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On a Singular Part of an Unhounded Operator
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Es wird die Singularitit eines Operators im Hilbertraum untersucht.
HccaenyeTcsi CHHTYIAPHOCTB onepaTopa B I'nibGepToBoM NPOCTPAHCTEE.

The sihgula-rity of an operator in a Hilbert space is studied.

~ ~

, The concept of singularity of an operator is originally derived from the measure

theory. We-showed in [3] that a special operator, i.e., an unbounded derivation in
operator algebras is always decomposed into the sum of a singular part and a normal
part, and at the time JORGENSEN [1] also proved that every unbounded operator in
a Hilbert space has such a decomiposition. Our method in;[3] to obtain the decompo-
sition theorem is different from Jergensen’s one. In this note we will make the con-
cept of singularity of an unbounded operator in'a Hilbert space more clear by using
the idea of [3] and show some relations between singularity of an operator and its’

characteristic projection. ,
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A densely defined operatbr A in a Hilbert space J¢ is said to be singullar if, for
each z € R(A), there is a sequence {§,} — D(A) such that &, — 0 and 4§, -z as
n -> co. We denote the.graph of 4 in the direct sum JH @ I by G(A). Clearly, a

Examples: 1. 4 singular operator [4: p. 312]: Let {z,}. < ¥ be an orthonormal basis and
let e € J€ be a vector which is not a finite linear combination*of the z,. Let D be the set of
finite linear combinations of {z,} and e, and on D define an operator T by T(xe + X ci%;)
= «e. Thén T is singular with G(T) = KD le}; i.e., D(T*) = {e} L. -

- 9. A non-closable but not singular operator: Let T be the operator cited above in a Hilbert
space J¢, and let L be a bounded operator in J such that the restriction on D(T*) does not
vanish. Then the operator T + L* is non-closable but not singular.

Define : ‘

S, =1{tecd: 0D EeGA). .

." \

It is then clear that the operator 4 is singular if and only if S, > R(4). If this is -

the case, S, is closed and is just equal to A(4). We define the flip operator on K P I

‘0'—'1 .’ ! '. N
. o = .o (Wi
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Lemma 1: Fora denselg; defined o;ieralor,A m ¥, one has Sy = 2(11*)%

Proof: For & € D(A*), one has -»A*E(—Bé = V(£ @D A*¢). Since VGE(A*) = G(A)*,
it follows that (—A*¢@ &, 0@ 7) = 0 for all 5 € 8, so that D(4*) = S,L. On the
other hand, take 7 € D(4*)*. It follows that (— A*¢ @ &, 0@ n) = Oforall £ € D(A*).

Hence we have 0@ 7 € (VG(4*))* = (G(4)")* = G(A). This means that 5 € S, §

Theorem 2: Let A be a densely defined linear operator.in a Hilbert space J€. Then
the following statements are equivalent: . : :
(i) 4 is singular.
(i1) I P D(A4*)* = G(A).
(iii) A% = O|p4v), that is, Ker (4%) = D(A4*).

l’roof: Suppose 4 is singular and take 5 € D(A*). For each £ € D(A), there is a
-sequence {&,} << D(A) such that &, -0 and A&, — A& Hence we have (&, 4*7)
= (4§, n) = lim (4&,, ) = lim (£,, A*y) = 0, .the implication (i) = (iii) follows.
Suppose the statement (iii) holds. Sincc we have G(A) = VR(A*)*: = ({0} @ Q(A*))l
© = J @ D(4*)*, the statement (ii) holds. The implication (ii) — (i) follows from the
‘ahove Lemma 1 Lo T o

s

A denscl& defined operator 4 in ¥ is said to be strict singular if D(A*) = {0}.
- A strict singular operator is singular by Lemma 1 and it range is dense in J. Con-
versely, it is easily scen that a singular operator with dense range is strict singular.

Example: Let 7' be a non-zero singular operator in J€ and let K be an isometry of ¥ into
D(T*)L. Put A = K*T.Then 4 is strict singular. !

.. We next consider singularity of an operator -in connection with quasi-affinity of
unbounded operators. ' : ' '

’

Pro positi or}"3: Suppose there is a bounded linear operator X. with dense range
suck that XA — BX. If A is singular (resp. strict singular), then B is singular (resp.
strict singular). ~ - ‘ ,

Proof: For any & € D(B¥), one has X*B*&' = A*X*E = 0, since A* = 0|g(4e)-
It follows from the injectivity of X* that B*: = 0. Hence B is singular. Suppose"
now 4 is strict singular. Since R(A) is densc in J, one has R(B) :>B(X.‘Z)(4))
= XAD(A), so that AB) > XR(A) = R(X).'Since R(X) is dense, it follows that B
is singular with dense range. This means that B is strict singular 1 ‘

Proposition 4 [1]: Let-A be a densely defined linear operator in a Hilbert space JE.
Let p4 be the projection of J onto S4. It follows that p,A s singular with the adjoint
domain equal to D(A*) and (I — p,) A is closable..- ‘ .

Proof: Since (p,4)* = A*py, it follows from Lemma 1 that
| D(Pad)¥) = {: D4z € D(AM) = fw: pax = 0) = St = HAT..
This inrplies that p,4 is singular. Suppose z, — 0 and (/ —-'p,q)'Ax,, — z. We have
/ (z,8) = lim (I — py) Az,; &) = lim (z,, A*€) = 0 - o
“forall £ ¢ D(4%). Since z ¢ D(A¥), it follows that z = 0 B

" The above proposition shows that every c,lensely defined operator A4 is decomposed
into the sum of a singular operator and a closable operator by the projection p, which
is called: canonical projection, and such a décompositlion is called canonical decompo-
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' sition. In'what fbllows we denote the singular part, (resp.:,the closablé part) of 4

by A (resp. 4.). Of course; if ‘A is closable, then 4 =4, and, moreover, if 4 is
smgular then 4 = A, ;

Remarks: 1. The canonical projection p, is the minimum among the projections q such
that (I — ¢) 4 is closable. In fact, for each £ € ¥, there is a sequence {z,} = D(4) such that
Az, — p,& with z,'> 0 as n — oo. Since (I — q) A is closable and (I'— g) Ax,, - (I — q) p4&.
it follows that (I — ¢q) p,& = 0, and so p, < ¢.

2, In general, it is known by the general theory of operators that 4* O (Ac)* + (A4,)*. In
-the canonical decomposition, however, it is easily checked that, the equality m the above
relation holds. :

Corollar Y. 1: Let T be a densely defined operator tna H zlbert space J. Then .‘D(T*)

" is closed if (T'c)* is bounded (with .‘D((Tc)*)

Proof: This follows from D(T*) = D((T:)*) n .‘Z)((T )*), and D(T*) = .@((T )*) §
" Co rollary 2: Let T be an e'oerywhere defined unbounded operator on a Hilbert space.
Then D(T*y es closed- and T* is continuous on D(T*).

" Proof: ThlS follows from Remark 2 and Corollary 1

Let 4 and B be operators in a Hilbert space J¢. I there is a umtar) operator U
on J¢ such that -UA = BU (that is, UD(4) = D(B) and U4 = BUS for all
& € .@(A)) then we say that A is um’tanly equnalent to B with intertwining op-
erator U. .

Th eorem 5: Let A and B be densely defined lmear operalors in a Hilbert space JC.
Suppose A s unitarily equwalent to B. Then the canonical projections p, and pg are

- ‘unitarily equivalent.

Proof: et U be an inertwining operator to' realize the umtarlly equnvalence'
* between 4 and B. It follows that

B = U((I—pA>A+pAA)U 1= U(I—m)U ‘B + Up.U-'B.

Smu, v —pA) A is closable, it follows that U(l —pA)AU L=U —p4) U™ lB
is closable. Hence, by Remark 1, we have Up,U~! = ps. By applying the same
‘argument for U~?, we have U lppU = 4. This lmplles .the theorem. 1

Let 7' be a densely defined linear operator in a Hilbert space . We write QT for
the projection of ¥ @ H onto G(T), which is called the characteristic projection of
T. Following (5] (also see [2]), @r is expressed in terms of a 2)( 2-matrix Qr = (q,,) of_ B
. bounded linear operators on 36’ as :

- -
Qr = (q“ ‘sz) with (Qii)* =g and 2 Guqi = ije
‘ d21 922 LT .
In part;icular, qio = T*( — qy,) and I — g, = T*qy.
. Theorem 6: Let T be a densely defined linear operator in a Hilbert-space” J with

characteristic projection Qp = (q,-,-) Then T 'is singular if and only f qzzT T If
10 .

0 g/ -
Proof: Suppose T is singular. Since Sp D R(T), it,follows that Q(0 P T'¢)

this is the case, G20 = Py (the canomcal projection) and Qp =

=0 T¢ for ,all ¢ € D(T). This means that ¢;,T¢ = 0 and g, T¢ = T¢ for all.

&€ D(T). Hence ¢22T = T'. The converse is almost clea.r by the relation Ker (I — g¢y,)
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< Ker (¢;,). Moreover, it follows that gs = (T — q5T)* = Oand g,y = I — T*(g;2)*
=1 — (¢, T)* = I. Furthermore qz, = (g12)* = 0. It follows from Theorem 4 that
9o =pr 1 ' '

Corollary: Keeping the same notanon as above, T is strict szngular if and only if
the characteristic projection Qr of T is the identity operator, that is, qoy = I.

Proof: This follows from Theorems 2 and 6 1 °

-
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