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The Convergence of Rothe's Method for Parabolic Differential Equations 

R. ScHu1%IN  

Es wird die Konvergenz des Rothe-Verfahrens für quasilinere parabolische Differential-
gleichungen tinter fur, die Existenzaussage typisehen Voraussetzungen bewiesen. Grundlage 
hierffir sind geeignete Approximationsshemata für Evolutionstripel und die Beobachtung, 
dal) das Rothe-Verfahren den Forderungeñ der Stabilität und der Konsistenz genügt. 

joIamInaeTca CXOU1M0CTJ, MeToa PoTe giut KBa3HJIIIIieflHblx napaüoJlMMecKnx 1/aepeH-
u11an,IIbix ypaBI1eHuft npu T14n11'IecHnx npençioeunnx 0 C[UCCT136BH11. OcHonane 
aroro -	 jin rpiiniea E1OCTHCT8 it Ila6JIjoeHIIe,. q To MeTo 
PoTe nbInoJIHfleT YCJIOBIIR yCTofliI13OCT14 ii cocToITeJibHocT1i.	 - 

The convergence of Róthe's method for quasilinear prabo1ic differential equations is proved 
under typical assumptions which guarantee existence. The investigations are based on appro-
priate approximation schenies for evolution tripels and on the observation that Rothe's 
method satisfies the requirements of stability and consistency. 

1. Introduction	 - 

Consider the mixed problem for a quasilinear-parabolic differential equation 

u 1 (x, t) + z (- 1)' ..DA 5 (t, x, Du(x, 1)) = /(x, t) 
IsIm 

-	in. Q=Qx[O,T],	 (1) 

u(x,O)=u0(x)	 inQ,	 S 

Du(x, 1) = 0	 on W x [0, TI for 0	ni - 1 

where 0 is a bounded domain in RN, T is some fixed positive number and 
Du =.(DU) 1 p j m (m	1). in abstract form (1) may be written as	 - 

u'(t) + A(t) u(t)	1(1)	for all t E (0, T), -	S	

- ( 2) 
•	u(0)=uo.	 - 

The Rothe method introduced by RoTIu [12] more than fifty years ago consists in 
replacing (2) by a family of elliptic equations using diseretization in time and dif-
ference quotients:

+ A(t 1 ) uh (t I ) = Ih( tI) h'(uh (t I )	u,(to)) 	 S 

h'(uh (tt) - uh (t I ))	.+. A(t2) u(t2 ) = ih( t2)	 S	 (3) 

h'(uh (t fl ) - u(tn1)) .+ A(tn) Uhtfl)	/)

V 
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With u5 ( t0 ) = u0. 1-Jere ii = T/n, n € N, denotes the pa iameter of discretization and 
= kh (k = 0, 1, ..., n). The system (3) may be regarded as an iniplicite scheme for 

the successive determination of u(t 1 ), .., u5 (t) from the given datum uh (to) = U0. 

Sine there exists a plenty of methods for the (approximate) solution of elliptic equations 
Rothe's method has gained significance for numerical mathematics (Cf. REKT0RYS [11], where 
many theoretical and practical questions concerning Rothe's method are enlighted). NEAs 
1 .8] applied Rothe's method to abstract parabolic equations in a }Iilbërtspace and KA1JR[4, 51 
to equations of the general-form (I). One of the typical results in these papers is, roughly 
speaking, the following: 'rlie piecewise constant and the piecewise linear functions constructed 
from the solutions 71 5 (1) of (3) converge to the solution bf (1) in the norm of L(O, 7'. L..(Q)) as h — 0, i.e. a — , under a hypothesis like e.g;u 0 € hIcm(Q), .4(0) € L(Q), / € L(O, T, 
L0(Q)). If .4(0) satisfies certain regularity assumptions, this means that u0 must belong to the 
Sobolev space W22m(Q) lV 2m(Q). Under these assumptions existence and uniqueness results 
are slightl y better obtained by nonlinear senligroup theory and the solution is more regular.  
Here we shall use the weaker assumptions from the existence theory established by Browder 
and Lions — Strauss (cf. LIONS [ 7 1) . GRoCER [31 provs the convergence of an iteration method 
which in the case of equation (2) with / = 0 reads as 

-	±. (u(1)	u5 (( 1 _ 1 )) ± f .4(1) u5 (1) (11 = 0. 

He reduces it to Rothe's equation (3) if 1 i-* A(t)'is Lipschitz continuous and also givesstronger 
convergence results under additional regularity assumptions on .4, 210. 

It is the aim of this paper to prove the convergence of Rot.he's method under 
those typical hypotheses on the operator A, the initial datum u6 and the right-hand 
sidef of (1) which guarantee existence. We would like to mention that Rothe's method 
sometimes is called (transversal) method of lines in distinction from the longitudinal 
method of lines investigated in detail by WALTER(Cf. [14]). 

2. Abstract parabolic equations and their approximation 

2.1 Existence theorem 

It is the purpose of this section to state the general conditions under which problem 
(2) has a solution. Simultaneousl y we want to present the minor changes necessary 
for the application of a difference method, like Rothe's method. Suppote (V, 11. ) is 
a reflexive and separable Banach space densely embedded in a separable Hilbert 
space (11, I - 1) with scalar product (., .), V denotes the dual space to V and (., ) is 
the pairing between V* and V. By identification of 11 with its dual we get the triple 
of spaces V c H	V*. The basis of our subsequent eonsideratidns are the' spaces. 

X = L(01 71, 111 ),	X'' = L, (0, T, V*), 

	

- II' = H'(o, T, T', H)	(v. € L(0, T, V) I U' € Lq (O, T, V*)} 

where p 2, p 1 ± q_J = 1. The norms are defined by 

114, = U IIu( t)!l di),.	IPU*II x* = (J Ju*(t)J	d1-V .

	

/	 0 

and IuIIiv lulix + IIu. 'Ilx . for u € X, u E X, and u € W, respectively. Renuèniber 
that II' c- C([0, T], H). For details cf. GAJEWSKI, GROCER and ZACHARIAS [2: Ch. 4], 
LIONS [7: Ch. 2], WLORA [15: Ch. 41, ZEIDLER [16: Ch. 231.
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Theorem 1: Let A(t) (0 :!^ I :!E^ T) be a family of monotone mappings from V into 
JJ* with the following properties: 
(Hi) Coerciveness: (A (t) T1,	^ y[Z]P --- y ' for all TZ E 1', t E [0,T] where y, y ' > 0 

are constants and [.1: J/ - II denotes a seminorm satisfying [1 + )., .1	co liv

for some constants ,, c 0 > 0. 

(112) Growth condition: 11A(t) Z Iiv . g; c(1 + ilu)') for all TZ E 1, I E [0, T] where 
c 1 > 0. is a constant. 

(113) Continuity: A(t,) u3 1 —* A(t) ib7 in Ji* for all sequences (1 1 )c: [0, T], (W,) - V	- 
with t 1 -±t, iv- 1 - * lin Vasl — . co.	 S 

For the right-hand side and the initial value we assume 
(114)j E L(0, T, V*), 
(115) u0 .E H.

 

-Define (Au) (t) = A(t) u(t). Then the roble9n 

ü' ± Au = f,	u(0) = u0	 .	.	 . (4) 

has exactly onesolution. u E W = IV,' (0, T, V, H).	 . 
Proof: Cf. GAJEWSKI, GRÔGER and ZACHARIAS [2: . Ch. 6], 1,i6_-, s [7: Ch. 2], ZEID-

LER [16: Ch. 30].  
Remarks': 1. If A) is hemicontinuous and (H2), 0 (H3) above are replaced by - 

(H 2')	11 A1 ) üIIv 5 g(t) +.c 1 jjtjj
V

11q
.
 with g € Lq/(O, T), 

(H3')	the function t -* (A(t) ü, €) is measurable on [0. T] for all u, € E V 
the conclusion of Theorem 1 is still valid. 2. The case 1 < p < 2 may be treated; too (cf. 
GAJEWSKT, GRoCER and ZACHARIS [2: p; 142]). 

2.2 Approximation scheme	 . 

In order to prove the convergence of Rothe's method in the next section we construct 
approximation schemes adapted for the application to equations (2), (3). We us e' 
methods of AUBrN [1], RAV1ART [10], and TEMAM [ 13], but we must pay attention to 
the fact that our aim is to approximae mappings from [0, T] B into Banach 
spaces instead of real-valued functions in the cited references. 

A. Grid functions: Seth = T/n (n E N), tkh = kh (k = 0, 1,.., n). If it is clear 
to which subdivision (characterized by 4) tk.h belongs we also write tk instead of 4.h• 
Define the grids	 S 

'h={tklk=1,...,n} and	h=14Ik=0,l,...,n, 

and the following. spaces of grid functions:  

-	XhLS5,V)	 -	-	.-
1.

	(h'-uh: 3 —* V I[-hI[Xn = 	27 lkiz(ti)ll,
)u/p

l=i 
- S	= L( 5, V*) S	 - 

-	 fl  

{i:	V I lIfhILvh• = (hE I11001I.)
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Wh = W h ) = uh :h -* H I u(t) E V for i = 
IIUhIIw,	IJuIIx, + jVux.}	. 

where Vu(t 1 ) = h'(uh (t I ) — 1) is the backward difference quotient. 

B; The prolongation ph°: For any grid function defined on Sh with values in 
V(H, V, respectively) we set	. 

•	 (ph°uh) (1) = E uh(t) y(t)  

where Xi is the characteristic functiOn of (t, tJ.	- 

C. The prolongation operators ph and ph': First, we define the mapping 
- • Ph : X'010 L(O,T, H) by  

(phuh) (t) = (ph°uh ) (1)	for	I E (0, T], U EW'(h). 

Furthermore we set	 .	. 

(p 1u (I) = uh (tj_ I ) + T, (u(t) — Uh( 1 11)) (I — t)	 -	- 

jf t_ 1	I f^'t j (i = 1, ..., ?i), Uh E W'(h). 1he functions p'u (often called Rothe 
functions) are piecewise linear mappings from [0, T] into H, thus ph ': W'() 
-^L(O,T,H).	.	.	. 

• D. The restrict-ion operators Th and There exists a linear continuous 
mapping F: W'(O, T, V H) —>- W 1 (It, V, H) satisfying (l'u) (1) = u(t) for I E [0, T] 
and (Pu) (I) = 0 in the exterior of some fixed compact set K containing [0, T] (it 

•	is easy to see that the proof of NEóAS [9: Theorem 2.3.9/pp. 75-76] concerning the 
extension of functions from usual Sobolcv spaces carries over to our situation with 
obvious changes (Bochrier's integral, triple of spaces V c H.	V*)). With this pre-




paration we may define r: W'(O, T, V, H) - W'() by 

(r	(t1) 
=	

(Pu)(t) dl,	i = 0, 1, . . h f 
• Thus rh is an averaging operator. Further, for any I E L(0, T, V*) we define h: •	Lq(O, T, V	L,(, y*) by	 .	. 

(/) (ti) =	/(S) dl	z f 
E. Properties of the approximation scheme: Let us consider the approxi-

mation scheme	 S

	

(2)	 . 

L = Lco(0, T,.I1) 4	 W	W'(0, T, V, H) 

IPh2 
ph,	- j,rh	 (P) 

•	 . W,, - W'(h) 

Here w denotes the continuous embedding W -> L. We show (for proofs cf. Appen-
dix 1)that the approximation is stable (cf. RAvIART [10], TEMAM [13]). . -
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Lem ma 1: We have	 - 
(i) IIPh°UhIJL 9 o.r.v = IkhIlL9 s..V for all Uh E L('h , V),	

0 

(ii) iiPhUhIiLo.T.H) :-5 C jUp	for all Uh E 
where C > 0 A a constant independent of h. 

L e in in a 2: We have 
(I) lrhuIIwsh) ^ C Ilull iv for all u E W 1 (0, T, V, H),	

0 

() IV1IILg3,.V*	C IIIIIL,(O.r.v) for all 1 ELq(0, T, V*) where C > 0 is a constant 
independene of h.	

0 

Lemma 3 (Convergence of the approximation scheme): We have	 0 

(i) p°ru --> u in L(0, T, V), 
(ii) ph' Vrhu -* u' in L(O, T, V*),	 0 

(iii) phrhu -* wu in LCO(0,T, H)	 0 

"for all ü E W 1 (0, T; V, H) as h -f 0.	
/	0 

2.3 Convergence result	
•0	 '	

0	 - 

We now investigate the convergence of.Roth's method. For a given f E LQ (O, T, JJ*) 
we define the right-hand side of (3) as f hl and get the following system of equations 0 

for the determination of the grid function uh :	 . 

	

Uh( tO) = UO,	

0	

0	 0	 0	

0 

	

0 

h 1 uh(t I ) -f- A(t 1 ) Uh( t1) = (,,f) (t i ) -f- huA(tO) '
	0	

0	 (5)


h'u(tn) + A(t) uh(t) = (hl) (es ) + h1Uh(1n1). 

Theorem 2: Suppose hypotheses (H1)—(115) of Theorem 1 are satisf ied. Assume 
(116) (UhO)	H is  sequence with uhO -I u0 in H as h–* 0 (e.g. UhO = u0 for all h is a 

	

possible choice).	 0 '	
0	

0	
0 

Then	 0	

0	 0 

(i) for any h = Tin,- n E N, (5) possesses a unique solution Uh E W'(h),	
0 

(ii) Sup I'hW,(3h) < 00, 0	 0 
00	

0 S 

(iii) PhUh -- wu in L(0,T, II) as h	0.	0	

000 

0 

0 
Corollary: For the sequence of the Rothe functions (cf. C) we have the convergence 

Ph'Uh	wu in C([0, TI, II) as h -- 0.	 0	

-	 0	
0 

Prdof of Theorem 2: (i): Let us define a mapping A,h: V - V* (i = 1,..., 0j)s 

by	 .	
00	

-	

0 

for TIEY. 

Weclaini that A 1.h is monotone, continuous and coercive. Clearly	
00 

A ;, ,iz— U)	 ITt —i ±(A(tz — A(t)3,i -	0 

00	
0	

(6)	
0 

0	

0	

0	

0 +	

0
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for all ii, P E V since A(t) is monotone for all I E [0, T]. The continuity of A.h follows 
immediately from (H3) and the continuity of the embedding V c-- H. To verify that 
A Ih is coercive we have 

(IIu IIv) — ' KA ih , 1)	(II Th IIv) — ' (h' JU12 + (A(I)ii, ii)) 

>	_i-. ii + y[UJ"	 - 
=	IUIIv	

°	2. u + [ii] 

c0 iniri (h- 1 ).- 1 IT11, y[ü]1'' 1)	if	liii, [ii] > 0, 
--4-- + c0h'2 1 1	 if [ii] = 0,Jul> 0, 

lIu iI '
CO31[U}1)	 if	liii = 0, [ii] > 0, 

'-OC if IIU IIv -±00	 S 

because of hypothesis (H 1) of Theorem 1. We now consider the system (5). Since' 
u0 E H V, (phI) () E V*, the well-known existence theorem for monotone, henii-
continuous, and coercive operators (cf. Lioxs [7: Theorem 2.1] gives the existence of 
a solution uh(t l ) E V of the first equation of (5). Uniqueness follows from (6). The 
remaining equations of (5) are treated analogously. 

(ii): a)-We niultiply. the first equation of (5) by u01 ), the second by u02), etc. This 
gives	 -. 

ufl(t)	(A(11) u0), uh(I1)) 

((h/) (I), Uh(I)) ±	(u,L(t),ufl(I)),. - 

i = 1, ..., n. Hypothesis (Hi) implies	 - 

IUfl(i)J2 + y[h(t)I p -	 - 

y i + II(/) (t)JJvs ju(1)IIv +	u(t) kh(hI)I, 

jU/ (1)	-f- hy[uh(tl)]P	 5 

^ hy + h II(ht) (t)Iv ' IIu ( t )IIv +	*(t. 

-Summing up the first k of these equations we get by virtue of the inequalities of 
HOlder and Young 

1	 k 

- jUh (tfr)1 2 + yh ' [uh(t)]	 : 2	 1=1
	

LFkhy + (h	II(ni) (t)iI)	(h11 Iu(t)IR)	+	I U1, (to) 

khy, + C l/II'v . 1(h	u4(Ii)!P 
L	

) 

 '=-' 
/	k	 \1/p]	

S 

(h	' [Uh(I1)]1")	I '+ '	I SUh(to )1 2	 S 

\i=I	I	i
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^Sk/zy1 ± C Ih/IIuc.vsi+j- (h[uh]v) 

	

+ C Ifrh/IILsV') (h E IUh (h i )I	+ — Iun(to)12 
J\r=i	/	2, 

and	 -	 -' 
1 k 

	

•	 kh(4)+ ••-• h Z [uh(t)]P	
S 

;S khy + Q IltIIq 
11	k	 21P	1 

+ -- C2 i r tIl ± - 
(i' iuh (t ; )I 1')	+ j'Iuh(to)12.


Thus by Lemma 21(u) 

	

•	 /	k	\2/p	 • 

juh(tk)1 2 + yh ' [uh(t)]P	C ' + (h 2' Iun(t)Ii	+ 1 Uh( to)1 2	 (7) 
\ 1=1	I. 

where G> 0 is a constant depending on / L(0, T, V*) only. Especially we have 

-	Iuh(t)I P < Cf., (i +hE uh (t I )I P 	k = 1, 

where C/u 0 depends on / and u0 E H only. From this and a discrete variant oUGron-
wall's Lemma (cf. Lemma 4/Appendix 2) we get Iuh (tk )I	C for all h = Tin (n E N) 

	

•	and k = 1, ..., n where C is a constant independent from h and k. Now (7) with 

	

•	k = it gives h 	[uh(t)}	OJU•. Therefore	 -	•• 

	

Cj u•	for all h. 
Here again Of,. and C%u. are constants depending on / und u0 only.	 VS 

	

•	b) From the Rothe equations (5) we get	 S 

h 1 (uh(t) — Uh( 1j1)) 
= (hI) () — A (t i ) uh(t)	 V 

for i = 1, ..., n, i.e.	
V	

S 

IIVUh(ti) llq

	C(II(/) ()II	+ JA(t 1 ) uh(t 1)II.)	 V• 

	

C( 1+ 11(h/) (t)II. + j[uh(tj)II)	
V•	

V 

by virtue of hypothesis (H2) Therefore it follows from part a) that 

hE jVUh (t)II V. 5- C(1 +, Ilrh/!JL( .V) +• !IuhIIL V ( 5 .v))	C • 

i.e. sup 1IU61V(3 h) < 3.	 S	
-	 V 

h	- 
V

	

	 (iii): a) First we try to give an estimate for the difference M two solutions U,,, v,, of

Rothe'sequations (3) corresponding to different right-hand sides /,,, g,,. The resulting 
implication "(9), (10)	(11)" is a stability property of our numerical procedure. • 
Suppose	•	V	 •	

V	 •	S 

V. •	h'(u,,(t1) — u,,(t 1 _ i )) -- A(t) u,,(t 1 ) 
= 10i), •	 V	 - 

-	

h'(v,,(t) — v,,(t1_ 1 )) + A(t) v,,(t) = g,,(t 1 )	VSV	 S S 

37 Analysis Bd. 0, Heft 6 (1987)	 5	
V	

V
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for i = 1, ..., n. Scalar multiplication of these equations by uh (t 1 ) - vh(t) and sub-
traction gives 

- --	
U(1) - v(t)I 2 .+ (A(t) Uh( tj) — A h(t) vh (t I ), u(t) — vh(1I)) 

= (Ih( t1) - g(t), uh(t) - Vh( t j)) +	(u(t 1_) - Vh(4_1), uh(11) — 

Summing up the first Ic of these equations we get by virtue of the monotonicity of 
•	A(t) and Höldër's inequality (cf. proof of (ii)/a)) 

I	 I •	
1	 /	k	 \1/q 

-.	 -	— vh(tk)12	( h ^' Ifh(i) — gh (1)IP V .	 - 
2

x (h± uh(t)	vh(t)JI)+	Iun(to) — Vh(to)12.  
j= 1

-	

.  Thus we can give the-estimate 

 VhYk) 12 — 

^ 2 Il/h	ghIILQ(.V.) hun - VnllL(3,.v) + 1u(0) - v4(0)1 2	 (8) 

for Ic = 1, ..., n. 
b) Let us suppose now we are given two sequences (/) (g,)	L,,(', V*) (h = Tin, 

ii € N) bounded in the sense 

-	SUP	 Sup
IIghIIL(hV) < 00	 - 

-	 h	 h 

and satisfying

-^0	as	h ->0.	 (9) - 

Furthermore we assume that 

u(0)—)-uo and v(0)--.uo in Has h--0.	 (10) 

From the proof of (ii) we conclude that sup hlunhIwh, SU P hlVnh!w, < oo. Then it fol-
h	 h 

lows from (8)—(10) that sup Iuh(tk) - vn(ti)l --^ 0 as ii	0, i.e. 
lSk-<n 

I[PnUn T PhVhlhLoo(O,T.H) --*0	as	h --* 0.	 (11) 

c) In this point we want to show that our discretization method is consistent with 
th6 original problem (4) (cf. (12), (15)). Suppose u € W is the unique solution of (4) 
(cf. Theorem 1). Set u,(4) = (mu) (t 1 ) in the left-hand side of Rothe's equations (3) 
(i = 0, ..., n; h = Tin) and consider the resulting right-hand side 

((mu) (1) - (ru) (t 1 )) + A(t) (r4u) ( t i) = g(t), 

n. We intend to use part h) to show that 

hIpnun	phmhuhJL(oTJj) -* 0	as	h —* 0.' 

In view of Lemma 3/(iii) this implies assertion (iii). That (10) is valid follows from 
hypothesis (116) of the theorem and Lemma 3/(iii)Now we consider the grid function 

V",	ø(l;) = A(1 1 ) (mu) (t i )	(i = 1 ..., n).
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If follows from hypothesis(112) of Theorem 1 that	 - 

I y h( t )II. :E^: cohst (1 + II(rhu) (t)II.). 

Thus by Lemma 2/(i) sup IlV'hIIL,($,,V) < oo . We claim that 
h 

Ph0'ph–AuinL(0,T, V*) as h–>0.	 (12) 
From Lemma 3/(i) we get ph°ru(t) — u(t) in V a.e. on [0, T} as h 0. A reasoning 
similar to the proof of the completeness of 1i-spaces (cf. KUFNER, JOHN and Fucuc 
[6: p. 74] gives the existence of a function w E L(0, T) such that Jph°rhu(t) V :!E^_ w(t) a.e. on [0, T]. Since (Ph° ph) (t) = A(t1 ) (rhu) (t i ) if t2.h < I	ti,h it follows that 

!ph°VJh( t )II .	C(1 + Iph°rhu(t)IIV)	C(i + w(t)P)'	 (13)	- 
a.. on [0, T]. For ti-1,h <	ti.h we have  

•	I(Ph°vh) (I) — A(t) u(t)IIv.= IA(tIh) (rhu) ( t .h) — A(t) i(t)IIv. 

= IIA ( I .) (ph°rhu) (t). — A(t) U ( t )f 1v. 
Thus it remains to use(H3) of Theorem 1 to see that 

Kph°) (I) — A(t) u(t)l!v * --> 0	a.e. on [0, T] as h	+0.	(14) 
Now we get (12) from (13), (14) and Lebesgue's Theorem on Dominated convergence. 
Together with Lemma 3/(ii) (12) implies 

Ph0g — u' + Au = f in L(0, T, V*) as ii —* 0.	 (15) 
Equivalently u gh —	— 0 as h —- 0 and the conclusion llPhUh — (0uiiL(orH —- 0 follows from part b) and Lemma 3/(iii) I 

l'roof of the Corollary: We have for any h> 0 

•	sup p'u(t) — P/iuh(t)I ^5 sup uh( tkh) — uh(tk_I)f 
1k5n 

SU P uh( tk.h) — (0u ( tkh)I + sup (0U (tkh) — 
k	 k 

+ sup Iau(tk lh ) — 
k 

^5 2 sup IPhUh(8) — wu(s)I ± sup Iwu(r) — wu(8)I. -	 3 

The result follows since pu -- wu in L(0, T, H) as h — 0 and WP 1 (0, T, V, H) 
L C([0, T}, H) U 

• Application to parabolic differential equations 

Suppose Q is a bounded domain in ltN , Q e 0.1 (cf KIJFNER, JOHN and FucrK [6: 
P. 3051, 7' is some fixed positive number, QT Q x [0, T] and Du = (DU) 	S the tupel of all spatial derivatives lip to the order m (m	1) of a function u QT We are going to apply Bothe's method to the parabolic equation 

u1 (x, I) + ' (— ] )"I DA(t, x, Du(x, I)) =. /(x, 1)	in Q7 - 

37*
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with prescribed initial and boundary data 
-	

. u(x,O) =u 0(x) for XE Q,	 - 

JYu(x,t)=O on 8Qx[0,T] for O:^-,I	rn— 1. 

We prepare the use of the results of Chapter 2 by the following definitions. 

Spaces:

V =	(Q),	H ==L(Q),	X = L(O, T, 17 ),	X = Lq(O, T, V*), 

W =W'(O,T,V,H)={uEXIu' E X*}	(p2,p+q1 =1). 

Here /m is the usual Sobolev space defined e.g. in NEbAS [9: p. 64]. 
•	Operator A:	 - 

•	(Au) (t) := A(t) u(t) for I E [0, TJ 

whereA(t) E V*is defined for	 3 € V by 

(A(t) 11, )	f (	
' A(t, x, DiZ(x, t)) D(x)) dx.	 (16) 

- 
- Right-hand side f: 

Suppose / € Lq(QT). Then an element b € X is given by 

b(t), v) =f /(x, t) P(x) dx for all U € V.. 

With these preliminaries we can formulate the convergence theorem. 

Theoreni 3: Assume that the following hypotheses are satisfied. 
a) Carathéodory condition: For all x,	^ m, let A° : [0, T] x  x II" -> II be a


junction such that x -+ A(t, x, D) is measurable on Q for all t € [0, T], D = (Dfl ) .E RI', 
• (I, D) -- A,(t x,-D) is continuous on [0, T] XII? for almost all x E Q Cu is the cardinal 

number 
of 

the set {c: I c 1 15: m}). 
•	b) Growth condition:	 •	 S 

•	 A(t, x, D) ;5 d(x) + C	Dl-1 

for- all I E [0, T], x E Q, D = (D) € RI'where d E Lq(Q) and C> 0 is constant 

c) Monotonicity: 
•

	

x, D)	Aa(t,X,D'))(D — D')2; 0	• •	 •	 -	- 

for all I € [0, T], x € Q, D = (DP), D' = (D*) E R". 
d) Coerciveness: 

	

A,,(t, X, D) D ^ Yo	DP - K(x)	 S 

IIrn	 JPIm	•	 - 

forall t -€ [0, T], x € Q, D € R' where K . E L, (0), Yo> 0 constant. 

e) Initial datum: u 0 E H. Further, we suppose that (uho)	H is a sequence with 
— no in H as h -:). 0. 

- f) Right-hand side: / € Lq(QT).	•	 S -
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Then all the hypotheses of Theorem 1 and Theorem 2 are satisfied and Rothe}s method 
converges. 

Proof: That A(t) (t € [0, TI) is a monotone. mapping follows immediately from 
hypothesis c). The growth condition b) and (16) give A(t): V — V. It is obvious that 
the family A(t) satisfies the growth condition (H2) of Theorem 1. - 

Let. (t i )	[0, T], (iv,)	V. be sequences such thatt 1 -* t and 	W in V We' 
intend to show that for all oc,	:E^ m, 

I t	f IA(t,, x, DW 1(x)) - A(t, x,D(x))jdx	0. 

First we oberve that 'passing to.a subsequence if necessary	S 

DW,(x)	DTh(x) and .I D 1(x) ^5 g(x)	, a.e. on Q 
for some function g , E L9(Q) (II	m). Again, cf. KUFNER, Jon and' FucIx[6:

.p 74]. Thus'

x, DPW j (x))	A(t, x, D81IJ(x))	n.e. onQ. 

This and the growth condition b) permit to apply Lebesgue's Theorem on ' omi-
natedConvergence. Therefore 1 1 0 as-1 - oo by virtue of an argument concerning 
subsequences (cf. ZEIDLER [16: Ch. 101.  

The cberciveness hypothesis of Theorem 1 clear- 1y follows from condition d) above I 

Appendix I  

We are going to prove the stability and convergence propeities of the approximation 
scheme 1' which were stated in Section 2.2.	 '	S 

Proof, of Lemma 1: (i): The definition of p° gives  

1pUhI(OTV) = hE JIuh( t1)I , =IJhIJ.v , , 

(ii): This proof is more difficult. since it constitutes the discrete Sversion of th 
embedding result W'(0, T, V, H) -+ C([O, T], H), i.e. after a possible change on a 
set of measure zero any function u € W = W 1 (0 , T, V, H) is continuous and 

IIiL(oT1l) ^ c JJu,,'	c , a constant.	 ,	 (A. 1) 

We use the idea for the demonstration of (A.!) in GAJ%VSKI, GRoCER and ZACRABIAS' 
[2: pp. 144, 148].	 - 

a) First we want' to show that for some constant C 1 > 0, independent of h, 

	

ilph°UhiIL(O.T.V*) :5 C1	 for Uh € LV'( h). 	 (A.2) 

k 
Clearly for an 4 we have Uh(4) = U00) ± h E Vuh (t I ); define V/, W €	'($'h) by 

k	 1=1	 5 

V(0) = 0, v(4) = h ' Vu(t)' It follows that for all k 
.1=1  

	

n-	 n	,	\t/q 
I	IIv(6)IIv* ^ h ,' II' Uh( t i)IIV ^	

/. 
C (h L* IIVuh( t i)J . J	.	 (A.3)!

\i-m  

I'
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since u(%) — vh( tk)	u(t) for all k we get  

I	n 
•	T"P IIuh( to)Itv s = (h Z IIun(tj) - vh(tj)II. 

\ 1=1

/	n	 \1/p 
Ik'IIL,,.v + hE IIvA(ti)II.) 

^ C(u 9	± sup [Vfl(t)/*) 
1i5n 

^	 + VuhlILv*))	c	 (A.4) 

by virtue of (A.3) and the continuous embedding V	II	V*. Using (A.3) again

(A.4) implies (A.2). 

b) We note the formula of discrete integration by parts 

(u(tk),vh(k)) —
	

Vh(tz)) 

k	 IC 

= h' ( Vuh(tI), vh(tI)) + h	' (Vvh(t), uh(tI_I))	 (A:5) 

ifk=2,3,...,n;l=1,...,k-1;	 - 

•	(uh(t'), vh (t 1 )) — (uh (tO ), vh (t I )) = h ( Vuh (t l ), v(t1)) 

if k = 1. Suppose h :NI, —* R. Then the discrete version of the formula for differen-
tiating a product-reads, for i= I, ...,-n., as 

•	V(9u) (1) = (V h (t 1 )) u,(t 1 ) +q h (t I ) Vuh (tI).	 (A.6) 

•

	

	 c) We choose an arbitrar y C-funct.ion q: [0, TJ — R with (0) = 0,
* q

q (T) = 1

(e.g(t) T'. For any h > 0, defines a grid function q via (tk) = (tk) fo k = 0, 1, 

n. Set	 - 

vh( tk) = q?h (tk) uh(lk )	•	 for k =, 0, 1, ..:,71, 

= Uh(lk. 1) — q(tk,1) uh(4,l) for k = 0, 1, •.., n -- 1. 

We use formula (.A.5) for vh, Uh with 1 = 1 and W, ?Lh with 1 = k, k =* v. — 1, respec-
tively. This gives' 

(vh( lk), uh( tk)) = hE,(V(,u,) (t i ), uh(1)) 

+ h 	Vuh (t 1 ),	u(t1))	 (A.7) 

for k = 1, ..., n defining the second term on the right-hand side of (A.7) to be zero 
if k = 1. Further	 - 

.	
—(wh(1k1), Uh(tk)) ='hE(Vwh(t), U00) 

+ h Z (Vuh(t I ), Wh(11_t))	 (A.8) 
•	 i=k+I 

I
/
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fork = 1, ..., n - 1 with the convention that the second terni on the right-hand side 
is zero if k = n - 1. Subtracting (A.8) from (A.7) yields• 

Uh(lk)1 2	h.' {V9 h (t 1 ) (Uh(11), uh(tI)) 1V 9'h(li-I) ( Vu,(11 ), uh(tj)} 

k	 n-i + 
h f ?'h(-I) K Vu(t1), uh(t1_I)) + h ' K Vuh (t I + I ), uh(t$)) 

1=2 

n-i	 n-i	 V 
- h Z V 9 h (1I . l ) (Uh( ( I +1), U00) - .L' 91,(tI) KVuh (tj +i ), uh(1)) 

i=k	 i=k 

n-I 

-f h	' (Vuh (t I ), uh (t I )) -	(ti) ( Vuh (t I ), uh(t1))} 

for k=1,...,n_ 1.lt follows that for these k	 V 

/	n	 n	\l/p 
• I u (4) 1 ,2 ^ -C ( h	' I Vuh (€ i )JI * )	(h' Juh(tI)IJ. 

\ jj	V	 /	\ j 
V	 /V fl	\i/p 

-f- C sup Iu00IIv .	E IIuh( 11)II )	 V V	(A.9) 

by virtue of (A.2) and Holder's inequality where the constant C depends on 99 and p, 
only. From (A.7) with k = n and (p(T) = 1 we immediately see that (A.9) Is valid 
for k = n, too. Thusa) gives the norm estimate Iuh (tk )1 2	C IJ UhIIW) for k= 1, ..., 
with C independent of h, i.e. I[phuhIlL(or,,) ^ C Uw ) for all Uh E W I,) •	

V 

V 
Proof of Lemma 2: a) Consider 

V	

•h1 (

	

J (Pu)(t) dl	h• (ki II(Pu) (l)IIv dl)	- • - 

f f J(Pu) (Qj P,, dl = f J(Pu)' ( i)II, di.	•	 V 

1=1 (_,	 0 

h) Further 

I VrhuIILQ (G n .v* ) = h(1) di - k_[ 
V'	

V1)QdI)	
V	

V 

= hE	T ((Pu) (1) (Pu) (1 - h)) di L	V 

h ET 

V	V ( (
	

(Iu)+ (s) ds) dt 

jII(Pu)' ()IlV . ds) di	 V 

-/	 -	 I
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-.	 =	!(III(Pu)i + I	 dl 

-	 f . (f II( , ( ± I - h). dl) d 

f (j II(Pu) (i + - h )I1 . dl) d = f II(Pu) (t)II dl 

where  Jnsen's inequality andthe theorem of Tonelliwere used. Observe that supp Pu 
is a cothpact subset of R. Assertion (i) follows from a), b) and the continuity of P U 

Proof of Lenirna 3: To begin with we remember the fact that the set C'([O,.T], V) 
is dense in W (Cf.GAJEWSKI,GRöGER and ZACHAmAS [2: p. 144]. Since the linear 
mappings

ph°rh : W	L(0, T, V), 
•	 Ph° Vrh : W	Lq (O, T, V*),	- 

	

- phrh :' W -* L(0, T, II)	 V 

have operator norths bounded independently of 1h> 0 by virtue of Lemna 1 and 
Lemma 2 it suffices to prove the assertions (i)—(iii) for u E C 1 ([0, T], T') (cf. RAVIART 

• [10], TEMAM [13]). 
•	(i): Suppose ti-I < I < l. We have	 V	 - 

IIu ( t) - (ph°rhu) (l)IIv = u(l) - 
- f (Pu) (s) ds 

V	

V	

•	
=

 

	

f(u(t) - u(s)) ds	IIu(t) - u(s)IIv ds.	

V 

• For' any s > 0 there exists h0(s) > % 0 such that It - s < h implies IIu ( l) - U(S)Iv < e 
because .0 is uniformly continuous on [0, T]. Thus  

IIu ( t ) - (ph°rhu) ( l)IIv < e if h < h0(s),	 V	 (A.10) 

	

i.e. Iu(t) - (ph°rhu) (t)II --0 as h	0.	
V - 

(ii): Let us consider an approdniation scheme for the space ..W'(R, V, H) for a 
moment . . For any h> 0 we def in' the grid 81, = ( lk = hk I k = 0,'±1, ±2,,...i V 
And the spaces of grid functions L(Jl, V), Lq(Jl, V*), and W'(J) analogously to 
Section 2.2/A. Set	 •. 	

V 

(rhw) (1k) 
=	

w(l) dl	(w E Wr t ( R V H) k = + 1 +2 

Then the proof of Lemina 2 shows that. : W9 (R, V, H) -- W'(Rh) (h > 0) is -a 
family of linear mappings bounded independently of h: 

IIrhwIIw()	C IIWIIw;'(R.V,H)	for all w E W(R, V, H).	•	 S
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Suppose t <1	t. Then it is easy to see that 

IIw '( t )	(ph° Vw) (t)IIv.	
f	 flIw '( t )	w '(T )IIv . dt) ds	(A.1-1)T2  

for w E Wt(R, V,H). Since C0 1 (R, V) is dense in W 1 (R, V, H) (GAJEWSKI, GRöGER 
and ZACHABIAS [2:p. 144] and WLOKA [15: p: 70]) we may derive from (A.11) that 
Ph° Vw - w' in Lq(R, V*) as h —* 0 in a fashion similar to part a) of'this proof. 
As (ph° V hPu) (t) = (p,,° Vrhu)(t) for t € [0, T] we get 

Ph° Vrhu	u' in L(0, T, V*) for u E W 1 (0, T, V, H). 

(iii): This follows from inequality (A.10). and Lemma 11(u) by virtue of the embed-
ding V z .ll I S- 
Appendix 2 

We prove a discrete variant of Gronwall's Lemma. 

Len1!n 4: Suppose a family of grid functions uh . h — R (h =T/'u, m E N) satis- 
lies the growth condition	 S 

Uh(tkh) 15: a + bh	Uh(tjh)	 '	 (A.12) 

for all k = I, .., n and h> 0. where a, b > 0 are constant. Then, with C> 0 being 
independent of h> 0, sup( max üh (tk .n)\ ^ C.


	

h>O 1kn	1 
Proof: We may assume that uh(tk ) :!E^: MI, for all k.= 1, ..., n where M, depends 

upon h, in general. Therefore in a first step uh(tk) a + bhkMh by virtue of (A.12): 
Substituting this into (A.12) again we get in the second step'  

k	 1 
uh(tk)  a + abhk + b2h2Mh i = a + abhk ± - b2h2Mhk(k + 1)'. 

•	 -	2	- 

One may prove by induction on m that after msteps the iteration of this procedure 
gives	 S 

uh(te) ^ a{(k	
1)	()bh 

•	 ) (bh)2 +	
+ (k ±m— 2) (bh)m-1}} 

	

• + Mh (k + m	1) (bh)m	 •	'	 • 

for all k = 1, ..., n; m^! 1. Thus, if bh < 1, Cauchy's theorem on the product of 
series applied to the geometric series (1 + bh + (bh) 2 + •..) implies that (m --> .00; - 
k= 1,...,n) •	 • 

•	U(tfr) 	a(1 ± bh	(bh) 2 +	= (1 
1

bh)

k

	•
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Thus
' 

max Uh(tk) 
a - M Y

/	 T b	\12 

•	
) ^aeb1' 

n—bT 

as,n - 00, i.e. h -- 0. Therefore we may conclude that 

sup( max uh(tkh)\ :5,- C,	C> 0 constant I 
h	€E$	/ 
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