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On Comniut-ators in Algebras of Unboun.ded.Oper:itors - S

W. TIMMERMANN

. ¢

" Fiir Diagonal-, Quasidiagonal- und endlichdimensionale Operatoren in topologlschen Algebren
unbeschrinkter Operatoren werden verschiedene Kriterien angegeben, aus denen die Darstell-
barkeit dieser Opcratoren als Kommutatoren folgt. Es wird gezeigt, daB die Kommutatoren
in der maximalen Op*-Algebra beziiglich der gleichmiBigen Topologie dicht sind. AuBlerdem
_ werden einige einfache Elgenschaften von Selbstkommutatoren, mchrere Vermutungen und
"Probleme angefiihrt. -

Jns (uaroHanbHEX, KBa3UAMATOHATbHBIX 1 houequomepuux OIIEPATOPOB B TOMOIOTMYECKUX
anre6pax HeOrpaHHYCHHHIX OMEpaTopOB ‘IATCA PA3HBIC KPUTEPHH, M3 KOTOPHIX Cieayer
npefCcTaBiIeHHe BTHX ONEPATOPOB B BHAC, KOMMYTATOPOB. Ilokasano, 4YTo. KOMMYTATOpPH
NJOTHH OTHOCHTEJAbHO PABHOMCPHOIN TOMOMOTHU B MaKCHMaibholt Op*-amrebpe. llpusoyn.
ATCH TAKMKE HEKOTOPHIE MPOCTHE (GAKTH O CAMOKOMMYTATOPAX, MHMOTEIL i npoG‘le\m

For diagonal, quasidiagonal and finite dlmensnonal operntors in_topological algebrds of un-
bounded operators there are given several criteria which imply their representation ascommu-

s

" tators. It is proved that the commutators are dense in the maximal Op*-algebra with respect

to the uniform topology Slmple facts about selfcommutators some conjectures and problems
are given.

_1. Introduction

.The structure of conimutators in algebras of bounded operators’(especially in JB(H)
and von Neumann algebras) was investigated by many authors. Let us only remember
the paper of BRow~N and PEarcY [2] which can be regarded as some final step in
clarifying the situation for J&(J): an operator A € B(J) is a commutator if and
only if it is not of the form 4 = AI + C, 2 = 0 real number'and C a compact opera-
" tor. Here, & is a separable, infinite dimensional Hilbert space. In finite dimensional
spaces one has the classical result a quadratic matrix is a commutator if and only
if it has trace zero.

Unbounded operators enter if one consxders the CCR (cf. [15]). To the a.uthors
knowledge up to now commutators in algebras of unbounded operators were not
investigated. The present paper should be regarded as a first step toward a systematic
study of commutators in the context of topological algebfas of unbounded operators.
The aim is first of all to stimulate such investigations by présenting some conjectures’
and problems on the basis of results obtained so far. We restrict ourselves to maximal
Op*-algebras £*(D) defined on domains of ‘the form D = D(T) (c¢f. Section 2).
The paper is organized as follows. Section 2 contains the necessary notions, notations
and preliminaries. Section -3 concerns diagonal and quamdmgonal operators. Here_
the possibility of representing an operator as commutator is related with the structure’
of the domain 2 of the algebra. Several criteria are given which imply that such
* operators are commutators. In Section 4 we consider finite dlmensmn\al opera.tors
If D is not, of type (I), any finite dlmenswnal operator is a. commutator. If Dis
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of type (I), then it is proved that “enough”finite dimensional operators are com-
mutators. Combining considerations of Sections 3 and 4 one gets as a main result
that the commutators are Tgp-dense in £*(D). This is the analogous result to the
bounded case! In Section 5 there are collected some facts about selfcommutators.
Finally, in Section 6 we formulate some conjectures as well as problems?

2. Preliminaries ' l
For .a dense lmear mamfo]d Dina sepa.rablc Hilbert space J the set £*(2D)

= {A: AD < D, A*D < D} forms a x-algebra with respect to the usual operations
- and the involution 4 — A* = A* | D. An Op*-algebra A(D) is a %-subalgebra of .
.Z’*(.‘Z)) containing the identity operator . I. The gmpk topology ton D mduced by
F+(D) is given by the family of seminorms ’

o> ldgl | (dernD). : o '.

Among the many p0551b]e topologies on +(.‘D) we mentlon only the umform topoiogyo
. 79 [8] given by the seminorms
! \

A — ||Allu =sup Ko, A'P)l (A= D t-bounded)
. . ppEM ) o

-

The set A : : ‘/ B .
. &(D) = {C¢ f*(.ﬁ) G/IZ is relatlvely {-compact for all t bounded M= D}

is a two-sided #-idedl in ¥ +(D). It appears that this set is a very appropnate generali-
zation of the ideal of compact operators in &B(J)[7, 12]: If D[t] is an (F)-space,
then the tgp-closure of the set of finite dimensional operators of £*(D) Lommdes
with (D).
In this paper we consider only (F)-domains of the form
. . 1] . 1

D =2%T) = 0 DT P

] . N -
where T = T* > I is. a selfad]omt operator whxch can ‘be supposed to have the =~
structure d - .

~T(p = t,,(p,, (‘n € N), . (pn) an orthonormal basis in 36’

I necessary, one can suppose t, € N. Write shortly. T~(t,,) or more precxsely, .

' T~(t,,), (¢n). Further. we use the followmg notatlons Let T = fﬂ.dE’; be t,he;

spectral resolution of T.. Then the operators P, = f dE, belong to £+(D) for-all

1= pu<ooand H* =P, 36’ = D. It will be frequently used that, for all 4 € £+(2),.
A=19 — hm P AP, We will make -use of the classification of domams as provided

in [10, 11] (cf. also [3, 4]). To fix the notations we repeat some facts: -

. Disof type (I (fb € ‘(I)) if there is no mﬁmte dimensional Hilbert space FHy = D.
This is equivalent to lim ¢, = oo. -

D 1is of type (II) (fl) € (1I) ) if there is'a sphttmg D = Ho @ Dy, H, an infinite
dimensional Hilbert space, D, € (I). This is equivalent to a decomposition (t,)
- = (0 U (&), with a bounded sequence (¢,°) and lim ¢, = oo, i.e. D = 276’0 @ D= (Tl)
where Tl ~ (ts), (yn) for some orthonormal ba51s (wn) in 36’0 .

SN



Commutators in Algebras of Unbounded Operators 3

D is of type (I1I) (D € (II1)) if 7' has infinite many eigenvalues ¢,’ with infinite
- multiplicity and-lim ¢,’ = oco. Therefore if J, denotes the eigenspace to t,’, one .
has Y \ : =
D= (Z®F) DD with Dy (D) or Dy = (0).
w) , o .

" The sum means the following :

/ . - N
T 2@ ={y= T v va € Hor I (L)* alP < 00 VE €N}
Especially, D€ (II1,) if 7' can be chosen such that Dy = {0}. ' .

In Section 3 we will use the fact that all J, can be identified with some Hilbert
space J{ (e.g. via some fixed isometric isomorphism). Thus it makes sense to con-
sider any element y, € J, as an element of H; for any j + n. In what follows we’
will fix the orthonormal basis (g,), and if it is not indicated otherwise; all construc-
tions will be done with respect to this basis. In general, it is even necessary to fix
also the ordering ¢, @,, ... (i.e. (p,) and (@se,) for some permutation » of N are in
general not equivalent with respect to the constructions). N :

-An operator 4 € £+(D) is called commutator or representable as commutator if -
+ 4 = [B, C] = BC — CB for some B, C € £*(D). The.following operators are fre-
" quently used: - . , U

'

diagonal operator D,: Dy, = P,

, Tight shift R: ) Ry, = @11,
- wetghted right shift R,: Rp, = a,@u1 5
left shift L: " " Lo, = @u1, 9o = 0,
weighted left shift L,: " L@ = @uPu_y, po = 0.

As above We often write 'D‘,, ='D ~ (a,). Here a = (a,) is a sequence of coﬁlplex
numbers. To use such operators it is necessary to decide whether or not they belong
to £*(D). It is easy to write down some formal conditions, namely:

' , . ; :

D, € .IY"*(.‘Z)) iff . la,| =< Ct,” for some C”, r > 0; I ' (1)

" R, € X(D) ‘(La € .Z’(.Z)) iff for all I € N there exist C(l), r(l)'> 0,-so that for all
n €N - )

i

[Gal thr S CO L0 (lagl by < OO EID). , @)

For reasons which will become clear a little bit later it is useful to introduce
some more general notions. ' : ’ :
Definition 2.1: a) A sequence (s,), s, > 0, is said to be shift-admissible if St
< Cs,f forsome C,r > 0and all n. - ) : ' : . _
b) Let (¢,) be a sequence, ¢, > 0. A sequence (a,) of complex numbers is said to
be (¢,)-addable (or T-addable if T ~ (t,)) if \for some C, r > 0, _ '
" . - ’
. N n . ‘ . . . :
6. = Ct,f with b, = 3 a; fordll n. . (3)
o = | -
. Since most of the representations of operators as c"ommutators,u/se (explicitly-or imAp]icitly)
" shift operators, it scems worthwhile to add some remarks. In general the estimations (2) are
ot very helpful to decide whether or not R, L ¢ £+(D). The reason js, roughly speaking, that
" in the sequence (t,) there appear eigenvalues with infinite multiplicity arranged in'a compli-
cated manner. So, it may happen that (t,) is not shift-admissible, i.e. R; L § £+(D), but
: / L _ : ST
1* - -
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(t,,(,,)) is shift- ndmnssuble for some permutat,lon 7t of N. Without proof we state some obser-
vations: -
! . De(I): R, Le £¥D) means that (t,,) does not increase too fast. Note that t, ~n® or
) even t, ~ (n!)" is not yet too fast.

2. 2) € (IT): R, L are never in £*+(D). More exactly, there is no permutatlon 7 of Nsuch that
(tx(n)) 1s shift-admissible. )

3. D ¢ (IID: Tf (t,) is shift- admnssnble then automatically D € (III,) and there is a permu-
tation  of N such that (¢a(n)) is also shxft admissible. . _

The next lemma states that-in case D € (I) the notions in Definition 2.1 are in-
dependent of the representing operator 7'. '

. Lemma 2.1: Let D = D=(T) = D°(S) € (I), T(p,, = toPs S:,u,. = 8y, and let
R, L, (R,, L) be the wezghted shift operators corresponding to (¢n), ((w,, ). Then

(i) Bay Lo € £7(D) iff Ro', Lo’ € $7(D);
(i) (@,) 2s T- addable iff-(a,) is S-addable

Proof: In [13] there was proved that Cs,'" <t, = Ds,,’ (n€N; C,D,r > 0).
Therefore, if an estimation of type (2) or (3) is valid for (¢,), it is also valid for (s,)
" and vice versa (of course with other constants) 1 : <

Most of the further considerations arc based on matrix representations of opera-
tors. If not stated otherwisc, we always use the representation with respect to the
canonical basis (@,) and write 4 ~ (Ama) With Ay, = (@, A@s)-

3. Diagonal and quasidiagonal operators

In this section we demonstrate some typlcal features for commutators in £+(D).
Therefore we do not start with the most general result in this context but prefer a
more inductive representatlon of the results. :

A) We start with D € (I) Let D‘; €LH(D), a = (an)- Then one has the formal
relation ’ :

D, = L,R — RL, with b=(b,) and b,y= Ya; - )
' A = _
If B, L € $+(D), then, due to L, = D,L, L, € £+(D) iff D, € £+(D).

Lemma 3.1: Let De (), R, L € £*(D) ami' D,a diagokal operator with T-addable
sequence a = (@) Then D, is a commutalor given by (4) -

If one uses representation (4), one has, so to say, two contrary restrictions. The fu'st one is
R, L ¢ £+(D), i.e. (t,) should not increase too- wild. On the other hand, if (¢,) increases “slowly”,
then it will- huppen that some (or even many) diagonal operators D, will not have T'- adda.ble, )
‘diagonal sequences a. For example, if 7 ~ (log (n + 1)), then this sequence itself is not
. T-addable. Thus, it is not surprising, that there are optimal cases, i.e. (t,) which increase

“optimal”.

.

Lcmma 3.2: Let s be the Schwartz space of rapidly decreasing éequences. Ea,ch of
the following condztzons implies that any dzagonal operator D, € £*(D) is a commu-
tator:

(i) D s zsomorphu: {0 s.
- (i) D ts isomorphic oa sequence space contamed in s and R, L € £%(D).

\
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Proof: First let us remark that the isomorphisms mentloned above are understood ‘
with .respect, to the basis (p,).

(i) Without loss of generality we may suppose that ¢, = n. Then D, € .Z’*(fl))

~ means |a,| < Cn* for some C, r > 0. Since

| n = Ct,? for some C,.s > 0, where T' ~ (,) and .7)°°(T)

‘

Ib |'= Z a;
the scquence (a,,) is T-addable Clcarly, R, L € X*(D), so the proof is complete.

(ii) Here one combines an analogous estimation as in (i) with the estimation
c s (cf. [10, 11)] 1

Z il=C 27' < Curn,

Remark that in the proof above it is implicitly used t,hat both, R,L' € £+(D)andthe T-adda-
bility of (a,) does not depend on the concrete representation D = D°(T'). As mentioned.in

" Section 2 this'is only true for D ¢ (I).

Now we turn‘to quasidiagonal operators. We use again some ideas from the bounded
case. Let (S;;) be a matrix the entries of which can be numbers as well as operators.

- Then defme another matrix (W,,) assouated with (S;;) by the following rule:

R L 0  for i,j<0
W]; - 0 fOl“ 7 =.1: » Wl] {Wi—l.f—l + Si—l.i for ‘i > 2, ? > 1
/ ‘ . -~ M (5)
.In [l] the followmg was proved Let €= 360 (—B FHo @ - (S,,) an operator

‘ respondmg (W ;) = Wand ha,s formally

on J with S;;'€ B(IH,), X [IS;ll < oo. Then § = LW — WL where W = (W;} is
defined by (5) and gives an operator on J and L = (Ly), L;; = 6,+, e, L3, the

' identity on J€,.”

Let us return to LH(D), w1th D € (I). For S € £+(D), S ~ (S;;) one defmes the'cor- A

8= LW — WL,"" S - ®)

P

*. Here L is the left shift. In case S = D, (6) is equivalent to (4). I we again suppose

R, Le¢ .2”*(2)), the only question to decnde isswhether or not (W;;) defines an operator
W e £5(D), i.e. to glvc (6) sense as a relation in £+(D). In general it is a difficult
task to prove that a given matrix defines an operator of a given class (say bounded ,
or belonging to £*(D) and so on). Most easily one can handle this for quasidiagonal

- operators. An operator @ € £*(2D) is said to be quasidiagonal (with respect to (p,),
-as usual) if its matrix representatnon (@;;) has only finite many lower and upper sub-
. diagonals different from zero, i.e. schematlcally

. : 0
Q~|Qw - Q - Qn , A
0 . : : <

Denote these subdiagonals (from left to right) by Q_., ..., @, -.., @, and write

Q@ =1[Q-m, ..., @) Moreover denote the sequences of the matrix elements corre-

spondmg to Q, by

Quin (kEN; 0] <),

0 = (q,9), e g \ i
q = (g« )_ 4 .{Qk-l',‘ (keN; —m <7 <0).
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Proposition 3.3: Let De(l), R,Le (D). A quasidiagonal operator

= [@-m'++ s @n] € £¥(D) “is a commutator if all sequences qP (—m < j < n) are

T addable. In this case one possible representation is given by Q@ = LW — WL, where
L is the'left skz/t and W is the operator corresponding to (W;) given by. (5). .

Proof: That (W) defines an operator W € £+(D) can be seen by the followmg
considerations. The definition of W implies that this is a qua51d1agonal operator of

the same type as @:° .

—[W_";,...;‘ ,.1—[W_m,', 0]+ -+ [0, .. 50, Wa]. NURS

The correspondmg sequences w are fornied by the partlal sums w,» = ql(r) -
.+ ¢;. Observe that any term in (7) is. obtained from a diagonal operator Dwm
via,application of some power of R or L. Therefore the assumption implies that any
D.,,m € £*(D) by (1) and any term in (7) also defines an operator belonging to .£*(D).
Thus, W € £+(2) and the proof is complete . ‘ .

Corollary Let .‘D € I, R, Le¢ 1"*(.‘2)) Then ‘R, L, are commutators zf a.= (a,,)
s T- addable . :

Remark that for Ra, L, the T-addablhty of a= (@) a-utomatically implies-

- R, L, € £4(D).

B) For D € (I1). we remark only the followmg Since in thls case D = Jfo @ D> (T
D=(T,) € (I) (cf. Section 2) the results for the bounded case and for type (I) can be

: combined to identify a lot. of operators of the form .

e B 0 .
| 4;-(0 0),- B ¢ B(0.), ¢ e 2o(D>a),

as commutators Moreovcr operators of the form

' 0 B 0 0 o
\ A—(O 0) and hencealso 1.;1 (B O) :

are commutators as 'can(be seen e.g. from ’ ' o

W 'g)-(gf D6 D60

C) Next let .‘D € (III) In view of the considerations of Section 2 we consider,firs\t o

- D € (I11L), ! : » C - e

D= “Z' @ Ha. o : N )
A= 3@ A, A, € B(5K,) and ”A,,[] < C( ')® for all n.and appropriate C, s > 0,
then 4+€ £+(D). In the case that the sum representing A contains only finitc many
terms different from zero, the,results of the bounded case can be applied (cf. also
Prop. 3.4). In the general case one could proceed as follows. Suppose 4, = [B,, C,].
If B=}3@® B, and C = 3@ C, belong to £*(D), then 4 =B, C] But this
procedure seerys not to be very useful for concrete applications. Let us therefore
_ describe another possibility to construct commutators. To do so we introduce a
generalized shift operator which does not correspond to the basis (@,) but to the
representation (8). Let v = (y,, vy, ...) € D (cf. Section 2). Then define :

sz (0, Y15 "/)2:"'), ‘ L'P (%, '/)3:- ) N

’

Ter .



Commutators in Algebras of Unbounded Operators 1

* Analogously to D € (I) one‘has: R, L € £*+(9D) if and only if (¢,') is shift-admissible.

Now we use the matrix representation of A € ¥*(D) with respect to (8), i.e.
~ (4;), Aij € B(I;, KH;) = ﬁ(J’C) It is natural to call an operator of the form

4, 0 0 . o
A= : O A2 0 oes . . . »

~ 1o o 4,

. generalized dtagdﬂal operator or diagonal operator with respéct to (8). The notion of
T-addability is generalized as follows. Let 4 = Y P A4, € £*(D) a generallzed
dlagonal operator and ||4,|| = a,. Thén 4 is called T-addable if (a,) is (t,')-addable.

Proposxtlon 3.4: Suppose” D = D(T) € (I11,), (t) shift-admissible and .

Aet “(.‘D) a T-addable generalized diagonal opemtor Then A ts a commutator.

Proof: As in the proof of Lemma. 3.1 it is'seen that ‘formally

A=WR_Rw . . ' B 9) -
with - - .
00 0.
gl L oo0 ,
010
., .04, 0 0
’ ‘{000 4,+4, 0 L . ,
W~ . SR
00 0 A1+A2+A3 ' ‘ L

This representatlon is also understood with respect to (8). Clearly, B € £+(D). To see
that W.€ £+(D) one estimates as follows. Let p = Z’@ v, € D. Then
71 5 (£ 4i) v

2

N Wyl =

Y

[+2]

n=1

I SE(m.)”(znAku) lhpwsal® = X ( mw(zal) [

Since (a,) was (¢, ")-addable, we have a, + -+ +a, < C(¢,') (n€N; C,r.>0) and
the estimation can be continued: :

IIT’ Wyl < C? Z (24 llwn+lll2 < oo.

AT

The estlmatlon of |TiW* ||2 is almost the same and therefore omitted. Thus'
Y

WetH(D) 1
Now we could prove several variants of results analogous to Lemma 3.2 but we

mentxon only one of them.

Corollary If t,) ~nf /or some > 0, tken any bounded generalized dzagoml

- opemtor is @ commutator.
. o

W7
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In a similar way as for D € (I) one can also handle generalized quasidiagonal
operators.

-Now let us give a result which is valid in‘the general case D € (I1I). First remark
that in a natural-manner operators 4 € B(H*), u > 1 can be viewed as elements
of £+(2D) via identifying 4 and 4 @ 0, 0 the zero operator on (J#)*.

Proposition 3.5: Let D € (I1I). Thcn any operalor 4 € B(FEH) (1 su< oo) s

. a commulator.

Proof: It is redpccd to the bounded case. Let v > ﬂ be such that dim (F* Q) J+)
= oo. Then A4 has a large kernel if it is ‘considered as operator in B(J¢*). Hence
it is a commutator [6]. Consequently, 4 is also a commutator in £*(D) 1 '

Remember that for any D®(T) on B(J€*) the topology induced by 79 coincides

., with the usual operator norm topology. Moreover, the commutators are norm dense .

“in B(J) for any infinite dimensional separable Hilbert space [2]. Combining these
observations with” the fact that the set of all A € B(IH#) (for all 1 < pu < o0) is
“tp-dense in £+(D), one gets

Proposition 3.6: Let D = .‘Z)°°(T) € (1) or D = D°(T) € (JI1). Then the com-
multators are tp-dense in £+(D).”

In Section 4 this result will be generalized to include also the case fZ) € (I). Because
this will be use finitc; dimensional operators we did not include it in this section.

’

4. Finite dimensional operators

Thc dim of this section is to show that most of the finite dm1ens10nal operators are
c¢ommutators. For D ¢ (]I) or D € (III) the problem can be réduded to the bounded

" case:

Proposition 4.1: Let D e (I) Tken any finite dzmenszoml opemtor Fe .Z’*(.‘l))

18 @ commulalor. . \

Proof: Let F — Z (i» *) 7:--Since D ¢ (I), there is an mfmlte dimensional Hllbert'

space Ho— D. Put JC’, =lin {y;, x;, H,).. Then J, = D and Fy = F | ¥, € B(H,)”
‘has a large kernel. Consequently F, = [4,,-B,], 4,, B, € B(J,). Thus F = F,@® 0
[A B] with A =4, 0and B= B, D O0. Here O denotes the zero.operator on

L. Clearly A,B ¢ £*(D) § .

Now we consider domains D € (I) The first result says that there are ‘“‘enough”
commutators in- £+ (D), cf. also Proposition 3.6.

Proposition 4.2: Let D € (I). Then the commutators are to-dense in £+(D).
Proof: Let J¢, = lin {g;, ..., p,} and @, the projection onto J,. Then

A=1p —limQ,A4Q, = 15 —lim 4, forall 4 € £+(D). (10) '
. 'The finite dimensional /A,, = @,AQ, has inatrik repreéentation A, ~ (g" g) Let
= Tr 4,. Then ’ ‘ o
' A, .0
A, =19 — lim B{® with B;™ = Za, , (11)
R N l . . .

S



Commutators in Algebras of Unbounded Operators .9

where —a, stands at the diagonal place with number (n,+ j+ 1) Since Tr B; ™ — 0
for all §, n, the B;™ are commutators in £+(9D). Relatlons (10) and (11) together glve
. the desired result 1

Cornbmmg'Propositions 3.6 and 4.2 we get a main result of the paper. .
Theorem 4.3: Let D = D™(T'). Then the commulators are Tg-dense in .Z’*(.‘D).
This theorem has a nice corollery which is worthwhile being mentioned. -

Corollary Let D = D®(T). Then on L£*(D) there are no non-zero - contmuous :
complex komomorphzsms (t-e. multiplicative linear functionals).

* Qur final aim in this section is to show that if R, L € LH(D), any fmnte dlmenswnal
operator is a-commutator. :

Proposition 4.4: Let D = D=(T) and R, L E '7+(D). Then any /zmte dzmenszoml
‘operator F 6 L*(D) s a commutator.

To separate the technical details from the main idea of the proof we start with =~
two lemmata. . .

Lemma 4.5: Let F € £+(D) be finite dimensional, F = )_7 Qi )V)p w,) an ortho-

‘normal set. Then there is an operator S such that S = S* 2 I Sy, = s;y;, (w,) =D
Tan ort}wnormal basis and D = D>(S).

Proof: We give only a sketch of the proof. First, we use a fact which seenis to be .
well known, but for which we cannot give a reference. Qur domain D[¢] = D=(T) [¢]
is an (F)-space with unconditional basis (@,), D, = lin {yy, ..., .} is a topologically.
complemented subspace. Let P, € £*(D) be the orthoprolectlon onto D;. The above
mentioned fact consists in D, = (I — P,) D having also an unconditional basis.

Next we apply a result of MITJAGIN [14]. Let E = .@“’(T) [t}and X < E a com-
plemented subspace with unconditional basis. Then X is topologically 1somorph1(,
to a coordinate subspace of E. Especxally, Xis isomorphic ‘to some D®(B) where
B = B* = [ is a selfadjoint operator in J¢, = D,, Bo;, = b,,g,, for some orthonormal
basis {@n) in F,. Then onecan put S = Ik@ B, Ik the 1dent1ty, on D, and Yok = On
foralln B , .

)

Let us remark that in what follows we will- -apply Lemma 2.1 several times without
e\:phmtly mentlomng it. The advantage of the representation D = D*(S) described
in Lemma' 4.5 is a simple matrix representation of F' (now with respect to (y,)):

. . fu he fis
) oo ‘ F, F, F;
F~(i) =4 fa feo fa oo = 0 0 0 .

0 0 0- Do

where the right-hand matrix has (kX k)-matrices as entries: F, = (f;;), 1 =,
ISk Fo=)h1=2isk,(n—Dk+1=Sj<nk, .. Cleary, F=3F,
_in an obvious manner. This niatrix representation suggests a splitting of J:

H =3P H, dim K, =k Put P, to be the projection onto J,. Without
loss of generality we may suppose that 1 < s;. Now put a, = su and form a new
_operator A by setting 4 | K, = a,l,. Using the assumption R, L € £*(D) we get

/ . . )
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D= .‘D‘;°(A), more expllcltly . , -

D=I® K,
(an) .
= {‘P = 2@ ‘Pn % € c7Cm Z%”” IIlp,,H2 < 00 for all m € \’}
= {p: X PP g, < co forall 7n€ N}, o (12)

Lemma 4.6: With the notations above one has

Zan""" “Fnﬂ“z < o fOT all m ¢ Lr - . . : (13)

Proof: Using F,; = P,FP, one 1mmed1ately gets ||F,|? < Z ||Pn,{;||2 This to-‘
gether with (12) a.pplled to @ = 1, ..., yn Successively gives 7=t - ) .

) l, Zan2m ”Fn||2 é Z (Z “PnZ;“z) an2m < oo.

' Since a, 4, the assertlon follows B

" Proof of Pro position 4.4: Refermg to Lemma 4.5 and the considerations .
before Lemma 4.6, we use the representation D = .‘Z)°°(A) described there. If we put

~F, —Fy —F, ..\ 0L 0 0

SN B R 00 I o -
Cosfo w0 i o=lg g o )
’O' 0 ;F:I : ) . . . . .

one ha,s formally F = DC — CD. Again, D € £+(D) by the assumptxons "To check '
Cce .‘f*(.‘Z)) we flrst estlmate

co

SO e C
Zan)-l@n +§an2~m ||F1‘77n;ll]2

HA"‘CvaF = a®"

-
= 01012"‘ II<7)||2 + Z af"‘ @n-1l? < 0.
‘Here (12) and R, L¢ f*(_‘b) are used. It remains to estimate

||A'"C*<P”2 = Z a'n2m ”Fn+l(pl + Fl (771141”

=2 {Zaﬁ”‘ [P ATy + Z a,*™ |\F*|? |l<7’n+1”2} < oo.
‘The first sum is finite due to Lemma 4.6; "the second sum is fmlte because of (12)
and a, 1 1 .

v

5. Selfcommutators : . )
] R 1
~ ~

A special kind of commutators are so- ca]led selfcommutators. Some informations .
about the situation in the bounded case can be taken from [6]. Concerning the un-
bounded case we will give only somé preliminary results.
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" befinition 5.1: An operator S e Z2*(D) is said to be a self-commutator (or repre-
sentable as a selfcommutator) if 8 = [4, A*] for some 4 € £4(D). _ -

' Clearly, selfcommutators are’ symmetnc (S = S§*).. The followmg results are
A well known [6, 15]:

1. If S ¢ ﬂ(z‘%’) is a selfcommutator, then 0 belongs to the spectrum of S and so s

s not invertible in B(JE).

2. If A is a closed operator and on D(A*A) = D(AA*) one has AA* — A*_A.: I,
then A*A has eigenvalues, 0, 1, 2, ... all with the same multiplicity.

‘Turning to F+(D) let us remark that Property 1 above is not valid for £%(2).
Further, we consider here only selfcommutators S = [4, A*] for such A that A4*
and A*A are essentlal]y selfadjoint. We have o(44%) u {0} = o(4*4) u {0}. More-

over, if 4 is a closed operator, then 4*4 and AA* have the same non-zero eigen-

values with the same multlplmlty [5].

In the next lemma we collect some further propertles related w1th selfcommu- N

tators. . ,

' Lemma 5‘1 Let D= D(T) e (1), 0 =8 ~(sn), (ya) a diagonal operator in

L (D) with S € (1) (cf. [10])..1f § = AA* At A, the following statements are true: .

() 474, 447, 4, A7 e (). - .

(ii) Let (a,) be the ezgenvalues of A*A. Then s, < a,. Moreover, (a,) = o(AA*) and -

if 0 € o(AA4*), then O ¢ aess(AA ), i.e. O can be only an eigenvalue with finite multi-
plzcuy '

Proof (1) AA+ =8 + A*A leads immediately to ‘
v (S, ») = (59, >+(A*A<p,q>> (44, p) = 47l 09

_ Therefore, D(SV2) - DAT) D .7)(AA*) and eonsequently D( A7), (AA*) € (I).
~ Here we used that D(S) € (I) implies D(SY?) € (I). To sec D(A) € (I), suppose that
there is an infinite dimensional Hilbert space J, — D(A). Then J,n D is infinite
. dimerisional. and for ¢,y € c%’o, HK, the unit ball in F,, one has sup [(@, A y)|
= sup.[{dg, p)| < oo. Thus A+. is bounded on 36’0 nD, ie. Hyn D= DAY
in contradiction to fD(A*) € (I). Hence .7)(A) € (I) and so D(A*4) € (I), too.
(ii).By (14) and the minimax principle one gets s, < a,. The property stated before
the Lemma gives (a,) < 6(4A4*) and (i) means especially that 0 § Oess(AAT), be-

cause this would imply that D(A44%) ¢ (I) 1

. :
Now we indicate some simple conditions which imply that diagonal operators

- (with respect to (g,)) -are selfcommutators. This should be also compared with.

Lemma 3.1.

‘Lemma 5.2: Let D= 2°T)€ (1), R,LeL4D), 0 <D ~(d,), DeLD)

so that d = (d,) is T-addable. Then D is a selfcommutator. -

Proof: We give at once infinite many such repfesentations, namely: let 4, be
the operator which corresponds to the matrix

(0.0 a 0 -

Uy

..‘)
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i.e. in the k™ upper subdiagonal there stands the sequence (a,). With other words
Ay ~ (@), aip = 0;,;-+a;. ‘Then the assumptions guarantee that 4, € £+(D) and

it is casy to see that D.= [4s, A,*) with appropriately chosen (a,) (cf. also the next -

remark) 1§

Remark: In the classical case D = I, of course D and 44+ commute and this isan e}ssentiall
point in the proof of Result 2 above. The representations of D used in the proof of Lemma 5.2

also lead to operators 4,4+ and A4,*4, commuting with D. Furthermore, the spectra of
" AyAt'and A,+A4, are casily determined. .Clearly, 4,4,* = D, with‘ c = (a2 az? a?, ...),
CAAL = Der with ¢ = (0, ..., 0, a,2, a,®, ...) where stand k zeros. Therefore one has: .

.

a?=d,,  a*=d,..., @t = dy; )

Gy =dewy +dyy, Qo =diyp + dyy ..., aly = do + dy;
.”'ike, = dpgir + -+ dogiy + iy + 4y, ...,a‘fnﬂ)k =dpink + o + dog + dy-

So we see a’ clear structure of the spectrum of A, A4,* for any k. A little bit more formally it

. oo . .
d,) =.U0D;, Dj = (djksrs - dijing) -
i=

- ,

For these ordered k-tuples define D; + D; as an elementwise addition and for ¢ < j put
(Di, D) = (digz1s -+ Qiisarer jgsrs - > dijiape)-. Then (a,2) = (Dy, Do + Dy, Dy + Dy + Dy, ...)
is the sequence of eigenvalues of 44+. The sequence ¢’ above gives the eigenvalues of A+A4.
Furthermore, if each eigenvalue of D has cqual multiplicity d =1, then by appropriate choice
of k£ (1 < k < d) one can generate a spectrum of A+4 with (homogeneous) multiplicity k.
Thus, one sees also in which manner the eigénvalues (0, 1, 2, ...) with cqual multiplicity arise
in the case D = I (cf. Result 2 above). ' _ ’ .

Let us remark that the case D € (III,) can also be handled if one modifies the notions of
diagonal and shift operators as in the second part of Section 3. - ' '

~

6. Concluding remarks .
: ‘ t ST A
We conclude with a small section which contains some conjectures and problems.
But first let us remark the following. If one considers algebras of unbounded opera-
tors, then operators which are not commutators in algebras of bounded operators
now can become commutators. The most famous example is the identity operator
Which is a commutator only if one includes also unbounded operators. A next step
would- be to leave 'even algebras and to go over to topological quasi--algebras as
introduced by LasSNER ([9] and the references therein). In the context of quasi-*-
algebras again a lot of operators become commutators. The detail will be published.
Let us now collect some conjectures and problems. They are partially modified by
the constructions done so far; some of them may appear to be trivial, ' ]
Although the representation of an operator as commutator is not unique, it seems
—-at least for diagonal operators — that the growth of the diagonal sequence (a,)-

. determines the ‘“‘degree of unboundedness” of ‘A orfand B in D, = AB — BA (cf.
“Section 3). Thus, the following conjecture may be true. o

Conjecturel: 1f D, € £*(D) has a representation D, = AB — BA, A, B € £+(D),
then D, has also the representation (4). More specifically, if D € (I), the1°z T is a com-
mulator if and only if (¢,) is shift-admissible and T-addable. .



’- v

Commutators in Algebras of Unbounded Operators 13 L

The next con]ecture is partially modified by the first one.

Con]ecture 2: a) Let D € (I). If the identity I-is a commulator, then .‘D[t] is a
nuclear space. . ' ’
) If D € (I1), the tdentuy Iisnota commutator.
c) If De (I), R, L¢ £HD) and (t,) is T- addable, then any A E .Z’*(ﬂ) is @ com-
mutator .

. The followmg conjecture contains a guess under which condmons any compact
operator, i.e. any operator from £(9) is a commutator.

Con;ecbure 3: If D e (II) (D € (111,)) and (t,}) ((t )) are shift-admissible and’
(t.})-addable ((¢,')-addable, resp ), then any A € b’(.i)) is a commutator. In case that
A € 8’(.‘2)) is a commutator, A = [B,.C], is it possible to take-B, C € §(D)? .

We conclude with some

L Problems a) Extend the results in an appropnatc way to general Op* -algebras
and to the case where .@[t} is a general (F)-space).(or at least more general then
D™(T)).

b) Let 4 € f*(.@) bc an operator with Tr 4 = 0. Is then 4 a commutator?

¢) Under which general conditions on D and A one can prove that o(44*) has a°
structure similar to that described in the Remark following Lemma 5.22 Especially :
Let D ~( ), D = AA* — A*A, D and AA* commute. Describe o(44*).

Acicnowledgement The author is indebted to A. Ya. Helemskij, M. I. Kadec and.
K.-D. Kiirsten for hints concermng the result about unconditional bases mentioned
‘in the proof of - Lemma 4.5.
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