co + /22 < (2)2 (q ± n) 2 (nL) 2 ..	 (23) 

Now set m = (2m)2 (q + p)2 (nL 2 for p = —1,0,..., n. Then we find m.'-r— ni 
^ (2n) 2 (nL) 2 (n(l k°I + 1) + 3) for p <n. We thus may take n so large that 
M1+ 1 - mp <2/22 holds. Now consider the wave vectors d = (q + p, 0) for p = - I, 
0, ..., n. From (23) and our choice of nit follows that for at least one p € {l, ..., n - I) 
the inequalities 

-	(2)2k°2/L2 ± o - p < (27t) 2 d 2/(nL) 2 <(2i)2 J kO I 2/L2 + C + /2 

hold. By our choice of e 0 , /2 and by the last lemma it follows that M fl L(dp, 0) has an 
eige!ivalue I	e022 /4 I 

The main instability result is given by 

Theorem 4: Suppose that assumptions (A 1), (A2) and (A4) hold for the period L. 
Then there is an integer no > 0 such that every solution branch 6(r),w(r) which even-
tually bifurcates from the trivial branch u(6), 6 € 1, in H21 (L) is unstable in .H2e(nL), 
provided n	no:- S	

S 

Proof: Let n0, e, 2 be as in the previous lemma and assume n n0. Set as before 
T(0) = DLI + dF(0, 0). Since the spectrum 47 flL (7 7(0)) of T(0) in H20 (nL) is given by 
U c(M 15 (k, 0)), it follows from Lemma 14.that a, L (T(0)) contains a real eigenvalue 
2 I Q 122 1/4. By a perturbation argument we derive that every solution branch 
6(r), w(r) which eventually bifurcate in 112e(nL) from the trivial branch u(6), 6 € I, 
has an eigenvalue in the set (i I Re 'z IeoI 221/ 8), provided r is sufficiently small. 
Since every solution branch 6(r), w(r) in H2e(L) also belongs to H20(nL), the theorem 
is proved I
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5.3 Instability against other perturbations 

Let 60(r), w0(r) E H2e(L) be the standing wave branch associated with k°, given by 
Theorem 1, let L' =l=L be any other period and consider the initial value problem 

it, = DA'u + F(ôo(r), u4,	 0	 - 

u(ôo(r)) + wo(r) + cos (2(L')-' O.. x).	
( 

The problem arises if for small e the solution u remains close to the equilibrium solu-
tion u(óo(r)) + w0(r). One,of the smallest spaces within which we could try to solve 
(24) is the Hilbert space Hg of almost periodic even functions \having Fourier series 
of the form  

U =	pq cos (2i(pL' + qL'- 1 ) k° . x),	p, q E Z, 

provided with the norm	 - 

/	lu112 = E 1$1 2 (1 + (2n)4 (pL' + qL0L1)4 lk°l) < cc.

One should then extend Kielhöfer-'s approach to Ha and to operators'perator with continuous 
spectrum. The elaboration of this is not within the scope of this paper. We have to 
content ourselves with a. few indications suggesting that in spaces like Ha instability 
prevails. At the root of this is again Lemma 13. Let, for Ic E Z 2, M'(k, ó) be the matrix 
_(221 ) 2 lId 2 D +.d5F(, u(â)); thus M'(kL-','O) = M j, (Ic, ). Suppose that assumptions 
(A 1), (A2) and (A4) are holding for the period L, with Ic° E Z2 as in (A2). Thu g pre-
pared we state	 . .	. 

• Lemma 15: Let L, L' be rationally independent. Them there a)e a, b € Z such that 
M'((aL'l ± bL') 1°, 0) has an eigenvalue	leol 12II4, with co, 12 as in Lemma 13'. 

Proof: Assume e.g. 22 > 0. By Leninia 13 there is /1 2 > 0 with 4u2 <e such that 
_((2zL_ 1 ) 2 110 1 2 + e) D + d5F(0,0) has an eigenvalue 2	€01214, provided-le . — ol 
^ /L. Now define the' real number > 0 by (2n)2 1012 2, = (2nL 1 ) 2 lk°l + o. 
Since L- 1 , L' are rationally independent, we can make laL' + bL' - as small 
as we like it by. a suitable choice of a, b € Z. From these reharks the lemna follows 
immediately I	- 0 

Remark: aL' + bL'' in the lemma may be taken arbitrarily close to L-'. 
Next, let a,-b he two integers as provided' by Lemma 15. Consider the closed sub-

space H* Ha of the elements with Fourier series 

cos (2i(pL' + bL') Ic0. x),	p € Z.	- 

Finally, let fl9 H be the ' subspace of elements u whose Fourier series satisfy 

- E kepq l 2 (1 + (2v)8 (pL'± qL')8 110 19 < cc,	p, q E Z. - 

On fl we define T(0) = D11 + dF(0, 0) by its componentwise action, i.e.	0 -

T(0) u = E (M'((pL_l + qL'') 1°, 0) ) cos (27(pL' + qL') 1° . x). 

It will be routine to show that T(0) leaves 11* invariant, that it has compact resolvent 
on H* , and that its spectrum in H* is given by  

•	* c*(T(0)) = U c(M'((pL 1 + bL'- 1 ) 1°, 0)). 

33 Analysis Bd, 6, Heft 0 (1987)	0
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From the last lemma we infer that T(0) has a real eigenvalue A> 0 in fl*• Now each 
itiember w0(r) of the standing wave branch w0(r) is also a member of H5. Only 
routine work is required in order to define the action of the Fréchet derivative T(r) 
=.DJ + dF(ôo(r), u(50(r)) + wo(r)) on H properly. In particular it turns out that 
T(r) leaves ll* invariant and that the resolvent of T(r) on 11* is compact. From 
this, ' from the property of T(0) mentioned above, and from the usual perturba-
tion argument we derive that T*(r) has an eigenvalue A. with Re), > /0, provided r 
is sufficiently small. This means, if the principle of linearized stability carries over 
to the present situation, then the standing wave branch 60(r), w0(r) is necessarily 
instable in Ha. Thus instability seems to be, rather the'rule than the exception. This 
does of course not exclude the possibility that u(o(r)) + w0(r) is stable against the 
particular perturbations of the form cos (2rL' 1 k6 . x). Whether, this is the ease or 
not is unknown to us.	 - 

6. Conclusion  
We conclude with some remarks on the chosen frame. The restriction to two-component 
vectots u(u 1 , z 2 ) is for simplicity only: more components would not exhibit new, phenomena, one 
component narrows the range of possibilities considerably. The.restriction to space dimension 
a = 2 (i.e. to two space variables (x 1 , x2 )) is more serious. The choice a 3 i justified by the 
physical background mentioned in the introduction and also by the Banach-algebra property 
of the space 112 1 (L) which simplifies the theory considerably. The results of Chapter 5 carry 
over literally to n = I and n = 3, while Theorem 2 loses its interest in case of n = 1, in which 
bifurcation from a single eigenvalue prevails. Whether Theorem 2 holds for dimension n = 3 
Js not known to us; we have not been able to prose the crucial Lemma 7 for dimension n = 3. 
The case of functions u(x11 x2 ), L 1 -periodic in x1 and L0-periodic in x,, with L1 , L2 rationally 
independent behaves rather like the case n = 1 and has been omitted therefore., Finally we 
have chosen a polynomialnonlinearity F partly because of the physical background and partly 
for simplicity, but it is clear that weaker assumptions on F would suffice (e.g. analycity). We 
have treated standing wave branches exclusively, although it is easy to see that there are 
many more bifurcating solution branches. It is a difficult task to describe and to classify all of 
them under appropriate generic conditions. We- have only obtained some partial results in this 

'direction. E.g. it can be shown that each subspace H2C(L1lki , ki)) for i j contains exactly 
four, bifurcation branches, two of which are of course the standing wave branches associated 
with ki and ki, respectively. But even this restricted result i not quite simple to prove and has 
been omitted for lack of space. Questions about the stability behaviour of bifurcating branches 

- other than standing waves (such as whether Theorem 2.applies to them or not) immediately 
lead to elementary but tricky questions about the number-theoretic properties of the sets 
((x, y) I x2 ± y2 = n, x, y E ZJ. Finally we note that there is an abundance of examples 
which fall under the scope of Theorem 2, but since their discussion would require some place 
we have renounced to describe them. 
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