- of Limit Theorems with ‘Rates for Dependent Random Vanab]es.

Zeitschrift fir Analysis °
und jhre Anwendungen
Bd.7°(1) 1988, S.19—39

The Conditional Lindeberg-Trotter Oper'ator' in the- Resolution . =~~~ _ ~

Appllcatlons to \Iarkovnan Processes

N

PL Butzer and H. KIRSCHFINK

-

Unter Ausnutzung dcr Erkenntnisse uber bedmgte Erwartungén wird ein bedmgter Lindeberg- -

Trotter-Operator definiert, der die Eigenschaften des klassischen Lindeberg-Trotter-Operators

" auf den Fall abhingiger Zufallsvariabler erweitert. Somit werden allgemeine Grenzwertsitze
fir Summen abhéngiger Zufallsvariabler mit c- und ©-Ordnung bewiesen, die auf den Zen- .

tralen Grenzwertsatz, das schwache Gesetz grofier Zahlen und vor allem auf Markov Prozesse, .

auch im Falle von starker Konvergenz, angewendet werden

’

HCHO:IBSyﬂ csoﬂcma y(,.T]OBHOl‘O MaTema’mqecxoxo o,mmamm onpenenne'rm yC.TIOBHHﬁ

.oneparop JlunpeGepra-Tporrepa, Ro'ropun paclmpseT cBOHCTBA KIJACCHYECKOTO OMepaTopa
“JInnpedepra-TporTepa HA' cayyail 3aBUCAIMX CIAYHANHWX BeAMYMH. DTHM JOKA3HBAIOTCA
ofuiMe npefesIbHEE TeOPEMb AJISA CYMM 3aBUCAIUMX CNYYafiHHX BEJNWYHH C o- U O-NOPAR-

KaMy, KOTOpPHE NPMMEHAIOTCA K ILEHTPalbHOIl INpefeNbHONl TeopeMe, K OCIAGIEHHOMY

3aKOHy GONBIIMX 4MCes M 0COGEHHO (TAKKC B CIy4Yae CUIBHON CXOLMMOCTH) K Mapkoncrmm

npoieccam.

i

Making use of the properties of conditional expecta,tions, a conditional Lindeberg-Trotter -

operator is defined which extends the properties of.the classical Lindeberg-Trotter operator

to the case of dependent random variables. This approach enables one to establish’ generel.

limit theorems equipped with little-o and large-O rates for sums of dependent random vari-

ables; these are applied to several versions of the central limit theorem, the weak law of -

large numbers, and especially to Markovian processes, not only in the case of weak convergence
m dnstnbutlon but partially also for strong convergence

1. Introd.uction

The 11m1t theorems of probablllty theory have been presented at various levels of

generality and application, both with respect to the structure of the random variables
or.processes. considered and to types of limit laws considered. The main results of

. this paper refer to the weak convergence with large-0 as well as little-o rates of the
’noi'malized sums @(n) S, = @(n) (X, + --- + X,) (where ¢: N — R*, ¢(n) -0 as .
‘n—> oo) of possxbly dependent random varlables to suitable limiting random vari-

‘ ables Z. Here Z is always assumed to be ¢-decomposable into independent com-

ponents Zi (=2Z;,5), 1 £1 Z n-'(i.e. for the distribution P,.of Z one has P, =
Pouyz,+ .-+ 2, for each n € N). In order to be.able to apply (elegant) operator-theo-
retical methods in .the proofs the convergence of the sequence (gp(n) S, ) will be
expressed in’terms of a generalization of the Lindeberg-Trotter operator. For in-
dependent random variables the analysis carries through if the operator Vx:C — C

s defmed in its classical form by

Vel @) = [ Hu+9) dFx) = E[{X +9))  @eR: (L)
R . . X i

\
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However, in the instance of-not necessarily independent nor identically distributed
random variables, thus for arbitrarily dependent-random variables, one does not
have the basic property that (Vi :..4x,)f= (Vy,Vx,-. ) f. For this purpose

* one turns to the ‘concept of conditional expectations and defmes ‘the conditional
. Trotter operator V ;6 of X relative to a sub -o-algebra & of Ain a: probability space.

\

(2, U, P) by : .
(Vx|®f) (.7/) mf E[/(X + )| &) po !

a(ll!)

“(z/,f)— er f(x)>/ w1thy€Ba,= yER ]x—y[ < «}, a,er (;'sét
of rationals). Note that the fam]ly

~

s

;ﬂ:{Bu.x,\aEQ,a>0}_ ’ . ' .12y
is a base of the topologi(,al space (R, ), w here J is the famlly of all open subsets '

~of R. This space is in particular a Polish space; it guarantees the existence of a

7

_the left side of (1.3) with metrics expressed in terms of conditional pseudo-moments. Pseudo-

regular conditional probability distribution of X relative to &. The formation of
the infimum over all z'€ A.(y, f) is necessary to ensure the appropriate properties
of the conditional operator needed for the proofs.

If (X, ©,) is a sequence!) of couples, where the X, are possibly dependent, real,
P-integrable random) variablés on £, and the @, form a non- -decreasing sequence -
of sub-c-algebras of 9, then the general limit theorem of Section. 5, Theorem 2 on
the weak convergence of ¢(n) b to Z, yields th(, estimate :

1/r ' . v
an,s,.@/—Vz/n—a(w,([("’(,l) MG cm)] ;/;0)) ay

for any f € C. Here w, is the 7th modulus of continnity defined i in (2.1), and M(n; @5,,)
in (2.12). The.basic assumption that (X,, &) has to fulfill is a suitable (Londmonal)
pseudo-moment condition, namely (5.1). It is the on]y assumption which restricts

the dependence structure of the random variables X; in question. It _regulates the . - )

dependence of ‘the' X; amongst themselves, with the associatéd sub-g-algebras @,
togethcr with the decomposmon components Z; of Z Such condmons arc dlscussed
in [8]. .

Although no directly comparablc res.u'lts for dependent random .variables may be found in ,
the literature, Gupyxas [18] does correlate the rate of convergence of metrics comparable to

moments themselves havé recently been also employed by ZoLoTAREV [32], Paprrz {27]. and -
Sazoxov and ULyanov: [28] in work on the central limit theorem for mdependent random
variables. '

I3

Theorem 1 of Section 4 provides a lltt]e-o counterpart of Theorem 2;itisa generah-
zation of the correspondmg result in [8)." This time the, assumpt,xons include in
addition some generalized Lindeberg-type conditions (sec (2.11)). Whereas the fore-
going two theorems involve weak convergence, Theorem’ 7 of Section 6 deals with
the strong convergence of ¢(n) S, towards Z, equipped ‘with O-rates. The result is
reduced to  Theorem 2 by applying a lemma, found nnpllcltly in ZoLoTAREV [30].

Appllcatlons of the results presented are to be found in the wide area of stochastic

-processes:  Of great 1mportance, particularly in renewal. and queuing theory (see

e.g. [20]); are’ Markov processes to which Section 7 is dedicated. The basic limit
theorems for such processes, namely rather general versions of the weak law of

’

1) We will write'a sequence briéfly as (ak) i;isﬁead of (ak)kEN,.N the set of naturals.
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]arge nuntbers (see Theorem 12), and especially of the central limit theorem ex-
. pressed in terms of both weak (Theorem 10) and .strong convergence (Theorem 11),
all equipped with rates, are of as.great significance as is an examination of the
behaviour of the increments (Theorem 13) and transition functions (see e.g. [13]).
If such topics are not treated explicitly in Section 7, they may nevertheless be
followed up from the results presented. Thus Theorem 11 is a central limit theorem
for sums of Markovian dependent random variables with respect to ‘strong con-
vergence. Under a suitable pseudo-mdément condition it -yields

[Farns, — Foll = O@e=nier+2)  (n - o0).

In the case 7 = 4 this means a rate of O(n=15). In the analogous SJtuatlon for weak
convergem.e the order is even O(n1). .

\Iany authors have investigated this matter. (In the case of o-rates one may check the dis- .

cussion in {8].) The majority of them, instead of employing pseudo-moment conditions, used "~

Doeblin’s condition respectively conditions on the coefficient of ergodicity (see e.g. [14])
Connections between these two as well as with the coeffidient of correlation or with mixing

., conditions are pointed out in LiFsHITS {24] and BrapLEY (3]. In particular, O’BRIEX- [26]

employed a strong mixing hypothesis for a proof of a central limit theorem for chain- -depen-
" dent processes. HEINRICH [19] and NaGAEV [25] used Doeblin’s hypot,hesns in their examina-
tion of the rate of convergence in a central limit theorem for Markov chains. LrrsaTs [23]
computed the order @(n—12) for a central limit theorem for Markov chains in the case of
strong convergence under conditions on the maximum coefficient of correlation. This result
was generalized by Gupyxas [17]. Further papers in the matter are due to LANDERs and
RoGGE [22], BOLTHAUSEN {2], GOrRDI¥ and LirsaiTs [16], StraznDINOV and FORMANOV [29],
and BRaDLEY (4]. All in all, most of these articles use conditions which imply that the random

anables are in some sense ‘“‘asymptotically independent”. The question in regard: to these
“conditions as well as to our pseudo-moment condition is in how far they actually restrict -
Markovxan dependence and so the apphcabxhtles - - :

It should also be mentioned that our main Theorems 9—13.in the particular
case of 1dentlcally distributed ra.ndom variables may be applied to give assertions
concerning stationary processes. In fact, the results and methods of this paper-
could be applied to many other related probléms. Thecrem 9 is the most general
limit theorem with rates for Markov. processes of this paper. A main problem in'

" applying it is the determination of the suitable limiting random variable'Z and its

* possible decomposition components. In the instance of .convergence in distribution
for independent random variables there exists a theorem to the effect that the
limiting random variable of S, = X, + :-- + X, has an infinitely lelSlb]c distri-
bution (see e.g. [5: p. 196]). Further, possuble connections between infinite d1v151b1hty
and q;-decomposablhty have been touched upon (see [10]). This may be of help in
determining Z,in the dependent case. Finally, Sections 5/B and C are not to be
forgotten. They deal with a rather general central limit theorem for-dependent
random variables equipped with O-rates (Theorems 3, 4) as well as with a generali-
zation of the weak law of large numbers (Théorem 5) The counterpart’ for the
central limit theoreni in-the case of strong convergence is formulated and established

2. Notations and preliminaries - : A

In the following, ¢ = C(R) will denote the vector spacé of all real-valued, bounded,"
uniformly continuous functlons defined on the reals R, endowed w1th the supremum
norm-||-||. We set

ce = C, C'={g€0:g.(”60,1§y'§z} for r €N,
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the seminorm on C' being given by |g| = {lg*7|I. For any f€ C and ¢t =0 the
K-functional is defined by - : ) :

| K(t; ;0,07 =inf {lf — gl +tgl:g€C}. -
It is equivalent to the rth modulus of continuity, defined for f € C by . -

wl(t; f; C) = sup { Z" (=1)* (r) fu + k)| - 1h] < t},

-in the sense that there are constants ¢, ,, ¢, > 0, mdependent of fand t = 0, such
that (see [6: pp. 192, 258])

oo (807 f;C) S K(t; f5C, €7) S o, rwr(t"' £;0). (2.1)

Lipschitz classes of index r € N and order « € (0, 7] will,\be needed. They are defined -
by Lip («;7;C) = {f € C: w,(t; f; C) = Lyt*}, L, being the so-called szschztz con-
stant.

Several preliminaries from probability theory will be noted Let (Q QI P) denote
a probability space with set £, o-algebra U and probability measure P, B the
o-algebra of Borel sets in R, 3(2, A) = {X: 2 - R: X is A, B-measurable} the set
of allreal random variables on 2, and (2, %, P) = {X € 3(£, A): X is P-integrable}
the set of all real P-integrable random variables on .Q An important concept needed
for the proofs will be the conditional expectation (see e.g. [1: p. 292]), to be denoted
for X € (2, A, P) and each sub-o-algebra’ @ — A by E[X | ). If Y also belongs
to (2, A, P), and @&’ is a further sub- a-algebra of 9, then there hold the properties
(see e.g. [1:p. 293f.], [15: p. 1881.])

" E[E[X | 8] = E[X);  E[X|®) = E[X] as. for ®, = - {2, 0}; (2:2) _

v X <Y as impliess E[X|@]<E[Y|®) a.s.; ) T (23
X =c¢ as, some' c€R, implies E[X | @5]': ¢ a.s.; (24)
E(aX.+ ) | 8) = oB(X I®+FE[Y |®] as.  (uBER);  (25)
E[X | ] = E[X] a.s. prov1ded the a-algebra. A(X), generated by. X,

is independent of &; ' L (2.6)
‘F‘[E[X | ®]| & ] = E[E[X | &'] | ®] = E[X | @5] a.s.provided @& @'.
(2.7)

Results on topology and regular conditional dlstrlbutlons will also be needed. Let
7 be the family of all open subsets (in classical sense) of R; then the space (R, J)
is a ’oopologlcal space- having a countable base. One base is the family of sets & of
(1.2). A topological space with this base is a complete, separable metric space. In
fact, a'topdloglcal space possessing a countable base and defined via a complete
‘metric space is said to be Polish (accordmg to Bourbaki). A Polish space is known
to be & Borel space, (R, B) here. .

The alm now is to represent the conditional expcctatlon as an mtcgral For this
purpose two concepts need be recapitulated. If & < W is a g-algebra and X € 8(£2, A),
a function Py™: QX U — R is said to be a regular conditional probabzlzty dzstnbutwn
of X relative to @, if it satisfies the conditions (see e.g. [21: p. 372ff.]): ' '

(i) Px™(w, -) is a probability measure for every w € 2;. -
(i) PyA(-, A) € 3(2, ®) for every 4 € U; .
(i) [ Py? ( X-1(4))dP = P(G'n X~ J(A)) for every 4 € QI Ge®.
¢
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The function Fy:RXQ >R, Fy(z|®) = Fx(z|®) (0) = Px"w, (—o0, z]) as.

© {z € R), is called a conditional distribution function of X with respect to &. Note
that if (22, A, P) is an arbitrary probability space, and & an arbitrary sub-c-algebra

of A, then for each X € B(R, A) there always exists a regular conditional distri-
" bution (and so also a conditional distribution function) of X with respect to @&
(see e.g. [21: p. 373]). This is due to the fact that (R, B) is a Borel space. Now to
the integral representation. Let X € (2, U, P), & be a sub-g-algebra of U, g:
R — R a Borel-measurable function with E[g(X)] < oo, and. Fy(z | ®) be a condi-

tional distribution function of X relative to &. Then there exists a- @ €@ with -

P(G) =O such that for all w € 2 \X @ (see [21: p. 375]) -
E[g(X) | 8] (0) = [ g(x) d(Fi(z | ©) (@)). - (28)

. For the proofs Lindeberg-type conditions will be needed. They will all be

formulated for Xy, 2y € B(£2; ), all ke N. If X2 € &£, U, P) for some s € (0, o)

i

and all k € N, then the sequence (X,) is said to satisfy a generalized Lindeberg condi- -

tion of order s (see e.g. [12)), if for every 6 > 0

(Zﬂ' f ) de,‘(x))/(él E[IXkI’]) -0 (n - 00). o (2.9) . '

k=1 [zj2é/ptn) -

I X,%, 2, € (2, U, P) or |X, — ZJ* € YR, U, P) for all k € N, then the sequences
(X) and (Z,) satisfy a'generalized pseudo-Lindeberg condition of order s if for every

6>0 . N ) -

v n - e (]lI(n)) or '
‘ s d(F . 1% i ' 2.10
ké; |z|a{/¢(r!fci Pt = Zk(x.)) {od(V(n)) e . &1
where . i : . .
M = 3 (EIXH] + EZEY, Vo) = £ (B1Z, — Zf). -

=1

In regard to this paper, a further generdlization of this condition is basic. If for the .

sequences (X, ®,) and (Z,) there holds (E[| X;[*|®,] — E[|Z,|*]) < oo forsome s € (0, o)
and all k € N, then they are said to satisfy a conditional pseudo-Lindeberg condition
of order's if for every 6 > 0 . : .

.2" P A(Fr (] @) — Fz(2) = os(M(n; @) (n—>o00), (2.11)
k=1 |z|26/9(n) B . .

" where .

, M ®) =3 [P d(Fo@| ) — Fru@). | (@19

" k=1R

If,‘should be remarked that (2.11) coincides with the second possibility of (2.10) in

the case that %(X,) and §, are independent, since then M(n; &) = M(n). Further, .

_condition (2.10) is automatically fulfilled (compare Lemma 1 in [8]) if (2.9) is satis-
-fied for both (X,) and (Z,). . : . :
As already mentioned in the introduction, the Trotter operator plays an important

- rrole in establishing rates of convergence for independent random variables. For
the development of corresponding assertions in the instance of dependent random
variables a new operator concept — closely related to the usual Trotter operator —

will be used in this paper. To elucidate the connections, let us first recall the most

important properties for the Trotter operator defined in (1.1). .
. . . t :
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Lemma1l: Let X, Y € 3(2,N). Let X,,.. X, and Z,,-..., Z be mdependent
random variables belonging to 3(£2, A). Then

a): Vy is a-positive, linear operator satisfying || VX/” = ||f|| (f €0);

'b) Vy = Vy provided X and Y are identically distributed;
" ¢) Vyand Vy are commutative provided X and 'Y are mdependent .

d) Vd = VaVxyo Vad ( € O); o :

[P+ =7 5.2 = z'f|lvxkf — VLl (€O

k 1

The followmg lemma a sllght generalmatlon of Lemma le), will play a, decisive
,role in the proof of Lemma 5.

Lemma 2: Let U,,...; U, and'hV,, . V be contrdctwn endomorphisms of C such

that U, U; is only de/med /or 1< g but the V may commute amongst themselves and
UV, = V U; fOf any 1, ? Then ||Uy ... Uf —-Vi.o. Vol S UL~ Vil 4 - +
U, - Vn” "

Proof: Set- U, = 1. For f € C,
VA . . ' -

(Uy... Un(U;.— Vi) Visy .. Va) f

b

i

I
Lbgs

‘ ‘ “n : : . ..
(U,. U UV.+1---V,.)/—_Z(Ux---Ui-xViVm-d-Vn)f
R ;i=1 .

(Uy oo UpViay - Vi) f — S0, .. Ui V.. ,,)/

I
S ibs

\

Uuf— Vi Vif: .
Now th;:‘\rcst.ricted commutativity is brought into 'play. Indeed,
MUy -.. Ui U; — Vi‘) Vier - Vo) fll = WU — Vall

L.t

since : S
P H(U, Uin(U V) V;+1 V,,) = ”((Ui - V‘).V""“ L )f”
- , . CE Vi e VO — V) M
= I(U; = Va fil '
3. The ¢onditional Trotter opci'q_tof . o (

The idea behind the conditional Trotter operator is a proper exploitation. of the -
properties of conditional expectations. Assertions concerning ‘them are generally
- valid ‘only almost surely, thus for each,individual y € R but not uniformly for all
Y€ R, (See (3.1).) In order to achieve the latter fact, which is especially important
in an operator theoretical approach, one makes use of the concept of Pohsh spaces
mtroduu:d in Section 2.

Definition 1: Let (X; &) be a couple, where X € (2, U, P) and @5 isan arbltrary
sub-g-algebra of A. The conditional Trotter operator V X6 C—~>C >< 3(9 (B) of (X, &)
is defined for f € ¢ by .

- Vxefly) = inf E[f(X 4 2)| B] ‘(y €R). - ~ (3-,1)j

z€A(p.S)
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The fact that a-Polish space like (R, B) has a countable base assures that the infimum is.
taken only countably often. This means that operations dealing with the conditional Trotter
-opera.tor aré valid a.s. for all y € R. The condition “f(z) > f(y) is necessary to ensure that

the infimum is taken at z = y in case %A(z) and & are independent, so that the conditional
Trotter operator coincides with the classical one.
. 7 :

The most important properties of this operator which is uniquely detem'mned'up '
to a set of measure zero by definition are collected in the following lemmas; below -
one has set (Vx6/(3)) (@) = (Vxief) (v, @). »

A

. Lemma 3: Let (X ®) be a couple with X € {2, ¥, P) wid ® an arbitrary sub-
o-algebra of A, and let f, g € C. Then -

8) Vaol(,) € @) (yeR); S
b). sup I(Vr,@f) (, 0)] < Ifll (w € Gy, f € C) /or some Gl € @5 untk P(G’,) = 0

(Vxl(sf )( w) € C (w € G,) for some G, € & with P@G,)=0; .

_ d) (Vxlm(yf + B9)) (> @) = AV xief) (-, ©) + B(Vxi09) (- @) (@ € G B,y € R) 10?’ '
some Gy € @ with P(Gy) = 0; .
e). Vxef(y, o) = Vxf(y) (w € Gy) /or some G,, € & with P(G,) = 0, prouded QI(X)

s independent of & ;
f) Vxlct/(y, w) = inf f fu + ) dFX(u | ®) (w) (w € Gs) for some Gy € & with

P(G;) = 0. z€daly.H) R ;

Proof a) By definition of conditional expectatlons, E[Z | (§5] 6 '%(.Q &) for each
Z € 3(2, ®). So part a) follows by Definition 1 with Z = {(X + ).

~ b) In view of (2 3) and (2. 4) there e\nsts a set G = G(:c) wxbh PG)=0 such
-that

El(X + ) |61 () < Bl @ =l as G2
for each fixed z € Q and w € @. Setting G, = J G(x) then P(G,) = 0,-and so (3. 2)

holds for all = € Q. The fact bhab there 1s only a countable number of mflma ylelds

part-b).

O] Smce Vx,@/ is bounded a.s. by part b), it remams to show that it is uniformly

" continuous a.s. Becausé f € C(R), |f(y1) — f(32)] < ¢ for all ,,y, € R with |y, — ¥,
< 6, so that sup 1flu + j,) — f(u + ys)| <e. By (2.3), (2.4) and the special struc-

ture of Aa(y, /), 1t follows that

MV 16/ ©) = Vxief(ye o)

“inf E[f/(X + %) | ®] — ~ in E[/(X+x)]®]| _ .

15 4:(1“/) 2E€EAalys.S) '
< sup mf flu + x) inf | f(u + 2 l
u€R | z€daiyrf) zeAa(th f

= SUP fu + .111) — fu +y)l <e a.s’.{

notmg that the infimum is taken on the closure of the range of A.(yy, f) (or 4a(¥2, f));
since f(z) > f(¥,), the minimal value can on]y coincide with the value at. ¥, (or y,).
‘This establishes part c).
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-, -

d) By (2.5) it follows that
inf — E[(yf + ﬂg (X + 2) | ] (w)

€ Aa(y.v/+Bg)

= inf )’E[/(X +2) [ 6]+ BE(/(X +2) | 6]

. Z€Aaly.vf+Bg)

=y inf E(f(X +2)|®]+p inf E[/(X +2) 6]

zeAa(yl zeA, v/
This gives part d).
e) Since A(z) and @5 are mdependent one has by (2. 6)
Vief(y, w) = inf E[/(X + 2)] = E[f(X + .?/ ] = fo(y) &.s.,

z€Aal V

noting that the 1nf1mum is taken on the closure of the range of 4,(y, f).

f) The fact that Polish spaces are Borel spaces ensures the regularity of Fy(u|®)(w)
which is in particular @-measurable for each fixed B € B as well as a measure for

each flxed w. This together with (2.8) gives part fy & .

Corollary Let (2,%, P), &, X and f be gwen as in Lemma 3. There exists a set
-G €6 with P(G) = 0 such that (Vxef) (-, ©) is a lmear opemtor of C into itself for
each & € G, salisfying ||V xiof(-> w)ll < /I - . -

Indeed, with G}, G,, G; given as in- Lemma 3b)— d), (VX,@f) ( cp) is a contraction

endomorphlsm on C for each w € G.

Lemma 4: Let (X)) = &(R2, %, P) be a sequence of random vanables, and (@5,,) a
non-decreasing sequence of sub- a-algebras of A. Then for each f € C, '
ViasVanol-- Vs /() .-) (.% Vx.l@.Vx.la. o Vage,f) (9, w)
= (Vsuef) (4, @) as. (yeR;ne N) '
I f, in particular, &, = {Q, 0}, then -

(Vxy6,V 2,0, - Vxye.f) (4, @) = Vs f(y) as. (y€R;neN).
Proof: First take n = 2. By (2.2) and (2.7), '

(Vx..@.Vx..@ P e) = (Ve ] int B +30)| &) .

=  inf EH inf B[(X, + a(- ))|@52]} (X,+x)i@sl] (@)

zéAa(y.VX'|@‘/) TE€AL(-.])

= inf inf E[E[f(X,+ 7)) | 8] (X, + = )16, ] (w)

z€Aa(y. Vx, 18,f) ZE€A4(-,])

= it E[fX,+ X, +2)|@ ](w),
Z€AG(U.V x 1@, 1)
noting that E[E[f(X, + &(-)) | &,] (X, + 2) | ® i (w) E[[(X2 + ZX, + 2)) | ®, ] (),
implying that the inner infimum is taken over the closure of the range of 4.(X, 4+ z,f).

Since the latter infimum is equal to E[f(X, + X, + 2) | &,] (w), the proof is complete
since

inf E[f( Xz + X +2) | $} (0) = Vi,tx, 1%, /(y, w).

" z€daly.))
The general result now follows by induction, and the particular case by Lemma 3e) &



I / n partzcula'r (Sk {£, 0} all k € N, then
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~

Lemma.5:"Let (X,) and.(®,) be given as in Lemma 4. If (Z,) = (2, U, P) is a

further. sequence, it being assumed that the Z, are 'mdependent themselves as well as

of the X, then for each f-€ C,

Vsaef(y, o) — V ; /(y)

k

| g IV xuod (@, @) = Vad@ll-

Vst) — V» SO S 20Vl = Vaf)l (e N

The proof follows by .the corollary of Lemma 3 and Lemmas 3e), 2 and1 B "

4. General limit theorems for depéndent :randdm variables with o-rates

In our following main approx1matlon theorem for sums of posmbly dependent random

"variables X; and their corresponding sub-o-algebras &;, endowed with o-rates, the *

conditional ‘Trotter operator, introduced in Section 3, and the conditional pseudo-

. Lindeberg condition (2.11) are of great importance.
. . .

Thleorem 1: Let (Xy, ®) be a sequence of couples, the X, being real-valued random

vartables from (2, A, P) and the &, a non-decreasing sequence of sub-o-algebras of QI.' '

Let Z be a p-decomposable random variable with- decomposition components Zy, k € N.

o Assume that E[| X,|" | &,] < 0o a.s. and E[|Z,['] < oo for k € N and an r € N\ {1}.

1 f, furthermore, the sequences (X, (B,, and (Zy) satisfy a condmonal pseudo Lmdeberg
condition (2 11y of order r, and -

'

é’ (E[X,] | Gy — E[Z,J']} = ofgp() M(n; &) (1 SjSr—1;7n->00)

" Proof: In view of Lemma 5 there holds A

s

— n < . L -
qu(ﬂ)snl(”j VW(")k):‘lzk/ _kél Il Vw(mz\'gl@hf ' ¥ w(n)ZJ” .

Furthermore, one has on account of set-function-theoretical aspects,

inf {E[/((p(n) X+ = ’@k]} - E[/(‘I’(”') Z + ?/)l

TEALYS)

< sup {lh[/ (n) Xy + z) | ij] — E[{( qa('n ) Zi + ) ]l}

. zeAa(y f)

N

with M(n; ) of (2. 12), then there holds for f € o ‘(4:.1,,) '

| uvm,s,.mf— Vol = olgn) Mn; 6). ' TS

1, in particular, &, = (2, 0}, then o , . .
 Wamsd — Vall = clgn) M(n; 8. L @3
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N

So it suffices to estiniate ‘the. followmg difference. By the integral replesentatlon

: (2 8), and Taylor’s formula applled twice to f(u + z), one has.

~ .

IE[/(q:(m Xt z) | @] — Elf(ptn) 2 +a)
= | f flu + x) d( X, (2 | &) (w) — wnzk(“)) l .

.f 33 ,(,)( } d(Ex,(u | ) _"FZ,(u)) | . (4_4)‘

+f{7 @(n)” w(f () —‘f(')(x))}‘d(F{.,(“ | &) — Fz,(w)|,
R v . - . ,

N

where |n — z| <-p(n) |u|. Since f(') €C, toany e>0 there is a d(e) such that
1) — ()| < & for |y — 2| < 6. But since ¢(n) = c(1), to 6 >0 and u€ R
there is an n € N with [y — z| < @(n).Ju| < 6. So, splitting up the range R in (4.4)
into {u € R: lu| < 8/p(n)} and its complementary set, ylelds for the remamder

: AN
) (I / )-T' Py w{fO) — [z) A, | &) — Fz,(u)
__’; lul<é/p(n) . |ul2b/p(n) * . ) . .
t-he.e.st-imatd " ' ’ o S L
| ( ) \
n
e(E[| X" | &) — N

+ L(:f) 2 ) f “'d(Fx.wl@Jk)—sz(“))

lu|2d/¢(n)

Combining these estimates, one has .

|E[f(<p<n> X+ z) | ®] — h[/ (p(n) Zy + x)]l

s

%:70 ‘P("z) 169)(z) f wid( ka(u I ®k) —F Zx(u))

j

+ "”‘”)' e(E(IX,0" | G - E{IZ,)
(n)' v () ¢
+ |5 20O | wd(Fr ] G = sz w)|-
! |“|36/9’(”)

Summmg up “this 1nequa11ty over & from’ 1 to =, the flrst term has the order
Z’ (@()if31) NfP)) (q:(n)' M(n; ®)), the sum over 7 bcmg bounded. The second also
has the desnred order by choosmg a sultable €. > 0. Concerning the third term,

~
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one has by (2.11) E . ) o B

N

Pl T / “'d(Fx,ul@fk)— Faw)

|“|>6/W(n? 3
oy | 5 f ufd(ka(u|@5k) — Fz,w)

k=1
u=d/p(n)

(2 III")II/T' ofe( n)" M(n @5k))
All in all, one has the estimate
”V¢(n)SnI®f — VAl

ssup s | 2"’(7 21100 + 7 -+ I ooy a1 04)

Y YER zedalpf) ' .
= o(p(n)" M(n; &) . (4.5)
" This yields (4.2). The estimate (4.3) follows with Lemma 3L) 1 '

.

_ 20
=—

t

Corollary: If the random variables X as well as the decomposition components Z;,
t €N, are additionally identically dzstrzbuted as well as all ®&; are equal to another
“then assumptwn (4.1) smplies for f € C : .. o

IWVemsaod — Vol = o(p@) n [E[X, | &,] + E[é 11 ) (n — ). K

. The result will follow from Theorem 1 if the condmonal pseudo-Lindeberg condi- -
tion (2.11) for the' (X;, ;) and Z; can now be shown to follow for g(n) = c(1).
But for identically dlstnbuted random varlables with &; = @;, 7 == 4, this condition
reduces to

[ lalr d(Fa (x| 8) — Fz(z)) = es(1) for each 6> 0,

212 /()
K which is alltoxnatlcally satlsfled since 6/<p(n — 00, B —> 00 I

Remarks: 1. The term || V,,(,,,s"]@ f— Vzfllin (4.2) ‘tends tozero forn —> oo 1f¢p(n)' M(n ©)
-is bounded. In the case of the corollary this is fulfilled for (p(n) = n~Ur, The constant in the
convergencc estimate is, accordmg to (4.5), .

. )- ‘P(") ”/(7)” + +_2 ”/( UK ;
. i=0 gt " , ]
. 1t should be mentioned that the conditional Trotter ‘'operator nlethod used in this paper
'permlts a generalization of the theorems and results obtained in an earlier paper [8] by means
. of the modified Dvoretzky extension of the classical Trotter operator approach. In this sense
the rcsults of [8] would all follow by Theorem 1. 2

.

v
i

5. A General limit theorem with ©-rates.  Applications to l;he central lmut theorun
and w eak law of large numbers

. A. General results

" The following general lmnt theorem with O-rates for arbitrary random varlables is

*.a generalization of the comparable Theorem 1 in [9].

. Theoreni 2: Let (X, ®,) be a sequence of couples, where (X;) is a sequence of .
possibly dependent.random variables from (2, A, P), and’ (®,) a non-decreasing se-

.
~
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-

quence of sub-c-algebras of U. Let Z be a p-decomposable random variable with decom- -
position components Zy, k € N. Assume that E[|X,|" | ®;] < oo a.s..as well as E[|Zk|'] .

< oo ]or k¢ N and an r € N \ {1}. Let furthermore

P> (E[X,1| G4 — B[ZJ]) = 0 ((“”‘—”’) Hns @m)

1<jsr—1; n—>oo) : _ (5.1)
Under these hypotheses one has for any f € C '
Womsiod = Vifl S 222 Ny ([(,"’i 5 Mo 00|15 ).

' Cy.r being the constant of (2.1) and N, the constant of the “O”-order of (5.1). If in par-
- ticalar &, = {Q, O}, then

P(n ) Ve
. Vemsf — Vil < 2¢,,. N0, ([ £ M(n; @5,,)] i c) -

(r— 1!
Proof In view of (2.3) and (2. 4) one has for f ¢ C and any g € cr,

mm(f {E[/((p(’n)S +2)| &} — b[/Z+J)]|
int {E[f(g(n) 5, —{-x)l@j]}— inf {Elolotr) S, +2) | 6} |

=
Z€AL(Y.S)
+| inf {E[g((p (n) 8y + ) | ®,]} — E[g Z+3 ./)]|

z€Aqly.9)

+ [Blg(Z + 9)] — EIAZ + )] | |
S 20 —gll +|_inf {Elolon) S, + 5) | &) - Bio(2 + x)]}l (5.2)

Further, on account of Lemma 5,
1Veimsa0.9 — Vzgll gké;”Vw(")Xﬂ@gg — Vemaz,gll- - (5.3)

Thirdly, there holds the estlimate . .
~ inf {E[g(tp () Xi + ) | @k]} — Elg{p(n) Z: + x)]| :

z€A(Y.9)

< sup {|Elg(p(n) X, + ) | &) — Elglgn) Ze + )} (5.

z€Aalyg) |

Fourthly, on account of the integral representation (2.8), and Taylor’s formula of
order » — 1 applied to both g(u + z),

I E[g((p(n) X, + 2) | &) — Elg(¢(n) 2, + 2)]| o -
[ f { ¥ 7L¢”(x>} dFm,xxul@k)] [ ,-j% ¢9() de,zxu)’] :
R . R : ! .

=

j=0

f — f L=y g e+ 1) = 7o) e | B | B

0

— f -y _1 i f(l — ty 2 gDz + tu) — gr—(2)} w1t de @F?(n)z;(“) .
A .

0 . ’

e
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Since g € C*, g~V ¢ Lip (1; 1; C) with Lipschitz constant L, = [|g"||. .So ﬁffhly, ‘
for 0 <t = 1, [{g" "z + tu) — ¢g"~Nx)} w1 < llg®|| |u|", thus ' a

| ‘gﬂl lg [Elglp(ny Xe + =) | 8] — Elgloin) Ze + 2))| .
g Z”‘ r—1

-111 o .
é;) F g())(x) fufd[F,p(,,)xk(u | &) — FW(")Zg(u)]
R o

Ilg"’ll
(r —

é’ fl ul” A[Fomx(u | &) — v(n)Zk(u)]

But by (2.12) thls whole expressxon is of order O(q;(n)'/(r — 1)' M(n; &) ) Allin all
by (8.2)—(5.4), . ) R

 Wotns,of(6) = Vift) [

sup {E[g(tp(n)X)I@] E[g(p( n)Z)]}[

z€ all

20 —gl+ Zsup

i=1 yeR

p(n) .
<ok (Nz( 1)'M(n, @k) 1 C; 0)

This establishes the general ;esi{lt.'The particular base follows noting- Lemma 3e) B

\

Corollary: Let the assumptio;bs of Theorem 2 be §dtis/ied.
a) If /urther fe€ Lip (x;7;0), x € (0, r], then

afr

qu(,.,s"'@/—Vz/nszcz,NIL,(( A Mn; )

b) If the X,, X,, ... are in addition identically distributed, where ¢, = @51, ke N
and the Z,, Z,, ....are also identically dzstnbuted then

1Vomsaod — Vo < 26, .1 2 )1), w(BIIX,I" |6, ) = BUZI
i
c) In case @(n) = o(n"/') one has HV,,(,.,S,_,@,/ — Vil = o,(l), the constanl bemg
gwen by , .
20N\ Ly o iy (EUX 1 G — E(IZi D . (58)
d) In the classical case p(n) = n‘l/2 one has the order 0,(n‘2 r’/2) where the constant
) .18 gwen in (5.6). . < :

Remark: As already mentioned in the introduction, Theorem 2 and the Corollary are the
most general theorems known to us in the matter. They are generalizations of the comparable
results for mdependent random. variables [7] and those for Martingale difference arrays [11].
Possible applications are indicated in the introduction. A comparable result of other authors

is e.g. [18]
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B. Tne centl;al limit theorem with O-i'ates _ .

/

As an apphcatlon of the general l‘heorem 2, a central limit theorem for dependent
random  variables, endowed w1th ‘O-rates, will be formulated with the help of the
eondltlonal Trotter operator.

[ . AN - C .
.Theorem 3: Let (Xk, &) be a sequence of couples as in Theorem 2, and let X*
be a standard nprmally ‘distributed random variable. Assume that E[|X,|" | @] < oo
a.s. /orkENandaan\\ {1}. If :

5 {E[Xkr | @h-] — ag'E[X*i]}":_O( ()’ M(n; (35,,))
k=1 _ (r— 1)t :

'where (a‘)/c: R and Mn; 6) = Z (E[1X" | @5,,] — F[|a,‘X*]'] then one has for
fecC : k=t :

’ A

7,
” Vomsae.S — V.\"f” = 2Cz,rN1wr ('r——_ﬁ M(n; @5/:) §/; C’ .
v Proof: The theorem follows by Theorem 2, noting that X* is (p-decompoqable
(see e.g. {11]) with P\ro = Iwnzz » where the decomposition components Z, are :

normally dlstrlbuted random va.rmbles ‘with mean zero and variance @;2; they may,

without loss of generality (see [1]), be chosen to. be independent amongst themselves-
as well as of the random variables X‘ L

Leb us now formulatc sonie handy versions of the central hnnt, theorem for dcp(,nd-
ent randoin variables. )

Theorem 4: Let (X, @k) (a,,) and X* be given as in Theorem 3.

a) If especzally @, = { 0}, lhen /or/ €.C,

s ,
”Vw(n)S f - VX‘/” < 202 Ny, ([( o(n )1)' M(n (O ] 5 f;‘C). :

b) If, addmonally, f.€ Llp (;7;C), x € (0 rl, then ' .
||V¢(n)s f— VX‘/” = O(g(n)* AI(”’ @k)ah) ). o - (5.6)

‘where the constant is given by 2(:2 N lL,/(r — I
. c¢) In the special case that the X,, X,, ... are zdentzcall y distributed as well as a; = aj,
) =#= 7, and @, = {2, 0}, k € N, the order in (5.6) is O(q; (n)® “f') with constant

s
oy 20 anL/(FHXd ] - L[Ia::X’“I'] f(r — 1)' C - (5.7)
‘d) In the classical case, wkere <p(n) A, (al + -+ a,,"’) 12 'the order n (5 6)

is O(A,~*n"!") with constant (5.7).

e)Ifa; =aj, 1 =7, then A, = n¥%a,. If a, = 1, so that tke Z; are standard normally
dzstrzbuted one has for f € Llp (x; 7, C) the estzmate

”V -1rs f — onf” = O(n*- r)/h) : !

Observe that the latter estiinate ylelds convergence provnded r > 2, the constant
. being (5 7) with a, = 1.

T
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.C. The weak law of large numbers with @-rates

1In the followmg two versions of the weak law of large numbers are formulate(l The
first, a rather general version, will follow from Theotem 2. ) :

Theorem 5: Let (X, ®,) be.a sequence as in Theorem 2. Let Z = Z0 be a trwzal

_ random variable, i.e., P(Zy = 0) = 1. Assume that E[|Xk|' (8] := uy < 00 a.s. /or
' k € N and an r € N \\ {1}. Let furthermore 4

ZE[X,, | G = 0((‘—)1)’ U, ) L g,-rgr,moa), .68

“where Uro = un + 4 U Then one has for / €cC L
n . . .

1V sems — HOV < 20, Mo ([% U,n] 1 0).
Proof: Noting that Z, is qz-decomposable, and transforming the conditions and

results of Theorem 2 to the s1tuatlon of Z = Z,, the theorem follows dlrectly by
Theorem 2 & ! .

- Corollary: Under the assumptwns of Tkeo'rem 5 there leds for f € Llp (x;7; C),,
o€ (0 r], o \

y n) a \1/r
Wesof — 101 S 26,8 (2 o b o,,,) :

Notmg the eqmvalence (see [1 “p- 220)- of hm P( n) S, = e}) =0,¢> 0 \vxth
llm |E[/(<p(n) S )] — £(0)] = O for / € Cr, any r > 0 one has'the followmg

Th eorem 6: Let (X;, &) be gwenas in Theorem 2, where u;, < ooforanr € N\ {1}
and @, ={Q,0). Let Z = Z;, and, let (5 8) hold. If furthermore @(n)’ U,, = o(l)‘,

) then lml P( (n) S, = e}) =0 (e > 0).

In the case that ‘the X,, X,,... are 1dentlcally dlstrlbuted and- & = {.Q 2},
k € N, condition ¢(n)* U,, = o(1) is equivalent to ¢(n)' n = e(1). .

.

- 6. Strong conv'ergencetin distribution . o

N

In this section we will carry over our results for' the weak convergence with large
O-orders of Section 5 to the case of strong convergence of the distribution function
of the normed sum q;(n) S, to an arbitrary, g-decomposable random variable Z. In

order to achieve this aim we need N

Lemma 6: Let Y be a real-valued random vanable with distribution function F,

such that a constant My > 0 exists with

\Fy(t) — Fy(s)| S Mylt—s| (s,L€R, s<). . 1

“Then for each random variable X and’each constant M, > O there exists a constant
M= MMy, M) such that for “the so-called Kolmogorov metric between the distri-
butzon /unctwns Fy and Fy, there holds for an arbitrary, fized € N,

.1v

- sup [Fx(t) = Fy() < M {sup \E[/(X)] — E{f( Ym}
teR ‘J€D N

3 Analysis Bd. 7, Heft 1 (1988)
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~

N\

Here D = {f € C"1; fr—1 ¢ Lipy, (1‘; 1;0), with uniformly bounded Lipschilz con- .
' . - . . \ N .

 stant L(r — 1)'s M,.

- This Lemma'is to -be» found implicitly in ZoLoTAREV [30] (see also [31]5, and for-
mulated explicitly in [11). Let us now consider the general convergence theorem for

“the strong convergence, as mentioned above.

- Under these hypothesés

Theorem 7: Let (X, @) be a sequenqg of cimples, where (X;) is a sequence from

- Q(Q, A, P) and (G) ts @ non-decreasing sequence of sub-g-algebras of N with &, = {2,0}.

Let Z be a g-decomposable random variable for which condition (6.1) holds. Assume that

E(|X,]" | ) < oo a. 5. as well as B[|Z,]'] < oo for k€ N and some r € N\ {1}. Let

furthermore

& Bz = o[ Mins 80)

(1§j§r—1;,n—>oo).'

(6.2)

WFoms, — Fall = Oyl +0 Min; Gl )
with constant . ' - ‘ )
M Lo =1 1N \1r+1 . : o
o) 4+ 5= fD) - € D), 6.3
S (w5 )™ e, 63

v . , .
where M is given in Lemma 6 and the other factors of the constant come from the proof
of Theorem 2. ) < o ) bt

{ N : Lo L

Proof: The term which has to be estinated is divided into two parts as at the -

end of the proof of Theorem 2. The part with g € C* is estimated as in the fifth step
of this proof, and has the bound 4 - o

L TR
= ot Mo ) (1o + % 5 1)}

This botljnd‘- holds for all gec, where g"-‘li € Lip (1; 1, C). The seﬁ of these g is.
an upper-set of D. This means that the estimate (6.2) follows by applying Lemma 6 |

Corolléry: a) If in particﬂar E[VIX,‘.I' | 8] < M, as. and E[|Z,]'] = M* uni-

'formly for all k € N, then

, W s, — Foll = Olguye+0 nle 0, -+ MANTD).

" b) If X, X, ... are identically distributed with @ = &, k € N, and Zy, Z, ... are
also identically distributed, then - o . ‘ . .
W gims, — Fall = O(pny !+ nlr s NE[X, 10 +0] — BZ,17+1])

c) If furthermore g(n) = o(n™"), then the estimate from part a) gives convergence.
d) In case gp(n) = n~1/ one has rhe order O(ntz -2+, ‘ ~ :

Proof: Part a) follows by Theorem 6, using the estimate

k=1

M@= 5 (BUK | 6 = EZIY S wld, + M)

The other parté follow immedia‘te]y 1
J .
)] .
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'

. Remark: Part a) of the corollary, coincides exactly with Theorém 8 in, [9] This indeed
shows that Theorem 6 in this paper is a deep generalization of Theorem 8 there. The exact
constants in the different cases of the ‘corollary follow always by (6. 3)

Let us now apply -Theorem 7 to a version of the. central hmlt theorem -

Theorem 8: Let (X, ®,) be as in Theorem 7. Let X* be a stawdard normally distri-
buted random,variable satisfying condition (6.1). Assume that E[ IX,‘I' | &) =: M, kr << 00
a.s. /o'rlcehandaanN\l} If :

2R | 6 —,aka[X*f]} - 0'(( ol )1>- Mn; @w)

. l=sj=r—1, n—>oo),
where () = R, then : ' '

1Fotms, = Fxell = a(qa(nw"wM(n G +n). o (64

Here: M(n; ®) := Z{Euxwl@m — " BXCI, and the constant in (6.4) is

given for f € D by (6 3) ’
This theorem follows immediately by Theorems 7 and 3 1

Naturally it would be possible to formulate further d)fferent verslons of Theorem 8
as apphcatnons of the corollary of Theorem 7.

7.. Applications to Markovian processes
N . . R *
) ‘. : . ) .
A. General assumptions ‘ ' /
‘Let us first formula.te’ some prepératory lemmas and definitions.

-Définition 2: A sequence (X;) of real random va.rw,b]es on some prob&blhty
space (2, U, P) is said to be

a) dependent from below 1f foreach1 <i <n,neN, .
PX;eB|Xy,:..,.X; 1, Xi14) .o .,'X )= P(X,; € B X,_,) a.s. (B€®B);.
b) expectatw'nall Y dependent from below if, foreach'1 < ¢ < n, n €N,
E[X 12Xy, e Xiyy Xty -0 X] = E[X; | Xy, eeos - l_,] a.s.

. Lemma 7: a) If X is any random variable, €, § are two sub- a—aigebms of U, then
PXeB|G) =PXeB|F) forallBefBzmplzesE[Xl@] EX | &} a.s.

b) If (X;) is a sequence of random variables- that zs depemlenl from below, then it is
expectatzonally dependent from below.

‘Definition 3: A Marlcoman -process with discrete time parameler is a sequence of
"~ ,random vamables (X,) on some probability space (2, %; P) possessing the Markov
. property

P(X EBIX,,..., i) = P(X; eB|X,_1-) (BeB;i=2). (71)

If (X; ) isa Markovmn process, then the ra.ndom variables ¥; := X X,_l, Xy:=0
a.s., are called the mcrements , N o

3=
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Definition 4: The Markovian process (X;) is called a Markovian process with
dependent increments if the Y, are dependent. Otherwise the process is called a process
with mdependent increments. In both cases X,,:= Y, + --- + Y

's Lemma 8: If (X;) ¢s a Markovian processes, then the: sequence of increments (Y;)
1s expectationally dependent from below.

Remark: Defmltlons 2—4 and Lemmas 7, 8 as well as their proofs are explicitly given in
[8]. In this paper results for general limit theorems for Markovian processes with o- -rates are
formulated and proved. - S

In order to apply the results of Sections 4—6 to Markovian processes one has to
give explicitly the sequence (X, @,). If (X;) is such a process, then the appropriate
sequence of sub-g-algebras (@®,) is the sequence with &, = A(X,,..., Xs1),
@, = (£, 0). If one regards the sequence of increments (Y,), the appropriate sub--
a-a,lgebras are given by &,.= Q[(Y,, vy Yi)s @ = {.Q @} according to Lemma 8.

N

Let us now formulate another 1mportant lemma, needed in the followmg theorems.
It states that the expectation of a' Markovian process depends only upon the expec-
- tation of its immediate predecessor

Lemma 9: Let (X, ®;) be defined as above, with &, = AKX, ..., Xi.1). Then foi
each function h, it holds E[k(X,) | &) = EMX;) | Xl '

Proof: Noting (1.1) with B = (— oo, u],
E[h(Xk) I @k] = f h(u) dF x (u | &)

= f h(w) dF x,(u | Xyo) = E[h(Xk) | Xima] B

1

' B.._General limit theorem. A central limit theorem and weak law of large numbers

~

Let us first formulate the general result. ,

Theorem~9:_Let (X, ®,) be d'sequence of couples, (X,) being a Markovian process
and &, = W(X,,...., X;_,) sub-o-algebras of AU. Let Z be a <p-decomposable mndom
variable with E[Z] = 0. Assume that

E[I X\l | Xy) <00 a.s./” S © 1.2
as well as E[|Z,|"] < oo /or k € N and some r € N\ {1}. Let furthermore,, ‘

kz" E[X,”X,, - E(Z) = 0(( ""_’ M, Xk)) (1.3)-
( 7 S r — 1 n —>0°)’ ' | |

n .

where M n; Xy) = Z (E[1 X" | Xi-1) — E[1Z, I?']}. Then one has for any f €C )

r 1/r
‘qu(",sJ_—Vz/uézcz,,N,w,([(ff‘)l),M(n;xo] ).

Proof: In order to apply Theorem 2, its assurﬁption needs to be checked. In fact,
the condition E[|X,|" | ;] < oo follows by (7.2) and Lemma 9 with A(u) = |u]".
\ .
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Assumption (5.1) follows in the same way by (7.3) and Léemma 5. At last, one has
to evaluate the expression M(n; @) in the case of Markovian processes. In fact,
M(n; &) = M(n; X,) 1

Corollar y: Assume additionally to the kypotheses of Theorem 8 that
CEIX S Xn] S M, E[ZSIS M* (re NN{L;keN).  (7.4)
Then one has for f € Lip (s;7; C), & € (0, 7], [Voms.f — Vafll = O(gp(ny norr).:
Let us how apply Theorem 4a to a.centrall limit theorem for Markovian procesées

Theorem 10: Let (X,, &,) be given as in Theorem 9. Let further (a,) R and X*
a standard normally distributed random variable. I | condition (17.2) holds and ('7 3)
with sz = P, x+, then for/ €C R ) .

@(n)’ 7 /'r"‘.'
i e x| ,/,0).

Al Vw(n)s f— VX'f” = 202 Ny, ([(

This theorems follows immediately by Theorems 4a)and 9 1

Corollary In, the classical case, where Var X, =a? and p(n) = 4,7! with
= (@2 + - + a,?)2, one has for f € Lip (x;7; C), x € (O ), :

S MVas S = Veefll = O(4,*M (n; X, ).

If in particular (7.4) holds, and a; _a, = 1, i &g, then |]V -1ag / — thf"
- 0( a(2—r)/2r)

Let us also formulate a strong versxon of the central limit theorexlls for Markovmn :
_processes by usmg the results of Section 6. :

Theorem 11: Let (Xk, &) be given as in Theorem 9 and (ay), 4, and X* as in
" Theorem 10. I f conditions (7 2) and (7.3) hold, then Lo

415, — Fxell = O, =1 +0H (n; Xpyiio+n).
\The proof follows directly by Theorems 7 and.10 - B

Corollary: If addztwnally to the kypotkeses of Theorem 11 condition (7.4) holds,
and a; = a; = 1, % 3=, then ||[Fpons, — F x| = O(ni2-niter+2))

Takmg instead of X* the limiting random variable Z = Xy with P(X, = 0) =1,
one can formulate a weak law of large numbers for Markovian processes as an apph-

cation of Theorem 5. ,

. Theorem 12:-Let (X, &,) be given as in Theorem 9 together with condmon (7.2)..
If, instead of (71.3), -

SB[ Xe) = ((f‘ oy ZEny 1 X)),
| then one has»/or‘/ €C -

Wt =[O S 20 N ([%,,ﬁhnxwlxk_dl f-O)’.

Remark: The counterparts of the thcofems of t,hls subsection that are equipped w1th
o-rates, may be found in [8] or deduced from Theorem 1. Recall also the references to other
authors in the introduction. It should further be mentioned that one could transform all
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N

theorems and results of this subseétion for which the limiting random variable Z satisfies (6.1)
into theorems dealing with strong convergence for the distribution functions,-as carried out
in Section 6. The weak law of large numbers is an exception since Z = X, does not fulfil (6.1).

e

C. Processes with dependent increments , .
This subsectlon is devoted to the behavnour of the process q;(n) a=g(n) Y L+ ‘~ .
+ o(n) Y., described in Definition 4. '

Theorem 13: Let (X;) be ‘a Markovian process with dependent increments’ (Y,
(Y, &) being a sequence of couples with &, := (Y, ..., Yi_1). Let Z be p-decompos-
able with E[Z] = 0. If furthermore E[|Yk[' | @] < o0 a s. as well as E[Z,"] < o0
jorkENamlsomerﬁN\{l} .

élﬂvmm—nam—0Q417Mm@ﬁ

1=sjsr—1;n— 00),

then for each f € C,

(r— !
‘The proof follows by Lemma 8 and Theorem 2, as did Theorem 9 @ N

ummwwms%m%wﬁLme]mq-

Remark: Concludmgly it should be mentioned that it is also possible to formulate Theo-

rem 13 particularly in the instance of independent increments: In this case all questions con-

. cerning dependence properties are superflous, and the @, may be choscn to be &; = {2, g},
all k € N: Preciser expla.na.tlons can be found in [8]

- .
N v
)
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