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A Free Boundary Value Problem Modeling Thermal Oxidation of Silicon

K. GrROGER and N. STRECKER

v

, Unter Benutzung von Ergebnissen iiber Evolutionsgleichungen in Hilbert-Réumen wird ein
Problem geldst, welches die Diffusion eines Oxydanten durch eine Oxidschicht und das durch
die Oxydation von Silizium verursachte Wachstum dieser Schicht beschreibt. Dariiber hinaus
werden praktisch interessante Abschitzungen fir das Wachstum der,Dicke der Oxidschicht
angegeben. S

'

Wcnoabaya pesyaTaThl o6 9BOJIOLUMOHHHX ypaBHeHuAX B I'nabGepTOBEIX NMPOCTPAHCTBAX

pellaeTca 3aaua, KOTOpasa omUCcHBaeT NiHPPY3UI0 OKNCINTENA Yepes CIION ABYOKHCH KpeM-

HUA U POCT 3TOr0 CJIOA B CICACTBUU nanbneﬁmerq OKMCIIENHA. Hpome TOTO0 MPUBOAATCH =

Oll€HKY POCTA TOJIMHH CJIOA OKMCH HHTEPECHHE C TOUYKH 3peHNA NPpaKTHKH.

Using results on evolution equations in Hilbert spaces a problem describing the diffusi(\)n of
an oxidant through an oxide layer and the growth of this layer caused by the oxidation of
. silicon is“solved. Moreover, estimates for.the growth of the thickness of the oxide layer being
of pruc%ical interest are given. R ‘ )

¢

_1. Introduction

This paper deals with a simple spatially one-dimensional model of the thermal

oxidation of silicon. It describes the diffusion of an oxidant through an oxide layer -

and the growth of this layer caused by the oxidation of silicon at the oxide ssilicon
interface. |, ' : ‘ e

Denoting by b the oxide thickness and by v the ozidant concentration we can write
the model equations as follows: oo

~

, (v.— D) (1, §) =0,  0<E&<bz), 1>0, ,
‘ —Dug(r, 0) + h{o(z,0) —v*) =0, >0, = S
'~DMnMMAﬂMw+bdnw»=0, >0, .
B(t) = mv(r, b(r)), >0, . b
0(0,§) = (&),  0.< &<, ¢ b(0) = bO. S
_ The subscripts 7 and & denote the-_deri?atives with reépect to the time 7 and the
space variable &, respectively, and b denotes the derivative of b with respect to its
" argument. To be precise we require that ‘
. b is continuously differentiable and positive, s
_ v is continuous on {(t, £): 7 = 0,0 £ ¢ < b(7)},
» v, vee are continuous on {(r, &): T > 0,0 < £ < b(7)).

‘We assume that D, h, k, m, v*, b° are positive constants and that »° is a non-
negative function from L*(0, §°). ' '

[ . : ,
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/ The constant D is the diffusivity of the oxidant. The boﬁndnry condition at £ = 0 models -
the interaction of the oxide layer and a gas phase. Similarly, the boundary condition at
& = b(z) represents the oxidant balance at the moving oxide silicon interface. In particular,
the term kv(z,b(r)) takes into accéunt the sink caused by the oxidation of silicon. The equa-
tion for b means that the speed of the interface is proportional to the oxidation rate. The
assumption that the oxidation rate itself is proportional to the oxidant concentration at the
interface has been made for the sake of simplicity only. One could treat in a completely
analogous way more general equations including the case that, the oxidation rate is proportion-
.al to the square of the oxidant concentration. )

‘The process of oxidation of silicon has been investigated by several authors (a standard
reference is DEAL-GROVE [2]). These authors assumed the diffusion process to be quasi-station-
ary, i.e., they neglected the term v, in the diffusion equation. This is clearly unjustified for
an initial transient period and it could be justified rigorously for large times only by results

“on the problem stated above. This problem is similar to the familiar one-phase Stefan problem
which can be reduced to a variational inequality that does not contain explicitly the free
boundary’ (see, e.g., KINDERLEHRER and STAMPACCHTA [5]). For our problem we do not.know
any such reduction, We shall show, however, that our problem can be transformed to an
initial value problem of standard type for a pair of functions (the oxide thickness and the
oxidant concentration on a *normalized”” domain). To this initial value problem one can apply
various results of the theory of evolution equations in Hilbert spaces. We shall prove at first
the existence and uniqueness of a weak solution and then derive regularity results which show
that any weak solution is a classical solution provided the initial concentration is sufficiently
smooth. Morcover, we shall present estimates for-the oxide thickness b(r) showing that for
largertimes 7' this thickness is of the order of 7!/2, _ . - :

-

2. Transformation and weak formulation of the problem

/

fAssume that (b, v) is a solution of the problem stated in the introduction. Then one
can introduce new (dimensionless) independent variables ¢ and z by
T 11658 . .

‘o -

. . T ) . \
; t=0fi, g=— - o 2.1)
(b(o))2 b(v) : S - , -

. ; 0 s g : /
Let 2 =(0,1), 2 = A[O, 1], 8 =[0,T), and § = (0, T'], where T € (0, 4o0) is arbi-

trarily fixed. Introducing new unknown functions

my* _ vz é)
= =2

a(t) = 5 b(zr),  u(t, x) '(2.2)

~ and taking into account the regularity assumptions from the introduction we can
. state '
Problem I: »
(e = Ug) (%) — za(t) w(t, D) ug(t,z) =0, O0<t<T, . 0O<z<l,
—u(t, 0)-+ a(t) plu(t,0) — 1) =0, 0 <ts 'T, _ : '

S

-

ult, 1) +a(t)ut, 1) (u(t, 1) +9) =0, 0<t<T, \-
a(t)y =ut 1) (a(v)?, 0Zt<T,
v9(b%) mu*

#(0, ) = u(z) := 0<z< 1, a(0) = a®:=

v*

a-€ CYS), u € 08 x !_?), U, U € C(S X Q).

-
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: a . . -
Here p := hf(mv*), ¢ := k/(mv*). Of course the subscripts ¢ and z denote the corre-
sponding derivatives and a’ is the derivative of a with respect to its argument.

It would be natural to look for a solutlon in the interval [0 T*%), where T* -
= Df (b ) 2 do. Later we shall see tha,t in fact T* = 4-00. Slnce thisis not, known

in adva.nce we shall try to solve Problem I for any 7' > 0. If a solution (a, u) of

thls, roblem is known, one can determme rand & b , .
P y . ..
D D - S
- 2 R - .
- v*)2f ( a(sA))) ds_f. & — alt) <. _ (2.3)

- « v

From now. én. we shall assume (wnthout mentioning thls everywhere. in our. results)
that % .

p>0 g>0, a°>0 u°€L°°(.Q), u°>0 ’ (24 ‘

\lext we “are gomg to introduce a weak formulation of Problem I. Let ¥ = H l(.Q .
H = L*(Q), and let V* be the dual space to V. The norms on ¥V and H will be de- -
noted by ||l and ||, respectively. For the scalar product in H we use the notation
- I u € V, we write o, Uy instead of u(0), »(1). Similarly, if « is any function
defined on S with values in ¥, then u,, u, denote the functlons t+> u(t,0) and
> u(t 1). We define . :

hd 1

W = fwe LAS; R x V): w' € LS; R x V*)}
X = LXS; Rx V) n L=(S; R x L®(R)), ’

where w' denotes the derlvatlve of w in the sense of (R X V*)-valued distributions.
(Note that V — H — V*.) The space W is continuously imbedded into C(S; R x H).
Spaces used here without explanation have their usual meaning and are to.be endowed
with their standard norms (see, e.g., [3' Ch. IV]). We introduce an operator 4:’
R><V—>R>< V* as follows: A .

(dw, B) = (i, Ty + a{ul(u, (@) + pluo — 1)}70 + tnlg®, — aa)},

where w = (a, %), w = (@, @) are arbitrary elements .of R X V and 2% denotes the
function z +> z%(z), = € Q2. The operator A can also be considered as a mapping °
from X into L¥S; V*).-If w € X, then 4w means the function ¢+ Aw(t), t € S.
As usual we shall 1dent1fy L2(S L¥Q) ) and LS x Q) Accordlngly, u(t) and u(t, )
have the same meaning.

Now we are ready to state

Problem 1I: We are looking for w € X such that - ’ .
. / .. .
w + Aw =0, w(0) = w®:= (af u?).\

It is easy to check that any solution w = (a, u) of Problem I is a solution of Prob-
lem II and that, conversely, any solution w = (a, %) of Problem II with suffment;ly
smooth u is & solution of Problem I (cf. the proof of Theorem 2 below). Thcrefore
we may call any solution of Problem IT-a weak solution of Problem I. A
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[

3. Result-s

1In this section our results are summarlzed The proofs are'delayed to the subsequent
sections. :

Theorem 1: Pmblem II is umquely solvable

‘The next two theorems state regularlty properties of the weak solution. These
results show ‘that for smooth initial data the solution of Problem II is also a solution
of Problem I and in particular a classical solution. .

Theorem 2:-If (a, u) is the solution of Problem 11 the existence and uniqueness of
whichis guamnleed by Theorem 1, then u € C(S H"(.Q)) w €Cl; V),andac H} (b)
Moreover -

— Uz + ap(u’0 —1).= 0 and “ug, + au(u; +9) =0 on S, . (3.1)./
u—u,,—au,xu,—O onSxQ : - (‘32)

Theorem 3: Let (a, u) be the solution of Problem II. I f, in addition to our general
assumplton (2.4), we have u® € V, then

weC(S; V), W eIAS;H), a'€C(S). - (3.3)
If, moreover, Au® € R X H, i.e., _ T , . o
, W€ HY(Q), - —uly+ a'p(u® — 1) = uly + a®u%u® +.9) =0,  (3.4)
then ) ‘ A .
ue C(S; H(Q)), '€ L¥S; V) nC(S; H), ac€HYS). (3.5)

Theorem 4: Let again (a, u) be the solution of Problem II. Then, for every te S

(1 + ;) at) + = (a ))?

< ‘[T(a(s)l)2 ds.+ ¢y < (1 + i—;—M) al(l_) + q'—;M ({1(‘))2., S
wheré : ) o A o : . '

M = max {1, |[u9| Loy} »

’ 1
Y PR

. Remark l The meaning of Theorem 4 becomes clear if the result is expressed in terms of
the variable' r and the unknown b(r) of the original problem (cf. (2.1)—(2:3)). Then it reads

AR WD _{, e+ M\b@) g+ M
,(l+_)W+2D(b(t))zgt+( ‘)zé(l-i- » )mv"l‘, 2D (b())2

i.e., for large times = the oxide thickness b(z) is ‘of the order of 71/2. On the basis of the simpli-.
fled quas: stationary model DEAL-GROVE [2] had obtained that

_{_ 'ro=—(b(t))2 (1 + )b(_«,) : o ., .

my*’

+1+1+“_q_},-.
P 2

Ly .

N .
where 7, is a constant depending on the initial thickness. Note that the coefficients of (b(*r))2
and.b(z) in this formula are exactly-the same as in the lower bound for z given above. Let us’
mention_that in the case of the one- phase Stefan problem one has also b(z) < const (1 + 7)1/2
" (see KINDFRLEHRER and STAMPACCH_IA [3D).

Theorem 5: Let (a, u) be the solution of Problem 11 and let u® € V be such tkat '
4,9 0 and u® < 1. Then u,(l) < 0 for every tes.
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4. Proofs

In this section all proofs are summarized. For the proof of our first, the Existence-
Uniqueness Theorem, we need two Lemmata. '

Lemma 1: Let w = (a, u) be a solution of Problem II andlet M = max {1, [[®| Looray}-
Then, for every t € S, A SRR \ o
i 0=ut) =M, (il) a® < a(t) < a®exp (T'(l + t)). \

Proof: (i) By »*, v< we dehote the positive and the negative part of a function v,
respectively. Choosing % = (0, »~) as a test function for the equation v’ + Aw = 0
we find, for every t € §, ~ . .

‘

{
'

t A
0 = [((w + Aw) (s), W(s)) ds
! 4] . . . [

v l g . - .
a1 ! .
=—3 Iu'(t)I2 — f{|uz_|2 + a[@l_(u_; (xu'),),,
-, 0

.{, \ T p(ueT T+ l)uo“—{-q(ul‘)z.]}ds, S

\

(To simplify -the notation we have omitted the argument s of the functions of the )
last integrand. We shall do this also in further calculations.) Since, for every v € v,

: . 1 ,
v, @) = f (lo(2)[2 + zv,(2) v(2)) dz = 3 Iof? +% v (4.1).
© g ' . : ;

this implics that u~ = 0, i.e., « ='0. Using @ = (0, %), where @ = ( — M)*, as a .
test function we obtain . K . -

’

.1_ )

t .
0= @O + f {17l + a[w(@ + M, (@)
> 0

\ L
+ p(@E, + M — 17 + qul"_‘ll} ds.

Consequently, Z = 0, i.e.,, u < M. .
(it) It is easy to see that from w’ + Aw = 0 it follows that &’ = w,a?, where
- a € HY(S)and a’ is to be understood as the derivative of a in the sense of this Sobolev
space. Therefore ‘a(t) = a% t € S: Moreover, denoting by z and 1 the functions
{t, ) > z and (¢, z) > 1, respectively, we obtairn

~

-

; t .
0= f {(u', ) + (uz, )y + aul((u) 2x)y + Q)} ds
.0 . - .

3

. N N ‘
’ a(t . -
= |leu(@)lla — el + ¢ log _a(T) + f (wy — up + 20u, ||zul|Ly0)) ds
0 AY

' ‘ ¢
- = —M1 ) +q10g%).'

‘This proves the second assertion ' 8
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\

If one wants to solve Problem II, one has to overcome difficulties connected with
the growth properties of the nonlmear parts of the operator 4. Lemma 1 suggests
to introduce besides 4 a “‘regularized” operator 4: R X V — R X V* by

(Aw, w} = (ug, o)y + a[ul(u: (=) z')u + p(d, — 1) By + 4,(qu, — 60_‘)],

where w=(a,u), W=(a, ﬁ)éRxV and @ = min qa*, a® exp _qul( +T)

° = ;11in°{u+, M}. Note that 4 can be regarded as a mapping from L*S; R x V)
to L¥S; R x V*). Lemma 1 shows that if w is a solution of Problem II, then w is
‘also a solution of ' -

w4+ Adw=0, w0 =w, weW. . . . (42
Lemma2 If (a, u), (b, v) € R X V, then . '

<A a,u) —Ab,v), @—bu—v)z— Hu — v||2 —¢((a — b)? + ]u—-v|2)
uhere c1s mdependent of (a, u), (b, v).
Proof Let a, b and %, ¢ be defmed as @ and % above. Then- i -
‘ (Aa,w) — A(b, v), (@ — b, u — v))
= |u; — v |? + (ad,(@ — ¥) + @(% — ,) 5 + (@ — b) 4,3, (2w — 20))u .
+ Ja(y — 50) + (@ — B) (B — D) pluo — o)
@l — 5) + (@ — B) 6) gy — v) — (@3, — 5,) + (@ — 82) 5,

/ ~ .

X .(a — b) _ o v
2 flu — ol — fu = ]2 — o|u — v["2 lu — B3 + |a — b] Ju — o]
+ (e — b?)

) .
== 5 e —ol* — ¢f(@ — b)2 + fu— v[2);
here and later ¢ denotes (possibly different) constants the exact value of which is
not important 1 :

~ Proof of Theorem 1 (weak solvability): In view of standard results on evolution
equations in Hilbert spaces (see, e.g., [3: Ch. VI]) it follows immediately from Lemma
_2 that the initial value problem (4.2) has a unique solution (a, u). In the same way

M
as Lemma 1 one can prove that 0 < u(t) < M and a® < a(t) < a®exp (; 1+ T))

Thus, (a, u) is also a solution of Problem II. Since we know already that any solution
‘of Problem 11 is a solution of (4.2), this completes the proof of the unique solvablhty
of Problem II & ,

Proof of Theorem 2 (regularity): Let (a, u) be a’ solut,lon of Problem II. From
- results by GROGER (see [4: Th.1 and Rem. 5]) it follows that u € C(S;.V) and
u € LEo(S; V) n LE(S; H). Since a' = u,a this implies that a'€ H (8). We define
Ay, 4y, A3: V — V*and f € V* by

(410, 0) = (v, Do)y, - (Aov, D) =.(v: (x‘z_j)z)ﬂ: : : ; »
(dav, B) = pgby + qui7,, {{, %) = —pP,,
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\

' »,where v,v€ V are arbltrary From w' + Aw = 0 it follows that,
u' + dyu + a(u,4.u + As“ +H=0.
Different-latmg this equation (in the sense of V*-valued distributions) we get

Sou 4 A,u + a(u A 2u 4+ ul’Azu + Azu'): + a(ul U+ Aau + /) = 0.

4.3)

'

- (44)

On account of the regulanty properties ‘of @ a.nd % which ‘are already known we
conclude that w" € L3(S; V*). This result along with w’ € L{,.(S; V) proves that
u' € C’(b H). The continuity properties of a, a’, u,.and %’ show that w’ (t) + Aw(t) =0
must hold for every ¢ € S,

Let ¢ € 8. Then, for ¢ € C;(£),

—(uz(t): (Pz)ll = (u (t) - a(t) ul(t) xuz(t): ) . .
This means that "o N ’ .
Cu(l) = w() — a(t) w(t) 2us(). : (4.5)

Since u € C(8; V), ' € C(S H), and a ¢ C(S) we obtam ue C(S H( )).. Further,
for every v € V :

_(uz(t): vz)H = (u (), 'U)H ‘ | N ' Co
+ “(5 (u,(t ) (u(?); (20):)n + p(“o(‘) - 1) Yo + quy(t). vn)

© By means of the dlvergence theorem the appllcablllty of whlch is'guaranteed by the
preceding results we get

(uzz(‘): v)H - uzl(l) v+ uzo(‘)"uo
= (@(t) — a(t) w(8) zus(t), v)u .
+ a(t) (p(uolt) — 1) vo + w(t) (u1< ) + q) v).

)
In view of (4.5) this gives —_— .

2o —uao(t) + a(t) Puo(t) — 1)) + v,(un ) + alt) w(®) (u, ) +9) =
Because vp and v, can be chosen arbitrarily this proves the assertlons (3 1)

Since %' EL (S V) we have, for a.e. t € S,

lim
o—0

l (u(t + o) — w(t)) — /(1) N = 0. L ’ " . (4.6)

" This is a consequence of a result-on the dlfferentlabllxt,y of Bochncr mtegrals In
order to prove u'’ € L,OC(S' H) and ' € LZ(S; V) we may assume without loss of
generality that w € C(S; V), ' € C(S; H)n L¥S; V), and that (4.6) is valid for
t=0. Let t>0and ¢ >0 be such that 't + ¢ € S. Then, using the notations
Uo(s) = u(s + 0) — u(s), a(s) = a(s + g) —a(s), 0 =s = ¢t, we find (cf (4.3))

L d

0= j ((u,, + A%,) (s) + als + a) (w(s +-0) Azua(s)

o (Udgu + Ag,) (9) o+ a,(s) ((n Age + Agu) () + 1), w'(s)y ds
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ef%mm—w+wMH%m%mMmmfw@%M
) . . T "

+ as(8) (), 70" — 0(8) 2n(®))]
5 st o) (Plueol®)? + 9

= a5(9) [(9) ((alo)y 2w () — () wa(s) o

/

—Mmm%qmwwwmdmwﬁw
1 1 L1 o o
L 0 = S O + 0l 4 0) (P + )

- — 5.(0) (Pl 0)) + g(un(0)))
‘ 1 . - .
, gj}EM@W—NM@W—ﬂWmmm+UW$W
0 - T . )

o . ‘o - N coo
—W0+wmm—4wmﬁ@+gwww—wmmz
, . - ao ' . N . M \A ~. . - i e
+ 5 (P(ua®)? + ¢(ar(D)?) — colfuao(®)] + [aa(D)]) — c0®-,
. Hence - o o ' \
g l - ‘ . Sy
lus®)F + [ s ?ds < ¢ {02 + eo(O)IR + [ (ol + lao'1?) dS} < co®
. 0 .o .0 : .
: o
(cf. [4: Lemma 1])‘. This shows that u! € L=(8; Vyand w” € L2 (S;-H).
. From (4.4) it follows that, for a.e. t € S, ‘ :

7

where

"~ B(t)v = 4w + a(t) (w(t) Agv, '+' v Au(t) + Agv), vev,
g(t) = a“(t) (w(t) Apu(t) + Aqu(t) +Y).

~In view of the regularity properties of a and % proved so far we are allowed to apply
* Theéorem 1 of [4] to the problem (4.7). In particular, we obtain that ' € C(S; V)

and w'" € L3,4(S; V). Because @’ = w,a? this implies that a € H}o(S). Finally from .

(4.5) it follows that u € C(S; H3({2)) and that (3.2) is valid 8§

w'(t) + By w'(t) = g(t), B | . (4.7)-

| Proofgf Theorem 3 (regularity)": Let u° satisfy the conditions (3:4). Then '

uw' € L¥S; V)n C(S; H,), where H, is the space H equipped with its weak topology
(see GROGER [4: Th. 3 and Rem. 5]). From Theorem 2 we already know that
. w' € C(8; H). Therefore in order to prove u’ € C(S;'H) it is sufficient to show that
u': 8 — H is continuous from the right at 0. This can be shown by means of Propo-
sition 3.3 in BRrEzis [1). We omit the details. From u'.€ L¥(8; V) it follows that

P
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o' = wa? € _HY(S). Smce u® € V we have also u € C(S; V). Using once more (4.5)
we obtain « € O(S H?*Q)). This conipletes the proof of the second part of Theorem 3.
Let again u° satisfy the conditions (3.4). Then (cf. (4. ‘3))

3 .
0 ;—_f (u' + Ayu + a(u, d,u + Agy + /),‘%) ds S
0 . f :

+

u.n Uy )H + ul(u: (xu )z)H + p( - 1) uo' + qulul,} ds

IV

] ds 4 5o = ! I — oy

-

((uo(t)—l) —(uo _—12)+ ((ua( t>)2 (u,%)?)

wl‘e

+ = ((ul(t))3 — (w%%).

‘Now let u® be any nonnegatuve element of ¥V and let w = (a, u) be the solution of

Problem IT corresponding to the initial value (a°, u9). It is easy to see that there
exists a sequence (u,°) of nonnegative functions satisfying (3.4) and converging to u°
in V. Let ‘w, be the solution of the mmal value problem .

wy, +Aw =0 n(0)=(a0 u?), w, € X.

. Standard results on evolntlon equatlons can be used to show that the sequence
- (wn) = (@,, u,) converges to w in W. The estimate derived above is true with a,, u,
instead of @, u. Passing to the limit as n — oo we obtain firstly.that u € L°°(S V)
and »' € L¥S; H). Since » € C(S; H) we have also u € O(S Va), where V,is V
- with its weak topology Secondly - _ .

-21(,)1 w0+ 2 (unl) — 1) 4 (u.(t))? o)
< oo It £ § =t <u°>2 3@+ 0 f ||u||=ds

In view of the propertles of a and u which are already established this implies that
lim [lu(t)| = |[ull. This inequality along with u € C(S; Vy) n C(S V) proves that
to

u € C(S; V). The assertion a’ € C(S) is an easy consequence of u € C(8; V) and

a' =wa® 1

Remark 2: The proofs of the Theorems 2 and 3 indicate that, with somewhut more effort .

one could prove even better rcgularlty properties of a and u. Wedid content ourselves with
the.results stated in these theorems in order to avoid further tedious calculations.

~

5 Analysis Bd. 7, Heft 1 (1988)
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‘Proof of Theorem 4: By means of the tst functlon (O a+ 'pazx) it follows from
w’ + Aw = 0'that, for every t € S,

0 = a(t) Ilu(l (t+ pa t) z)|| ey — a° Ilu°(1 + pa®z)lpne)
4+ f —a'(1 + 24)(1.:1:, i+ a¥ply — uo) A+ wi(u, 1+ 2pazy

| + plug — 1) + qu(l + pa)]} :
,=\ a_(t) IIu(t)IILl(?) + p( )2 lza( g)”L.(Q) — |]u0(1 + paox)llz,-(m

. ' 1 :
et (a() — a") + 5 pa () - (@) — p f a ds.
’ ’ 0

Here we used that-a’ = = w,a? and (az) = 2u,a. . In view of Lemma 1 the assertion
of Theorem 4 is an immediate consequence of the equality just derived 1

Proof of Theorem 5: Let z = u,. From Theorems 2 and 3 it follows that
z € C(8; Hz(o)) n C(S; H), 2’ € C(S; H)nL2(S H™(9)), and

z — 2, — au,(x2); = 0 on S, ..
2o = ap(ug — 1) and . 7y = —aw(u + q)' on b . 2(0) = w0,

'The hypotheses of Theorem 5 1mply that 2, < 0, z; = 0, and z(O)—g'O.~ Therefore,
using the test functlon 2, we obtam (cf. (4.1)) B

s

.6.= : 12+f{|z+12—au,(<w),, s

'

¢

1 . ' 1 . 1 ' .
= o O + f {-szF S |z+|2} 3 = o O — o f o+ 2 ds.
N 0 - ' ‘ C : o

In view of Gronwall’s' Lemma this yields zt =0, ez =1u = (VI | >

I4
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