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- A Class of Nonlinear Generalized Riemann-Hilbert-Pojncaré Problems 
for Holomorphic Functions

¼ 
L. V. WOLFERSDORF	 --

S	

/	 - 

Mit Hilfe der Thcorie pseudo-nlonotonerOperat.oren wird die Existenz einer Lasting bei eincr 
Klasse nichtlinearer vórallgemeinerter Riemann-Hilbert-Poincaréproblenie für cine' holo-
rnorphe Funktion ins Einheitskreis bewiesen. 

C noMouIilo i'eopiiii llceBao-MoIIoTotIIIaIx onepa'ropoa AoKa3blBaeTCJI cy[uecTnoltaHIse. pe-
luetitin y owioro njiacca Jie2lHh1efiH1,1X o6o6u.elI1IbIx 3aau PItstana-FIlabGepTa-Hyauxape 
ijin aHaJIIIrIl qecHItx q'iiiuitu a eJ.titIiitu,iosi HpyI'e. 

By means of the theory of pseudo-monotone operators the existence of a solution of a class of 
nonlinear generalized RiemannHilbert-Poincaré problems for a holonsorphic futtetion in the 
unit disk is proved. 

Introduction 

In recent papers of the author [11, 141 existence theorems of the theory of maximal 
monotone operators and of Hammerstein equations in L spaces were applied to 
nonlinear Riemann-Hilbert, generalized Steklov, and generalized Poihcaré problems 
for hloiiorphic functions in the unit disk. In the present paper the theor y of pseudo-
monotone operators in the Sobolev space W2 1 is utilized for proving corresponding 
existence theorems by a class of nonlinear generalized Rieniann-E-Lilbert-Poincaré 
problems (nonlinear Vekua's problems) involving derivatives up to second order of 
the boundary values. Besides, by means of related regularizing approximations also 
some types of noncoercive problems of this kind are dealt with. In particular, some 
existence theorems of Landesman-Lazer's type are derived coitipleting the theorems 
of such type obtained for the Riemann-Hilbert, the generalized Steklov, and the 
generflized-Poincaré problem in [12, 14]. 

For classical work on nonlinear generalized Riematmn-Hilbert-Poinearé problems 
we refer to P000RZELSKI [8] and the papers quoted in the introduction of the mono-
graph [4] by GuSEINov and MuKmlTkaov. 

I. Statement of problem	 - 

Let	< 1 be the unit disk of the complex z plane with boundary I': i = e"
(—n s 7i). We deal with the following Problem A: 

To find a holomnorphic function w(z) = u(z) + iv(z) in .0, whiCh satisfies the 
boundary condition 

L[u, v]	Lo[u, v] + L i [v} + L2[uJ = / on I',	 (1)
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•	where
L0 [u, v] = —su33 +	L1[v]= av +flv, 

and the additional condition 

v(0) = 0 in z= 0.	 (2) 

Here s ^i> 0, x,	0, and a are givenreaI constants, 92 and . ip are given continuous
functions, and/ E L2(F) is the givn right-hand side. 

Because of (2) the boundary values v = v(e) of v(z) and u = u(eia ) of u(z) on P 
are connected by the well-known reltion, v = —Ru' with the Hilbrt operator 

•	 (Hu) (s) = -i--f u(e°) cot	S da. 
7t	 2 

We remark that an inhomogeneous additional condition v(0) = can he reduced to 
the homogeneous condition (2) introducing the unknown fnction w(z) - yi instead 
of w(z). 

in particular, we are interested in the speca1 case 

	

•	 _ts;+Uts + yu = /	 (3) 

of (1) with constants A > 0, ju 0, which may be regarded as a steady analogue of 
the well-known Benjamin-Ono equation of the theory of long internal gravity waves 
in a stratified fluid with infinite depth in the spatially periodic case. 

A holoniorphic furction w(z) = u(z) + iv(z) in G with boundary values u(s) = u(e18) 
and v(s) = —(Hu) (s) is said to be  generalized solution of Probleiii A if  € FV21(fl') 
satisfies the integral relation	 I 

•	
'	 â(u, )'+ a 1 (u,) +a2(, j) = b() for ,j E W2 1 (fl,	'	(4) 

where, for u, 77 E W21(P),	
-;	

• 

b(?)) =f /,q ds,	a0 (u,	cj u"ii' ds + zfHu' . ,' ds,	 (5) 

-	a1(u,'i)= 

	

-.	 (6). 
a2(u, ,) =f q(u) u' j ds ±f (u) n dv. 

Here the prime denotes derivatives with respect to s. 

Lemma: If E + x2 > 0, a generalized solution,w(z) of Problem A has boundary 
values u, v E W 2(P) and the boundary condition (1) is * fulfilled , a.e. on I': 

0	 • 
Proof: Let-u E W2 1 (f)he a solution of (4). We put	• 

•	U= / - (u) u' - v(u) + ,aHu + Hu' E L2(fl. - 

• From (4) with 71 = . I we have  U ds = 0. Therefore, the bdundary:value problem 

-	-f-xv33 = U on I'	• •	 -	
(7) 

	

•	
1) U ' € W 2'(T) includes that u is a (continuous) 2n-periodic functin in s. Analogously, it and it,

•	
arC continuous 2'i-periodi6 functions in s if it € 1V 2(I')	 0 

•	 I	
•
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has a unique solution w0 (z) = u0(z) -l--'iv0(z) with boundary values %, V, E W22(P) 
satisfying the additional condition w 0(0) = 0. This solution may be easily constructed 
in closed form by trigonometric Fourier expansion, for instance. The function u0 
fulfils the identity (see (4))	 - 

a0(u0, ,) = b( 7) ,— a 1 (u, ) — a2(u, ,) for 77 E W2 1 (F).	 (8) 
Putting u1 =U — u0 , from (4)-and (8) we have the integral relation 

a0(u1, ) =f [--u' + Hu 1 '] 97 ' ds = 0 for 77 E W2'(F). 

Hence it follows that the function eu1 ' + 'Hu'has the generalized derivative zero on - 
F and therefore is a constant. But then u' must be a' constant and, due to its 2r-
periodicity, also U! itself. Tht is, u = u0 + ul € W2 2(F). Moreover, from (4) with 
u € W2 2(I') by partial integration we obtain the ihtegral relation - 

'f {L[, —Hu] — /} 77 ds	0 for	€ W2 1 (F),	- 
r	 I	 - 

which implies the-validity of the boundary condition (1) áe. on Fl - 
Remark: If /, 99, p E C(P) 9 0 < a < 1, are Hölder'continuous functions with . exponenta, 

then u. e C2.(P) have Holder Continuous derivatives of 'second oider with the same expo. 
nenta:  

, 2. Basic existence theorem	 -	 - 

We now prove the main theorem of this paper.  
Theorem 1: Under the additional assumptions e>0 and	- 

U(U)	6u2 — D	(ô > 0, D ^t 0)	 -. (9) 
Problem A possesses a generalized solution for any./ E- L2(I'). 

Proof: Problem A is equivalent to the'operator equation 
Au = b in X = W2 1 (P),	 -	 I() 

where A. = A 0 + A ! + A 2 and the operators A L.: X = W2 1 (F) —- x* 	W21(F) 
(k = 0, 1, 2) . are defined by ae(U, ,) = (Aku, 77)x for u, E x; and b E X" = W2 1 (f) is 
defined by '(5).	 - 

The linear operators A 0 and A 1 are continuous since the Hubert operator H is a 
- continuous linear operator in W21(F). Besides, because of 

a(u, u) = ef U' 2 ds ^0,	a1(u, U) = flf - u ds	0,	(11) 

where au/ar means the derivative of z indirection of the polar radius r, both opera-
tors A 0 and A 1 and therefore their sum A 1 = A 0 + A 1 are monotone. 

The operator A 2 is completely continuous in the sensethat it maps weakly conver-
'gent sequences into strongly convergent ones. Assuming U — u in X, we have 
jug 1 :s.- K and, due to the compact embedding of X = W2 1 (F) in C(F), also u - u 
in C(F). We have to show that 
-	IIA2u - A2u11x . = sup KA 2U - A2u 97)j	0.	-	 (12) 

II'7IlxI	 -

-i
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By partial integration from (6) it follows that 
a2(u, ) =f V(u) ii ds —f 0(u) ' ds,	0 a primitive of p. 

Since 7p(u) —* p(u) and 0(u) —> 0(u) in C(F), we have 
sup I(A 2u — A 2u, 01 

^s sup f Ii(u,,) — p(u)I i(s)j ds + sup f 0(u) — 0(u)J	()I ds 
I'i!Ix1 I	 II'iIlxS' r 

(f 'Ivi(u ) — v(u)I 2 ds) l/2 + (1 I0(u) —fP(u)1 2 ds) S - 0.	
D 

This proves (12). 
As the sum A = A 1 .+ A 2 of the continuous monotone operator A1 and the cotit-

pletely continuous one A 2 the operator A is pseudomonolone. Since A 1 as a continuous 
linear operator and A 2 as a completely continuous, one are hounded operators, so A is 
bounded, too. Finally, owing to the assumption (9) there is' 

a2(u, u) =f wp(u) ds	6fu2 ds — 2'rD	 -	(13)

and bv'(ll)  
a0(u, u) -f-- a, (u, u) ^!, ef 412 ds.	 (14) 

Therefore,-we have (Au, u)x	mm (e, 6) IIuIIi 2 — 2nD, and because of the assumption 
e > 0 (and 6 > 0) the operator A is coercitive.. 

The main t.heo'rem of. the theory of peiido-monot•one operators by Brézis (cf. 
[16: Theorem 27.2]) now yields the existence of a solutionu of the operator equation 
(10)1	 . 

Re in ark: Since the, operator A also satisfies the condition (S'+ and hence) 'Si, the solution it 
of (10) is strong limit of a subsequence of solutions of the Calerkin equation of (10) with 
respect to an arbitrary basis in X = 11`2 1 ( F ) (cf. 116: Theorem 27.1]). Further, we remark 
that the question of uniqueness of the solution is an open problem. Of course, the solution is 
unique in the particular case: T = 0, i'a strictly increasing function. 

3. Non-coercive problems 

We now deal with the case e = 0, where the main term is L0 [v] = xv33 in (1) The 
problem with the corresponding boundary condition 

L0[v] ± L[v] + L2[U] = /	on P	 (15) 
and the additional condition (2) is named Problem B.	- 

Theorem 2: Under the additional assumptions	0 (x 0), 
99(U) > v >0	I ((u)	—v <0),	 (16)'

and 
.

(9) Probl'm 'B possesses a generalized solution for any / E L2(I'). 
Proof: We restrict ourselves to the 'case x ^! 0. In view of Theorem 1 the perturbed 

problem with the boundary -condition 
—eu 2 + xV83 ± av +v3±(u).u3+(u)=/	onf	'	(17) 

and the additional condition (2) possesses  generalized solution w(z with u € W213 (P) 
for any e > 0. By definition u, satisfies the integral relation (4) and by the Lemma. 

y e € W2 2(r) fulfil'the boundary condition (17) a.e. on P.
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We show that the norms of u. in X = W2 1 (f) are bounded iniformly in E. In view 
of (13), (14) from (4)-for 77 = u we obtain the inequality 

ef u' 2 ds + of u 2 ds :!E^ f/u. ds -I- 2D. 

Therefore we have 6 IIu lI22	II/II21kII2 + 22ID) 'vhichimpli'es the norm boulidedness 
in L2 (f) . 

,11U1112	K0	uniformly in e> 0.  

Further, multiplying (17) for u = u, zi = v, by u5' and integrating over r yields the, 
relation	 *-•	 .	 *	 . 

Y u5'" ds +	u'v, s	92(u) u' 2 ds =' f /u' 	ds. r 	' 

Now there holds	 .	. 

u v ds 
=11 

u3	ds ^ 0 for u E W22(1) /  
so t.hat xf u'v" ds > 0 and, by . (16), f 92(u) Ue 12 ds > V  u 12 ds. Besides,. l lv,112 

;E^ IIu I' ^--.K0 by (18). Hence we infer the inequality v u'12 2	(11/IL2 + II K} IIJI2
which implies 'the norm boundedness in L2(f')  

I[u 'II2	K1	uniformly in e > 0.	.	 '	(19)

Finally, from (18) and (19) we have the estimate 

lluEIL K	uniformly in' 'e> 0.	, '	 ' ' ..	 (20) 

Let 0 and put u, = u. Owing to (20) there exists a subsequence (u,) of 
{u5 converging weakly in X = W2 1 (I") and therefore uniformly to a function u € W2'(/')- 
Then also the functions Hu,,, converge weakly in W21(I') to Hu € W2'(I'). Performing 
the limit e,, -4 0 in (4), we Obtain the identity .	. 

Hu' . ' ds + ai (u, 77) + a2(u, ) = b()	(i € W21(f)) 

for'u, i.e., u € W2 1(f') is generalized solution of Problem B I 

-Remark: If x	0, by the Lerima u € W2 2(f). 

Further we drop the assumption (16) on 92 and prove 

T h core ru 3: Under tke additional assumptions x 0, 

192(u)l ^5 El Jul ,' + D 1	(0 < e <2; E1 2^ 0, D1 ^ 0),	' -'	(21) 

the assumption (9), and  

(u)I,;5 E2 uI +D2	(0 < a < 5; E2	0, D2	0) 	(22)	-. 

Problem B possesses a generalized solution br any / € L2(P). - 

2) I•1I denotes the norm in L(F), p 

35. Analysis lid. 6, Heft 0 (1087)	 '	 -	'
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•	Proof: We again consider the perturbed problem with the boundary condition (17) 
-	and (2). Due to the assumption (9) the estimate (18) holds again. Multiplying (17) for 

•	 U = U, v = v, by v, and integrating over I' further yields the relation 
_ ;1 f u,'2 ds + a f v, 2 ds -+:f (u) v,u,"ds +f ip(u,) v, ds =f /V, ds. 

Now we have I1 v 112	1kL ll2 ^S K0 by (18) again, 

0 -
	 f p(uJv,ds I < E2 f lu,i v,j ds ± D2 f lv,l ds 

•	 .	 . .	 < E2K0 llu,ll ± D2 J/	K0	
S 

•	by (22), and 

1. p(u,) v,u,' ds g; E1 f Ju, 1 1 v, I ju,'Ids + D 1 f lv,I lu/I ds 

^ El lRu1 1 0 v,j12 11u,'112 + D 1 RT0 lu/112 

by (21). Furthermore, by Holder's inequality 

lIl u€V v,J12 ^ l(1) II	A21 IIu,lil) 
with A 'the norm of the Hubert operator in L(P), p > 1. Therefore, there holds the 
estimation 

ld lu, 1122 = I , I lle112 2 .	 .	.•	 . 

•	 < K0 111112 ± lo, I K02 ± D2	K0 + E2K0 1U,111, 

	

-I- {EIAn O 1) lU,II2 0 ^i) -f- D..K0) 1u/I12 .	 (23) 
Finally, for any U E W21(f') satisfying the relation f U ds = 0 the well-known 

interpolation inequality	 . 

[UII ^ . 0 1U' 2 II U 112'	(C> 0),	 (24).
where p ^ 2 and y = 1/2 - l/p, is valid (cf. [7: Chap. JI,Th. 2.21). Taking U =- u 
- (1/2n) f u ds, from (24) for an arbitrary function it E W/(r) we obtain the ine-
quality r 

ilu Ilp	C IIu'lY 1 102	d 1 u h2	 .	.	 (25) 
with uniform positive constants c, d, depending only on p. With loss ofgenerality 
we suppose > 1 in (22) and choose p = 2a and p = 2( ± .1), respectively, in (25). 
Then we have 

hlu€hl2 < c 1 K0	IIU€ '11 2n . + d 1 K0 '	 .	 (26) 

with y' = 1/2	1/a so that ay ' = (a '--- 1)/2 <2 since a < 5, and 

/ • . 
JjU9(01) < c2 K0	Iu/II2 + d2K0	•	 •	 •	 (27) 

With 
Y2 = 1/2 - . 1/[2(e + 1)] so that ( + 1) Y2 = /2 < 1 since e < 2. 

Hence, on account of	0, from '(23), (26), (27) the iiniforiii houndedness of the 
norms of u,' in L2 (J') follows, i.e., we again have the estimates (19)'and (20). The rest 
of the proof is the same as in the proof of Theorem 2 I	. 

Example 1: The problem (3) with constants '. >0 and e > 0, i.e., = —1,a = = 0, 
(u) = ).u, (u) = iu fulfils the assumptions of Theorem 3.
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.

4. Problems of Land esman-Lazer's type 

Finally, we consider some problems without assuming the condition '(9) for 7P. Firstly 
we make some brief remarks on the case V = 0 which will be also dealt with below 

-as a limit case of a Landesnian-Lazer's type problem. In this case the condition 
\ 

f/ds=O	-	 (28) 

is obviously necessaryfor the existence Of a solution. If additionally a = 0, Pro -
blem A can be reduced to the problem with the integrated boundary condition 

au 
x-- —z- — +flv+(u)=F+C	 (29) 

and (2), where C is a free constant,	 - 

•	 F(s) =f/(a)do,	(u) =f(w)dw. 

Th problem described by the conditions (29) and (2) is a nonlinear generalized Ioincaré 
problem and has been treated in the literature. We refer to the papers [14] for the general ease, 
[I, 7 9, 10, 13, 15] for the case	= 0, [3, 5, 6] for the case z = = 0, [11; 121 for the-case 

= 0. See also [1, 10, 11, 13] for further references. Here we only consider two examples of 
this problem for illustration. 

Example 2: The problem (3) with constants A> 0 and It = 0 leads to the nonlinear Steklov 
problem

au 
-	._2:u2_F_C	on r,	 '	 (30) Or	2. 

which by 1: Example (2.6)] has a classical solution u E C2(G) a C'() for any Lipschitz con-
tinuous function F and constant C > -min (F(s): s E 1'). That means, the problem (3) with 
A > 0 and It = 0 possesses a continuum of such solutions withbounded second derivative v" 
of the boLIndar' values v for any / € L(1') which fulfils (28). 

Example 3: By [12, 14] (cf. also theflemark to Theorem 4 below) the problem (29) with 
(2). where > 0 or x = 0 with (z ^ 0, fi 0 and) e 4- > 0, respectively, has a (suitably 
defined generalized) solution u € L2 (F) if 

•	u(u)^ —c Jul —d	(c^!0,d^0) '	(31)
and  

(P_ <	f [F(s) ± C) d, < +,

CP+ = liin inf dP(u), P_ = lu sup P(u) 
U__ 00 

If, additionally, 

VD(u)I	a Jul ± b	(a ^ 0, b	0),	 -	.	 (32) 
then also u' € L2([') and it € 1V21(/') is a generalized solution in the sense of point 1 above. 

Therefore, under the assumptions (31) (and (32)) and	< + the Problem A with x > 0
or x = 0, e ± > 0 possesses a continuum of such generalized solutions u € L2 (r) (u € IV,l(fl) 
for any I € L2 (P) which satisfies (28). The assumptions (31) and & <	are especially ful-

:35*  

i.e. for any coistant C with 

p < C±	f F(s ds <'^, 
-	 tt-.+oo
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filled if.0 is a non-constant monotone increasing function. I.e., under the above-mentioned 
restrictions on the parameters x, e, , Problem A has solutions if the condition ( u )	0 is 
satisfied (for (u)	0, obviously, a solution u exists which is determined apart from an arbi-
trary additive constant).	 - 

In case	0 there holds the following , theorem of Landesman-Lazer's type for 
Problems A and B. '	- 

Theorem 4: Under the additional assumptions 	0, a 0 (x 0, a > 0), (16), 
and	 -.	.. 

-	p(u) > —bo Jul - D0	(6o	0,- D > 0)	 (33)

Problem A possesses a generalized solution for each / E L 2 (F) satis/yig the inequality 

	

I < f ds	 (^4)

where  

= lim inf v(u),	_	lini sup ?p(u). 

We remark that the condition (33) implies that —oo p_  5 6, -	±oo. O
course, for (34) to hold it is to assume that  

Proof: We consider the perturbed problem with the boundary condition 

- —u ±	+av + fiv8-+ (u) u	öu ± (u) = / on P	; / (35) 

And the additional condition (2). By Theorems 1, 2and the Lemma this problem has 
a generalized solution w6(z) with ua € W22(r) for any 6> 0. We again have to prove 
that the norms of u6 in.X = W2 1 (P) are uniformly bounded. 

Multiplying (35) for -u =A6 , v = vo byu' and integrating over Pyields the relation 

j* u'v5 " ds + a  u'v0 ds + f (u0 ) u6 ' 2 ds = f /u' ds. 

Now there hold the inequalities - 

fu'v" ds 0 and f U ' VÔ ds 0. 

On account of the assumption (16) wetherefore have 

vfuo'2 ds+f/uo'ds	 - 
1. 1	 / F 

in cases x	0, o'	0 and x	0, a > 0, respectively. I.e.; in both cases v Iluo'1122 
11/112 IlU412 . This implies the uniform boundedness of the norms of u' in L2 -fl. It 

remains toshow that also the iornis of u6 hemselves in L2(f') are uniformly bounded. 
We decompose ua = C + U, where C 'are constantsand f U6 ds = 0. Since 

U' = Uô ' and the norms of ô ' in L2(r) arèuniformlv houndd, the functions U6 them-
selves are uniformly bounded': 

:	-	- IU(s)I < L.	 -.	 (36) 

We have to prove that also the constants Ca are uniformly bounded. If this were 
not the case, there exists a sequence C6 } going to +oo'or —00 as 6,, —s. 0. From (35)
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we have the relation 

2nô0C6 + f vi ( Co,. + U6 ) ds = f / ds.	 (37) 

If now C6; -- op as ô, -> 0, we apply Fatou's lemma to (37) taking into account that 
by (33) (u) - with a (positive) constant. Po for sufficiently large u, say u , 
and by (36) C6. + U6. ^ 2 for sufficiently large n. Hence w obtain the inequality 

ff ds ^! lint inff tp(Co + U 6 ) ds 	f liniinf p(Ca ,, + U6,, ) ds	2np 

which is a contradiction to the right-hand side of (34). In the same way,the assumption 
- —oo as ó,, - 0- leads to a contradiction to the left-hand side of (34)1 

Coollary: If a_ (u) for all u ER, in particula r' , for a monotone non-
decreasing /unction, ip, the condition (34) with :!^ instead of < is obviously necessary for 
the solvability of Problem A because of the relation 

flp(u)ds=ffds	. 

following from (4) with 77 = 1. In the limit case v = 0 the above proof also goes through 
with the assumption (34) replaced by (28) since for 7 = 0 from (37) and (28) it follows 
that all constants Cs,, vanish, The condition (28) is therefore'nece4sary and sufficient in 
this case. 

Re mark: In the particular cape e = x= = 0 and = 1 ( = —1) the existence assertion 
of Theorem 4 also holds true under the-more genetal conditions that a j (1, 2, ...} (a 4 (-1, 
—2,...)) and the Carathéodory function V = tp(u, s) satisfies the assumption (33) with non- - 
negative functions 60 € L2 (r); 1)0 E L1 (F) and .the assumption 

sup Iip(u, S)l € L 1 (I)	for any B > 0.	. 

This follows from Remark 111.3 to Theorem 111.6 of [2] like in the corresponding proof in [12], - 
but there only the Theorem 111.6 of [2] itself has been used. The solution u lies in L2 (17) with

	

ctv € L 1 (['). Finally, the same statement is true also in the case e = c.= 0,	0, 
cx, arbitrary and	+ 1, where u E L2 (T') with flv' ± ' .+ o.v € L 1 (F) (cf. [14]). 
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