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Unter Ausnutzung der Erkenntnisse fiber bedingte Erwartungen wird ein bedingter Lindeberg 
Trotter-Operator definiert, der die 'Eigenschaften des klassischenLindeberg-Trotter- Operators 
auf den Fall abhangiger Zufallsvariabler erweitert. Somit werden aligemeine Grenzwertsätze - 
für Summ'en abhangiger Zufallsvariabler mit .- und -Ordnung bewiesen, die auf den Zen-
tralen Grenzwertsatz, das schwacheGesetz grol3er Zahien und vor allem auf Markov-Prozesse, 
auch im Falle von starker, Konvergenz, angewendet werden.  

I4cn0.m3ya cBocTBa YCJ10BHOO maTeruaTit qecHoro o-H1uaHsH onpee31HeTcn . ycJloBlIufl 
onepaTop J1uHje6epra-TpoTTepa, HOTOpIafl PCIIIHHCT csoflcma HjlacdnqecHoro onepaTopa 
JTuH)e6epra-TpoTTepa Ha cJlyaü 3BHCRflu1X cJIyiattHlJx Be.m'mH. 3THM yOHa31.InaI0Tcn 
o6uie npeemie TeopeMu Ann, CyMM aaBsCJiuulX c.ny4afHaIX Be3rnHH C a- Ii 
HaMM, HOTOhIC HPHMHHIOTCH H EeHTpaJ1bHofl npeernH01 'reopeMe, x ocJIa6.uenHoMy 
3aROHy 6oJjhLllMx q llce.n it oco6eHu0 (Taio<e B ciyae dHuIbHol CXOHMoCTH) K MapxoBcIulM 
npo1eccaM.  

Making use of the properties of conditional expectations, a conditional Lindeberg-Trottei-
operator is defined which extends the properties of the classical Lindeberg- Trotter operator 
to the case of dependent random variables. This approach enables one to establish general. 
limit theorems equipped with little-a and large-a rates for sums of dependent random vari-
ables; these are applied to several versions of the central limit theorem, the weak law of 
large numbers, and especially to Markovian processes, not only in the case of weak convergence 
in distribution but partially also for strong convergence. 

-	1. Introduction 

The limit theorems of probability theory have been presented at various 'levels' of 
generality and application, both with respect to the structure of the random variables - 
or. processes, considered and to types of limit laws considered. The main results of 
this paper refer to the weak convergence with large-0 as well as little-a rates of the 
normalized sums q(n) S. =çv(n) (X 1 + + Xn) (where q: N - R, (n) *O as 
n -- oo) of possibly dependent random variables to suitable limiting random van-
ables Z. Here Z is always assumed to be q-decomposable into independent com-
ponents Z1. (= Z1, ), 1 :5-,.i :^,- n(i.e. for the distribution Pz-of Z one hag P = 

(n)(a,±..+Z) for each n E N). In order to be able to apply (elegant) operator-theo-
retical methods in the proofs the convergence of. the sequence (() S) will be 
expressed in ternis of a generalization of the Lindeberg-Trdtter operator. For in-
dependent random variables the analysis carries through if the operator Vx: C C 
is defined in its classical form by 

(V/) (y) = f /(i ± y) dF(u) = E[/(X + y)]	(y E 111)'.*  
-	

R 
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However, in the instance of-not necessarily iiidependent nor identically distributed 
random variables, thus for arbitrarily dependent .- random variables, one does not 
have the basic property that (Vx,_....+) / (V1,V, ... Vi ,,) /.. For this.purpose 
one turns to the concept of cthidit.ional expectations and defines the conditional 
Trotter operator Vi of X relative to  sub--algebr.a GJ of 9f -in a'probability space 
(Q, 9.1,-F) by  

( V 1 /) (y) = inf E[f(X + x) I ft 
zE.4(yf) 

A(y; /) =(E Q: 1(x) > /(y)} with y€ B= {y € R:-Ix - y <x}, , x t ( set 
of rationals). Note that the family'	- 

-	.	 (1.2) 

is a base of the topological space (R., Y), where Y' is the family of all open subsets 
of R. This space is in particular a Polish space; it guarantees the existence of a 
regular conditional probability distribution of X relative to (ii. The formation of 
the infinium over all xE A,(y, f) is necessary to ensure the appropriate properties 
of the conditional operator needed for the proofs. 

If (Xk, %Y is a sequence 1 ) of couples, where theXk are possibly dependent, real, 
P-integrable raticloni variables on Q, and the 3k form a non-decreasing sequence 
of sub-i-algebras of 2t, then the general limit theoreiii of Section 5, Theorem 2, on 
the weak convergence of 'p(n) S to Z, yields the estimate 

(n 
JV fl ,/	Vz/II = 0 (c ([7_,	k)] 	'	'	(1.3)' 

for any / E C. Here Wr is the rt. h modulus of continnit' defined in (2.1), and M(n; 00 
in (2.12). Thebasic assumption that (Xk, 3k) has to fulfill is a suitable (conditional) 
pseudo-moment condition, namely (5.1). It is the only assumption which restricts 
the'dependence structure of the random variables X 1 in question. It regulates the 
dependence of the X, amongst themselves, with the associated sub-a-algebras 01, 
together with the decomposition-components Z i of Z. Such conditions are discussed 
in [8].  

Although no directly comparable results for dependent random variables may be found in 
the literature, GUDYNAS [18] does correlate the rate of convergence of metrics comparable to 
the left side of (1.3) with metrics expressed in terms of conditional pseudo-moments. Pseudo-
moments themselves have recently been also employed by ZOLOTAREv [32], PADITZ [27]. and 
SAzosov and UIYANov' [28] in work on the' central limit theorem for independent random 
variables.	 ' 

Theorem 1 of Section 4 provides a little-a counterpart . of Theorem 2; it is a generali-
zation of the corresponding result in [8].' This time the, assumptions include in 
addition some generalized Lindeberg-type conditions (sec (2.11)). Whereas the fore-
going two theorems involve weak convergence, Theorem' 7 of Section 6 deals with 
the strong convergence of q(n) S. towards Z, equipped with 0-rates. The result is 
reduced to Theorem 2 by applying a lemma, found implicitly in ZOLOTAREV [30]. 

Applications of the results presented are to be found in the wide area of stochastic 
processes Of great importance, particularly in renewal. and queuing theory (see 
e.g. [20]),' are' Markov processes to which Section 7 is dediëated. The basic limit 
theorems for such processes, namely rather general versions of the weak law of 

) We will write  sequence briefly as (ak) instead of (ak)keN,N the set of naturals. 

/ 
\
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large numbers (see Theorem 12), and especially of the central limit theorem ex-
pressed in terms of both weak (Theorem 10) and.strong convergence (Theorem 11), 
all equipped with rates, are of as.great significance as is an examination of the 
behaviour of the increments (Theorem 13) and transition functions (see e.g. [13]). 
If such topics are not treated explicitly in Section 7, they may 'neverthless be 
followed up from the results presented. Thus Theorem 11 is a central limit theorem 
for sums of Markovian dependent random variables with respect to strong con-
vergence. Under a suitable pseudo-ni6nient condition it -yields 

-	= 0(n(2_r)/(2r+2))	(n —* no). 
In the case r = 4 this means a rate of (n_hIS). In the analogous situation for weak 
convergence the order is even 0(n-1). 

Many authors have investigated this matter. (In the case of 0-rates 8ne may check the dis-
cussion in [8].) The majority of them, instead of employing pseudo-moment conditions, used 
Doeblin's condition respectively conditions on the coefficient of ergodicity (see e.g. [14]). 
Connections between these two as well as with the coefficient of correlation or with mixing 
conditions are pointed out in LIFsHrrs [24] and BRADLEY [3]. In particular, O'BRIEN [26] 
employed a strong mixing hypothesis for a proof of a central limit theorem for chain-depen-
dent processes. HEINRIcH[19] and NAGAEV [25] used Doeblin's hypothesis in their examina-
tion of the rate of,convergence in a central limit theorem for Markov chains. LwsmTs [23] 
computed -the order 0(n h /2) for a central limit theorem for Markóv chains in the case of 
strong convergence under conditions on the maximum coefficient of correlation. This result 
was generalized by CUDYNAS [17]. Further papers in the matter are due to LANDERS and 
R000E [22], BOLTITAUSEN [2], GORDrN and LLFsmTs [16], SlxAznDncov and FoRIANov [29], 
and BRADLEY [4]. All in all, most of these articles use conditions which imply that the random 
variables are in some sense "asymptotically independent". The question in regard. to these 
'coiditions as well as to our pseudo-moment condition is in how far they actually restrict 
Markovian dependence and so the applicabilities.	 - 

It should also be mentioned ,that our main Theorems 9-13. in the particular 
case of identically distributed random variables may be applied to give assertions 
concerning stationary processes. In fact, the results and methods of this paper 
could be applied to many other related problems. Theorem 9 is the most general 
limit theorem with rates for Markov, processes of this paper. A main problem in 
applying it is the determination of the suitable limiting random variable 'Z and its 
possible decomposition components. In the instance of convergence in distribution 
for independent random variables there exists a theorem to the effect that the 
limiting random variable of S = X 1 + ... + X. has an infinitely divisible distri-
bution (see e.g. [5: p. 196]). Further, possible connections between infinite divisibility 
and -deconposability have been touched upon (see [101). This may be of help in 
determining Z in the dependent case. Finally, Sections 5/B and C are not to be 
forgotten. They deal with a rather general central limit theorem for' dependent 
randoni variables equipped with 0-rates (Theorems 3,4) as well as with a generali-
zat. ion of the weak law of large numbers (Théorem 5). The counterpart for the, 
central limit theoremirithe ca ge of strongconvergence is formulated and established 
in Section 6.  

2. Notations and preliminaries	 * 

In the following, C C(Jt) will denote the vector spacof all re-al-valued, bounded,' 
uniformly continuous functions defined on the rçals. R, endowed with the supremum 
norm-11-11. We set  

QO ,	CT={gEC:g(i)€C,1	 for rEN,
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the seminorm on C' being given by IgI = jg(r) . For any f E C and t 0 the 
K-functional is defined by	 - 

-	K(t; R C, Cr) = inf f 11 - II + I gI: g E. Cr).	 - 
•	It is equivalent to the rth modulus of continuity, defined for / E C by

tj, (o,(t; /; C) = sup
{O 

kO (-1)' ( r
) 

/(u 4- kh): hJ 
^ 

• in the sense that there are constants C l,,, c2 , > 0, independent of / and t 0, such 
that (see [6: pp. 192, 258]) 

C) ^ K(t; /; C, Cr)	c21a 1(t'I'; /; C).	 (2.1) 
Lipschitz classes of index r EN and order € (0, r] will,be needed. They are defined 
by Lip (a; r; C) = {/ E C: a),#.; /; C)	L1t}, L1 being the so-called Lipschitz con-
stant.	 -	- 

Several preliminaries from probability theory will be noted. Let (.Q, 91, F) denote 
a probability space with set Q, a-algebra 91 and probability measure F, 93 the 
or-algebra of Borel sets in R, 3(Q, 91) = {X: Q --> R: X is 21, 93-measurable} the set 
of all-real random variables on Q, and 3(Q, 21, F) = {X E 3(92, 21): X is P-integrable} 
the set of all real P-integrable random variables on Q; An important concept needed 

/ for the proofs will be the conditional expectation (see e.g. (1: p. 2921), to be denoted 
•for X E £3(Q, 21, F) and each sub-a-algebra 21 by E[X 10]. If Y also belongs 
to 3(Q) 21, F), and J' is a further sub-a-algebra of 91, then there hold the properties 
(see e.g. [l:p. 293f.], [15: p. 188f.]) 

-	E[E[X	= E[X];	E[X 103 01 = E[X] a.s. for Q10	{Q, ø};	(22) 

-	X	F a.s. implies E[X 101	E[Y I ] a.s.;  

X = C a.s., some c E R, implies E[X 101 = c a.s.;	 (2.4) 

E[(aX.+Y)I]= aE [X I i ] + E [ Y I ij a.s.	(a,flE R);	(2.5) 
E[X I	= E[XJ a.s. rovided the ia-algebra 21(X), generated by. X, 
is independent of 3;	 -	(2.6) 

•E(E[XI i ]I'}= E[E[X i'] i] = E[X Ii] a.s.,provided	c W. 
(2.7) 

Results on topology and regular conditional distributions will also be needed. Let 
r be the family of all open subsets (in classical sense) of R; then the spade (It,Y) 

is a topological space having a countable base. One base is the family of sets 'of 
(1.2). A topological space with this base is a complete, separable metric space. In 
fact, a topological space possessing a countable base and defined via a complete 
metric space is said to be Polish (according to Bourbaki). A Polish space is known 
to be a Borel space, (R, 93) here. 

The aim now is to represent the conditional expectation as an integral. For this 
purpose two concepts need berecapitulated. If 03 21 is a-algebra and X E 3(Q, 21), 
a function Px": QX 21 -* It is said to be a regular conditional probability distribution 
of I relative to i, if it satisfies the conditions (see e.g. [21: p. 372ff.]): 

(i) P"(w, .) is a probability measure for every co E Q; 
(ii) PxA (., A) E B(, GJ) for every A € 91; 

(iii) f P''(w, X 1 (A)) dP = P(G n X(A)) for every A E 21, G E 

S
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The function Fx: It X  -- It, F1(x I (i) = Fx(xJ ®) (co) = P/'(w, (—oo, xl) a.s. 
(x E It), is called a conditional distribution function of X with respect to ®. Note 
that if (.Q, 2, F) is an arbitrary probability space, and ti an arbitrary sub-a-algebra 
of t, then for each X E 8(, 2) there always exists a regular conditional distri-
bution (and so also a cccnditional distribution function) of X with respect to 3 
(see e.g. [21: P . 373]). This is due to the fact that (It, 8) is a Borel space. Now to 
the integral representation. Let X E (Q, W, F), 0 be a sub-.a-algebra of 91, g: 
It —- It a Borel-rneasurable function with E[g(X)] < 00, and, F(x I () be a con'di-
tional distribution function of X relative to 0. Then there exists a 0 € (Ii with 
P(0) =0 such that for all co E Q \ 0 (see [21: p. 375]) 

•	E[g(X) I (] (w) = f g(x) d(F(x 1 0) , (a)).	 (2.8) 

For the proofs Lindeberg-type conditions will be needed. They will all be 
formulated for Xk, Z. € 8(Q, VI), all k € N. If Xj8 E £(Q, 9f, P) for some s € (0, oo) 
and all k E N, then the sequence (Xi ) is said to satisfy a generalized Lindeberg condi 
tionof order s (see e.g. [12]), if for every (3> 0 

I n '• II•n' 

IE	1 IxI8dFxk(x)1/(	E [IXkl])-+O	'(n-^oo).	 (2.9) 
\k=1 IzJ ô/q, ( n )	// \k'i	/ 

If Xk8, Zk8 € 2(Q, 21, F) or 1 Xk - Zk1 8 € 2(Q, 21, F) for all k E N, then the sequences 
(Ik) and (Zk) satisfy a generalized pseudo-Lindeberg condition of order s if for every 
(3>0	 -	 - 

-,	to f xd(F(x) T F;(x)) =	
(.2I(n)) or,

(n — >00)	(2.10) 
k=1 xI 6/q,(n)	 ooi, V(n) j	 S 

where	 0 

(n) '
	(E[JXkI8] + E[I ZkI 8]),	V(n)	(hb,	- Zk181). 

k	 k  

In regard to thi paper, a further generalization of this condition is basic. If for the 
sequences (Xk, 3k) and (Zk) there holds (E[11k18 I 13] - E[I Z*1 8]) <oo fàrsoine SE (0,00) 
and all k E N, then they are said to satisfy a conditional pseudo-Lindeberg condition 
of order's if for every 6 >0 

E	f II d(Fx(x I	) - F(x)) = o(M(n; ik))	(n -- oc), (2.11) 
k=I x6191n) 

where

M(n; k) = E I 1x18d(Fxk(x I Jk) - Fzk(x)).	 (2.12)
k=1R 

It should be remarked that (2.11) coincides with the second possibility of (2.10) in 
the case that 21(Xk) and Jk are independent, since then M,(n; lk) = M(n). Further, 
condition (2.10) is automatically fulfilled (compare Lemma 1 in [8]) if (2.9) is satis-
f ied for both (Xk) 'and (Z,j.	•	 • 

As already mentioned in the introduction, the Trotter operator plays an important 
role in establishing rates of convergence for independent random variables. For 
the development of corresponding assertions in the-instance of dependent random 
variables a new operator concept - closely related to the usual Trotter operator - 
will be used in this paper. To elucidate the connections, let us first recall the most 
important properties for the Trotter operator defined in (1.1).
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Lemma 1: Let X, Y E 2(, 91). Let X,,..., X. and Z 1 ,..., Z,, be independent 
random vaiiables belonging to 3(Q, 91). Then 

a) V,- is a positive, linear operator satisfying II Vx/ll	I/Il (I E C); 
b) V = Vy provided X and Y are identically distributed; 
c) Vx and V- are commutative provided X and 'Y are independent; 
d) Vsj =	 VA'J (I E C); 

- e) VSJ	V 1	EIIVxkI—,VzktII(IEC). -	 k=1	 - k-1 Zk 

The following lemma, a slight generalization of Lemnia le), will play a decisive 
role in the proof of Lemma 5.  

L em ni a 2: Let U 1 , ..., U,, and V 1 , ..., V,, be contraction endomorphisms of C such 
that Uj Uj is only defined br i j but the V 1 may commute amongst themselves and 
U 1 V5 = V1 U 1 . for any i,j. Then lU 1 .... Unf	V1 ... V nfjI	ll Ui - ,V I II +	+ 
hu n - VnhI .	 .	 I 

Proof: Set U0 = I. For / E C, 
/ 

•	
(U1 ... U11 (U 1 .— v1 )	... V,,) / 

	

..U 1 U 1 V 141 ...	) / 1 (U1 ...	 V8) /

I.-. 
=(U1 ... UV1+ i ... V,,)f —E(U1 ... U11 V.. V,,)/ 

= U1 ... U,,f - V 1 ... V,,f	 .	.	. 

Now the restricted conimutativity is brought into play. Indeed, 

• ( U 1 ... U 1 ( U 1 - V1) V 1 ... V,,) III	M( U 1 - V 1 ) /j 
since  

II(U1'... U11 (U 1 - V1 ) v	... v,,) / -	II(( U - ') -V • ... Yn) /11 
-	 .	

hlVi ... V,,( U1 - V) /11 

j(U 1 -- V1 ) III	I 

3. The èonditional Trotter operator . 

The idea behind the conditional Trotter operator is a proper exploitation, of the 
properties of conditional expectations. Assertions concerning them are generally 
valid only almost surely, thus fox each individual yE ,R but not uniformly for all 

-y E B.. (See (3. 1).) In order to achieve the latter fact, Which is especially important 
in an operator theoretical approach, one mak es use of the concept of Polish spaces 
introduced in Section 2.  

Definition 1: Let (X, ) be a couple, whereX E £(Q, 9.1, P) and Q3, is an arbitrary 
sub-a-algebra of W. The conditional Trotter operator Vx i a: C	C X B(Q, 13) of (X, () 
is defined for / E C by	 . 

Vx j/(y)	- inf E[/(X + x) 1 01	(yE It).
 x(A(y.f)
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The fact that a'Polish space like (R, 8) has a countable base assures that the infimum is 
taken only countably often. This means that operations dealing with the conditional Trotter 
operator are valid a.s. for all y E R. The condition' "f(x) > /(y)" is necessary to ensure that 
the infimum is taken at x = y in case 21(x) and 03 are independent, so that the conditional 
Trotter operator coincides with the classical one.	 - 

The most important properties of this-operator which is uniquely determined up 
to a set of nieasure zero by definition are collected in the following lemmas; below 
one has set ( Vxjcif(y))'(w) = (Vx i e/) (y, co). 

-' Lemma 3: Let (X, i) be a couple with X E 3(Q, 91, F), and 0 an arbitrary, sub-
a-algebra of 91, and let /, g € C. Then 

a) Vx1o/(y, ) € 3(Q, ) (y € It); -  
b) sup (Vr,f) (y, w)j	Il/Il (co E 0 ,/ E C) for some 01 €	with P(01 ) = 0; 

VER-' 

c) (Vx/)(., w) € C (co € 02) for some G2 € GS with P(G2) = 0; 
d) ( Vx j c(y/ + fig)) e1 w) = y( Vx i jf) (., (o) + fi(Vx i cg) (., co) (w € 03 ; fl, y € It) for 

some 03 , € 0 with P(03) = 0;	- 
c) Vxç/(,', co) = Vxf(y) (co € 04 ) for some 04 E 03 with P(04) = 0, provided 91(X) 

is independent of ;  
f) Vxif(,i, co) = inf f /(u + x) dF(u I ) (co) (w € G) for some 0 € 03 with 

P(05 ) = 0.	xEAy.f) R 

Proof: a) By definition of conditional expectations, E[Z I } € 3(Q, ) for each 
Z E 3(Q,	So part a) follows by Definition 1 with Z = f(X + x). 

b) In view of (2.3) and (2.4) there exists a set 0 = 0(x) with F(0) = 0 such 
that	 S	 S 

S

	

	 E[f(X + x) 103) (w)	E[IIfII 10) (w) = 1111 a.s-	'	,	(3.2) 

for each fixed x € Q and co € 19. Setting G = U 0(x), then 'P(G 1 ) = 0,-and so (3.2) 
,	XEQ  

holds for all x € Q . The fact that there is only a countable number of infima yields 
'.

 
part b). -	 '	'	

S	 - 

c) Since Vx i f is bounded a.s. by part b), it remains to show that it is uniformly 
continuous a.s. Because / € C(R), If(yi) - I(Y2)I < e for all y' , Y2 E R with IYI - 2I 
< 6, so that sup 10 + y) - f(u '+ Y2)I <e. By (2.3), (2.4) and the special struc-

uER 
ture of A(y /), it follows that 

	

\V. /(y11 a)	Vxi1(y21  

=	ihf E[f(X +.t)	- inf E[f(X +'x) 

	

- xEA(y1 f)	 xEA,(y,.f) 

^ sup	inf f(u + x) - •inf ,f(u + x) 
uEF. zEA(y,f)	 xEA,y,.f)  

= sup If(u + y)— /(u + y2)I <e ai.,	 I	' 
S	 UER  

- noting that the infimum is taken on the closure of the range of A 1,(y1-, f) (or A(y2 , f)); 
since f(x) > ft,), the minimal value can only coincide with the value at, y (or Y2). 
This establishes part c).



26	P. L. BIJTZER and H. KIRSCHFINK 

d) By (2.5) it follows that 

inf	E[(yf + g) (X + x) iJ (w) 
xE4a(v.yf+g) 

=	inf	yE[f(X+x)I1i]+pE[f(X+x)IOil) 

	

XE4o(y.yf+flg)	 -	 -	 - 

= y inf E[f(X + x) 161 +	inf E[/(X + x) I i] 
xEA,(y,J)	 xEA(y.f)	-	- 

This gives part d).  
e) Since S(() and 0 , are independent, one has by (2.6), 

Vxj af(y, w) = inf E[f(X + x)] = E[f(X + y)] = V-/(y) a.s., 
ZEAa(y.f)	 - 

/ 
noting that the infimum is taken on the closure of the range of A(y, /). f) The fact that Polish spaces are Borel spaces ensures the regularity of F(u I i) (w) 
which is in particular 03-measurable for each fixed B E S8 as well as a measure for 
each fixed co. This together with (2.8) gives part f) I 

Corollary: Let (S2, W, F), 0, X and / be given as in Lemma 3. There exists a set 
G € 0 with P(G) = 0 such that (Vx i af)( . , co) is a linear operator of C into itself for 
each co E G, satisfying II Vxiif(, a )II	Il/Il.	 1 . 

Indeed, with G, 02, 03 given as in-Lemma 3b)—d), ( Yxjf) (•, o) is a contraction 
endomorphisni on C for each co € G. 

	

Lemma 4: Let (Xc)	2(0, 21, F) be a sequence of random variables; and ((3) a 
non-decreasing sequence of sub-a-algebras of 21. Then for each / € C,	 - 

Vx.1 ( V. 1 ® 1(... Vxaf( . ) ...)) (y, CO ) = ( Vx,I	... Vxif) (y, ) 
=(Vs,f) (y, co) a.s. (y € R; n € N). 

if, in particular, (= {Q, ø}, then	 - 

(Vx i a1 Vx, 1 a1 ... Vx/) (y, a)) = Vsj(y) a.s. (y € R; n € N). 
Proof: First take n = 2. By (2.2) and (2.7), 

(Vx 11 cVx 31 0,f) (y, CO) = (v1111 { inf E[f(X2 +	) I Q1 2 	(0) -	 EA(..f) 

=	inf	E	inf E[f(X2 + x( .)) 03 2 	+ . X) (si] (a)) 
ZE A a(Y. VXI(S/)	[fiEAa(-,f)	- 

=	"f	inf E[E[f(X2+ g( . )) I 2] (X 1 + x) 1 01 ] (w) 
XEAa(vVx a /) !EA.(-,f) 

=	inf	E[f(X2 + X 1 + x) I (l] (CO), xEA (v. Vx at) 
noting. that E[E[f(X2 +)) I 3 2 1 (X1 + x) I 3J 1 } (a)) = E[/(X2 + (X1 + x)) (liJ (w), 
implying that the inner infimum is taken over the closure of the range of A(X1 +x,f). 
Since the latter infimum is equal to E[f(X1 + X2 + x) i] (co), the proof is complete 
since

inf E[/(X2 + X1 + x) (i 1 ](co) = Vx 1 +xf(y, a)). 
ZEA,(v.f)	 - 

The general result now follows by induction, and the particular case by Lemma 3e) U 

-1
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Lemrna5:Let (Xe) and.((i) be given as in Lemma 4. If (Zn ) C 2(Q 91, F) is a 
•	further. sequence, it being assumed that the Z. are independent themselves as well as 

of the In, then for each /-E C, 

Vsif(y, w)	V	/(y)	E II VxaI(y, w) • Vz&/(y)IJ. 
•	 k=1	 - 

1/ in particular 3k	f.Q, ø}, all k E N, then 

VsJ() -	n f(y) ^5 Z II Vxkf(Y) - VzJ(y)II	(n E N).' 

S - 
The proof follows bythe corollary of Lemma 3 and Lemmas 3e), 2 and 1 I 
4. General limit theorems for dependent random variables with c-rates 

In our following main approximation theorem for sums of possibly dependent random 
variables Xi and their corresponding sub-a-algebras O j, endowed with o-rates, the 

- conditional -Trotter operator,, introduced in Section 3, and the conditional pseudo-
Lindeberg condition (2.11) are of great importance.	 - 

\\

Th1eorerii 1: Let (k, (k) be a sequence of couples, the Xk being real-valued random 
variables from £(Q, 91, F) and the Jk a non-decreasing sequence of sub-a-algebras of 2i. 
Let Z be a p-decomposcible random variable with-decomposition components Zk, k E N. - 

•	Assume that E [I XkI' I ( ik] < 00 a.s. and E [ jZk] < oo for k E N and an r E N \ {1.- 
1/, furthermore, the sequences (X k, (Jk) and (Zk) satisfy a conditional pseudo-Lindeberg.  
condition (2.11)-of order r, and	-	•	 - - -	 -	 - 

•	

-

	Oki - E[Zk}} 
= (n") M(n; k))	- (1	^S r - 1; n-* co) - - - 

-	 .	-	(4.1) - 
• with M(n; ik) of (2.12), then therehoids for / E Cr -	-	-	

•	 - -. 

-	 II V nsf - VzfII = (q(n) M(n; (ik)).	-	'	 (4.)	- - 

-	If, in particular, 0 1 ,= {Q, 0), then	 -	- -	•	 •	 I 

II Vq,nsn/	VzfII = (y M(n; k)) .	 -	 - -	 (4.3) 

- - 
Proof: In view of Lemma 5 there holds	- 

•	

-	 V ( fl ) s I aj - V	z /	E llVçn)XIaI	T'(n)zjfL	•	 -	 - - 

Furthermore, one has on account of set-function-theoretical aspects,	•	 - 

inf {E[/(ç(n) Xk + x) ®kl} - E[f((n) Zk + y) 
J	 - XEA A(yf)	 - 

-	S	
sup {E[f(q(n) Xk + x) OJk] - E[f((n) Zk + x)]I} .	•	 -	 - 

•	 -	xeA(y;f)	 -	 -	 •	 -



28	P. L. BUTZER and H. KIRscHusK 

So it suffices to estimate the. following, difference. By the integral representation 
• (2.8), and Taylor's formula applied twice to /(u + x), one has 

I E[/((n) Xk + x) I (k] - E[/(q(n) Zk ± x)]I 

•	 f /(u ,+ x) d(F (fl)x(u I (k) (w) - F(,l)zk(u))	 • 

f
I r 9,(n)l U /o)} d(FX k(u 3k) -	 (44) 

+1 {-	u(f) - /)(x))}d(Fxk(u I 3k)	F (u)) 

where 11 - x ;9;(n) Jul. Since f(s) € C, to any e> 0 there is a ô() such that 
-	 for.	x < c5. But since ç(n)= (1), to ô > 0 and U E R 

there is an n € N with	- xf	(n) Jul < ô. So, splitting up the range R in (4.4) 
into {u € R: Juj < /(n)} and its complementary set, yields for the remainder 

1• '+	I	)T u(/() - /(r)(X)) d(Fxju I	) - Fzk(u)) 
UIôfc'(n)/ 

the estimate 

•	
.• E(E[JXkJI I Q5kI - E[IZkI']) 

•	
+	2 II/( T II ful^(Fx j(u I	) - Fzk(u)) 

j .	 S

uI6I,(n) 

Combining these estimates, one has 

•	E[/(q(n) Xk ± z) I	- E[/((n) Zk + x)]I 

z 
_21L /(i) (X) f ud(Fxk(u	) - F(u))	 S 

r!	(E[ I ..KkJ	k] - E[IZkI])	
•	

. S 

•	

S	

±	2 II/IIf urd(FXk(U I k)	Fz(u)) .	 S •



Iu!6/q,(n) 

Summing up this inequality over k from' 1 to n, the first term has the order
'(()1/j!) IJ/IJ ( nY M(n; tk)), the, sum over j being bounded. The second also

has the desired order by choosing a suitable s.> 0. Concerning the third term, 

-	I 

*S
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one has by (2.11)	 V	

V	 V 

V	

V	

kl	r! 2 J/(T)M f u'd(Fg(u I 3k) - Fzk(u)) 
V	 IUI6I9,(n)	

V	 V	 V 

2 IIt'II	
V	

V	 V	

V 

=	 fud(Fx(u I k)	 Fzk(u)r.	V	 Ic-I 
u^(n) 

= (2 II! (t)II/r!) c(q,(n)T .M(n;	k)).	 V 

All in all, one has the estimate 
V	 Iftns.js.f -. Vz/II	 V 

< sup sup { 
0 
_ 2 11/0 )11 + ' 2 II/M11} ()T M(n; )) 

V	 yEft xEA(y.f) j 	j.	r.	r. 
=	)r M(n; @ik))	

V 

This yields (4.2), The estimate (4.3) follows with Lemiiia 3e) I 
V	 Corollary: I/'the riindonlV variabl es X i ' a , 4 well as the decomposition components Z11 €

i E N, are additionally identically distributed, as welt as all O i are equal to another, 
then assumption (4.1) implies for / E C	 V	 /	V 

V	

V 

V n sç/ - VztII =	(n) T n IE[X 1 I i] + E[Z1]!1	(ii - oo). 

The result will follow from Theorem 1 if the conditional pseudo-Lindeberg condi-
tion (2.11) for the (X,, i) and Zean now be shown to follow for (n) = 
But for identically distributed random variables with ,03i =	, i	j, this condition 
reduces to	

V 

f J xj 1 d(Fx ft (x I Jk) - Fzk(x)) = (1) for each 6 > 0, 
xI;>II(n)  

which is automatically satisfied since 6/(n)	oo,n - no I	V	
V V 

• Remarks: 1. The term II V (fl)s.Ijf - VzfII in (4.2) tends to zero for n	on if (n)r M(n;.k) 
is bounded. In the case of the corollary this is fulfilled for q(n) =	1/r• The constant inthe 
convergence estimate is, according to (4.5),	 V 

, 
q(n)i	

__ 

2 If (T)	V	

V	

- V 

r!	r!	
V 

	

2. it should be mentioned that the conditional Trotter operator method used in this paper	
V 

permits a generalization of the theorems and results obtained in an earlier paper [81 by means 
of the modified Dvoretzky extension of the classical Trotter operator approach. In this sense 

the results of [8] would Iill follow by Theorem 1. 

5. A General limit theorem with 0-rates. Applications to the central limit theorem 

	

and weak law of large numbers	 V	
V 

A. General results 

The following general limit theorem with 0-rates for arbitrary random variables is 
. a generalization of the comparable Theorem 1 in [9]. 

Théoreiii 2: Let (Xk, k) be aseq'uence of couples, wl(ere (Xk) is a sequence of€
possibly dependent , random variables from 2(Q, if, F), and (k) a non-decreasing se-	

V 

4
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quence of sub-a-algebras o/ W. Let Z be a ce-decomposable random variable with decom-
position components Zk, k E N. Assume that E[IXkI I (Jkl < oo a.s., as well as E[IZkI'] 
<00 for k E N and an r E N \ {1}. Let furthermore 

E (E[Xki I	- E[Zk]} = 
(_ (n)T M(n; 

•k=1	 (r— 1). 
(1^j:E^;r-1;n-->oo).	 (5.1) 

Under these hypotheses one has for any / E C hr 

IInSIC,/ - V/ ;5 2C2 rNir 
({(r '_ 1)! 

M(n;	; t; 
C) 

C2. r being the constant of (2.1) and N 1 the constant of the "e)"-order of (5.1). If in par-
tic2ar Q3, = {Q, 0), then 

II V flsJ - VzfII	2C2 rN i Wr ({(rce(n)T
	hr

_ 1)! M(n; 03k)] ; f; c). 
Proof: In view of (2.3) and (2.4) one has for / E C and any g E C, 

inf .(E[f(ç(n) ,S,,+ x)	i]} - E[/(Z + y)] 
xEA(y.f) 

inf {E[1( 9 (n) 8,, + x) (j} - inf {E[g(ce(n) S + x) J ZEA,,(y,f)	 ZEA,,(v.g)	 S 

+ inf {E[g(ce(n) S,,+ x)	- E[g(Z + y)] 

	

XEA,,(j,,g)	. 

+ IE[g(Z + y)] - E[/(Z + )]I	 - 

^S2 Ill - JI +	inf ,g){E[g(q(n) S. + x) I 03,] - E[g(Z +,X)1)1 .	(5.2) 
XEA,,(y 

Further, on account of Lemma 5, 

II V ,,si,g - VZ911	T IIVnx kIg - V(n ) zkgII.	 (5.3) 

Thirdly, there holds the estimate 

•	inf {E[g(9(n) Xk + x) I Oik]} - E[g(q(n)Zk + x)] 
•	 ZEA,,(yg) 

^ sup {E[g(q(n) X + x) I 03k] - E[g(ce(n) Zk + x)]I}.	 (5.4) 
zEA,,(y,g) 

Fourthly, on account of the integral representation (2.8), and Taylor's formula of 
order r 1 applied to both g(u + x), 

- I E[g(q(n) Xk + x) I 03k] - E[g(ce(n) Zk + x)] I	- 
ui 

•	

If ff -	(i) (x)} dFrp(n)X (U 03k)] - 
If

 .- g((x) dFc(n)zk(uI] 

+ f (r - 2)! [1(1 - t)T - 2 {g(t ')(x + tu)	9(r_1)(x)} u' dt] dF(fl)xft(u I 

	

f(r - 2)! f	t)T_2{g(T_l)(x + tu) - g(r_l)(x)} u' 1 dtj dF(fl)zk(u)
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Since g E Cr, g(r_I) E Lip (1; 1; C) with Lipschitz constant Lg = IIg iI . .So fifthly, 
for 0 < t	I, {g''(x -I-. (U)— g(r_ I)(x)} u''J	g(r)JI J UIr, thus 

ZE[g((nXk ± x) I k] - E[g((n) Zk + x)]J	.. 

n'r—1	 S	 - 

g(i)(x) if ud[F (n)xk(u I ®k) - 
k=1 j=O J

R 

+ (r)' Ef iuI d[F (fl)xk(u I	) - F(n)zk(u)] 

But by (2.12) this whole expression is of order (n)'/(r - 1)! M(n; Jk)). All in all, 
•	by (5.2)—(5.4), 

• 11V9, n s/(y) - Vjf(y)II	 I	S	 S 

2 11f - Ii + E sup sup {E[g((n) X1 )	- E[g((n) zi)]}I 1=1 yER xEA(v.f)	 S 

^ 2K N2 (r-1)! M(h, k); i; C; Cr).	 S 

This establishes the general result.-The particular case follows noting Lemma 3e) I 
•	Corollary: Let the assumptions of Theorem 2be satisfied. 

a) If further / E Lip (a; r; C), a E (0, r], then. 

II 1 (fl)SnI/ Th  Z111 ;52C21N1Lf ((r)! M(n; k)).S 

b) 1/ the X 1 , X2, ... are in addition identically dist,ibuted, where (ik =	k E N, 
and the Z1 , Z2, .... are also identically distributed, then 

11 VgD( n)s n 1(4 1/	V/ ^5 2c2 ,N1L1
(r-1)! 

n /'(E[ X 1 I	- E[1Z1 V])a. 

•	c) In case q(n) = o(n I') one has 1V1(fl)Sj1/	Vz/lI = (1), the constant being 
given by	 - - 

2C2, N1 L1 r	(E[lX1i' I (J I ] — E[IZ1I'])I'.	 .	(55) 

d) In. the classical case p(n) = h/2 one has the order ;(n(2_t)I2), where the constant 
is given in (5.5).	 . 

Remark: As already mentioned in the introduction, Theorem 2 and the Corollary are the 
most general theorems known to us in the matter. They are generalizations of the comparable 
results for independent random, variables [7] and those for Martingale difference arrays [11]. 
Possible applications are indicated in the introduction. A comparable result of other authors 
is e.g. [18].	 S
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B. The central limit theorem with 0-rates	 - - 
, 

As an application of the general Theorem 2, a central limit theorem for dependent 
random variables, endowed Nkh 0-rates, will be formulated with the help of the 
coiklitional Trotter operator. 

Theorem . 3: Let (Xk, k) be a sequence of couples as in Theorem 2, and let X 
be a standard nprmally 'distributed random variable. Assume that E[ X	lkI < 
a.s. fork ENandanrEN\{1}.J/ 

n	
99 

{E[X? j	- a1E[X*1]} = (_(n) M;(n 
,k=l	 (r-1). ) . 

•	where(ak), It and M(n; (3k) =	(E[XkIr	k] - EfIaX*j nJ), then one has for€
fEC 

•	

-	 (n)t	 i/r 
•	 I!Vsf - Vx.tJ ^5 2c2,N1oi ([(r - 1)! M(n; G)] ; t; c).	- 

Proof: The theorem follows by Theorem 2, noting that X* is -deconiposable 
(see e.g. [111) with P. = ")Z" where the decomposition components 7,,. are, 
normally distributd random variables-with mean zero and variance ak2 ; they may, 
without loss of generality (see [11), be chosen to. be independent , amongst themselves 
as well as of the random variables Xk • 

Let us now forinulatesonie handy versions of the central limit theorem for depend-
ent randohi variables.	 .	 . 

Theorem 4: Let (Xk, k), (ak) and X* be given as in Theorem 3. 
a) if especially (i 1 = {Q,'Ø}, then, for E.C, 

-	.	
(n)	 lit 

II V nisj— Vx ./II ^ 2c2 ;N1 e	W ([(r_ 1)! M(n; EL)] ; f;.c) 

b) if, additionally f.E Lip (a; r; C), a E (0, r], then	•	 I 

Vsj - Vx./JJ = O((n) M(n; k ) T ),	.	 ..	(5.6) - 

where the constant is given by 2c2.N1 L1/(r	1)!. 
c) in the special case that the X 1 , X2 , ... are identically distributed as well as a = a,, - 

i '+'.j, and Jk = (Q, 0), k E N, the order in (5.6) is 0((ny n'/r), with constant 

2c2 N1 Lj(E[J X1I'j - E[pakX*I T ]) in/(r - 1)!.	 .	 (57) 

•	d) In the classical case, where.q(n) = A n-' : (a1 2 +	+ a 2)_ 1 / 2 ,theorderin (5.6) 
is 0(An/r) with constant (5.7).	• 

e) If a = a,; i	j, then A = 71a1 . If a1	1, so that the Z 1 are standard normally€
distributd, one has for .f E Lip (a; r, C) the estimate 

II	- VxsfII	0(fl(2_r)i2t)  

•	 .	

• Observe that the latter estimate yields convergence provided r > 2, the constant
. being' (5.7) with a1 = 1.
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C. The weak law of large numbers with 0-rates 

In the following two versions of the weak law of large numbers are formulated.' The 
first, a rather general version, will follow from Theoieni 2. 

Theorem 5: Let (Xk, (k) be,a sequence as in Theorem 2. Let 'Z = Z0 be atrivial 
random variable, i.e., P(Z0 = 0) = 1. Assume that E[I XkI' 10k) := Urk < 00 a.s. for 
IcE N and anrE N\{1}. Let furthermore 

E[X	k] = o 	u7 )	(1 :5, j^ r, it ' oo),  
k=1	 (r - 1).	 - 

where U7,, = u1 ±	+ u7,,. Then one has fof E C  
(n)T - f(0)fl	2c27N1w,	

(r U1
1 'r ;

 Proof: Noting thatZ0 is -decomposable, and transforming the conditions and 
results of Theorem 2 to the situation of Z = Z0, the theorem follows directly by 
Theorem 2 I	i 

Corollary: Under the assumptions of Theorem-5 there holds for / E Lip (a; r; C),- 

(n)T	r	 - 

•	lI(fl)sIf— 1(0)11	2c27N1L1 
((r '_ 1)! 

u7 ) h .	S 

Noting the equivalence (se 1: p. 220] of urn P({(n) 2,,	0, e> 0, with
-. 

• Jim I E[f((n) Se)] - f(0)J = 0 for / E C, any r > 0, one hasthe following 

Theorem 6: Let (Xk, k) be given as in Theorem 2, where u, < oo/or an r E N \ {l 
• and (	{Q, ø}. Let Z = Z0, and, let (5.8) hold. If . furthermore q(n)' U7,,	e(1), 

then Jim P({q(n) S.	= 0 (e > 0).	 Y 

In the the case that the X 1 , X21 ... are identically distributed, and	= {Q, ø}, 
Ic E iN, condition ç(n)T U7,, = e1) is equivalent to (n)' n = '(1).	 S 

6. Strong convergence in distribution	 '	 S 

In this section we will carry over our results for'the weak convergence with large 
0-orders of Section 5 to the case of strong convergence of the distribution function	S 

Of the normed sum (n) 2,, to an arbitrary, -decomposable random variable Z. In 
order to achieve this aim we 	 -	 S 

	

/	 \ 
Lemma 6: Let Y be a real-valued random variable with distribution function F 

such that a constant M y > 0 exists with 

IF1(t) - F(s)J	M It - S I	(s, t E R, s <t).	 (6.1) 
• Then for each random variable X and' each constant M2 > 0 there exists a constant 
M. = M(M, M2) such that for the socalled Kolmogorov metric between the distri- 
bution functions Fy and F, there holds for an arbitrary, fixed r E N, 

	

I fE	

j/rt 
sup IFx(t) -Fy(t)I ^ M sup E[f(X)] - E[f(Y)]l
ICR	 D 

3 Analysis Bd. 7. Heft 1(1988)
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Here D = {f 'E Cr-'; 
f(r_1) E LiPM. (1; 1; C)), with uniformly bounded Lipschi,tz con-

stant L1(r - 1 ) ' :5 M2 .	. 

- This Lemma is o be found implicitly in ZOLOTAREV [30] (see also [311), and for- 
mulated explicitly in [11]. Let us now consider the general convergenbe theorem for 
the strong cônvergenée, as mentioned above.	 - 

Theorem 7: Let (Xk, k) be a sequence of couples, where ( Xk ) is a sequence from 
£(Q, 21, F) and ((k) is anon-decreasing sequence of sub-a-algebras of 91 with ( {Q, 01. 
Let Z be a p-decomposable random variable for which condition (6.1) holds. Assume that 

®k] < 00 a. s. as well as E [IZkI'] < co for k E N and some r E N \ {1). Let 
furthermore	 -. 

{[X I k] -. E[Zk ]} = 	
M(n; k)) 

k=i  

(1jr-1;.n00). 

Under these hypotheses	 S 

IIF ns - FzII	0(fl)T/(t+1) M(n; k)h1(t1))	 (6.2) 

with constant
r-1 1 '	I/r+15	 - 

(r - 1)! (	
± .	iIIf°Il) 	ED), 

where M is given in Lemma 6 and the other factors of the constant come from . te proof 
of Theorem 2.	 - 

Proof: The term whichhas to be estimated is divided into two parts as at the 
end of the proof of Theorem 2. The - part with g E C is estimated as in the fifth step 
of this proof, and has the bound	- 

1 r-1 

{(r - 
1)! ((n)r M(n; k))

	

119 (f) II + E	Ig(i)II)}. 

•	This bound holds for all g E C, where g() E Lip (1; 1; C). The set of these g is 
an upper-set of D. This means that the estimate (6.2) follows by applying Lemrna6 I 

Corollary: a) If in particular E[IXkIT I Od	Mr a.s. and E[IZk I V ]	M Ufl 

formly for all k E N, then	 .	. . .	 . 

IIFns	F = ((ny/(r+1) n,/(+1) (M + Mr)u). 

b) 1/ X11 X2 , ... are identically distributed with O k =	k E N, and Z 1 , 42 , ... are 
also identically distributed, then  

IIFqnsn	FZI = 0((n)T1(r+1) nh/r+1) (E[I g j I r/(r+I) ] -, E[ Z11T1(r+I)])) 

c) If furthermore q2(n) = on_'), then the estimate from part a) gives convergence. 
d) In case .99(n) =	one has rhe order 0(n(22l)).  
Proof:Part a) follows by Theorem 6, using the estimate	 - 

M(n; Oik) : =L' {E[IXkIr I	•E[IZkI]} ^S n{M + M*}. 

.	
k=1 

	

The other parts follow immediately I	.	.
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Remark: Part a) of the corollary , coincides exactly with Theorem 8 in, [9]. This indeed 
shows that Theorem 6 in this paper is a deep generalization of Theorem 8 there. The exact 
constants in the different cases of the 'corollary follow always by (6.3). 

Let us now apjly'Theoreiri 7 to a version of the ceitral limit theorem.	- 
Tho rem 8: Let (Xk, (ik) be as in Theorem 7. Let X* be a standard normally distri-

buted random,variable satis/ying condition (6.1). Assume that E[IXkIT I	=: Me., < 00 
a.s. /or /cEN and anrEN\1}.J/	 S 

•	
_ Y {E[Xk' I k] ak E[X*i]} =0	(n) M(n; 

r - 1,zoo), 

where (ak) c R.,-then 

IJF fl)S	Fx . II =	(W(n)nh1(T+I) i3f(n	3k)1I+1))
	

(6.4) 

Here M(n,; Jk) : =L' E[IXkIr ik] - aki' E[IX*I v]}, and the constant in (6.4) is 
given for / E D by (6.3).	 . 

This theorem follows immediately by' Theorems .7 and 3 I 

Naturally it would be possible to formulate further different verions of Theorem 8 
as applications of the corollary of Theoréiii 7. 

I. 

7. Applications to Markovian processes 

I 
A. General assumptions 

Let us first formulate ' some preparatory lemmas and definitions. 
Definition 2: A sequence (X1) of real random variables on some probability 

space (Q, W, F) is said to be 
a) dependent /rom below if, for each 1	i n, n E N, 

P(Xi € B I X1 , ..., X 1 , X14. 1 , .,..,*X.) = P(Xi € B I X_1) a.s. (BE b);. 
b) expectationally dependent /r1om below if for each 'I 	:E^ n, n € N, 

E[X1 X1 , ...,	X. 	Xe.] = E[X1 I X1 , ...,	a.s. 
Lemma 7: a) 11 X is any random variable, (, a, are two sub-or-algebras of 91, then 

P(X E B I ) =P(X E B I ) for all B € 0 implies E[X	= E[X I } a.s. 
b) 11 (X 1 ) is a sequence of random variables that is dependent from below, then it is 

expectationally dependent from below. 

Definition 3: A Markovian.process with discrete time parameter is a sequence of 
/ random variables (X). on some probability space (Q, 9.1, F) possessing the Markov 

property	 • 

P(X,E B X1 , ..., X ._ 1 ) = P(Xi € B I .I_)	(B E. 58; i ^!.2).	(7.1) 
If (X,) isa Markoviar process, then the random variables Y1 :=Xi - X_1 , X0 := 0 
a.s., are called the increments.	•	 *.	 S 

3*
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Definition 4:The Markovian process (X 1 ) is called a Markovian process with 
dependent increments if the Y1 are dependent. Otherwise the process is called a process 
with independent increments. In both cases X, : = Y 1 +	+ Y,,. 

Lemma 8: If (X1) is a Markovian processes, then the . sequence of increments (Y1) 
is expectationally dependent from below. 

Remark: Definitions2-4 and Lemmas 7, 8 as well as their proofs are explicitly given in 
[8]. In this paper results for general limit theorems for Markovian processes with 0-rates are 
formulated and proved.	 * 

In order to apply the results of Sections 4-6 to Markovian processes one has to 
give explicitly the sequence (Xe, Jk). If (Xk) is such a process, then the appropriate 
sequence of sub-or-algebras (ik) is the sequence with 3k = f(X1 , ..., Xk_j), 

= (Q, ø). If one regards the sequence of increments (Yk), the appropriate sub-
c-algebras are given by k'= t(Y 1 , ... , 05 , = {Q, 0) according to Leinnia 8. 

Let us now formilate another important lemma, needed in the following theorems. 
It states that the expectation of a Markovian process depends only upon the .expec-

- tation of its immediate predecessor. 

Lemma 9: Lt (Xk , (ik) be defined as above, with ik = 2{(X 1 , ..., Xk . 1 ). Then /or 
each function h, it holds E[h(Xk) I (i] = E[h( X ) I 

Proof: Noting (7.1) with B = (—oo, u], 

E[h(Xk) I (9k]:= f h(u) dFXk(u I Wk) 

=f h(u) dFx ft(u X 1 ) =: E[h(Xk) I X_] I 

B. General limit theorem. A central limit theorem and weak law of large numbers 

•	Let us first formulate the general result.  

Theorem 9: Let (Xk, (ik) be a sequence of couples, (Xk) being a Markovian process 
and Gik = ........., X,_ 1 ) sub-a-algebras of W. Let Z be a 99-decomposable random 
variable with E[Z] = 0. Assume that	 - 

E[IXk I r I Xk_l ] < oo a.s. / -	 (7.2)€

as well as E[ I ZkI T ] < oo for k E N and some r € N \.{1}. Let, furthermore,, 

I	- E[Zk]} = ' G);) M(n; xk))	
3 

where M(n; Xk)

	

	 {E[lXkI' I X_ 1 ] - E[l Zk j r ]). Then one has for any f E C 
k=1  

IIVq'n sJ - Vzf	2c2,N1w ([(r)! M(n; xk)];/;C  

Proof: In order to apply Theorem 2, its assumption needs to be checked. In fact, 
the condition E [ lXkl' I lik] <00 follows by (7.2) and Lemma 9 with h(u) = ur.
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Assumption (5.1) follows in the same way by (7.3) aid Lemma 5. At last, one has 
to evaluate the expression M(n; k) in the case of Markovian processes. In fact, 
M(n; ( k) = M(n; Xk ) I	 - 

Corollary: Assume additionally to the hypotheses of Theorem 8 that 

I X_1 1 ^ M,,	E[IZkIj	M	(r E N \ {1};-k € N).	(7.4) 
Then one has for / € Lip (o; r; C), a € (0, r], II V91(n)Sj - Vz/D = 

Let us now apply Theorem -4a to a central limit theorem for Markovian processes. 

	

Theorem 10: Let (Xk, ik) be given as in Theorem 9. Let further (ak )	R, and X*€
a standard normally distributed random variable. 1/ condition (7.2) holds and (7.3) 
with Pz,.	Pak s , then for f € C	.

(n)	 1/, 
II (n)Sj - V./ II	2c2.N1(o, ([(r_ 1)! M(n; Xk)] ; /; C  

This theorems follows itumeditely by Theorems 4a) and 9 I 
Corollary: In, the classical case, where Var Xk = ak2, and (n) = A n-' with 

A. = (a1 +	+ a2)1I2, one has for / € Lip (a; r; C), a €(0, r], 

11 V4-sf	 C'(AM(n; Xk ) Ir ). .. - 

If in particular (7.4) holds, and a 1	a1 = I, i f= j, then IJ V -',sJ - Vxs/II 

Let'us also formulate a strong version of the central limit theorems for Markovian 
processes by using the results of Section 6. 

Theorem 11: Let (Xk, k) be given as in Theorem 9, and (a k), A and X as in 
Theorem 10. 1/ conditions (7.2) and (7.3) hold, then 

IIFA-s - Fx . II =	Xk)hItT+19. 

The proof follows directly by Theorems 7 and.10- I 

•	Corollary: 1/additionally to the hypotheses of Thebrern 11 condition. (7.4) holds, 
and a• = aj = 1, i	j, then IIF_ s - Fx.II = (n(2_T)/(2r42)). 

Taking instead of X* the limiting random variable Z = X0 with P(X0 = 0) = 1, 
•	one can formulate a weak law of large numbers for Markovian processes as an appli- 

cation of Theorem 5.	 S	 ' 

Theorem 12: Let (Xk , (k) be given as in Theorem 9 tgether with condition (7.2). 
If, instead of (7.3),	 - 

' E[X,' I X,_ 1 ] =	
((r -)! k 

E[ jXkj1 I Xk_I]) 

then one has for / € C	 -	- 
/1	fl ilk	V 

II V9,SJ - f(0)II	2c2N1w, (I 	, I' E[X	Xk_I] I ; f;C).
j 

Remark: The counterparts of the theoems of this subsection that are equipped v.ith 
' -rates, may be found in [8] or deduced from Theorem 1. -Recall also the references to other 
authors in the introduction. It should further be mentioned that- one could transform all 

/
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theorems and results of this subseètion for which the limiting random variable Z satisfies (6.1) 
into theorems dealing with strong convergence for the distribution functions, as carried out 
in Section 6. The weak law of large numbers is an exception since Z = X0 does not fulfil (6.1). 

C. Processes with dependent increments  

This subsection is devoted to the behaviour of the process 92(n) X, = 92(n) Y1 + 
+ p(n) Y, described in Definition 4. 

Theorem 13: Let (X 1 ) be a Markovian process with dependent incrernènts'(Y1), 
Yk, (ik) being a sequence of couples with (ik := i( Y1 , ..., Yk_ I ). Let Z be(p-decompos- 

able with' E[Z] = 0. 11 furthermore EEl Yklt I (J,I < oo a.s. as well as E[ I ZkI T] < _- 
forkENandsomerEN\{1},and'  

• k=1
I @5k] - E[Zk1]}	

' ( (
r)! M(n; 05k)) 

(1 :5:	r-1;n--oo), 

then for each / € C, 
-.	 (n)T	 l/T 

II V n)xf - VzfII.	2c2 1N1w ([(_ 1)! M(n; @5k)] ; f; c). 

The proof follows by Lemma 8 and Theorem 2, as did Theorem 9 • 
Remark: Concludingly it should be mentioned that it is also possible to formulate Theo-

rem 13 particularly in the instance of independent increments In this case all questions con-
cerning dependence properties are superflous, and the 01k• may be chosen to be 0k {Q, 0), 
all k € N; Preciser explanations can be found in [8]. 
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