'S

On a Singular Part of an Unbounded Operator On a Singular
S: O_{TA}

Es wird die Singularität eines Operators im Hilbertraum untersucht.

Исследуется сингулярность оператора в Гильбертовом пространстве.

The singularity of an operator in a Hilbert space is studied.

The concept of singularity of an operator is originally derived from the measure theory. We showed in [3] that a special operator, i.e., an unbounded derivation in operator algebras is always decomposed into the sum of a singular part and a normal part, and at the time JORGENSEN [1] also proved that every unbounded operator in \bar{a} Hilbert space has such a decomposition. Our method in [3] to obtain the decomposition theorem is different from Jørgensen's one. In this note we will make the concept of singularity of an unbounded operator in a Hilbert space more clear by using the idea of [3] and show some relations -between singularity of an operator and its • characteristic projection. The concept of singularity of an operator is originally derived
The concept of singularity of an operator is originally derived
operator algebras is always decomposed into the sum of a singular
part, and at the time Jonco operator algebras is always decomposed into the sum of a singuart, and at the time JORGENSEN [1] also proved that every
a Hilbert space has such a decomposition. Our method in [3]
eigent of singularity of an unbounded ope

The author would like to express his hearty thanks to G. Lassner and K. Schmüd- $\frac{1}{2}$ gen for the warm hospitality at the NTZ of Karl-Marx-University Leipzig in autumn of 1986, and especially to K. Schniüdgen for valuable discussions on unbounded characteristic projection.

The author would like to express his hearty thanks to G. Lassner and K. Schmüd-

gen for the warm hospitality at the NTZ of Karl-Marx-University Leipzig in autumn

of 1986, and especially to K.

A densely defined operator *A* in a Hilbert space \mathcal{H} is said to be *singular* if, for each $x \in \mathcal{R}(A)$, there is a sequence $\{\xi_n\} \subset \mathcal{D}(A)$ such that $\xi_n \to 0$ and $A\xi_n \to x$ as The author would like to express his hearty thanks to G. Lassner and K. Schmüd-

gen for the warm hospitality at the NTZ of Karl-Marx-University Leipzig in autumn

of 1986, and especially to K. Schmüdgen for valuable disc his hearty thanks to G. Lassner and K. S

NTZ of Karl-Marx-University Leipzig in a

midgen for valuable discussions on unb

.

.

a Hilbert space \mathcal{H} is said to be *singula*

.

.

i.e., $\mathcal{D}(A)$ such that $\xi_n \to 0$ *BA*
BA BA BA **EX.0F EX.0F EX.0F EX.0F** *BA* **EX.0F** *BA* **EX.0F** *BA* **EX.0F EX.0F E**

Examples: 1. *A singular operator* [4: p. 312]: Let $\{x_n\} \subset \mathcal{H}$ be an orthonormal basis and let $e \in \mathcal{H}$ be a vector which is not a finite linear combination of the x_n . Let \mathcal{D} be the set of finite linear combinations of $\{x_n\}$ and e, and on $\mathcal D$ define an operator T by $T(\alpha e + \sum c_i x_i)$
= αe . Then T is singular with $\overline{G(T)} = \mathcal X \oplus \{e\}$; i.e., $\mathcal D(T^*) = \{e\}$ ¹. $n \to \infty$. We denote the graph of Δ
non-trivial singular operator is not
Examples: 1. A singular operator [\pm
let $e \in \mathcal{X}$ be a vector which is not a fili
finite linear combinations of $\{x_n\}$ and
 $= \alpha e$. Then T i *singular operator* [4: p. 312]: Let $\{x_n\} \subset \mathcal{X}$ be an orthor
pr which is not a finite linear combination of the x_n . Let
ations of $\{x_n\}$ and e , and on \mathcal{D} define an operator T b
gular with $\overline{G(T)} = \mathcal{$

2. A non-closable but not singular operator: Let T be the operator cited above in a Hilbert
2. A non-closable but not singular operator: Let T be the operator cited above in a Hilbert space \mathscr{H} , and let *L* be a bounded operator in \mathscr{H} such that the restriction on $\mathscr{D}(T^*)$ does not vanish. Then the operator $T + L^*$ is non-closable but not singular.

Define

It is then clear that the operator *A* is singular if and only if $S_A \supset \overline{\mathcal{A}(A)}$. If this is the case, S_A is closed and is just equal to $\overline{\partial(A)}$. We define the *flip operator* on $\mathcal{H} \oplus \mathcal{H}$

vanish. Then the op
\nDefine
\n
$$
S_A = \{ \xi \in
$$
\nIt is then clear the
\nthe case, S_A is clos
\nby $V = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

16 S. Ôra
 Lèmma 1: For a densel

Proof: For $\xi \in \mathcal{D}(A^*)$,

it follows that $(-A^*\xi \bigoplus \xi)$

other hand, take $\eta \in \mathcal{D}(A^*)$

Hence we have $0 \bigoplus \eta \in (1, 1)$ S. ÔTA
Lemma 1: *For a densely defined operator A in H*, one has $S_A = \mathcal{D}(A^*)^{\perp}$.
Proof: For $\xi \in \mathcal{D}(A^*)$, one has $-A^*\xi \bigoplus \xi = V(\xi \bigoplus A^* \xi)$. Since $V G(A^*) = G(A)^{\perp}$,
follows that $(-A^*\xi \bigoplus \xi, 0 \bigoplus \eta) = 0$ for all S. ÔTA
Lemma 1: For a densely defined operator A in H, one has $S_A = \mathcal{D}(A^*)^{\perp}$.
Proof: For $\xi \in \mathcal{D}(A^*)$, one has $-A^* \xi \bigoplus \xi = V(\xi \bigoplus A^* \xi)$. Since $VG(A^*) = G(A)^{\perp}$,
follows that $(-A^* \xi \bigoplus \xi, 0 \bigoplus \eta) = 0$ for all it follows that ι *(_A*\callong}* follows that ι *(_A*\callong}* ι *(Ratifoldows that* $(-A^*\xi \oplus \xi, 0 \oplus \eta) = 0$ for all $\eta \in S_A$, other hand, take $\eta \in \mathcal{D}(A^*)^{\perp}$. It follows that $(-A^*\xi \oplus \xi, 0 \oplus \eta) = 0$ *L*emma 1: For a densely defined operator *A* in *H*, one has $S_A = \mathcal{D}(A^*)^{\perp}$.
Proof: For $\xi \in \mathcal{D}(A^*)$, one has $-A^* \xi \oplus \xi = V(\xi \oplus A^* \xi)$. Since $VG(A^*) = G(A)^{\perp}$, $,0 \bigoplus \eta$ = 0 for all $\zeta \in \mathcal{D}(A^*).$ Hence we have $0 \oplus \eta \in (VG(A^*))^{\perp} = (G(A)^{\perp})^{\perp} = \overline{G(A)}$. This means that $\eta \in S_A$ S. Ora
 (i) A is singular. The singular operator A in \mathcal{H} , one has
 $\mathcal{H}^*(\Theta) = \mathcal{H}^*(\Theta)$ and $\mathcal{H}^*(\Theta)$ is $\mathcal{H}^*(\Theta)$ is $\mathcal{H}^*(\Theta)$.
 $\mathcal{H}^*(\Theta) = \mathcal{H}^*(\Theta)$ is $(\mathcal{H}^*(\Theta) \oplus \mathcal{H}^*)$. It follows 16 S. Ora
 Lemma 1: For a densely defined operator A in
 Proof: For $\xi \in \mathcal{D}(A^*)$, one has $-A^*\xi \oplus \xi = V$

it follows that $(-A^*\xi \oplus \xi, 0 \oplus \eta) = 0$ for all $\eta \in \text{other hand}$, take $\eta \in \mathcal{D}(A^*)^{\perp}$. It follows that $(-A$

Theorem 2: *Let A be a densely defined linear operator. in a Hilbert space X. Then the following statements are equivalent:*
 $\langle i \rangle$ *A is singular.*

(ii) $\mathcal{H} \bigoplus \mathcal{D}(A^*)^1 = \overline{G(A)}$.
(iii) $A^* = 0|_{\mathcal{D}(A^*)}$, that is, Ker $(A^*) = \mathcal{D}(A^*)$.

Proof: Suppose *A* is singular and take $\eta \in \mathcal{D}(A^*)$. For each $\xi \in \mathcal{D}(A)$, there is a Theorem 2: Let *A* be a densely defined linear operator in a Hilbert space \mathcal{X} . Then
the following statements are equivalent:
(i) A is singular.
(ii) $\mathcal{X} \oplus \mathcal{D}(A^*)^{\perp} = \overline{G(A)}$.
(iii) $A^* = 0|_{\mathcal{D}(A^*)}$, t Theorem 2: Let *A* be a densely defined linear operator in a Hilbert space \mathcal{H} . Then
 (b) A is singular.

(ii) $\mathcal{H} \oplus \mathcal{D}(A^*)^{\perp} = \overline{G(A)}$.

(iii) $A^* = 0 |_{\mathcal{D}(A^*)}$, that is, Ker $(A^*) = \mathcal{D}(A^*)$.

Proof: $(A^*)^{\perp}$, the statement (ii) holds. The implication (ii) \rightarrow (i) follows from the bother hand, take $\eta \in \mathcal{D}(A^*)^{\perp}$ by $\eta_1 = 0$ for an $\eta \in \mathcal{S}_A$, so that $\mathcal{D}(A^*) \subset S_A$. Or
other hand, take $\eta \in \mathcal{D}(A^*)^{\perp}$. It follows that $(-A^* \xi \bigoplus \xi, 0 \bigoplus \eta) = 0$ for all $\xi \in \mathcal{D}(A)$.
Hence we hav Example: Let *T* be a non-zero singular operator in \mathcal{X} and let *K* be an isometry of \mathcal{X} into $\mathcal{D}(T^*)$.
 $\mathcal{L}(T^*)$ and $\mathcal{L}(T^*)$, the statement (ii) holds. The implication (ii) \rightarrow (i) follows from the Proof: Suppose A is singular and take $\eta \in \mathcal{D}(\Omega)$
sequence $\{\xi_n\} \subset \mathcal{D}(A)$ such that $\xi_n \to 0$ and A
= $(A\xi, \eta) = \lim_{h \to \infty} (A\xi, \eta) = \lim_{h \to \infty} (\xi_n, A^*\eta) = 0$, then
Suppose the statement (iii) holds. Since we have $\lambda =$

A densely defined operator *A* in H is said to be *strict singular* if $\mathcal{D}(A^*) = \{0\}$. A strict singular operator is singular by Lemma 1 and it range is dense in \mathcal{H} . Conversely, it is easily seen that a singular operator with dense range is strict singular.

Example: Let T be a non-zero singular operator in \mathcal{H} and let K be an isometry of \mathcal{H} into $\mathcal{D}(T^*)^T$. Put $A = K^*T$. Then A is strict singular.

We next consider singularity of an operator-in connection with quasi-affinity of unbounded operators.

Proposition 3: Suppose there is a bounded linear operator X with dense range such that $XA \subset BX$. If A is singular (resp. strict singular), then B is singular (resp. *strict singular).*

Proof: For any $\xi \in \mathcal{D}(B^*)$, one has $X^*B^*\xi = A^*X^*\xi = 0$, since $A^* = 0|_{\mathcal{D}(A^*)}$.
It follows from the injectivity of X^* that $B^*\xi = 0$. Hence *B* is singular. Suppose strict singular.

Proof: For any $\xi \in \mathcal{D}(B^*)$, one has $X^*B^*\xi = A^*X^*\xi = 0$, since $A^* = 0|_{\mathcal{D}(A^*)}$.

It follows from the injectivity of X^* that $B^*\xi = 0$. Hence *B* is singular. Suppose

now *A* is strict singu **Proposition 3:** Suppose there is a bounded linear operator *X* with dense range such that $XA \subseteq BX$. If *A* is singular (resp. strict singular), then *B* is singular (resp. strict singular).
Proof: For any $\xi \in \mathcal{D}(B^*)$, $\mathcal{I} = XAD(A)$, so that $\overline{\mathcal{A}(B)} \supseteq \overline{X}\overline{\mathcal{A}(A)} = \mathcal{A}(X)$. Since $\mathcal{A}(X)$ is dense, it follows that *B* is singular with dense range. This means that *B* is strict singular We next consider singularity of an operator in connection with quasi-aff
unbounded operators.

Proposition 3: Suppose there is a bounded linear operator X with den

such that $XA \subseteq BX$. If A is singular (resp. strict singula

Proposition 4 [1]: Let A be a densely defined linear operator in a Hilbert space H. Let p_A be the projection of $\mathcal H$ onto S_A . It follows that $p_A A$ is singular with the adjoint domain equal to $\mathcal D(A^*)$ and $(I - p_A)$ A is closable. **Proposition 4** [1]: Let A be a densely defined linear open
Let p_A be the projection of \mathcal{H} onto S_A . It follows that $p_A A$ is
lomain equal to $\mathcal{D}(A^*)$ and $(I - p_A)$ A is closable.
Proof: Since $(p_A A)^* = A^*p_A$, it **Proposition 4 [1]:** Let A be a densely defined linear oper
Let p_A be the projection of \mathcal{X} onto S_A . It follows that $p_A A$ is
domain equal to $\mathcal{D}(A^*)$ and $(I - p_A)$ A is closable.
Proof: Since $(p_A A)^* = A^*p_A$, it

$$
\mathcal{D}((p_A A)^*) = \{x: p_A x \in \mathcal{D}(A^*)\} = \{x: p_A x = 0\} = S_A^{-1} = \overline{\mathcal{D}(A^*)}.
$$

This implies that $p_A A$ is singular. Suppose $x_n \to 0$ and $(I - p_A) Ax_n \to x$. We have

$$
f(x,\xi) = \lim \left((I - p_A) \, Ax_n, \xi \right) = \lim \left(x_n, A^* \xi \right) = 0
$$

The above proposition shows that every densely defined operator *A is* decomposed into the sum of a singular operator and a closable operator by the projection p_A which is called- *canonical piojection,* and such a decomposition is called *canonical decompo-* *sition.* In what follows, we denote the singular part (resp., the closable part) of A by A_s (resp. A_c). Of course, if *A* is closable, then $A = A_c$ and, moreover, if *A* is singular, then $A = A_s$.

Remarks: 1. The canonical projection p_A is the minimum among the projections q such that $(I - q)$ A is closable. In fact, for each $\xi \in \mathcal{X}$, there is a sequence $\{x_n\} \subset \mathcal{D}(A)$ such that $Ax_n \to p_A \xi$ with $x_n \to 0$ as $n \to \infty$. Since $(I - q)$ *A* is closable and $(I - q)$ $Ax_n \to (I - q) p_A \xi$. Remarks: 1. The canonical projection p_A is the minimum among the projections q such that $(I - q) A$ is closable. In fact, for each $\xi \in \mathcal{X}$, there is a sequence $\{x_n\} \subset \mathcal{D}(A)$ such that $Ax_n \to p_A\xi$ with $x_n \to 0$ a it follows that $(I - q) p_A \xi = 0$, and so $p_A \leq q$.

the canonical decomposition, however, it is easily checked that the equality in the above relation holds.

Corollary, 1: Let T be a densely defined operator in a Hilbert space \mathcal{H} *. Then* $\mathcal{D}(T^*)$ *is closed if* $(T_c)^*$ *is bounded (with* $\mathcal{D}((T_c)^*) = \mathcal{H}$).

Proof: This follows from $\mathcal{D}(T^*) = \mathcal{D}((T_c)^*) \cap \mathcal{D}((T_s)^*)$ *, and* $\overline{\mathcal{D}(T^*)} = \mathcal{D}((T_s)^*)$

Corollary 2:' Let T be an everywhere defined unbounded operator on a Hubert space. Then $\mathcal{D}(T^*)$ is closed and T^* is continuous on $\mathcal{D}(T^*)$.

Pioof: This follows from Remark 2 and-Corollary **1 I**

Let *A* and *B* be operators in a Hilbert space \mathcal{X} . If there is a unitary operator U on H such that $\bar{U}A = BU$ (that is, $U\mathcal{D}(A) = \mathcal{D}(B)$ and $UA\xi = BU\xi$ for all $\in \mathcal{D}(A)$, then we say that *A* is *unitarily equivalent* to *B* with intertwining operator *U.. us closed if* $(\tilde{T}_c)^*$ *is bounded (with* $\mathcal{D}((T_c)^*$

Proof: This follows from $\mathcal{D}(T^*) = \mathcal{D}(T^*)$

Corollary 2: Let T be an everywhere a
 Then $\mathcal{D}(T^*)$ *is closed and* T^* *is continuor*

Proof: This follo

Theorem 5: Let A and B be densely defined linear operators in a Hilbert space \mathcal{H} . *Suppose A is unitarily equivalent to B. Then the canonical projections* p_A *and* p_B *are*

Proof: Let *U* be an inertwining operator to realize the unitarily equivalence between *A* and *B.* It follows that

$$
B = U((I - p_A) A + p_A A) U^{-1} = U(I - p_A) U^{-1}B + U p_A U^{-1}B.
$$

Since $(I - p_A) A$ is closable, it follows that $U(I - p_A) A U^{-1} = U(I - p_A) U^{-1}$ is closable. Hence, by Remark 1, we have $U p_A U^{-1} \geq p_B$. By applying the sar Since $(I - p_A) A$ is closable, it follows that $U(I - p_A) A U^{-1} = U(I - p_A) U^{-1}B$
is closable. Hence, by Remark 1, we have $Up_A U^{-1} \geq p_B$. By applying the same
argument for U^{-1} , we have $U^{-1} p_B U \geq p_A$. This implies the theorem.

Let *T* be a densely defined linear operator in a Hilbert space \mathcal{H} . We write Q_T for the projection of $\mathcal{H} \oplus \mathcal{H}$ onto $\overline{G(T)}$, which is called the *characteristic projection* of *T.* Following [5] (also see [2]), Q_T is expressed in terms of a 2×2 -matrix $Q_T = (q_{ij})$ of bounded linear operators on \mathcal{X} as ·losable
• Rema
have *U*
defined
→ → *C*
see [2])
prs on
wit in a Hilbert space \mathcal{H}
is called the *character*
in terms of a 2×2 -ma
and $\sum q_i q_{kj} = q_{ij}$. is closable, it follows that $U(I - p_A) A U^{-1} = U$
 i, by Remark 1, we have $Up_A U^{-1} \geq p_B$. By appl

we have $U^{-1} p_B U \geq p_A$. This implies the theorem

ely defined linear operator in a Hilbert space \mathcal{H} . $\mathcal{H} \oplus \mathcal{H}$

*(q, q*₂₁ *q*₂₂ $Q_T = \begin{pmatrix} q_{11} & q_{12} \\ q_{11} & q_{12} \end{pmatrix}$ with $(q_{ij})^* = q_{ji}$

In particular, $q_{12} = T^*(I - q_{22})$ and $I - q_{11} = T^*q_{21}$.

Theorem 6: Let T be a densely defined linear operator in a Hilbert space H with *characteristic projection* $Q_T = (q_{ij})$. Then *T* is singular if and only if $q_{22}T = T$. If this is the case, $q_{22} = p_T$ (the canonical projection) and $Q_T = \begin{pmatrix} I & 0 \\ 0 & q_{22} \end{pmatrix}$.

Proof: Suppose *T* is singular. Since *this is the case,* $q_{22} = p_T$ (the canonical projection) and Q_T $\frac{3\pi}{4}$ 0 0 *q*₂₂ Theorem 6: Let T be a densely defined linear
aracteristic projection $Q_T = (q_{ij})$. Then T is sin
is is the case, $q_{22} = p_T$ (the canonical projection) c
Proof: Suppose T is singular. Since $S_T \supseteq G$
 $0 \oplus T\xi$ for all $\xi \in \$

Proof: Suppose T is singular. Since $S_T \supset \mathcal{R}(T)$, it follows that $Q_T(0 \oplus T\xi) = 0 \oplus T\xi$ for all $\xi \in \mathcal{D}(T)$. This means that $q_{12}T\xi = 0$ and $q_{22}T\xi = T\xi$ for all. $E \in \mathcal{D}(T)$. Hence $q_{22}T = T$. The converse is almost clear by the relation Ker $(I - q_{22})$

2 Analysis Bd. 7. Heft *1* **(1988)**

Ker (q_{12}). Moreover, it follows that $q_{12} = (T - q_{22}T)^* = 0$ and $q_{11} = I - T$ $= I - (q_{12}T)^* = I$. Furthermore $q_{21} = (q_{12})^* = 0$. It follows from Theorem 4 that 18 S. ÔTA
 \subseteq Ker (q_{12}). More
 $= I - (q_{12}T)^* =$
 $q_{22} = p_T$ **P**

Corollary: *Ke*
 the characteristic p **EXACTE:** g_{12}). Moreover, it follows that $q_{12} = (T - q_{22}T)^* = 0$ and $q_{11} = I - T^*(q_{12})^* = I - (q_{12}T)^* = I$. Furthermore $q_{21} = (q_{12})^* = 0$. It follows from Theorem 4 that $q_{22} = p_T$ **Corollary:** *Keeping the same notati* S. ÔTA

(12). Moreover, it follows that $q_{12} = (7/12)^n = I$. Furthermore $q_{21} = (q_{12})^n$

lary: *Keeping the same notation as cleristic projection Q_r of T is the iden

: This follows from Theorems 2 and

REFERENCES

NS*

the characteristic projection Q_T *of T is the identity operator; that is,* $q_{22} = I$ *.* $l - (q_{12}T)^* = I$. Furthermore $q_{21} = (q_{12})^* = 0$. It follows from Theoren
 $= p_T$ \blacksquare

Corollary: *Keeping the same notation as above*, *T* is strict singular if and

characteristic projection Q_T of *T* is the identit

Proof: This follows from Theorems 2 and 6

- [1]JØROENSEN, P. E. T.: Unbounded operators; perturbations and commutativity problems. J. Funct. Anal. **39** (1980), 281-307.
- [2] NUSSBAUM, A. E.: Reduction theory for unbounded closed operators in Hilbert space. Duke Math. J. **31 (1964), 33-44.** characteristic projection Q_T of T is the identity operator; that is,

Proof: This follows from Theorems 2 and 6 \blacksquare

REFERENCES

Jongensen, P. E. T.: Unbounded operators; perturbations and com:

J. Funct. Anal. 39 REFERENCES

ENSER, P. E. T.: Unbounded operators; perturbations and commutativity problems.

net. Anal. 39 (1980), 281 – 307.

Math. J. 31. (1964), 33–44.

Math. J. 31. (1964), 33–44.

Math. J. Decomposition of unbounded d
- [3] Ora, S.: Decomposition of unbounded derivations in operator algebras. Tôhoku Math. J. 33 (1981), 215–225.
- [4] REED, M., and B. SIMON: Methods of modern mathematical physics, Vol. I: Functional analysis. New York—San Francisco—London: Academic Press 1975.
- [5] STONE, M. H.: On unbounded operators in Hilbert space. J. Indian Math. Soc. 15 (1951), 155–192.

VERFASSER:

Prof. Dr. SCHÔICHI OTA [4] REED, M., and B. SIMON: Methods of modern mathematical physionalysis. New York --San Francisco--London: Academic Press 197.

[5] STONE, M. H.: On unbounded operators in Hilbert space. J. Indian

155-192.

Manuskriptein 155—192.

Manuskripteingang: 13. 11. 198

VERFASSER:

Prof. Dr. Scriotern Ora

General Education, Mathemati

Shiobaru, Fukuoka 815, Japan