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Stability Properties of Space Periodic- Standing Waves

B. SCARPELLINI

«\Es werden Cleichgew ichtslésungen von parabolischen Systemen der Form & = DAu + F(x, u)

betrachtet, wo D eine 2 X 2-Diagonalmatrix, a ein Verzweigungsparameter, u = (u,, u,) ein
Zustandsvektor und ¥ eine polynomiale Nichtlinearitit bedeutet. Es wird angenommen daf3
ein trivialer Losungszweig u(d) € R2, 6 € I = (—¢, ¢), vorliegt, d. h. F(o, + 6, u(d)) = 0 fir
ein xound alle § € I ist. Eine Periode L wird festgehalten und unter passenden Voraussetzungen
werden Verzweigungsscharen von réumlich L-periodischen, stehenden Wellen konstruiert. Es
wird gezeigt, daB diese Scharen fiir L t oo generisch instabil \scrdcn daB sie aber unter der
Annahme d,,, F(«g, 2(0)) = O gegeniiber nL-periodischen Stérungen (1 < n € N) stabil bleiben,
falls dies fur kleine 6 < 0 auf den trivialen Losungszweig u(d) zutrifft. Physikalische Spezial-
fille bilden die sogenannten Landau-Ginzburg-Gleichungen, die in der Landau-Theorie der
'Phascnubcrga.nge auftreten.

H .
Paccmarpuarorea pasnoaecuue peuteniia napabodHyecKkux cucTeM BiAA u = DAu + F(x,u),
-rae D — nuaronanbHasa 2 X 2-mMaTpHUA, a — MAapaMeTp BETBIAEHHA, u = (¥, 4,) — BEKTOP
cocrosinnii u F — nonnHoMMaabHas Heanuednocts. IlpeamonaraeTca cyuecrBoBanue
HeTpUBMANLHON BeTBM peiienuA u(d) € R2,.6 € [ = (—~¢, +¢), T.e. F(x, + 6, u(0)) = 0 naa
HEeKOTOpOro o, it Bcex O € I. Torna ¢urcupyerca nepuof L 11 npi MOAXONAUIMX Npen-

MOJIOHEHUAX KOHCTPYHPYIOTCA DPA3BETBIICHHBE CEMCNCTBA MPOCTPAHCTBeHHO L-nepuonn:

YeCKHX CTosunxX BoaH:. I[lokaswiBaeTcA, 4TO 9TM cemelicTBa GYNYT HeyCTONYHMBHIMH npu
"L % co. Oanaxo, npit ycaosun d,, F(x,, (0)) = 0 ol 0CTAIOTCA YCTONUHBLIMM OTHOCHTENIBHO
nlL-nepuoguvyeckux Boamyulenuii (1 < » € N) ecilit TO. IIMEET MECTO A TPUBHANLHOI
. BETBI PeUIEHHA NpH MANBX & < 0. OU3HYECKHE YACTHHIE. CTIY4al — TaK Ha3bBaeMbie ypaB-
"Henns Jlanpay-TuuaGypra, BcTpeuaemsie B Teopun (asonoro nepexona Jlangay.

. , . .
Equilibrium solutions of parabolic systems of the form % = DAu + F(a, u) are considered, -

where D -designates as 2 X 2 diagonal matrix, « a bifurcation parameter, u = (u;, u,) a state
vector and F a polynomial nonlinearity. A trivial solution branch u(d) € R? 6 € [ = (—¢, &),
is supposed to be given, i.e. F(a, + J, u(d)) = 0 for some o, and every ¢ € I. Then a period L is
fixed and under suitable assumptions space-L-periodic bifurcating standing waves are con-
tructed. It is shown that- these bifurcating branches become generically unstable as L 1 oo.
Under the condition of d,mF(o‘o, %(0)) = 0 however, they will remain stable against nL-periodic
perturbations. (1 < n € N), provided that the trivial solution-branch %(é) behaves alike for
small § < 0. The so-called Landau-Ginzburg equations arising in Landau’s theory of phase
transitions constitute a specml example in physics.

’

" 1. Introduction

1.1 Phg'/sica‘l background

In some parts of statistical mechanics, particularly in Landau’ s ‘theory of phase
transitions, one encounters parabolic systems of the form

! ’ ’f&; =f,~u.~;+ 1’1,'(“, u;,...,u“-), = 1, ...,'N, i (1)
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.- .. {
where u = (u,, ..., uy) is a state vector « is a one-dimensional bifurcation para-

meter. The £; are elliptic second-order operators and F = (F,, ..., Fy) designates a

A

nonlmcarlty po]) nomial in both in « and in the w,, :.., uy. The dnnensnon of the
space on which the £; are operatmg is n < 3 and the %, and the F; are independent
of zy, ..., z,, ¢, i.e.. the system is invariaht under translations in space and time. The
vector u(z, t) describes the, state of a large body £, at the point x € £, for the time
.t =0, provided that 2 is far away from the boundary 00. ?

sustained by experience, that under these assumiptions « has properties being ]argely
independent of the conditions at the boundary. It is customary now to impose
periodic boundary conditions on u, i.e. u has to be L-periodic with respect to cach
space variable and its period L should be small compared with the dimensions of 2

and large compared with molecular distances but unspecified otherwise. One expects '

the solution u to have propertiés essentially independent of L or to show a certain
~ asymptotic behaviour as L1 co. Here was shall mvestlgate a class of bifurcating
_solutions from this pomt of view. -

~

-1.2 Bifurcation problems . o T

Let be N = 2 for simplicity and ¥ = ;4 with 7; > 0, in. general, where 4 is designat-

"ing the Laplauan acting ‘on R2.'The parabolic system (1) gives rise to the elliptic
equilibrium system vcctorlally wntten as

.

t is a widespread belief, -

Fu+ Flo,u) =0. - _ : ' | @) -

" Let I = (—e¢, ¢) be an Jrltcrvall u: 1 - R an ana]yttc mapping and &, a paramcter
value such-that F(ao + 6, u(d ) = 0 for.6 € I. Then the fannly

: {u(0)}oer o | . o | 3)

w1ll trivially be an L-periodic. branch of solutions of (2 for any L > 0. Although we

_are restricting ourselves to even solutions only, there is generically- a large number of

“solution branches bifurcating from the trivial branch (3) under familiar spectral
conditions. We shall investigate how the stability of these branches is depending on
the period L: e.g. a L- penodlc branch. being nL-periodic, too, for natural n, one may
".ask, whether it will remain stable against nL-periodi¢ perturbations if it behaves
alike against"L-periodic perturbations. It will be shown that all bifurcating branches
become generically unstable as # 1 co. Among many other bifurcating branches there
is a distinguished set, termed as standing waves, being of the form »(2zL~% -.x) with v
" 27- peI‘lOdlC ‘and k- x = kyx, + ko, for any integers k,, k,. For these branches we
shall get a positive result saying that the branch will remain stable against large
nL-periodic perturbations, provided that some additional assumptions are satisfied.
For a precise formulation of these and of further results we refer to the text.

2. Functional analytic background

2.1 Soholev spaces
"Let C be the complex numbers, R the real ones and let exp denote the exporential
function. For p = 1, 2 define T',(L) to be the set of flnlte tngonomebmc sums

2 Leexp (122l % - z) to- - o
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~

where ¢ € 07 and k -z = k2, + k2, with 2 = (z,, 7,) € R? and k = (k,, k,), for
integers k;, k,. We set ' '

¢ a[al . .
“-D* =D al)y — — ) .
B Sy d2,%1 02,

with @ = (&, op) being a multiindex and || = a, + &, For u, v € Ty(L) we define
the scalar product ‘ )

o L L .

1 .

. - » R ,\—' a %, 2

o ["f: Irm szf Ial._s_,m(D u,Db)\dz

90 “ - o T . .

* where (a, b) = }, aibi for @, b € C?. It gives rise to the norm |-|,, = [-> - ]2 Now let
(H,,,”(L), [ ~],,,) be the Hilbert space obtained from the pre-Hilbert -spacel(T,,(L),
[ -],,,) by taking thé closure with respect to |-|,. Providing T,(L) with another
scalar product . . . co : .

W On = X (2 m) (1 4 (2nL1)m 2m)

\

fgr .

-~

= 3 Cpexp @nLl %k -z), v — 2 meexp (2aL 1k - :;:)

with k] = ‘(lc12 + k212 we get a's'ec;)nd Hilbéri space (C;*,,,P(L), (, ~)m) with norm
I-lln, by taking the closure of 7',(L) with respect to the norm | +flm = (-, ;),,,“/2. :

. Though H,P(L) and ¢,,P(L) arc not identical, they contain the same elements and are boun-
" dedly isomorphic to each other: Without running the danger of confusion we may identify both
of them, thus writing /7,,7(L) and considering it, provided with equivalent norms | -|,, and |||l
The H,P(L) are spaces of vector-valued L-periodic functions having generalized derivatives up
to order m. They admit a Fourier-series description-as follows: Each « € H,P(L) has a Fourier
expansion f(u) = 3 {, exp (12aLtk - z) satisfying
; | < :

218 (1L EP) < 00, G €CP. )

Conversely, to each Fourier series / having this property there is a unique € H,P(L)/with
f = {(u). Thus H,P(L) may be identified with the set of all Fourier series satisfying (4), provided
with the scalar product-defined by '

;. (¥ = I G ) (1 + (22L1)2m [k]2m) ~
if . N .
‘u = 3.l exp (i2alk - 2) and v=} Ny exp (2rnL1k - x). ]

"The spaces I,,(L) have some familiar propertics. Set @ = {(z,, 2,) | 0 < z,, 2, < L}
and let-Cp"4(@), p = 1, 2, be the set of (eventually vector-valued) functions having
uniformly bounded and uniformly continuous derivatives up to order m on @, whose
mi-th derivatives satisfy a Holder condition of order 2 (0 < 2 < 1) on Q. By introduc-
ing a suitable norm, C;™(@Q) becomesa Banach space, for details see[1: pp. 9,10]. The -
properties in question are the following: :

(PY) HpP(L) is compactly embedded in H,P(L) for m < q[2: p. 169)].

(P2) Hf o(L) is continuously embedded in C,i(Q) for 0 < 2 < 1 [1: Theorem 5.4]. For
the space dimension,n = 3, 0 < 2 < 1 has to be replaced by 0 < 2. < 1/2,

(P3) H,'(L) is a Banach algebra for m = 2 with respect to the norms |- |, Il [lm respec-
tively, i.e. if w, v € H,!(L), then uwv € H, (L) and |wv|p < K, [ulm [0]m, |[u0]ln
= K, |ullm [llm for suitable constants K,, K, depending on L [1: Theorem 5.23).

32* ) ) ot
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Since we will be working for thc most part w1th the spaces H,,%(L), we set H,,,(L)
= H,*L) wrltmg ( -y instead of (-, -)..

2.2 Generators of semigroups

‘As a last preparatory step we show that the elliptic-operators which -may appear as-
Fréchet derivatives are wellbehaved. To this end let

D= (Ojm7;) Wwith ; > 0,
Biz) and A(x) for j=1,2 and z = (z, )

be.2 % 2 matrices, A(x) as well as Bj(z) having entries in H,(L). We 1ntroduce the
operators By, E,, E, and 8; (j = 1, 2) as follows:

E, = DA selfadjoint is defined on-H,(L) by the eduatnon ) .

E2(Z L exp (22rLk - x)) = — 3 |k|? (2nL~1)? (D{) exp (z2nL k. x).
.0 is defined on Ha(L) by the equat-lon
6(2 ¢ exp (2nL %k - x ) = 2 Lii2aLk; exp (i2nL‘1k - x):

Since H21(L is a Banach algebra Bj{z) and A(z) act as bounded operators on Hy(L),
and 80 we may define

= A(z), Z‘B(x) 6

Lemma 1 The operator E=E,+ E, + E, is closed and genemtes a holomorphw
semigroup. .

. AY
~

Proof: Set £ = min (74, 7,), ¢ > 0, and rewrite £ in the form E = —E’c + M
with E, = (2aL7')2¢?] — E, and M = E, + Ey + (2nL~')? ¢2I, where I has the
meaning of the identity. Evidently E, is positive definite, sclfadjoint with Dom E,
= H,(L) and Dom E}? = Hy(L). According to [8: Lemmata 2.1 and 2.3] our lemma
is proved, if we can show that

(iy Dom E!2 S Dom M and
(i) || Mul), S c ||E”2u”2 for u € Dom E2,

Now is Dom M = Hj(L) by definition, whence (i) follows. In order to verify (ii), we set
E = (2nL71)? 2] — &?1A. The operator E, is positive definite, selfadjoint with
Dom E, = H(L)and Dom E”" = Hy(L).- Moreover, |[E!ul|, < ||E¥?ul|, foru € Hy(L).
It thus Suffl(,es to prove (ii) with E'?in placé of E%. By a stralghtforward computa-

tion'we obtain /

NEYull? = 5 (5, t) (L1 63(1 + k(%) (1 + 2nL1)* [KY),
12ull? = X (L Co) Vegl? (22L71)2 (1 + (2L1)* [klH)

for u = 3§ exp (:2rnL7 % - x) € Hy(L), ‘entailing the existence of a constant ¢, with
185l < co ||EM2uf)y for u € Hy(L). By property (P3) of Hy\(L) there is another con-
. stant ¢, such that | .

I1Bull: < ¢ flull, and (4 + (@=L 8,21) o, S ¢y [lull

for u € HZ(L) Combmmg these results we will fmd a consta.nt ¢ such that || Mu|,
'S c || EV2ully for u € Ha(L) verifying (ii) §
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Lemma 2:"The resolvents of E are compact.

Proof: Let 2 belong to the (non-empty) resolvent set of E, let, for the moment
H/(L) be H (L), but provided with the norm |- [lo- By Lemma 1, E — 2 is closed,
mappl_ng its domain H,'(L)onto H,(L). The operator E —  is then closed as a map-
ping from H,(L) onto H,,(L), because Jjull; < |jull,. Since (E — 7)™ maps H,(L) onto .
Hy(L), (E — 2)~! is also closed and consequently bounded, i.e. [(B — Z)"1u|,
< cllull; for a suitable -c. Now H,(L) is compactly embedded in H,(L), by property
(P1) in Section 1.1. By a combination of these facts the ]emma will be proved 1

F(x, u) being polynomial in «, u,, u, and H,(L) being a Banach algebra, lmown
results on local existence and uniqueness apply to the evolution equation

u—Eu—{—‘F(ocu) ’ )

(see cg [9: Theorem 1.5/p. 187)): For v € H,(L), let d,F(x, v) be the Jacobian of F
- with respect to % at v. The operator E' = E + d «F(x, v) being of the same type as E
consequently has the properties described in Lemmata 1 and 2. Therefore the prm-
ciple of linearized stability (see [6: Chapter 5]) applies to (5) ie. if U € H.,(L ) is an
equilibrium solution of (5), Buy + F(x, u,) = 0, then

(i) u, is asymptotically stable if Re 2 < 0 for all ) € o(E’ + d,F(«, uo))
(u) 4, is unstablc if Re 1 >0 for some A€ a(E + d, Fx, 'uo,)

' Remark: If we consider E as an operator acting on Hy(L), with Dom £ = H,(L), then £
- still has the properties stated by Lemmata 1 and 2. But F is not a smooth mapping from Hy(L)
. to Hy(L). The principle of linearized _stability then only holds under more complicated circum-

o stances, involving fractional operators (see c. g. [8] for detail). One .might expect some equili- ‘

brium solutions u € Hy(L) — H,(L) to ‘get lost. However, slight extensions of the regularity
results in [5: Lecture 5] e\(clude this pOSS]blllty as can be shown.

"3. Bifureating branches

3.1 The bifurcation problem

[y

Below the operators E, = DA and 9; (j = 1, 2) are the same as in Section 2.2. For
a = (a), a,;) € R? and f € H3'(L) we set S .

(@) f = @y 8f + a, 8.

The matrices Bi(d:) are now taken to be constant. The operator E, = " B;(z) 9; can
then be cast into the form : :

B'= (")), bie R for 4,j=1, 2,

tré,nsforming u = (u, uy) € Hy(L) into (X @) uj, X ( b2f[7 ,-). The operator
E, will always be a Fréchet derivative , '

~

E, = d F(«, v), v € Hy(L),

where F(a, u) (Fl(a, Uy, Uy), Fo(ax, u,,uz)) is polynomial in o, u,, u,, of degrce
k= 2in wu,, u,. . The period L is kept fixed in this chapter.

We now .introduce the first of a series of assumptions enabling us to apply the
apparatus of bifurcation theory.
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(A1) There.is a nuinber «, € R, an interval I = (—e¢, ¢) and an analytic mapping
u: I — R? such that F(xo + 6, u(d)) = 0 for all 6 € I.

J

Based on this'a-ssuinpkion we define the operators
T(6) = DA + B + d,F(a + 6, w(d)), €1,

’ . < . N - ’ '
. acting on Hy(L) with Dom T'(8) = H,(L). They have the properties listed in Lemmata .
~land 2. Set’ : : :

.

Ek) = {¢ cxp'(‘z:2.nL‘3k_ ".x) | ¢ € Cy.

Since Hy(L) = 3 @ E(k), ﬂ)e operators T'(8) are determined by their-action\on t,hé
invariant subspaces E(k), which is described in terms of matrices B(k), M (k, d),
defined as follows: ’ P - :

1. B(k) = (b¥ik), where b¥ - k = b,ik,. - byik,
2. My (k, 8) = —(2aL1)? (k|2 D + i2=L-'B(k) + d, F(oco + 4, u(a))
- 3.7(0) (X tx exp (i22L% - ) = X (Myk, (3) &) exp (i22L -k - x). N

After these preparations we state the following

Lem ma 3: The spectrum oL(T(é)) can be d‘escribed in terms of the spectra o(M i(k, 0) )
@s ar(T(8)) = U o M, (k, 8)).
' (A2): Among the matrices ML(k 0), k € Z2, there is cxactl) one,; say M (k®, O

‘ such that 0 € o(M(k°, 0) ) Moreover we assume -

(i) Oisa bllllple elgenvalu(, of Jl[L(k 0), ’
<~ o (i) if no‘ML(lcO =0, M (k% 0) {, = 0 and Nos Lo O ‘then (7;0, B 18o) + 0

where B, is thc linear term in the expansion
“dyFlog + 3, u(8)) =y 1, (%0, u(0)) + 6B7 + O(8%).

. The “wave” vector k? and the eigenvectors 7, o in thls a.ssumptlon are kept fixed .
henceforth. By assumption (A2) thcre isa rcal analytic functlon 7 /((5 = 7,0 + 0(8%),
such that !

(@) )(6) isa snmple cigenvalue of M (k°, 5) 6
(" ’l = (10> £o)™* (10, Brlo) + 0. - .

Since JPIL(Ic 0) = M, (k° 0) if |k|2 &= |k°|2, T'() has a real eigenvalue 4(6), crossing
7 = 0-at non-zero speed, while Va',,(T(é) — {#(6)}- is bounded away from i = O for
small 6. By assumption (A1) on the other hand u(é), é € I, is a trivial solution branch

. of the equilibrium equation DAu + Bu + F(x, + 6; w) = 0. This suggests to look
for non-trivial bifurcating solution branches and to investigate their stability. Two
cases will be discussed: .

(A)" F(x,u) is a gradient, k* = 0 and the operator Bi is svmmctnc i.e. b1z = b3,
(By  F(x,u) and k°'+ 0 are arbitrary but B = 0.

Case (A) is related to the' Landau-Ginzburg equations treated in 3, 4]. Case (B) has
the most interesting features and is discussed at length. The genéral case B &= 0 is
not considered since it is genencallv simpler than case (B) and does not give new
msnghts . - '

~
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3.2 Liaﬁhnov-Schmidt equations

Lemmata 1and 2, and (A1), (A2) enable us to introduce Llapunov Schmidt equatxons
"7 Let k°, ..., k* € 72 be the list of alldifferent wave vectors such that M (K, 0) =
: 1WL(k‘ O) The eigenspace of the Fréchet -derivative. T(O) at'the elgenvalue 0is
spanned by the elewments f; = ¢, exp (:22L~Y%i - 2), j.= 0

Lemma 4: T(0) has index 0 at the eigenvalue 0.

Prooi Assume —1 € o(T(0)) (wnth (T(0)) the resolvent set of T'(0)); define

= (T(0) 4 2)~%. The lemma states, 1f (4G — 1)f =g and (/G’ — 1).g = 0, then

(/G —1)f=20. Thus let f, g satlsfy the first two equations. Then f; g € H,(L) and
satisfy .

.

1(0)g = 0, | N )
: 7(0) f-+ iy=_°-. | | - - U

By (6),
o ' ~ =3 ,Co exp (:2zL %! - z) for suitable «; € C.

]

© "

-With t,he Fourier expansxon =7 &exp (z2nL llc x) we can express (7) as -
O = 2" M(k,0) & exp (z2:zL k. :L)

o 3 (ML, 0) iy + o) exp (22l W - 2) L ®)
j=o0
where 3 means the summation over vectors k g {k° k’} From (8) weget
' t - . . .t .
; §k=0 " for lc({{ Lok, Mk, 0 5‘;+/a,,0—0 < 9

Now J = 0, 7o' M1 (k°, 0) = O ‘and (7, &o) == 0 by (A2 This together with (9) implies .
., a; =0 and &y = B;¢, for suitable §; € C. Thus f = 3 B;sexp (z2nL i a) is
itself an eigenfunction of 7'(0) at 0, proving the lemma @ .

Next we need some notation. Set f* = 5, exp (1,2nL i z), §=0,5%., 5. The
"equations

= ZUm U Dl and  K=1—P |
“define bounded projection operators P, K onto the eigenspace' {91 T(O)g =0} and
range Ran 7'(0), respectively. Moreover T(O) las a bounded inverse ¢ = (T 0) K) .
" “with Dom G = Ran ¢ = Ran T(0). Our aim is to find small pairs 6, w solving the
equation - ‘ : _ .

DAw + Bw + F(a0 + 8, u(d) + w) = 0. o . (10
By. us]ng the decomposition Pw = J «,f;, Kw = g, we ¢an replace (10) by the equi-
valent set of s + 2 equations i

g+ GK{ (Z 1!7+9')‘L£Rp(0 Z“i’i+g)p}¥q; ;

" T ay
. ' </,»{B(6)(2 1]7+9)'LZR 5)()-‘A,f,-}—g }>=0; : ()

p=2

4=0,..,s
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)

‘ Thereby, . o
Flao + 6, u(d) +‘.w) = Flog + 6, w(8)) + duF(oo + 0, u(8)) w + Z2Rp(5)w”
. D=

and . .
d,Flxy + 6, u(8)) = d,F(aso, w(0)) + B(5).

By well-known theorems a small solution pair 8, w of (11) is a small solution pair of
(10) and conversely (see e.g. [11, 12] for detail). If we look for solutions lying in a
‘'suitable invariant subspace H, we get Liapunov-Schmidt equations havmg exactly
the same.form as (11), except tha.t the set {f,, ..., f} of eigenfunctions is replaced by
another set which spans {f | 7'(0) f = 0} n H. :

3.3 Standing waves

Prior to comifg to the topic of this paragraph, we quickly get rid of case (A) in Sec-
tion 3.1. A glance at the assumptions (A1), (A2) and case (A) shows that we'areled
to seck bifurcating solutions of the equation F(oco + 6, u(d) + w) =0, we R? a
situation known as “bifurcation at a simple eigenvalue”. We content ourselves sum-
‘marizing the facts and omitting the evident proof.’ '

Lemma5: Under the assumption of case (A) the Liapunov-Schmidt eqwtzons (11
have a unique bifurcating solution branch, namely a real analytic pazr do(r) € R, w(r) € R2,
with r from a neighbourhood of r = 0, which satisfies F(wxo + 8(r), w(6(r)) + w(r)) =0,
for every r, and 6(0) = 0, w(0) = 0.

In order to lessen the high degeneracy prevailing under the assumptions of case
(B) we shall restrict ourselves from now on to the invariant subspace H,%(L) of even
functions. An element u € H,*(L) is given by its * even” Fourier series -

u= 3 {pcos(2al 'k - x)

where .
P 1
=10 and Jullh? =+ Z 1Cel2 (1 4 (2L1)* [kl4).

Thc action of T(6) on u € Hy(L) n H2°(L) is described by
T(8) u = ):M(Ic 8) L cos (2aL k- 2) O

where now - : | : ’ e
Mk, 8) = —(2rL )2 k|2 D + d,Flag + 6, u(d l))

‘ L\ext let k° == 0 be as postulatcd by (A2) and case (B). A set {£°, ..., k¥} — Z2 of
“wave’ ve(,tors is called complete if ’ .

LK = k%, j=1,.., N,
2. k|2 = |k9)2, k € 72, 1mplles k'= + & for sone index 7,
3. there are no 7 & j with &k = + k.

We assunie a complete set to be giver{ in a fixed way and define, forj =0, ..., N,
@i(x) = Lycos (2aL k- z) and ' @*(x) = 1, cos 2Lk - z).

The set {g,, ..., px} spans the eigenspace HeA(L)n {f | T(O / = 0 while the set

{@o*, --.s (p\ *} forms a dual basis in Hz"(L) Moreover

1
<q7| s ‘P;) = E 770) o) (] 27L— ”COP) 6,’;.
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By proper scaling we achieve (p;*, <p,) = §;;, what will be assumed henceforth

For bifurcational purposes, H,%(L) is still too large. A tool which provides suitable
smaller subspaces is given by the lemma below. For a set 'y S 72, let * < Z2 be
the smallest set containing y, closed againstinteger linear combinations. Let H, (Ly)
be the closed subspace of Hy*(L) comprehending precisely those elements u € H,¢(L)
with a Fouricr series of the form Y ¢, cos (2rL-1k - z), k € y*.

Lemnia 6: With the help of the previous definitions we can.state:

(1 IfueH 225(Lfy) n Hy(L), then DAu € H,*(L/y).

(1) If w € H*(L/y), then Au € H,*(L[y) for any constam 2x2 matnx A.
111 If w € Hy¥(L[y), then F(u) € Hy*(L[y). :

Proof: Clauses (1) and (ii) are evident. Since F is polynomial, (iii) holds for finite
sums 3’ cos (2rnL'k - z), k € y*. By the Banach-algebra property of the scalar

. space Hy'(L) there is for every c, a ¢, such that ||[F(z) — F(v)|l, < ¢, |lu — vll,, provided;

lulle llvlle < co. Then clause (iii) can be proved by approximation for arbltrary
u.€ Hy*(Lfy) A

Standing waves are obtained by takmg for y any of t,he sets y; = {k"} 1=0,.
Evidently, {f|T(0) = 0} n Hze(L/x,) = {ag; |a € C}. In order to find~ blfurcatmg
branches of our basic equation (10) in Section 3.2 which lie in H,® (L//l we formulate
the anpunov-Schmldt equatlons in Hy®*(L/y;)

0=g+GK { ©0) (ri + g9) + Z Ry (6) (rp: + y)?’}', ) - (12)

04<¢a,3(6)(r¢.+g +ZR 6)(w.+9)> ' (13)

Here, K and G = - (T(0) K) ! are tacitly restricted to H{(L//, ) and g € H2°(L/7,
‘satisfies (p;*, g) = 0.

Theorem 1: In H, (Ll7:) the equation DAw + F(zxo + 9, u(d) + w) =0 has a
unique, real analytic solution branch 8(r) = r2%(r), w(r) = rg; + r2h(r), with {pi*, k(7))
= 0 and small r. The values r(O) £(0) are determined by the eqmnons

h(0) + GER,(0) > = 0,
7(0) (@:*, B,(p,) + 2("’1*’ R2(0 ¢th(0 » + (‘Px*s R4(0) ‘}"-3> = 0.

‘Proof: We show that the Liapunov-Schmidt equations (12), (13) have a unique

‘solution branch in Hze(L//,) with the required properties. By the Implicit Function

" Theorem, (12) admits a unique, real analytic solution g(r, §). Inspection shows that
9(0, 8) = 0. By setting g = rk we obtain from (12) the following equation for h

0="h+ GK {3(5) (pi +h) + Z”;Rp<6) g + h)”}- ‘ (15)
p= . .

In -order to evaluate (13) we recall that B(8) = B,6 + B, + --: = B,6 + Be(é).
By inserting g = 7k into (13) we.get after some rearra,ngements '

0 = &pi*, By 9i) + (<pi Bi0) 4 BO) et 5 R0) e + ) ) (16)

Now (5, Bi&o)- :i: 0 and hence {(gp;*, B,tp,) % 0 by assumption (A2). A glance at (15)
.on the other hand shows that k(0, 0) = 0, i.e. h = rh, + 6h2 From this and the Im-
plicit Function Theorem it follows that (16) admits a unique real analytic solution
6 = d(r) for small 7, which satisfies 6(0). = 0. Thus é(r) = rz(r) for real analytic z,

4

(14)

-,
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/7

‘and h(r, (5(7*)) =.'7'(hl + (r) kz) = rh(r). By inserting rr(r) into (16) and by comparing
powers in 7 we obtain 0 = 7(0) (p;*, Bigi) + (@:*; Ry(0) ¢:%). Since (p;*, R3(0) pi?) is
-easily seen to vanish, ‘we obtain t(r) = ri(r) for real analytic 1. Equatlons (14) now"
follow if we substitute rh for h in (15) and 727 for & in (16) by companson of powers
inr . . )

~

‘Remark: If wesctu — u(d(r)) + w(r), then we obtain the standmg wave solut|ons mention-
ed in the mtroductlon To make it evident, we observo that # hasa 1<ouncr scrnes of the form

. - Xty cos (2aLltpht - o), ped. i o o N

Thus if we set @(z) = )_',‘Z,‘p cos (pz), p € Z, then w = O(2nL-1kt - x). Since X {pl2 < o0, D is
in C*0, 2n] and, being a solution of a suitable ordinary differential equation, it is also analytic.
The stability of these standing wave solutions will be our main concern. For simplicity we
refer to the pair §(r), w(r) € If e(L//, as the 7-th standsz wave branch or the standing wave
. branch associated uzth L" o

4 Stabxhty propertws - .

As pomted out in the introduction and elaborated in the next chaptcr there is a
tendency toward instability. Nevertheless positive results exist on standing waves, |
which hold if the nonlinearity F(«, u) satisfies an additional assumption We recall
that by assumptlons (Al)and (A2) thereis an analytlc function 2, i(8) = 2,0 4+ O(6?),
_ such that 2(6) is a simple eigenvalue of M (k% 4). In order 'to establish the famlllar
. cortext of stability we necd a further assumptlon

(A3)  4'>0 and oy (T(0) — (O} S {z| Rez < 0.

“This assumption may. hold for some period L but not for an other .L" #+= L. We are
.allowing for this fact, saying that 7'(8) satisfies (A3) in H,%(L). For- notatlonal simpli-
city we assume in-this paragraph «; = 0 and »(0) = 0.

Let J;(r), w;(r) be the standing wave branch associated with the wave vccbor kt
according to Theorem 1. A stability analySIS aniounts to a stud) of the spectrum of
the Fréchet derlvatlve DA+ d F( ), w(d; (r)) + wi(r) ) in a neighbourhood of

. 7 = 0. The first step is provided by bhe theorv of analytic perturbations of an iso-
lated eigenvalue of finite multiplicity due to RELLICH [7,10]. To start with, we set
d F(8:(r), w(0i(r)) + wi(r)) = G‘(r) and observe .that Gi(r) is-an analytic family ‘of
bounded linear operators mapping H,(L) mto itself. Thus Gi(r) admits an e}\pans1on
in powers of B

#(r) = d,F(0,0) + D¥(r),  Dir) = G, 4(0) +'§ ?'26'#}(0) + -

’

The perturbed eigenvalue equa-t-ioﬁ to study thenis = \

1

N . SN .
(70) + D) (.zcjwj+g)=z(§c,»w;+g),'
@k gy =0 for j=0,...,N. o

By a straigtforward computatlon omltted for reasons of spacc we obtam the equatlon .
for the perturbed eigenvalue /.

0 = Det (2£ + (g%, — DY e+ D) (1 — GR(2—-Di(n)) G D) pu)).

In.a next stép we will show that the matrix whose deterininant is taken in this
equation is in fact diagonal.
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Lemma 7: Let k% k!, k?* € Z? be wave vectors such that

() B =+ Lk,

(ii) 1K) = |K'|? = |K?)%,
~ (iii) kO = okt { £k? for some & € Z a,nd'e € {—1 l}
Then & = 0 and L" = k2 . ' .

Proof: Let «, ¢ satlsfy (iii)-and assume « = 0. From’ (11) (iii) and Schwarz’s
inequality we infer -

el TR = 2 (R R < 2 1R (R = 2 L , . o (17")‘

/

N

- and thus la] < 2.

Case || = 2: According to (17) we have [(kL, k2 | = |k'} |k?| and thus by Schwarz’s
equality case k* = k' with 2 € {—1, 1} by assumption (ii) contradicting (i). o
Case |x] = 1: Since lel = 1'we immediately obtam from (i1), (m)

2|k, k)] = (R = kY 182]. \ (18)

Now let k! = (a, b), = (¢, d). Wlthout, loss of generallty we may -assume b = 0,

+d = 0. In addition let n, w-and n, o be the polar coordinates of k! and k2, respectively .

.

ie. n? = |k'|? = |k?2); without loss of generality we may also assume p < . Then
g Yy Yy K 0

we infer from (18\ tan (0. — u) = ]/3 :
Subcase a + 0 and ¢ = 0. Since ad — bc = O wé obtam by the Addition Thcorem :

of Tangents d¢™! = (]/—+ ba- ) (l — ]/—ba‘l) 1 and thus V3 = (ad — bc) (ac + bd)

o contxadlctmg the irrationality of J/3.

© Subcase a ="0: Here we ha,ve dc-! = tan o= (V3) , in contradlctlon with t-he‘
1rrat10na]1ty of ]/— s .

Subcase ¢ = 0: Then u = #/6 and thus ba~! =< tan (n/6) = 1/V§, giving a contra-
diction agam 1

\ For future use we mtroduce the following convcntlon An even element f from any

“of our Sobolev spaces is said to have its wave vectors in the set S & 7.2 if its Fourier.

series has the form f = 3 & cos (2rnLk - x), k € S.

Lemma 8: Let k%, k7 (3 == §) be two wave vectors /rom the complete set and f € Hy*(L)
having its wave vectors in the set {xki 4 ki | « € Z). Let B = (b,,,‘7 z)) be a 2 % 2 matriz

“whose even éntries belong to H,'(L) and have their wave vectors in {ok | & € 7). Then Kf,
(GK)™* Kf and Bf will have their wave vectors in {«k* 4 ki | « € Z}, too. '

Proof: That Kfand (GK) ! Kfhave their wave vectors in the set mentioned above,
follows from the fact that both K and (GK)=! K leave the subspaces {& cos (2rL!
X k - z) | £ € C% invariant for-any k € Z2 Inorder to prove the lemma.for Bf it suffices
to demonstrate that if a(a:) b(z) are even members of the scalar space Hzl(L) with a(x) -
having its wave vectorsin {«kf | x € Z} and b(x) havmg its wave vectors in {ak' 4 %/ |
« €7}, then a(z) b(z) will have its wave vectors in {«k! + k7 | & € Z}.- Now this evi-

‘dently holds if a(z), b(z) are even trigonometric polynomials. The general case then

follows from the Banach-algebra property of H,'(L) by an approximation argument, I

Lemma 9: The spectrum of the Fréchet derivative T(0) + Di(r) in a neighbourhood
of zero is decribed by a set {2%|j =0, ..., N} of functions, real analytic in a neigh-
bourhood of r = 0, such that A : ' -

(i) 2%(0) = 05 '
(i1) A%(r) is the unique local solutwn of

L0 =2 4+ (g, —DHr) g; + Di(r) (1 — GK(2 — Di(r))* GEDHr) 3. -

\
T
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N

Proof: Set
i = —Di0) gy + DY) (1 — GK(2 — D))" ‘GKD'W Pp:
As pointed out above, the spectrum of the Fréchet derivative T(0) 4+ Di(r) in a
neighbourhood of zero is given by the solutions of the deterninant equation
o 0=Det (1B + (p*. [,)), .
with E being the idéntity. The lemma is proved if we can show that the matrix
(ajp). = ((g;*; [)) is in faét diagonal. Thus assume p == j. For/, r small,
(1 = 6K(. — D))t = 5 (GK(2 — D)) '
Now (G (A— D‘(r)))" GKDi(r) ¢, and D‘(r) @, have their wave vectors in ‘the set
lakt + kP |a € Z) accordmg to Lemma 8. Since the space of elements in Hze(L
having their wave vectors in the mentioned set is closed, f,* has its wave vectors in
this set, too. Since j &= p, kP & 4 k. Thus by Lemma 7, okt + kP = + &/ and hence

(p;*, " = 0. From this, existence and uniqueness of the functions 29" follow im-
mediately from the Implicit Function Theorem 1

As 4 preparation to the main theorem we note
Lemma 10: For the functions A4 the equations (d24[dr) (0) = 0 hold,

Proof: By Lemma 9, i%(r) = ,iir + 0(7‘3) From assertlon (ii) in Lemma 9 we
mfer A‘!., = (@;*, D,(0) ;) where '

~

. 4D\ dG¢ o 8
b= == dqu(é (), w(Bi(n) + wi(r)
‘ dudd; dw;
+ dMF(am, wdi(r) + w"(”) (5 7l 7)'
Now (d8/dr) (0) = 0 and (duwi/dr) (0) ='¢: according to Theorém 1. Thus 4% = (p;¥,

d,.F(0, 0) (p,(p,), whlch is easily seen to vanish I
Theorem 2: Assume that besides assumptions (A 1)—(A3)

; duwF(0,0) =0 and (o, duuuF(0, 0) &) = O

(i) 1f the i-th branch of standing waves ;(r), wi(r) is .slable in H 8 (L/{kY}) for small

s 7 =% 0 (i.e. against small perturbations belonging to Hy(Lj{k%), then it will be stable in

2(L) and every other branch of standmg waves 0,(7), Wn(r) wzll be stable in H,2(L).
(i) If a,,L( )) {0} S {z | Re2 < 0} for a particular integer n > 1 and the.1-th
sta7zdzng wave branch o;(r), wi(r) is stable in H,°(L[{k%}), then every branch of standmg
waves 0p,(r), Wy(r) is stable in H,%(nL) (i.e. against nL periodic perturbations).

Proof: To start with, we compute the coefficient 2, in the expansion 24{r) = 2,72
‘+ -+« (see Lemma 10), -ignoring for .the moment, whether i = § or ¢ % 5. From .
Lemma 9/(ii) we infer that 2,% has the form :

. 1 . . : .
;'2” = 'E <(pj*y D:,(O) <P;‘> - <<pi*: Dr'(O) GKDI'(O) (pi>' .
Here is, as before

Di(r) = Gi(r) _ G{0) and Gi(r) = d F(8:(r), u(ai(}))‘+ wi(r)).




/
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From the expresswn for D} (= dD'/dr glven in the proof of Lemma 10 it follows that
D,',(— dzD'/drz) is a sum ¢, + - + ¢ where

%

- tl(") = d’“éF(éi(r), /,(r)) F’

, (T) = dssuF(0i(r), /u(’)(dé) , - 7
. d dw;
(7) = “{ziuup((s 7) /l )) dr (d: d;T + %)’
d du (d?; d?w;
. la("') = duuF(é (), fi r)) (d(52 ( o ) + d_’l; (Wi') + W)’

dé dr ' ds )’
du dé; = dw\?
dé dr + E)

and where fi(r) = u(é )+ w;(r). Since d,“,F(O 0) =0 by assumptlon it follows
from Theorem 1 that #,(0) = 0 for »=234,5. Tt remains :

60 = daudF(5:0), () (d“ 2y o)

., lg(r) = d“uuF( i(7), /l( ))(

D:r(o) uéF(O O) 7(0) + duuuF(O 0 (pn .

Now, as already shown, D.%0) = d,,F(0, 0) ¢;, i.e. -D,5(0) = O by our assumption.
I‘hus we get

i = <97;*s duéF(O O ¢7> 7(0) + (‘P;*: duuuF(O 0) ' @7) ’ M (19)

In order to évaluate thls we recall the second equatlon in (14) defining #(0), and ob-

serve that

Rz(o) = duuF(O: O R (0) = duuuF(O 0):

B, = dsF(0,0) + d,,F(0, 0 %.0). '

dé ( N
Since dw'F(O, 0) = 0 we find
1(0) = —(@i*, dusF(0, 0) @;)~" (pi*, dyuu F'(0, 0) 9%).

4Insertmg this into (19) and observing that (pi*, dusF(0, 0) ;) = ((p,*, dudF(O 0) <p,)

yields
k= <‘Pj s @uF(0, 0) PPy = (o, duuuF(O 0) <Pf’>-
By a further eva.luatlon based on our deflmtlons of the scalar product \;'c obtain
Nt = —— (no, duuuF (0, 0) 263) (1 + + (2L~ ]Ic'|“) (20)
If i % j, then o B A

1 4 . '
7 = = (il0: duuaF(0, 0) &%) (1 + (2L Y% |R¢) . @y

—

N
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. ! '
- Since |£%)? = -+ = [k¥|? we haye -

W= for m=0,..,N5n :

if p #q,i‘iy’, then 7,74 = /9. o . “(22)

(i): Since (1;0, d,,uul"(O 0) %, %) =+ 0, we have /27"1 +0forall p,g =0,..., N, by (20),
(21). If the stanclmg wave, branch 8;(7), wi(r) is stable in H,°(L/{k?}) for small r =0,
then necessarily 7, < Oand thus. (970, & (0, 0) L3 ) > 0 by (20). But (21), (22) then
imply 7,77 < 0 for all ?,q9 = 0,..., N what entails the stability of all standing waves
Om(r), w(r) in Hye(L), for m = O , N. .

(i1): We first observe the facts

kO = o = kM, Mok, 8) = Mk, 6), ke Ze,
Ho(L|(k) = Hye(nLjink}) forany ke Z2.

This, tdgethér with the éssumptions of part (ii) implies that (Al) (A3) apply to the-

wave vectors nk?, ..., nk¥. Thus ¢ every standing wave branch é,(r), wy(r) (p =0, ..., N)
is also a standmg wave branch in H,*(nL/{nk?}), now belonging to the wave vcctor
nk?. Eventually the set {nk?, ..., nk"} has to be extended into a complete set {ko, ... kM
where N < Mand bt = nki for j < N. The cigenfunctions associated with, are

-—iocos(n(nL)lki ) - @i* _nocos(2n(nL -1 ) ‘ , N

. with.@; = @;, §* = ¢;* for j < N. Finally we have standing wave branchés §,(r),
y(r), P < M, where §,(r) = 8,(r), Wp(r) = wy(7) for'p < N.Inorder to detcrmme the

stability of the brzmchcs bp(r), Wy(r) we compute again the coefficients 2.4, which, as .

-before, are determined by the equations (20)—(22), except that the scalar product
in Hgb(nL) has to taken now. But since (2nL~1)* k¢ = (27(nL)™)* [nki|* we infer
/‘L)q_ ift forallp =0,...,M, p=gq, o
IR PR ifp#.g,p,q—o, WM, i=j andy—O
Since 4,% < 0 and 2,% < 0 according to theassumed stability of 6;(r), w;(r) 1ri H,¢(L)
we infer the stability of all branches 6,(r), d)p(r) (p=0,,.., M) in Hy*(nL) B

Remarks: 1. A particular case with d,,F(0,0) = 0 arises_if F(0, —u) = —F(0, u).
Whether Theorem 2 apphes to solution branches other than qtandmg waves is-not known to, us.

A verification seéms to depend on non-trivial number-theoretic: properties of the sets {(z, y) |

‘2? + y* = n, z, y € Z}. 8. Theorem 2 can be cast into a thumb rule as follows:
() Tf d,,,F(0, 0) = O and if the standing wave branches d;(r), are stable in H,¢(L), then

they will remain stable in /,¢(nL), provided the trivial br: mch u((S) remains smblc in H,e(nL)

forsmalld < 0. - '

Put it the other way round:: ' :

() If duuF(() 0) = 0, then §;(r),w;(r) can only lose stablhty in Hy,2(nL) if the trivial branch
u(d) loses stability i in / L&(nl) for mm]l d <. .

5. Instability results _ : _ -

5.1 The gradient case

The first situation giving rise to instabilities is i)ro§ided by case (A) in Section 3.1.

Here we are back in the full space IIZ(L) the systcm to investigate is

DAu-}-Bu—}-F(ocu)-—O o~ )

i
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with B = ((b‘fV)) symmetric, i.e. b% = b#, and where F is a gradient, i.e. F(x, u)
= VV(«, u) for some potential V. Now we have as in Section 3

Mk, 8) = —(22L")? k|2 D + i22L-'B(k) + duF(xo + 6, u(8))

with , B(k) = ((b‘ik)), and the' spectrum of T(9) =. D4 + B + d F(xe+ 6, u(d)) "

v

is aL(T((S)) = k}) (L (k, 9))- Co » :
Lemma lll: Let A, B be hermitean n-xX n matrices, :* the largest eigenvalue of A
a»nd { an eigenvalue of A.+ iB. Then Re ¢ = *. '

Proof: Assume (4 4 1B).x = (z, (x;2) = 1, where (-, -) is the usual hermitean

scalar product. Then Re = (x, Az) < i* B~ S
Lemma12: Let k* = 0'in assumﬂion (A2). Then thereis a i € o(T(0)) with s > 0.

Proof: Since F is a gradiexit-, C = (l,,F(é:o,' ukO)) is real and symmetric. Let 2* and

A be the largest eigenvalues of 4 = —(22L)2 |k%2 D -+ C and C, respectively. Since

D is positive, 2* < 'i. By assumption (A2), 0. o M, (k°, 0)) where M (k% 0) = A
+ 122L7B(k%). By Lemma 11, 0 < 4* < 4. Since ¢ = M (0, 0), 2 € 5,(T(0)) &

'

Theorenr3: If &(r), w(r) is any stable solution branch bifurcating from the trivial
branch u(d), then w(r) must necessarily be spatially constant and satisfy F(ao + o(7),
w(d(r)) + w(r)) = O identically in 7, i.e. §(r), w(r) is itself trivial. :

_ Proof: Let £° be the wave vector in assumption (A2). If £° = 0, then there is a
Ae O'L(T(O)) with 4 > 0 by Lemma 12. From this and a perturbation argurhent it
follows that for any bifurcating branch (r), w(r) the Fréchct.derivative .

. 7
DA + B + d F(ag + 8(r), w(8(r)) + w(r)) h
- ) . J
has an cigénvalue in the vicinity of i, provided 7 is small. But this would: imply
instability. The theorem then follows from Lemma 5 B : '

It  was somewhat disappointing that the two-compohent, ‘TJandall-Ginfébllrg equ:i-'\
tion investigated in [3] falls under the scope of Theorem 3. '

5.2 Generic instability for large periods

Our next aim is to show that although T((SS 1-nay satisfy assumption (A3) in H,*(L) A

for some L, it will necessarily violate (A 3) in H,*(nL) for large integers =, provided
some. generic assumption holds. This means that the trivial branch u(d), 6 €I, be-
comes unstable in H,%(nL) as nt oo, and as a_consequence of this, that all bifurcating
branches become unstable in H¢(nL) as n 4 co. Té start with, we take it for granted
that the assumptions (A1) and (A2) hold as before, but not necessarily (A 3). Instead
_of it, we.suppose another “generic” condition, namely assumption .

- (A4) (g, Do) =0, with 1, as in (A2).

‘As a preparation consider the matrix
1 .

1

A(3, &) = duF(5, u(8)) = ((2nL1)2 kO] + ¢) D

with k° as in éssumption (A2). From (A2) and p}:rtufbational arguhients it Afolfows .

- that there is an analytical function A = (4, ¢) defined in a neighbourhood of (0, 0)

\

\
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" such that

1.4(0,0) =0, -

2. A0, ¢€) is a simple elgenvalue of A(9, ¢),

3. 4(0, &) = 210 + A& + ---, where (1o, &) 2 = (70, Bi&o)
and (7, Co) Ay = — (70, D,Co)-

_“From assumptions (A2) and (A4) we infer

4.4 +0,2,+0.

- Lemma'13: For every Y su//iciently small S(l +0 luwing the same sign as 2, there is a'
m >0 and a p, with O < uy < |go| such that A4, &) = & Ao/4 whenever 16| < u, and
le — &l = up hold.

Proof: Assumee.g. /‘2 > 0. SinceA(0, &) = 4,6 + s(ig + H(é, s)) with H(0,0) =0
there is a po > 0 such that 2, + H(d, &) = 32,04 if |6], |£] < uo. Then for a fixed ¢,
with 0 < gy < /2 there is a s with 0 < u; < uo such that (8, &) = €40/2 if
[6].< u,- The existence of u, finally follows from the contmulty of )(6 ¢) in the rec-
~tangle [—u,, #,] X [0, uo]

Lemma 14: Let the assumptions (A1), (A2) and (A 4) hold for L. There isan g, =0
and an ny > 0 such that for every inleger n = n, there is a wave vector k (A wzlh the
property that M, (k, 0) has an ezgenvalue 2 = el |22l/4-

Proof: Assume e.g. i, > 0. We can chose g > 0 in the last lemma so as to satisfy
0 < g — pp < g F po < L2 For a given integer n > 0 let ¢ > O be the integer
deter mmcd by (g — 1)2 < n2 [k0]2 < ¢2. From this choice of g, &y, u, we infer

( )I’v°IL2+8o+,uz<( ) (g + n)* (nL)72.. o - (23)

Now set m = (2n)% (g + p)® (nL)2 for p=—1,0,...,n Then we find m, +— m,
< (27)? (nL) (n(1k°| + 1) 4 3) for p < n. Wc thus may take n so large that
My — M, < 2u, holds. Now consider the wave vectors d, = (¢ + p, 0) for p = —1,
0, ..., n. From (23) and our choice of n it follows that for at loast, onep € {l,...,n — 1}

- the inequalities = ° . - _ N

(2':)2~|I(:‘)|2/L2 + g9 — Ho < (2n)2 d2/(nL)? < (2n)? |K°2/ L% + &5 + pis

hold. By our choice of &g, Mo and by the last lemma it follows that M,,(d,, 0) has an
elgenvalue A= gglp/a

The main instability result is given by Lo

r

Th eorem 4:.Suppose that assumptions (A1), (A2) and (A4) hold for the period L.
Then there is an integer ny > 0 such that every solution branch 6(r), w(r) which even-
tually bifurcates from the trivial branch u((S), d€l,in H{(L) is unstable in Hy*(nL),
provided n .= ny> :

“Proof: Let ng, ¢, 2, be as in the previous lemma and assume n = 2,. Set as before
T(0).= D4 + d,F(0, 0). Since the spectrum a,,L(’I’(O ) of 7'(0) in H,°(nL) is given by
U a(M,., k, 0)) it follows from Lemma 14 that a,,L(T(O)) contains a real eigenvalue
= el 124]/4. By a perturbation argument we derive that every solution branch
(r), w(r) which evcntually blfurcatesl in H,*(nL) from the trivial branch u(é), é € I,
has an eigenvalue in the set {z | Rez = |g| |2,|/8}, provided r is sufficiently small.
Since every solution branch 8(r), w(r) in Hy*(L) also belongs to H,%(nL), the theorem
is proved 1 ) .
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5.3 Instability against other perturbations

Let 64(7), woy(r) € H,*(L) be the standing wave branch aésociaped with &, given by
Theorem 1, let L’ &= L be any other period and consider the initial value problem
/ ot . ;

i, = Ddu, + F(8y(r), ), , - e
%(0), = u(do(r)) + wo(r) + &'cos (2a(L)71 k.- z). | .

The problem arises if for small ¢ the solution u, remains close to the equilibrium solu-
tion u(&o(r)) + wy(r). One of the smallest spaces within which we could try to solve .
(24) is the Hilbert space H, of almost periodic even functions:having Fourier series
of the form : : ' ’ 7 . o

u =3 £pg c08 (2n(pL~t + gL' VK -2), p,q€Z,

« . AN

: ﬁrovided with the norm . )
o P = X 15l (1 F (2a)* (PLTY 4 L) ROP) < oo,

One should then extend Kielhofer’s approach to H, and to operators with continuous
spectrum. The elaboration of this is not within the scope of this paper. We have to
.content ourselves with a few indications suggesting that in spaces like H, instability
prevails. At the root of this is again Lemma 13. Let, for k € Z2, M’(k, 6) be the matrix
—(2m)2 |k|2 D +.duF(6, zlc(é)); thus M'(kL™1,;8) = M ,(k, §). Suppose that assumptions
(A1), (A2) and (A4) are holding for the period L, with k° € Z2 as in (A 2). Thus pre-
pared we state : : -

""Lemma 15: Let L, L’ be rationally indépendent. Then there are a, b € 7 such that
M'((@@Lt + bL'~1) k°, 0) has an eigenvalue 2 = |s,| |2)/4, with &g, Ay as in Lemma 13.

. . ' /
Proof: Assume e.g. 7, > 0. By Lemma 13 there is g, > 0 with u, < &, such that
: —((2nL‘1)2. |£%2 + e) D + d,F(0, 0) has an eigenvalue 2 = gy4,/4, provided |e. — &
< pp. Now define the real number # > 0 by (27)2 |92 9% = (22L-1)2 |k°)2 4 &,
Since L1, L'~} are rationally independent, we can make |aL~! 4 bL'-1 — 7] as small
as we like it by.a suitable choice of @, b € Z. From these remarks the lemma follows
immediately 8 ; I : '

Remark: aL=' 4 bL’~! in the lemma may be taken arbitrarily close to L-1.

Next, let a,b be two integers as provided by Lemma 15. Consider the closed sub-
space H* & H, of the elements with Fourier seriés

2 &, cos (27z‘(_pL‘1 + bLY) RO - z), pel. ‘
Finally, let H S H, be the subspace of elements u whose Fourier series satisfy
5l (14 @ (pL gL B < oo, pg€B.
,. On A we define T(0) = D4 + d,F(0, 0) by its cc;lllponentwise acti(_)r\n,vvi.e..
 TOu = D (ML + gL I8, 0) &) cos (2a(pL1 + gL 8 2).

Tt will be routine to show that 7'(0) leaves H* in.vari'a,nt,.that it has cdmpact resolvent

on H* and that its spectrum in H* is given by - S
- o*{(T(0) = U o M((pL™* + 6L k0, 0)).
5 .
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From the last lemma we infer that 7'(0) has a real eigenvalue 2 > 0 in H*. Now each
member wy(r) of the standing wave branch 8y(7), we(r) is also a member of H,. Only
routine work is required in order to define the action of the Fréchet denvatlve T(r)
=D4 +d F(éo (r), w(8o(r)) + wo(r)) on H properly. In part,lcular it turns out that
’7’(7') leaves H* invariant and that the resolvent of T'(r) on H* is compact. From
this, from the property of T(0) mentioned above, and from the usual perturba-
tion argument we derive that 7*(r) has an eigenvalue Z, with Re 2, > /0, provided
is sufficiently small. This means, if the principle of ]ine_arized-stability carries over
_to the present situation, then the standing wave branch 8y(r), wy(r) is necessarily
instable in H,. Thus instability seems to be rather the-rule than the exception. This
does of course not exclude the possibility that u(éo( 7)) + wy(r) is stable against the

pmt,lcu]ar perturbations of the form ¢ cos (2zL'~1k° - z). Whethcr this is the case or
not is unknown to us. -

6. Conclusion . Y .
e ) )
We conclude with some remarks on the chosen frame. The restriction to two-component
vectors u(u,, u,) is for simplicity only: more components would not exhibit new. phenomena, one
component narrows the range of possibilities considerably. The restriction to space dimension
n = 2 (i.e. to two space variables (z,, z,)} is more scrious.. The choice n < 3 is justified by the
physical background mentioned in the introduction and also by the Banach- algebra property
of the space H,'(L) which simplifies the theory considerably. The results of Chapter 5 carry
over literally ton = 1 and n = 3, while Theorem 2 loses its interest in case of n'= 1,'in which
bifurcation from a single eigenvalue prevails. Whether Theorem 2 holds for dimension n = 3

_is ot known to us; we have not been able to prove the crucial Lemma 7 for dimension » = 3.
The case of functions u(z,, z,), L,-periodic in z, and L,-periodic in z,, with L,, L, rationally
independent behaves rather like the case n = 1 and has been omitted therefore. Finally we
have chosen a polynomial nonlinearity ¥ partly because of the physical background and partly
for simplicity, but it is clear that weaker assumptions on F would suffice (e.g. analycity). We
have treated standing wave branches exclusively, although it is easy to see that there are
many more bifurcating solution branches. Tt is a difficult task to describe and to classify all of

‘them under appropriate generic conditions. We have only obtained some partiul results in this -

‘direction. E.g. it can be shown that cach subspace H,e(L/{ki, ki}) for ¢ & j contains exactly

“four bifurcation branches, two of which are of course the standing wave branches associated
with k¥ and ki, respectively. But even this restricted result is not quite simple to prove and has
been omitted for lack of space. Questions about the stability behaviour of bifurcating branches
other than standing waves (such as whether Theorem 2.applies to them or not) immediately
lead to elcmenta,ry but tricky questions about the number- theoretic properties of the sets
f{z,y) |22+ 2 =n,x,y € L} Finally we note that there is an abundance of examples
which fall under the scope of Theorem 2, but since their dlscusswn would require some place
we have renounced to describe them.
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