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A Class of Nonlinear Generalized Riemann-Hilbert-Poincaré Problems
for Holomorphic Functions

\ . : N [N

L. v. WOLFERSDORF

Mit Hilfe der Theorie psecudo-monotoner Operatoren wird dic Existenz einer Losung bei einer
Klasse nichtlinearer verallgemeinerter Riemann-Hilbert-Poincaré-Probleme fiir eine holo-
morphe Funktion im Einheitskreis bewicsen. ’ N

C momowhio  TeOpHI, ICEBX0-MOHOTOHHKX ONEPATOPOB NOKA3HAAETCA CYIIECTROBAHME- Pe-
IUeHHA ¥ 0aHOTO KJACCAa HeauHeliHbX 06obwennblx 3aga Pumana-I'masbepra-Ilyankape
A aHAIMTHYECKHX QYHKLII B eNIHNYHOM KpyTe. - N )

By means of the theory of pseudo-monotone operators the existence of a solution of a class of
nonlinear generalized Riemann:Hilbert-Poincaré problems for a holomorphic function in the
unit disk is proved. a

‘

) Iritrpd uetion

In recent papers of the author [11, 14] existence theorems of the theory of maximal
‘monotone operators and of Hamwmerstein equations in L, spaces were applied to -
nonlinear Riemann-Hilbert, generalized Steklov, and generalized Poincaré problems
for holomorphic functions in the unit disk. In th¢ present paper the theory of pseudo-

Inonotone operators in the Sobolev space W,! is utilized for proving corresponding
existence theorems by a class of nonlinear generalized Riemann-Hilbert-Poincaré
problems (nonlinear Vekua’s problems) involving derivatives up to second order of
. ‘the boundary values. Besides, by means of related regularizing approximations also
some types of noncoercive problems of this kind are dealt with. In particular, some
existence theorems of Landesman-Lazer’s type are derived completing the theorems
of such type obtained for the Riemann-Hilbert, the generalized Stcklov, and the
generalized-Poincaré problem in [12, 14]. .

" For classical work on nonlinear generalized Riemann-Hilbert-Poincaré problems
we refer to PoGoRzELSKI [8] and the papers quoted in the introduction of the mono-
graph [4] by GusemNov and MUKHTAROV.

i . .

1. Statement of problem ' ) A e

Let G:.|z| < 1 be the unit disk of the complex z plane with boundary. I': ¢ = ei¢
(—n < s < 7). We deal with the following Problem A : .

To find a holomorphic function w(z) = u(z) + 4w(z) in. ¢, which satisfies the
boundary céndition ' '

L{u, v] = Lo[u, .v] + Li[v] + Lfu) =f on I, ’ (1
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- where

Lo[u, v] = — Elsg + wvy,  Lyv]= v F .,

Lefu) = plu) v, + w(u),
and the additional condition . .

»0)=0 in 2’=0. -~ BN | - _ (2)
Here ¢ = 0, x, 8 = 0, and « are given\feal constants, ¢ and p are. given continuous

functions, and. f € Ly(I") is the given right-hand side.

\

" Becausé of (2) the boundary values v = w(e') of v(z) and u = u(c“;.) of u(z) on r

are connqcted by the well-kn'ov/vn relation v = — Hu with the Hilbert operator

[of

. . ) ] a . : o— s,
.(.Hu)A (s) = 2.nfu(e ) cot 2 da|.(

- We remark .t-hgt- an inhomogeneous additional condition v(0) = y can be reduced to -

the homogeneous condition (2) introducing the unknown function w(z) — yi instead
of w(z). - ) ) :
In particular we are interested in the special case

— s + ‘;-uus + pu = f ' . - (3)
of (1) with constants 2 > 0, # = 0, which may be regarded as a steady analogue of

the well-known Benjamin-Ono equation of the theory of long internal gravity waves

in a stratified fluid with infinite depth in the spatially periodic case.

A holomiorphic function w(z) = u(z) + iv(z) in G with boundary values u(s) = u(ei®)
and v(s) = —(Hu) (s) is said to be a generalized solution of Problem A if u € WX(I')?)
satisfies the integral relation S : .

dalw, 0+ @, ) + g, m) = b) for - me WD), (&)
where, for u, n € W,}(TI'), . ' _ IR
b‘(ﬁ) = ff?; ds, ag(u, n) = ef u'n' ds + zf Hv' -7 ds, - (5)
r. ’ : r ’ r

a,(u, 7]) = — f Hu.nds - ﬂquu: . n'ds,
r i r .

. v
N ayu, m) = [ plw)wnds + [ p(w) nds.
r . r _ :

Here the prime denotes derivatives with reépec'_c to s.

Lemma: If &£ + % > 0, a generalized solution ,w(z) of Problem A has boundary

values u, v € W A(I") and the boundary condition (1) us’ fulfilled a.e. on I'.
" Proof: T.Qlet,“u € W,!(I") be a solution of (4). We put ) ‘
U= ] — pluyw — p(w) + oHu + pH € Ly(I). '
" From (4) with n =.1 we have f Uds =0. Thert;for;e, .t,he boundary value problem
. r . e

—e&‘,, ‘+'xv;3= U on I’ L : : _ (7

1) u € W(T') includes that u is a (continuous) 2z-periodic function in s. Analogously, « andu, -

aré continuous 2z-periodié functions in s if u € W)

8
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has a unique solution wy(z) = u,(z) + wo(z) w1th boundary values u,, vy € W X(I")
satlsfymg the additional condition we(0) = 0. This solution may be easily constructed
in closed form by trigonometric Fourier ‘expansion, for ‘instance. The function u,
fulfils the identity (see (4)) N

o(Uo, 7) = b(n) — @y(u, n) — ay(u, ) for ne VWzl(F)-. _ 8)
Putting u, = » — Yo, from (4)-and (8) we have the integral relation

ao(uy, 1) = f [ew, + ,eHul 1n'ds =0 for ne W\I).

Hence it fo]lows that the function eu,” + wH'ul has the generalized denvatlve zero on
I" and therefore is a constant. But then %," must be a constant and, due to its 2z-
‘periodicity, also u, itself. That is, u = up + uy € W,X(I"). Moreover, from (4) with
u € W3(I') by partial integration we obtain the integral relatlon ' ;

f {Llu, —Hu] — finds =0 for .ne W),

r [

. which implies the-validity of the bounde.ry condition (1) d.e. on ra

Remark ffppelC(l),0<a< 1 are Holder contmuoua functlons with:exponent «,
then u, v € C2(I") have Holder contmuous dernatlves of second order with the same expo-
nent !

.
,2- Basi¢ existence theorem
We now prove the main‘ theorem of t;hié‘ paper.

"Theorem 1: Under the a,ddmonal assumplions & > 0 and”

up(u) = ou? — D (6>0,D=0) | .\_ : I ()]

Problem A possesses a generalized solution for any.f € Ly(I').

Proof: Problem A is eqmvalent to the' opemtor equation
Au=b in X = AR - B '(10)

where A=A, + A, + A, and .the operators Ak X = Wz}(I’)/—> X* = Wzl(/l‘.)
(k=0,1,2)are defmed by ap(u, n) = (4;u, 77>X foru,n € X;and b ¢ X* = W2‘(1’) is

. - defined by (5).

The linear operators 4, and A4, are continuous since the Hilbert operator Hisa

' contmuous linear operator in W,!(I"). Besides, because of .

\

aglu, u) = éfvu'z ds g‘O, ay(u, u) = f— uds =0, ' (11)

where Ou/dr means the derlvatlve of 2 in duectlon of the polar radius 7, both opera-
- tors 4, and A, and therefore their sum 4, = 4, 4+ A, are monotone.

The operator A, is completely continuous in the sense that it maps wea.l\]y conver-
‘gent sequences into strongly convergent ones. Assummg u, — % in X, we have
||u,,||x < K and, due to the compact embeddmg of X = W,}(I') in C(I'), also Uy —> U
in C(I). We have to show that '

- Aou, — Aoullxs == sup {du, — dyu,n)] —+0. . . ' (12)

ﬂ—)w
lInllx=1
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By partial integration from (6) it follows that ' .
ay(u, n) = f plu)nds — f D(u) 7’ ds, @ a primitive of ¢.
r r '

Since p(u,) - p(u) and P(u,) — ‘ D(u) in C(I"), we have
sup |(A2u,, — A, ’7)]

Inlx=1
< sup [ |p(u,) — w(u)l pn(s)| ds + sup flfﬁ () — D(u )| 1n'(s)] ds
lInllx=1- 2 linllxs1 7 :

= (f p(wn) — plu)|? dS)‘“ (f |D(un) — D(u)|? dS)'” - 0.
r o
This proves (12). ~° : : .
As the sum 4 = 4, + 4, of the continuous monotone operator A and the com-

pletely continuous one A, the operator 4 is pseudomonotone. Since 4, as a continuous
linear operator and 4, as a completely continiious one are boundcd operators, so 4 is
bounded too.. Finally, owing to the: assumpmon (9) there is”

Lag(u, u) = pr(u) ds =6 f utds — 27D : - (13)
and by (11) ) | - )
' ao(u, w) + ay(u, w) 2 & [ u'?ds. (14)

Therefore, we have (Au, w)y = min (g, 6) |jully2 — 22D, and because of the assumption
¢ > 0 (and 6 > 0) the operator 4 is coercitive..

The main theorem of. the theory of pseudo- monotone operators by Brézis (cf.
{16: Theorem 27.2]) now yields the cxnst(,ncc of a solution % of the operator equation
(10)8

Remark: Sm(‘(, the operator 4 also satisfies the condmon (S+ and hence) 'S, th( solution u
of (10) is strong limit of a subsequence of solutions of the Galerkin equations of (10) with
respect to an arbitrary basis in X = WM(I') (cf. [16: Theorem 27.1]). Further, we remark
that the question of uniqueness of the solution is an open problem. Of course, the solution is
unique in the particular case: ¢ = 0, y'a strictly increasing function. ‘

3. Non-cocreive problems
’

- We now deal with the case ¢ = 0, where the main term is Lo[v] = #Ug in (1) The
problem with the corrcspondmg boundary condition

L) + Lio] + Lful = f  on I’ ' )
* and the additional condition .(2)' is named Problem B.
- Theo rgih' 2: Under the additiomd assdmptions #=20(x=0), )
pw) Zv>0 (g s —v<0), | (16)
- and (9) Problém B possesses a generalized solution for any f € Ly(I'). —

Proof: We restrict ourselves to the case x = 0. In view of Theorem 1 the perturbed
problem. with the boundarv condition

—&Us + /”ss i 0~'U + B, + plu) us + plu f on r ) (17)

and the additional condition (2) possesses a gcncmll/cd solution w,(z ) with u, 6 W ()
for any & > 0. By definition w, satisfies the integral relatlon (4) and by the Lemma,
s, vt € W2 (I") fulfil the boundary condition (17) a.e.on I
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We show that the norms of u, in X = W}(I') are bounded uniformly in &. In view
of (13), (14) from (4) for = u, we obtain the inequality
‘ sf‘u"zds—i—éfufdsgffu[ds b 27D

Therefore we have ¢ ||u,||22 = il 1|u,||2 + 27!1)2) which implies the norm boundedness
in Ly(I') .

llutll; = K0 uniformly in e> 0. 4 .- (18)
Further multlplymg (17) for u = u,, v = 2 ‘by u,” and mtegratmg over r ylelds the
relation

xf u,v," ds + o:fu,’v, ds + f‘(pl w2 ds = f/uz ds. v
r : r .
Now there holds ‘

¢

. f '“ds—fus sds>0 for we WXI)- ‘
r r

v

SO thab /f w,' v, ds

-
=

0 and bV, (16), fq:(u,) u,'2 ds ; ¥ f u,2ds. Besides,. |lv Hé
=< ll%ells =. K0 by (18 Hence we infer t.he mequallty v jlu, |]2
which implies the norm boundedness in Ly(I” )

(Il + 1ol K.
el < K,

o}\”"{elnz
umformly in &> O T
11mally, from (18) and (19) we have the estimate

(19)

umformly in"'e >0 4(20)
Let ¢,/ 0 and put,'uA = u,,. Owing to (20) there exists a su'Bsequer'lce {tn, } of
{u,} converging weakly in X = W2 (I') and therefore uniformly to a functionu € W,(I).
Then also the functions Hu,, converge weakly in W21(I’ to Hu € Wz'(I‘) Performing
the limit ¢,, = 0 in (4), we obtain the identity

,cf Hu ' ds + ay(u, + az(u, 1) = b(n)

(mewxD)

foru, ie., u € Wg‘(I’) is generalized so!ut-ion of Problem B i
- _Remark: If;_;:#:O,.by the Lemma u € W.2(I") : T o

- Further we drop the assumption (16) on ¢ and prove

"Th corem 3: Under the additional assumptions x <%= 0

e SE e+ D, (0<e<2E 20D 20), (21)
the assumption (9), and

[p(w

W< By lul” + D,

(O<c<o E2200220) , (22)
Problem B possesses a generalzzed solution jor any f € L2(1")
%) i|-ll, denotes the norm in Ly(I'), p > 1

- 35. Analysis Bd. 6, Heft 6 (1987)

“
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.- Proof: We agam consider the perturbed problem with the boundary condition (17)
and (2). Due to the assumption (9) the estimate (18) holds again. Multiplying (17) for
U= U, V=1, by v, and integrating over I further yields the relation

——yfv( ds-{—ocfv, ds+f<p ) veu." ds-{—ftpu,)v;ds f'/v,ds.

Now we have |[v£||2 = ||ut|[2 < K, by (18) again,
). e dsl < By [ |l [v] ds + D, [ [vds
T - r

T < EaKo lhel, + D, V22 Ko
by (22), and

foo(uf ) v, ds| < E, flul"lvcl lu:lds+an |2 .| dis -

v = E el vellp e[l + DKo e[l
by (21). Furt;hermore, by Hélder’s inequality

”]uclg Vells = ”ue”ugﬂ) ”7/5”2«1‘1) = A 2(p+1) IIuc”2(9+l)

w1th A4, the norm of the Hilbert opcmtor in L,(I'), p > 1. Therefore, there holds the -
estmmtlon

et Tl = I Jloe]le®

= Kollflle + lx| Kg? + D, V2 K, + K, uu,uoo
+ {E, Az(on) Ifre. ”2(e+l) + D, Ko} ||, I - (23)

Fmally, for any U € W,(I') satisfying the relation f U ds = 0 the well-known
interpolation inequality ‘ r

Ul =-C U UM (€ > 0), tON

where p = 2 and y = 1/2 — 1/p, is valid (cf. [7: Chap. 11, Th. 2. 2]). Taking U = »
(1/2’1)f u ds, from (24) for an arbitrary functlon u € Wz‘(F) we obtain the ine-

quality r S .
Clly = o lle'th® felle' ™ + d el o (25)

with uniform posxtlve constants ¢, d, depending only on p. VVlthout loss of generahty
we suppose ¢ = 1 in (22) and choose p = 20 and p = 2(p 4 1), respectively, in (25).
Then we have . . .

s < o' 1 I + Ky | o (26
with y, = 1/2 — 1/o so that oy, = (6 — 1)/2 < 2 since o < 5, <md _
‘ Ntellegany = €2Ko' 77 fhue'lly”* + deo ‘ . (27)

- with y, = 1/2 — 1/[2(¢ + 1)] so that (o + 1) y, = 0/2 < 1 since p < 2.

Hence, on account of » == 0, from (2 3) (26), (27) the-uniforin houndedness of the
norms of w,” in Ly(I") follows, i.c., we again have the estimates (19)'and (20) ']‘he rest
of the proof is the same as'in thc proof of Theorem 2 § :

Example 1: The problem (3) with constants A >0 and x> 0, ie.,, x = —1, o = B =0,
@(u) = 2u, y(u) = pu fulfils the assumptions of Theorem 3.
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.

4. Problems of Landesman-Lazer’s type

Finally, we consider some problems without assuming the condition (9) for . Firstly
we make some brief remarks on the case y = 0 which will be also dealt. with below
-as a limit case of a Landesman-Lazer’s type problem. In this case the condition
. o \ i '
[ids=0 : - (28)
r . 4

is obviously necessary for the existence of a solution. If additionally « = 0, Pro-
blem A can be reduced to the problem with the integrated boundary condition

ou ou - o ‘ .
‘and (2), where C is a free constant, _— T
Fs) = [flo)do, D) = [ plo)dw. '
0 : 0 ’ C .

The problem described by the conditions (29) and (2) is a nonlinear generalized Poincaré
problem and has been treated in the literature. We refer to the papers [14] for the general case,
(1,7,9, 10, 13, 15] for -the case 8§ = 0, {3, 3, 6] for the case ¢ = § = 0, [11;12] for the.case -
% = 0. See also {1, 10, 11, 13] for further references. Here we only consider two examples of
this problem for illustration.

Example 2: The problem (3) with constants A > 0 and # = 0 leads to.the nonlinear Steklov
problem

—=%u2—F—C on I, . . : (30)

. which by [1: Example (2.6)] has a classical solution u € C¥@) n CY(G) for any Lipschitz con-

tinuous function ¥ and constant ¢ > —min {F(s): s € I'}). That means, the problem (3) with
* 2> 0 and g = 0 possesses a continuum of such solutions w'it-h\bounded second derivative v'’
" of the boundary values v for any f € Lyo(I") which fulfils (28).

Example 3: By [12, 14] (cf. also the Remark to Theorem 4 below) the problem (29) with
(2). where x > 0 or % = 0 with (¢ 2 0,8=0 and) e -+ f > 0, respectively, has a (suitably
defined gencralized) solution w € Ly(I") if - .

uP(u) = —clul — d (c=0,d =20) N o " (31)
and . : . '
o< L f (F(s) + C)ds < @,,
2n .
. I‘ ) .
i.c. for‘any constant C with ' _ ’

u—> - 00 U—>r— 00 '

l 3 . .
h_< C + ‘)—fF’(s) ds< @®,, &, =Iliminfdu), P_=lim sup @(u).
2n
T E
If, additionally, .
P Salul +b . (@=0,620), - - (32)

then also w” € Ly(I") and u € W, (I") is a gencralized solution in the sense of point 1 above.
Therefore, under the assumptions (31) (and (32)) and @_'< @, the Problem A with » > 0
- orx =0,e -+ f> 0 possesses a continuum of such generalized solutions u € Ly(T) (v € WNIM))
for any [ € Ly(I") which satisfies (28). The assumptions (31) and @_ < @, are especially ful-
N .

35% . , P ,
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filled if @ is a non-constant monotone increasing function. I.e., under the above-mentioned
restnctlons on the parameters x, ¢, f, Problem A has solutions if the condition ¢(u) = 0 is
satisfied (for @(u) = 0, obviously, a solution u exists which is detérmined apart from an arbi-
trary additive constant). N ! .

Tn case p < O there holds the followmg theorem of Landesman- Lazer s typo for
Problems A and B.

'l‘heorcm 4: U'nder the additional assumpnons #2 0,0 = 0 (/ = O « = 0), (16),
and

wplu) = —8, Jul — D, wozc>Do>0) ' . (33

Problem A possesses a generalzzed solution for each f € Ly(TI') satzs/ymg the mequalzty

%<gfwnwn o o SN
B I . :
where - o S ’
4y = lim inf ¢(u) , y_ = lim su-p w(u)'. -
U—>-+ 00 - U — 00

We remark that the condition (33) 1mp|1es that —oo Sw c< 0y —0 Syz é +oc0.'Of
course, for (34) to held it is to assume that - < P4

Proof We consxder thc perturbed problem w1th the boundary condition
—“fusa -+ #Vss +oav + fv,+ p(u) u, + ou + W( u) =f onl o (35)
and the additionial condition (2). By Theorems 1, and the Lemma this problem has
a generalized solution ws(z) with u, € WI') for anv 6 > 0. Weagain have to prove
that the norms of us in. X = W2 (I"y are umformly bounded.
Multiplymg (35) for u = ws, v = v by 4" and ‘integrating over I’ylelds the relation

/{Jua’l)a ds—}—ocfu,,v,,ds-{—fq)ub *ds—f/ua ds.
-2

Now t,here hold the mequaht-les - ‘
{ ‘ fv;a’v;" ds=20 and [ u'v;ds < 0.
ro : ' r -

On account of the assumption (16) we'therefore have

v fu?ds < £ fuy' ds
re o :

in cases x = 0, « <0 and x < 0, o = 0, respectively. Le.; in both cases v [|225”|2
= Iflls fles” ||2 This implies the umform boundedness of the norms of u,” in Ly(l"). It
remains to show that also the norms of us themselves in Ly(I") are uniformly bounded.
We decomposc uy = Cs + U, . where C, ‘are constants and fUé ds = 0. Since

U‘, = u," and the norms of u," in L,(I") are. umformlv bounded thefunctlons U, them-
selves are uniformly bounded” '

mm<L T ' (36)

We have to prove that also the constanbs C,, are umformly bounded If t,hls were

not the case, there exists a sequence {Cs,} going to +oo'or — oo as §, — 0. From (35)
. : = A .
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~

we have. the relation -

2mp%+fﬁmf+m9@=f/a. - ' (37)

) lf now Cs — oo as 8, — 0, we apply Fatou’s lemma to (37) taking into account that

A

by (33) w(u) = —pu, with a (positive) constant u, for sufficiently large u, say u = 4o, -
and by (36) Cs, + Ub = 7o for sufficiently large n. Hence we obtain the mequaht,y

ffds > im mffy)(Ca + U,s,)ds = f lim inf 1/)(06 + Us )ds > 27z1p+

‘n—o0 I n—o0

which is a contradiction to the right-hand side of (34). In the same \vay the assumption
Cs, - —oo as §, - O-leads to a contradlctlon to the left-hand side of (34) g

.

Corollary If v < p(u) <y, for all u€ R, in particular, for a monotone non-
decreasing, function v, the condition (34) with < instead of < s obviously necessary for
the solvability of Problem A because of the relatzon .

- w(w) ds_f/dsv SN ..
r r -

following from (4) with n = 1. In the limit case y = O the above proof also goes through
with the assumption (34) replaced by (28) since for y = 0 from (37) and (28) it follows
that all constants Cs, vanish. The condition (28) is therefore'necedsary and sufficient in
this case. . ) \ _ !

Remark In the particularcasee = x = f = 0andgp = 1 (p = —1) the emstence ﬂSSCI‘t;lOIl
of Theorem 4 also holds true under the-more general conditions that « g {1, 2,...} (o § {—1,
—2,...}) and the Camtheodory function y = y(u, s) satisfies the nssumptlon (‘%3) with non-
negative functions &, € Ly(I"); Dy € Ly(I') and the assumption

sup (p(u, s)| € Ly(I')  forany R> 0. .

|u]£ , -

This follows from Remark 1113 to Theorem I1L.6 of [2] like in the corresponding proof in [12], . .

but there only the Theorem IFI.6 of [2] itself has been used. The solution u lies i in Ly(I') with
£+ av € L(I'). Finally, the same statement is true also in the case & = x —= 0, 0,
o arbitrary and @ = 31, where u € Ly(I") with v’ + u’ + av € L(I") (cf. [14]).

.
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