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Fur Diagonal-, Quasidiagonal- und endl ichdimensionale Operatoren in .topologischen Algebren 
unbeschränkter Operatoren werden versehiedene Kriterren angegeben, aus denen die Darstell- 
barkeit dieser Operatoren als Kommutatoren folgt. Es wird gezeigt, daB die Kommutatoren 
in der maQcimalen Op*.Algebra bezuglich dergleichmaBigen Topologie dicht sind. AuBerdém 
werden einige einfuche Eigenschaften von Selbstkommutatoren, niehrere Verinutungen und 

' Probleme angefuhrt:  
,Ljui A itaroiiain,HLIX, luia3tuularonaJIbHLJx if F0IreMH0MepHb1x,ouepaT0p0B B TOflOJ1OrM'1CK11X 
a3lre6pax ueorpallIieHHaIx onepa'ropoe j1OTCF! pa3iiaie IcpuTepuh!, Ba FOTOThIX cietye 
npejcTaBJ1eHhIe aTHX oneparopoB B Bhi)e,}oMMyTaTopon. lloxaaaiio, 'JTO KOMMTTObI 
HJIOTIIU oTHoduTeJIbHo panuoiepiiort TonoiloruB B iatcutajiiiiofi 01)-aii'e6pe. Ilpuno-' 
ATCH Ta}o+ce He10'0pMe Hp0CTHe taxmi 0 caNioKoatNlyTaT0PdX, I'Itfl0T31J H flp06.TeMiA. 

• For diagonal, quasidiagonal and finite dimensional operators in - topological tlgebras of tin-
bounded operators there are given several criteria which imply their representation as I commu-
tafors. It is proved that the commutators are dense in the maximal Op*.algebra with respect 
to the uniform topology. Simple facts about selfcommutators, some conjectures and problems 
are,given. 

1. Introduction	.
/ 

The structure of commutators in algebras of boun. ed operators(especially in (X) 
• and von Neumann algebras) was investigated by many authors. Let us only remember 

the paper of BROWN and PEARCY [2] which can be regarded as scme final step in 
clarifying the situation for cZ1(X): an operator A E2(X) is a commutator if and 
only if it is not of the form A = 21 + C, 2 0 real numberand C a compact opera-
tor. Here, 71' is a separable, infinite dimensional Hilbert space. In finite dimensional 
spaces one has the classical result: a quadratic matrix is a commutator if and only 
if it has trace zero. 

Unbounded operators enter if one considers the'  CCR (cf. [151). To the author's 
knowledge up to now commutators in algebras of unbounded operators were not 
investigated. The present paper should be regarded as a first step toward a systematic 
Sttldy of commutators in the context of topological algebas of unbounded operators. 
The aim is first of all to stimulate such investigations by presenting some conjectures 
and 'problems on the basis of results obtained so far. We restrict ourselves to maximal 
Op*algebras .t(2)) defined on domains of the form .7) = .7J(T) (cf. Section 2). 
The paper is organized as follows. Section 2 contains the necessary notions, notations 
and preliminaries. Section 3 concerns diagonal and quasidiagonal operators. Here 
the possibility of representing an operator as commutator is related with the structure' 
of the domain .7) of the algebra. Several criteria are given which imply that such 

• operators are commutators. In Section , 4 we' consider finite dimensiotal Operatprs. 
•	if 2) is not of type (I), any finite dimensional operator is a. commutator. If .7) is 
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of type (I)', then it is proved that "enough"finite dimensional operators are corn
rnütators. Combining considerations of Sections 3 and 4 one gets as a main result 
that the commutators are -dense in .(2)). This is the analogous result to the 
bounded case! In Section 5 there are collected some facts about selfconimutators. 
Finally, in Section 6 we formulate some conjectures as well as problems 

2. Preliminaries 

For ,a dense linear manifold 2) in a separable Hubert space X the set .r(2)) 
= A: A2) c 2), A"JJ c: '2)} forms a *-algebra with respect to the usual operations 
andthe involution A -* A = A* I D. An Op*algebra c4(2) is a -subalgebra of 
.'4(2) containing the identity Operator I. The graph topology t on '2) induced by 
'4(2)) is given by the family of seminorms 

II4II 	(A E	(2))). 

Among the many possible topologies on 1(2)) we mention only the uniform topology. 
TI) [8] given by the seminorms 

\
A, — I JAIIw	sup J(, A	(4t'c 2).t-bounded).' 

The set

= {C E 1'(2)): CAl is relatively t-compact for all t-bounded at 

is a two-sided *-ideãl in 1(2)). It appears that this set is a very appropriate generali-
zation of the ideal of compact operators in (X) [7, 12]: If 2)[t] is an (F)-space, 
then the -closure of the set of finite dimensional operators of Y1(2)) coincides 
with 

In this paper we consider only (F)-domains of the form	 - 

-'.	 2) =	= fl 2)(T)	 r 
• .	.	 nO	 - 

where T = T*' I is, a selfadjoint operator which can be supposed; to have the 
structure  

(n5 E N), . (p,) an orthonormal basis in X.	- 

If necessary, one can - suppose t,, E N. Write shortly T	(t a) or more precisely, - 
CO 

T (ta) (). Further, we use the following notations. Let T = fA dE1 be the 

spectral resolution of' T. Then the operators P = f dE2 belong to 1(2I) for -all 

1	and XP = PX 2). It will be frequently used that for all A € 
A = TD - lim PAP,. We will make use of the classification of domains as provided 

in [10, 11] (cf. also [3, 4]). To fix the notations we repeat some facts:	— 

0 is of type (I) (2) E (I)) if there is no infinite dimensional Hubert space X 0 c D. 
This is equivalent to lim t = 00.	- 

2) is of type (II) (2) € (II)) if there isa splitting 2) =	2o, Xo an infinite 
S

	

	 dimensional Hilbert space, 2) € (I). This is equivalent to a decomposition (ta)€
= (t°) u (ta'), with a bounded sequence (t°) and urn t,,' = 00, i.e. 2) = 
where .T1	(ta'), (v, ,,) for some orthonormal basis ( pn) in Xo	 -



/
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2) is of type (III) (2) € (III)) if T has infinite many eigenvalues t' with infinite 
multiplicity and'lim t' = co. Therefore if X denotes the eigenspace to t,', one 
has

2) =. ('3e,
J	with 2)'E (I) or	= {O}. 

The sun means the following: 

=	
=	 E	(t.')l III 2 <00 Vk E N}. 

On') 

Especially, 2E ("IA) if T can be chosen such that 06 = {O}. 

In Section 3 we will use the fact that all X can be identified with some Hubert 
space X (e.g. via some fixed isometric isomorphisn). Thus it makes sense to con- 
sider any element 1Pn E 2C as an element of 7C for any j + n. In what follows we' 
will fix the orthonormal basis (q,,), and if it is not indicated otherwise, all construc-
tions will be done with respect to this basis. In general, it is even necessary to fix 
also the ordering q, 972, ... (i.e. (q) and for sonic permutation r of N are in 
general not equivalent with respect to the construction* s). 
_An operator A E Y'(2)) is called commutator or representable as commutator if 

A = [B, C] BC - GB for some B, CE Y + (0). The. following operators are fre- 
quently used:	 -. 

diagonal operator D0 :	D09 = 

right shift R:.	'	Rp = 

weighted right shift 1l:	R0çv = aq81, 
left shut Ii:	 LT.: = 92,*_i, 92 = 0; 
weighted left shift L0 :	L.Tn	a,çv,,_ 1 , To '= 0.  

As above we often write D0 mD -_* (an). Here a = '(as) is a sequence of complex 
numbers. To use such operators it is necessary to decide whether or not they belong 
to 1(2)). It is easy to write down sonic formal conditions, namely: - 

D0 E 1(2)) iff . laJ ;;^; Ct' for some C, r > 0;	 (1) 

• R0 E 1(2)) (L0 E 1(2))) iff for all 1 € N 'there exist C(l), r(l) > 0, so that for all 
nE.N	 - 

Ial t	 '„4,1 ^ C(l) t'	(IaI 4_1 ^5 C(l) t”) . ,	,	,	 (2) 

For reasons which will become clear a little bit' latr it is useful to introduce 
some more general notions. 

Definition 2.1: 'a) A sequence (sn), s,, > 0, is said to be shift-admissible if 81*1 
15 Cs, for some C, r> 0 and all n. •*	 . 

b) Let (1 8) be a sequence, t,, > 0. A sequence (as) of complex numbers is said to 
be (t)-addable (or T-addable if T '-' (ta)) if,for some,C, r > 0, 

bI	Ct: %iVith bn = E a1 for ill n.	'	 (3 

Since most of the representations of operators as c'ommutators1use (explicitly - or implicitly) 
shift operators, 'it seems worthwhile to add some remarks. In general the estimations (2) are 
not very helpful to decide whether or not B, L E !+(2). The reason is, roughly speaking, that 
in the sequence (t a ) there appear eigenvalues with infinite multiplicity arranged i n a compli. 
cated manner: So, it may happen that (t,) is not shift-admissible, i.e. 1?; L q .1+(2), but 
1*
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(t,,() ) is shift-admissible for some permutation n of N. Without proof we state some obser-
vations: 
,1. 2) € (I): B, L € 1+(2)) means tlat (t,) does not increase too fast.. Note that t,	n'3 or 

even t, - (n!)" is not yet too fast.	- 
2.2) E (II): B, L are never in .t+(2). More exactly, there is no permutation z of Nsuch that 

is shift-admissible. 
3. 2) € (III If (t,,') is shift-admissible, then automatically 2) € (" IA) and there is a permu-

tation z of N such that (ta1fl1 ) is also shift-admissible.	-	 - 

The next lemma states that-in case .7) € (I) the notions in Definition 2.1 are in-
dependentof the-representing oerator T. 

Lemma 2.1: Let 2) =2)(T) =.D°°(S) E (I), Tp= tnTn , Sip,, = s nlpn and let 
Ra, L (R0 ', La') be the weighted shift operators corresponding to (q,,), ((ip)). Then 

(i) R0 , La E	(2)) if/ Ra', L0'€ +(2)); 
(ii) (a,,) is T-addable i/f. (a,) is S-addable. 

Proof: In [13] there was proved that Cs,,l/T	t,,	Ds,,T (n € N; C, D, r > 0).€
Therefore, if an estimation of type (2) or (3) is valid for (1,,), it is also valid for (s,,) 
and vice vera (of course with other constants) U	 - 

Most of the further considerations are based on itiatrix representations of opera-
tors. If not stated otherwise, we always use the representation with respect to- the 
canonical basis (i,,) and write A	(A m ,,) with Am,, = (q-m, Aq,,.	 - 

3. Diagonal and quasidiagonal operators	 - 

• . --	in this section we demonstrate some typical features for commutators in 1(2)). 
-	.-	Therefore we do not start with the most general result in this context but prefer a 

more inductive representation of the results.	. . 

-

	

	A) We start with .7) E (I). Let Da E "(2)), a = (a,,). Then one has the formal

relation  

Da = LbR - RLb with b = (b,,) and b,,-=	a1.	-	 (4) - 

- 
If R, L E .t(2)), then, due to Lb = DbL, Lb E 1(2)) iff Db € I+(2): 

- Lenima 3.1: Let 2) € (1), R, L E .f(2)) and Da a diagonal operator , with T-addable 
sequence a = (an). -Then Da is a commutator given by (4). 

If one uses representation (4), one has, so to say, two contrary restrictions. The first one is 
B, L € .'+(2)), i.e. (t,,) should not increase too-wild. On the other hand, if (t,,) increases"slowly", 
then it will happen that some (or even many) diagonal operators D6 will not have T-addable. - 

• 'diagonal sequences a. For example, if T (log (n + 1)), then this sequence itself is not 
T-addable. Thus, it is not surprising, that there are optimal cases, i.e. (1,,) which increase 
"optimal". 

Lemma 3.2: Let .s be the Schwartz space of- rapidly decreasing sequences. Each of 
the following conditions implies that any diagonal operator D0 €	(2)) is a commu-
tator:	.•	 - 

,(i) 2) is isomorphic 19  
(ii) 2) is isomorphic to a sequence space contained in s and B, L € 1(2)). 

-	 -	 -	-	, 

0
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Proof: First let us remark that the isomorphisms mentionedabove are understood 
with respect to the basis  

(i) Without loss of generality we may suppose that t,, = n. Then D. E 
means IaI	CnT for some C, r> 0. Since 

•	 11= E aj	!^g Cj	Cn1, 

the sequence (an) is Taddable. Clearly, R, L E ."(2), so the proof is complete.
(ii) Here one combines an analogous estimation as in (i) with the estimation 

n !S C48 for some C,..s > 0, where T ' (ta) and JJ(T)	(cf. [10, 11)] I	- 

Remark that in the proof above it is implici'tly used that both, B, L E .Y+(2)) arid the T-adda 
bility of (a n ) does not depend on the concrete representation 2) = 2)°°(T). As mentioned in 
Section 2 this is only true for 2) E (I). 

Now we turn'to quasidiagonal operators. We use again some ideas from the bounded 
case. Let (S ) be a matrix the entries of which can be numbers as well as operator. 
Then define another matrix (W) associated with (S) by the following rule: 

•	I	0	fori,j^0 •	W1=0 for	^°l .	W= I	 -	 lJ	W_14_1 + S, for i >2, •	 1. 
(5) 

In [1] the following was proved: Let	 Z	..., S = (So) an operator

on X with SI E (X0), E IIS II < do. Then S = LW - WL where W = (W) is 
defined by (5) and gives an operator on X and L =	= ô i ,Ix, Ix the 

•	identity on X0.', 
Let us return to	with .D E (I). For 8	8 (Sn) one defines the'cor 

responding (Wy) = Wand has formally  

SLW—WL.	 . .	 (6)


Here L is the left shift. Ii case S = Da (6) is equivalent to (4). If we again suppose 
•	R, L E .'(2), the only question to decide is'whether or not (W1 ,) defines an operator 

LV E "(2), i.e. to give (6) sense as a relation in	In general it is a difficult 
. task to prove that a given matrix defines an operator of a given class (say bounded 

or belonging to ."(2) and so on). Most easily one can handle this for quasidiagonal 
• operators. An operator Q E ."(2) is said to be qua.sidiagonal (with respect to (q), 
as usual) if its matrix representation (Q) has only finite many lower and upper sub-
diagonals different front zero, i.e. schematically: 

Q ._ (Qm	Qo	n) 

Denote these subdiagonals (front left to right) by Qm, ..., Q0, ..., Q. and write 
= [Q, ..., Q,,] . Moreover denote the sequences of the matrix element corre-

sponding to Q, by	• 

q(i) = (q (i))	i c	_Qk.k+I (k E N; 0	j 
k ,	

tQk—ik (k E N; —m :S:.j	0).

1_
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Proposition 3.3: Let 2) E (I), R, L € ."(2)). A qua.sidiagonal operator 
Q = [Q,..., Q,] € Z(2)) 'is a commutator if all sequences q(i) (—m j n) are 
T-addable. In this case one possible representation is given by Q = LW - WL, where 

V L is the* left shift and W is the operator corresponding to (W17 ) given by. (5). 
Proof: That (W17 ) defines an operator W E .(2)) can be seen by the following 

considerations. The definition of W implies that this is a qüasidiagonal operator of 
the same typea Q: V	

V -	

V 

W = [.W_,,, ...; W,j = [W_ m, 0, ..., 0] + . ..	[0, ..., 01 W,].	(7). 

	

• The corresponding sequence's w(are forn'ed by the partial sums w(1) 	q 1 (i) +,... 
+	Observe that any term in (7) is ' obtained from a diagonal operator D 
vi 1 application of some power of R or L. Therefore the assumption implies that any 
Dn € °(2)) by (1) and any term in (7) also defines an operator belonging to 1)• 
Thus, W E '(2)) and the proof is complete I  

Corollary: Let 2) E (I), B, L E	(2)). Then]?,,-, La are commutat?rs if a.= (an) 
is*T-addzble.	.'	'.	V	 ,	

V	
V V 

Remark that- for Ba, L0 the T-addability of a = (as) automatically implies 
V	 Ra, L. E '(2)).	 V	 '	 V.	

V 

B) For 2) € (Ii) we remark only the following. Since in this case 2) = 7C 2)(T) 
.2(T1 ) € (I) (cf. Section 2) the results for the bounded case and for type (I) can be 
combined to identify a lot of operators of the form	 V 

A 
=(	), 

BE (7e0), CE +(2)(T))V, 

as commutators. Moreover, operators of the, form	•	 V.	 ,	 V V 

•	 . A = (	and hence also 'A = (	'	
-	 V 

•	\O 0/	i	 /	B 0,	
V 

are commutators as canbe seen e.g. from	V	
V	 , 

,0 B) 	0\ (0,\ •/0	 \ /'I'. 0

o o.)o ) 	o) ' o Ofl0 0	 . 

C) Next let 2) E (III). In view of the considerations of Section 2 we consider, first V 

2)E ("IA), i.e.  

V	 2)=X.	V	 V -	
• ( 8) 

(t,')	 V 

If A'=	A,,, A,, E J(,,) and IIA ,,II < C(t,,') a for all nand appropiiate C, s> 0,

then A , E Y1 (2)).' In the case that the sum representing A contains only finite many 
terms different froni zero, the,results of the bounded case can be applied (cf. also	V 

Prop. 3.4). In the general case one could proceed as follows. Suppose A,, = [B,,, C,,]. 
If B = 9 B,, and C =	C,, belong to 1'(2)), then A = [B, C]. But this 

m procedure sees not to be very useful for concrete applications. Let us therefore 
describe another possibility to construct commutators. To do so we introduce a 
generalized shift operator which does not 'correspond to the basis (p,,) but to the 
representation (8). Let = (, , ...) E 2) (cf. Section 2). Then define	 V 

R = , ,	 L = (V2,V3, VV	 ' 

I	 '	S	 •	 /
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Analogously to 2) € (I) one-has: R, L E !(2)) if and only if (t a') is shift-admissible. 
Now we use the matrix representation of A E	with respect to (8), i.e. 
A i-' (A,,), A 1 E £1(X1 , X,)	(X). It is natural to call' an operator of the form 

	

/A 1 0	0... 

A=(0 A2 0	... 
•	 \0 0 A' 

generalized diagonal operator or diagonal operator with respect to (8). notion of 
T-addability is generalized as follows. Let A = X3A E .f(2)) a generalized 
diagonal operator and II A II = a. Thën A is called T-addable if (as ) . is (t')-addable. 

Proposition 3.4: Suppose' 2) = 2)(T) E(IIIA), (ta ') shill-admissible and 
A E .°(2)) a T-addable generalized diagonal operator. Then A is a commutator. 

• Proof: As in the proof of Lemma 3.1 it is seen that 'formally 

	

A=W—.W.	 (9) 

with	'	
0 

•	 /0 0 0... 
0 

•	
-	

\1.r0 

/0\A 1 0	0 
•	

-	
A1+A2 0	 ... 

	

0 O 0	A1+A2+A3 

This representation is also understood with respect to (8). Clearly, €	To see 
that W, € i) one estimates as follows. Let ip =	,, € 2) Then 

	

I	\	 •	 ' •

00

	

IIT5W 'II2= Ti	
2 

E( ZAk) 

	

j=1	\k==l n 

	

00	/fl	\2	 00	fn	\2 
-	 ^	' (t+ Y' ( L' IAkIIJ	

•	

E (1/ ) 21 1	' a,j II, +i 1I 2 .	- 

	

ni	\k-1	/	 n1	\k1 / 

Since (as) was (tn ')-adable, we have a1 +	+ a	C(t'y (n € N; C, r. 0) and 
the estimation can be continued:	 •	

0• 

IT' W112	Q2	(/)21i+ II n+1 II 2 < 

The estimation of IITIW*v,112 is almost the same and therefore. omitted. Thus 
WE .(2)) •	0	 •	

-	 0,	
0 

Now we could wove several variants of results analogous to Lemma 3.2 but we 
mention only one of them.	•	 0 

Corollary: If t,' ' n for some p > 0, then any bounded generzlized diagonal 

	

- operator is a 60mmutator.	 0	 -	 -
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,

In a similar way as for 2) E (I) one can also handle generalized quasidiagonal 
operators. 

Now let us give a result which is valid in the general case 2) E (III). First remark 
that in a natural -manner operators A E c9/1), It > 1 can be viewed as elements 
of 1(2) via identifying A and A $ 0, 0 the zero operator on (Xv)'. 

Proposition 3.5: Let .7) E (III). Then any operator A E (30) 	< oo) is€
a commutator. 

Proof: It is reduced to the bounded case. Let v > Al'  be such that dim (X' ® X') 
= oo. Then A has a large kernel if it is considered as operator in (X'). Hence 
it is a commutator [6]. Consequently, A is also a commutator in 1(2)) I 

Rmeniber that for any Dc(T) on (X') the tppology induced by	coincides

, with the usual oprator norm topology. Moreover, Ne commutators are norm dense 

in c(X) for any infinite dimensional separable Hubert space [2]. Combining these 
observations with7 the fact that the set of all A E (X) (for all 1 :^,- It < oo) is 
Ti-dense in Z(2)), one gets 

Proposition 3.6: Let .7) = 2)°°(T)E (11) or 2) = 2)°°(T) E (III). Then the com- 
mutators are r-dense in .  

In Section 4 this result will be generalized to include also the case 2) € (I). Because 
this will be use finite: dimensional operators we -did not include it in this section. 

4. Finite diinensiónaloperators	 . 

The aim of this section is to show that most of the finite dimensional operators are 
commutators. For .7) E (TI) or 0 €.(III) the problem can be *reduced to the bounded 
case	 - 

Proposition 4.1: Let 2) q . (I). Then any finite dimensional operator F E 2'(2)) 
is a commutator.	 S 

Proof: Let F = E • 
. ) . Since 2) J (I); there is an infinite dimensional Hilbert' 

space X0 c 0. Put X1 =:iun (, Xi , X0}.. Then X1 0 and F1 = F I 7C 1 €	 - 

has a large kernel. Consequently F1 = [A,.B1 ], A 1 , B € (X1 ). Thus F = F1	0

= [A, B] with A = A 1 0 and B = B1 0. Here 0 denotes the zero operator on 

• X1 1. Clearly A,B € 1(2)) I 
Now we consider domains .7) € (I). The first result says that there are "enough" 

commutators in .tF(2)), cf. also Proposition 3.6. 
Proposition 4.2: Let 2) E (I). Then the commutators are ri-dense in .(2)). 
Proof: Let X = lin {q, ..., q,,} and Q the projection onto X. Then 

•	 A= r - lim QAQ8 =	- lim A for all 'A € .(2)).	 (10) 

The finite dimensional 'A = QAQ has matrix representation A 	
(A,, ). 

Let

a = Tr A. Then

/A 

A =	- lim B1 ' with	= f	ia	 •	 ii 

0
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where —a stands at the diagonal place with number (n.+ j + 1). Since Tr B4 O') = 0 
for all j, n, the B,(") are commutators in Relations (10) and (11) together give 
the desired -result I 

	

•	Combining Propositions 3.6 and 42 we get a main result of the paper. 

Theorem 4.3: Let 2) = 2)°°(T). Then the commuLalors are rqj-den.se in Z(2)). 
This theorem has a nice corollary which is worthwhile being mentioned. -	- 
Corollary: Let 2) 2)00 (T). Then on .r(2)) there are no non-zero -rg-continuous - 

complex homomorphisms (i.e. multiplicative linear functionals'. 
Our final aim in this section is to show that if R, L € .'(2)), any finite dimensional 

operator is a-commutator. 

Proposition 4.4: Let 2) = .7)°°(T) and R, L € '.r(2)). Then any finite dimensional 
operator F E .°(2)) is a commutator. 

To separate the technical details from the main idea of the proof we start with 
two lemmata.	 S 

- -. Lemma 4.5: Let F € .'(2))be finite dimensional; F = Z(x1, .),j, () an ortho-
normal set. Then there is an operator S such that S = S* I, SVj = s,,,,	c 2) 

• an orthonornial basis and 2) = 000 (S).	-	- 
Proof: We give only a sketch of the proof. First, we use a fact which seems to be 

well known, but for which we cannot give a reference. Our domain 2)[t] = 2)(T) [t] 
is an (F)-space with unconditional basis (p), 2l-= ]in {, . . .,,,} is a topologically 
complemented subspace. Let P1 € Y + (.D) be the orthoprojection. onto 0. The above 
mentioned fact consists in D, = (I - P1 ) 2) having also an unconditionaibasis.	 - - - 

Net we apply a result of M1TJAGrN [14]. Let E = 2)(T) [fl and X E a corn-
plemented subspace with unconditional basis. Then X is topologically isomorphic 
to a coordinate subspace of E. Especially, is isomorphic to some 2)(B) where 
B= B* lisa selfadjoint operator inX 2 = 213 , Bp = bo. for some ôrthonoriiial 
basis () in X2 . Then one can put S = IkCJ -, Ik the identity, on 0 1 -and tPn+k	2n 
for all n I	- 

Let us remark that in what follows we will , apply Lemma 2.1 several Limes without 
explicitly mentioning it. The advantage of the representation 21 = 2)°°(S) described


	

•	in Lemma 4.5 is a simple matrix representation of F (now with respect t (p)): 

-	 /F - 

	

(", 112 /13 . . .	

1F2F3...
 S 

F-' (f ii ) =	/kI 42 fk3 ...	= ( o.	0	0 • ... 

where the right-hand matrix has (kX k)-matrices as entries: • F 1 = (/),' 1 ^ i, 
•

- in an obvious manner. This niatrix representation suggests a splitting of X: 
JC = X,, dim X = k. Put P. to be the projection onto X,. Without 
loss of generality we may suppose that 1 5). Nov put a = 5nk and form-a new 

	

/ 
• operator A by setting A I dC,, = aflIk Using the assuthption R, L E P'(2)) we get	-. 

/	 •	 -S	 -
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0 =	more explicitly	 - 

(a,,) 

• ={q=	 X, Ean2m II n IF 2 < oo for all rnE N} 

= {q:	IP112 a,2m < oo for all in E N}.	.	 (12) 

Lemma 4.6: With the notations above one has 

L' a Im IF 11 2 < co for all m E N.	 (13) 

	

k	
S. 

Proof: Using Fn 	P1 FP one immediately gets IlF ll 2	E IIP x,II2. This to-
gether with (12) applied to T = X,,..., Xsuccsively gives	)'. 

/k 

E a	llF lI 2	IlPx,II2) a 2m < 00.
S 

n 

Since ant, the assertion follows 1	 5 

Proof of Proposition 4.4: Refering to Lemma 4.5 and the considerations 
before Lemma 4.6 we use the representation 2) = 2)(A) described there. If we put 

• .	 /—'F2 —F3 —F4 ...\	'	/ 0 'k 0 0 
'jFi	0	0...	 10040... F1..0 J*.Ioo	0	'k \	' :	.J 

• one has formally F = DC - C. Again, D E °(!D) by the assumptions. To cheek 

C € 1(2)) we first estimate	 - 

2 
IIAmCII2 = a12m'	 +	 S 

n=i	 n=2	 S 

S	

Cja12m I;II	 IIiII2 < Co.	.	
5	

0 

Here (12) and R, L E !(2)) are used. It remains to estimate 

IIAmC2 =an2mjIF+ii+Fi*iIl2	 0 

^ 2 E a 2m II +i II 2 II i II 2 +	a	IIF*11 2	<Co. 

00IS n=1	 ,135=1  
The first sum is finite due to Lemma 4.6; the second sum is finite beëause of (12) 
and atI	 S 

5. SelIcommutators .	 S 

A special kind of commutators are, so-called self commutators. Some informations 
. about the situation in the bounded case can be' taken from [6]. Concerning the un-

bounded ease we will give only sonié .preliminary results.



	

Commutators in Algebras of Unbounded Operators	11 I 

Definition 5.1: An operator S € 1(2)) is said to be a self-commutator (or repre-
sentable asa selfcommutator) if S = [A, A] for some A E 2'(2)).	 - 

Clearly, selfcomniutators are' symmetric (S = 5+)., The following results are 
well known [6, 15]: 

I. If S € (d) is a sel/commutator, then 0 belongs to the spectrum of S and so S 
is not invertible in J6(X). 

2. .11 A is a closed operator and on .7)(A *A) = 2)(AA*) one has AA* - A*4 I, 
then A*A has eigenvalues, 0, 1, 2, ... all with the same multiplicity. 

Turning to' .°(2)) let us remark that Property 1 above is not valid for !(2)). 
Further, we consider here only selfcornmutat6rs S = [A, A] for such A that AA 
and AA are essentially, selfadjoint. We have a(AA) u {0} = a(AA) u {0}. More- 
dyer, if A is a closed operator, then A*A and AA* have the same non-zero eigen- 
values with the same multiplicity [5]. 

In the next lemma wecollect some further properties related with selfcommu-
tators. 

Lemma 5.1: Let 2) = .7)(T) € (I), 0 < S	(sn), (tpn) a diagonal' operator 'in€
,.°(2)) with S € (I)(cf. [10]),I/ S = AA'- - AA, the following statements are true: 

(i) AA, AA, A, A E (I). 
(ii) 'Let (a n) be the eigenvalues of A- Then .s,,	an. Moreover, (a s)	a(AA) and 

if 0 € a(A'A''), then 0 q Cess(4'A),i	0 can be only an eigenvalue with /in*ite multi-
plicity.	 S 

Proof:'(i) AA =S + AA leads immediately to 

'(Sw, )	) ± (AA, ) = (AAt, ) = IIA II 2.	 (14) 

Therefore, 2)(5112)	2)(A) 2)(AA') and consequently 2)(A'), FD(AA) € (I). 
Here we used that 2)(S) € (I) implies 2)(S112) € (I). To see 2)(A)'E (I), 'suppose that 
there is an infinite dimensional Hilbert space X0 2)(A). Then X0 n 2) is infinite 

• dimensional., and for 99, V. € X0 ,. dC0 the unit ball in X0, one has sup 
= sup. KAq, )j -< oo. Thus A is bounded on	n 2), i.e. 3C0.n 2)	2)(A)	- 
in contradiction to '2)(A) € (I). Hence 2)(A) € (I) and so 2)(AA) € (I), too. 

•	(ii) By (14) and the minimax principle one gets s,,	an. The property stated before 
• the Lemma gives (an)	a(AA') and (i) means especially that 0 4 ae,s(AA) be-

cause this would imply that 2)(AA 4') q (I) I 

Now we indicate some simple conditions which imply that diagonal operators •	(with respect to (n)) are self coin mutators. This should be also compared with

Lemma 3.1. 

Lemma 5.2: Let 2) = 2)°°(T) E (I), R, L € Y + (2))+, 0 D (d), DE Y+ (2)) 
so that d	(d,) is T-addable. Then D is a sel/commutator. 

Proof: We give at once infinite' many such repIesentations, namely: let A k be 
the operator which corresponds to the matrix 

(Ø...0a10••• 
a2 

-	I,	 •'	.••	'1
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•	i.e. in the kth upper subdiagonal there stands the sequence (a r). With other words 
Ak — (a4)),	= ô1.I_ka. Then the assumptions guarantee that Ak E	and

it is easy to see that D = [Ak, A k ] with appropriately chosen (a s) (cf. also the next 
remark) I 

• Remark: In the classical caseD = 1, of couise D and AA± commute and this isanessential 
point in the proof of Result 2 above. The representations of D used in the proof of Lemma 5.2 

-also lead to operators A kA k+ and A k A k commuting with D. Furthermore, the spectra of 
- A kAk4 and A k+A * are easily determined. Clearly, A kA k+ = D with c = (a 12 , a22 , a32 , ...), .' A k+A k = D' with c' = (0, ..., 0, a 12, 022, ...) where stand k zeros. Therefore one has: 

a12 = d 1 ,	a22 = d2 , ...,	ak2 = 

a^ 1 = dk+ l + iiI,	 = dk+2 +' (1.	a. = dlk + d;; 

nkI =	±	-F dlk l + dk;j + I, •• , a(n± I )k = d ( fl;I)k + ... + d2 + dk. 
So ' we see a' clear structure of the spectrum of A kA k+ for any k. A little bit more formally it 
can be described as follows. Consider a decomposition of (d) into k-blocks: 

(do )	uD1 ,	D1 = (dIk.I.....d(141)k); 

For these ordered k . tuples define D + D1 as an elementwise addition and for i < j put 
(D1, D,) = (dIk,....., d j11 , d)k+ l ,..., d (J+ l)k ). Then (a 2 ) = (D0, D0 + D, D0 +D1 + D21 ...) 
is the sequence of eigenvalues of AA+. The sequence c' above gives the eigenvalues' of A+A. 
Furthermore, if each eigenvalue of D has equal multiplicity d	1, then by appropriate choice 
of k (1 k d) one can generate a spectrum of AA with (homogeneous) multiplicity k. 
Thus, one sees also in which manner the eigcnvalues (0, 1, 2, ...) with equal multiplicity arise 
in the case D = I (cf. Result 2 above). 

Let us remark that the ease 2) € (" IA) can also be handled if one modifies the notionsof 
diagonal and shift operators as in the second part of Section 3. 

6. Concluding remarks 

We concliide with a small section which contains some conjectures and problems. 
But first let us remark the following. If one considers algebras of unbounded opera-
tors, then operators which are not commutators in algebras of bounded operators 
now can becoiiie conuiiutators. The most famous example is the identity operator 
which is a commutator only if one includes also unbounded operators: A next step 
would be to leave even algebras and to go over to topological quasi-*-algebras as 
introdued by LASSNER ([9] and the references therein). In the context of quasi-*- 
algebras again a lot of operators become 'commutators. The detail will be published. 

Let us now collect some conjectures and problems. They are partially modified by 
the constructions done so far; . some of them may appear to be trivial. 

•

	

	Although the representation of an operator as commutator is not unique, it seems

- -at least for, diagonal operators — that the growth of the diagonal sequence (a) 

• determines the "degree of unboundedness" of 'A or/and B in D0 = AB — BA (cf. 
Section 3). Thus, the following conjecture may be true. 

Conjecture 1:1/ D0 € .t(2)) has a representation Da = AR — BA, .A, B € 
then D0 has also the representation (4). More speci/ically, ii 2) € (I), then T is a com-
mutator it and only ii (1,,) is shi It-admissible and T-addable.
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The next conjecture is partially modified by the first one. 

Conjecture 2: a) Let 2) € (I). If the identity I-is a commutator, then 2(t) is a 
•	nuclear space. 

h) 1/2) € (II), the identity I is not a commutator. 
c) If 2) € (I), R, L € .f(2)) and (t a) is T-addable, then any A € .(2)) is a com-

mutator. 

The following conjecture contains a guess under which conditions any "compact" --
operator, i.e. any operator from (2)) is a commutator.	 - - 

Conjecture 3: If 0 € (II) (2) € (lilA)) and(t 1 ) ((t a')) are shift-admissible and 
(t')-addable ((t')-addable, resp.), then any A € '(2)) is a commutator. In case that 
A E 6(2)) is a commutator, A = [B,.CJ, is it possible to take-B, C E 6(2))? 

We conclude with some	. 

Problems: a) Extend the results in an appropri 'ate way to general Op*algebras 
and to the case where 2)[t] is a general (F)-space)(or at least more general then 

•	b) Let A € .(2)) be an operator with Tr A = 0. Is then A a commutator? 
c) Under which general conditions on D and A one can prove that a(AA) has	- - 

structure siñiilar to that described in the Remark following Lemma 5.2? Especially: 
Let D (d,j, D = AA - AMA, D and AA commute. Describe a(AA). 

Acknowledgement: The author is indebted to A. Ya. Heleniskij, M. I. Kadec and. 
K.-D. Kursten for hints concerning the result about unconditional bases mentioned 

•	in the proof of'Lenima 4.5. . 
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