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A Free Boundary Value. Problem Modeling Thermal Oxidation of Silicon 

K. GRöGER and N. STRECKER 

Unter Benutzung von Ergebnissen uber Evolutionsgleichungen in Hilbert-Räumen wird em 
Problem gelost, welehes die Diffusion eines Oxydanten durch eine'Oxidschicht und das durch 
die Oxydation von Silizium verursachte Wachstum dieser Schicht beschreibt. DarUber hinaus 
werden praktisch interessante Abschätzungen fur da Wachstum der,Dieke der Oxidschicht 
angegeben. 

14cfloJlb3yH pC3y.UTaTbI o6 3B0JII0[I10HHHX ypaBlleinifix B 1711JIh6epTOBbIX npocTpaHcTnax 
periiaec aajiâ'la, xoopan OflHCb4BCT lIi)y3I4I0 oivac.uhlTeJrn 'Iepe3 c.mofl JBOHHCM HpeM-
HUH U POCT 3T01'0 CJIOH B CJIeCTBHH gailbHeflwero oKHc1elIHfl. HpoMe Torn nprlBoiinTCH 
oIeHHH pocTa To.UWUHLI cJlOs oincia nHTepecHale C 'ro'iicii 3pellua npaHTliHH. 

Using results on evolution equations in Hilbert spaces a problem describing the diffusion bf 
an oxida?it through an oxide layer and the growth of this layer caused by the oxidation of 
silicon is -solved. Moreover, estimates for.the growth of the thickness of the oxide layer being 
of practical interest are given. 

1. Introduction 

This paper deals with a simple spatially one-dimensional model of the thermal 
oxidation of silicon. It describes the diffusion of an oxidant through an oxide layer 
and the growth of this layer caused by the oxidatiQn of silicon at the oxide silicon 
interface.	 - 

Denoting by b the oxide thickness and by v the oxidant concentration we can write 
the model equations as follows: 

(v, - Dv) (-r, ) = 0,	0< <b(t),	r>0,	- 
—Dv(r, 0) + h(v(t, 0) - v*) = 0,	-r > 0,	- 

•	 Dv(r,b(-r))+ ((r) + k)v(r,b(r)) = 0,	t >0, 
1(r) =mv(r,b(-r)),	r >0,	 S 

V(0' ) = v°(),	0.<	 b(0) = V. 

The subscripts t and denote the -derivatives with respect to the time r and the 
space variable ,respectively, and b denotes the derivative of b with respect to its 
argument. To be precise we require that 

b is continuously differentiable and positive, 
v is continuous on {(r, ): r ^ 0, 0	b(T)j, 
v,, v are continuous on {(-r, ): r > 0,0 

We assume that D. h, Ic, m, v, b° are positive constants and that v0 is a non- 
negative function from L°°(0, b°).	•	 - 

/
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/ The constant D is the diffusivity of the oxidant. The boundary condition at = 0 models - 
the interaction of the oxide layer and a gas phase. Similarly, the boundary condition at 

b(T) represents the oxidant balance at the moving oxide silicon interface. In particular, 
the term kv(T,-b(v)) takes into accóunt the sink caused by the oxidation of silicon. The equa-
tion for b means that the speed of the interface is proportional to the oxidation rate. The 
assumption that the oxidation rate itself is proportional to the oxidant concentration at the 
interface has been made for the sake of simplicity only. One could treat in a completely 
analogous way more general equations including the case that the oxidation rate is proportion-
al to the square of the oxidant concentration. 

The process of oxidation of silicon has been investigated by several authors (a standard 
reference is DEAL-GROVE [2]). These authors assumed the diffusion process to be quasi-station-
ary, i.e., they neglected the term v, in the diffusion equation. This is clearly unjustified for 
an initial transient period and it could be justified rigorously for large times only by resulfs 
on the problem stated above. This problem is similar to the familiar one-phase Stefan problem 
which can be reduced to a variational inequality that does not contain explicitly the free 
boundary (see, e.g., KINDERLERRER and STAMPACCIIIA [5]). For our problem we do not know 
any such reduction. We shall show, however, that our problem can be transformed to an 
initial value problem of standard type for a pair of functions (the oxide thickness and the 
oxidant concentration on a "normalized" domain). To this initial value problem one can apply 
various results of the theory of evolution equations in Hilbert spaces. We shall prove at first 
the existence and uniqueness of a weak solution and then derive regularity results which show 
that any weak solution is a classical solution provided the initial concentration is sufficiently. 
smooth. Moreover, we shall present estimates for theoxide thickness b(r) showing that for

	

large, times r 1 this thickness is of the order of T h 1 2 .	 -	- 

2. Transformation and weak formulation of the problem 

Assume that (b, v) is a solution of the problem stated in the introduction. Then one 
can introduce new (dimensionless) independent variabIest and x by 

-	t=D[' dr
	=_-L.	-	- 

5	

(2.1) J (b(a))2	b(r)	-	-	 - 
-	
0 

Let Q = (0, 1), .? = [0, 11, S = [0, T], and = (0, T], where T E (0, +°°) is arbi-
trarily fixed. Introducing new unknown functions 

mv*	 -v(-r,) a(t) = -fl- b(-r),	u(1, x) = _____	 -	(2.2) 

and taking into account the regularity assumptions from the introduction we can 
state 

Problem I: 

(Ui - u) (1, x) - xa(t) u(t, I) u(t, x) = 0,	0<1 15: T, - 0< x < 1, 
—u(t, 0)--f-a(t)p(u(t,0) - 1) = 0,	0<1	T,	 - S 

u(t, 1) + a(t)u(1, 1) (u(t, 1)+ q) = 0,	'0 < 1	,	- 

a'(l) = u(1, 1) (a(t))2	0 .< I < T,	- 

0<x<1,	a(0)=a0:=_b0, I;w

a-E C'(S),	u E C(S x Q),	u1, u,, E C( x Q).	 -
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Here p := h/(mv*), q := k/(mv*). Of course the subscripts , t and x denote the corre-
sponding derivatives and a' is the derivative of a with respect to its argument. 

It would be natural to look for a solution in the interval [0, T*), where T* 
co 

= D f(b(a))2 da. Later we shall see that in fact T* = +oo. Since this is not known 

in advance we shall try to solve Problem I for any T> 0. If a solution (a, u) of 
this,problem is known, one can determine r and by 

	

=(mv*)21 Hs) )2 ds,	=_P a(t) x.	 (2.3) 

From now n we shall assume without mentioning this everywhere, in our results) 
that

p>O,	q>0,	•a°>0,	u°EL(Q),	u°>0.	(2.4) 
r	 - 

Next we are going to irtroduce a weak formulation of Problem I. Let V = 
H = L2(Q), and let V* be the dual space to V. The norms 'on V and H will be de-
noted by 1 . 11 and I•I respectively. For the scalar product in H we use the notation 
(•, If u E V, we write u0 , u1 instead of u(0), u(1). Sim* ilarly, if u is any function 
defined on S with values in V, then u0, u1 denote the functions t i-3 u(t, 0) and 
ti-> 'u( t, 1). We define 

• '	 W = {w E L2(8 R  V):w"E L2(S; R  V*)}, 
X=L2(S;RxV)nL(S;RxLc(Q)), 

where w' denotes the derivative of w in the dense of (R x V*)valued distributions. 
(Note that V H V*.) The space W is continuously imbedded into C(S;' R x H). 
Spaces used here without explanation have thèirusual meaning and are to be enowed 
with their standard norms (see, e.g., [3! Ch. IV]). We introduce an operator A: 
H x V -_> H x V as follows:	•	- 

(Aw, 3) = (ui , iWH + a{ui (u, (xil)4 + P(Uo - 1) Wo + u1(qu -Yã)}, 

where w = (a, u), i3 = (a, u) are arbitrary elements of H x V and xu denotes the 
function x i-+ xZ(x), x E Q. The operator A can also be considered as a mapping 
from X into L2(S; V*).. If w E X, then Aw means the function t i- Aw(1), t E S. 
As usual we shall identify L2(8; L2(Q)) and L2(S x Q). Accordingly, u(t) and u(t,.) • 
have the same meaning.	-	 S 

Now we are ready to state 

Problem II: We are looking for w E X such that	 - 

w' + Aw = 0,	w(0) = w° := (a°, u°) • 

It is easy to cheek that any solution u = (a, u) of ' Problem I is a solution of Prob-
lem II and that, conversely, any solution 'w = . (a, u) of Problem If with sufficiently 
smooth u is a solution of Problem I (cf. the proof of Theorem 2 below). Therefore 
we may call any solution of Problem II-a weak solution of Problem I.	•	•.'	•



60	K. GROGER and N. STRECKER 

- 3. Results 

In this section our results are summarized. The proofs are - delayed , to the subsequent 
sections.	- 

Theorem 1: Problem II is uniquely solvable 
The next two theorems state regularity properties of the weak solution. These 

results showthat for smooth initial data the solution of Problem II is also a solution 
of Problem I and in particular a classical solution. 

The ore iii 2:-If (a, u) is the solution of Problem II the existence and uniqueness of 
which-is guaranteed by Theorem 1, then u EC(& 113(Q)), u' , C(; V), and a E H(). 
Moreover	. 
-	—u0+ap(u0— 1)=0 and u 1.+ au1(ut +q) = 0 On&	(3.1)..-

u'—uzr—auixuz=0 onxQ.	
0	

-	 (3.2) 

Theorem 3: Let (a,u be 1h solution of Problem II. If, in addition to our general 
assumption (2.4), we have u0 E V, then	 - 

U E QS; V),	u' E L2(S; H),	a' E C(S). -	 (3.3) 
If, moreover, Aw° E R x H, i.e.,	-	 S 

u° E 112 (Q),	—u + a0p(u00 - .1) = u 1 + a1u1 0(u1 0 +q).= 0,	(3.4) 
then

u E C(S; 112(Q)),	u'E L2(S; V) n C(S; H),	a E'H 2(S).	(3.5) 
Theorem 4: Let again (a, u) be the solution of Problem II. Then, for every t E 8, 

-	(1 +±) a(t) + - (a(t)) 2	 .	 S 

(a(s))2ds + c ^ (i + q +M) d( t) + q'+ M  (a(t))2, 

where 
-	Ill = iiax 11, IIu°IILoo(m}	 - 

co =ao 
I II

uo'(__ +aox)	+ 1 + -+-}. 

Remark 1: The meaning of Theorem 4 becomes clear if-the result is expressed in terms of 
the variable r and the unknown b(r) of the original pioblem (cf. (2.1)—(2.3)). Then it reads 

	

c0D-	___	 ___ 

-,	\	P1 MV*	2D	 (mv*)S	\	p / mv*	2D	- 

i.e., for hirge timest the oxide thickness b(t) is of the order of r112 . On the basis of the simpli-, 
fied quasi-stationary model DEAL-GROVE [2] had obtained that	 -' 

+ (i	 -	- 2D	 pmv 
where r is a constant depending on the initial thickness. Note that the coefficients of (6(r))2 
and . b(t) in this formula are exactly-the same as in the lower bound for t given above. Let us 
mention , that in the cage of the one-phase Stefan problem one has also b(t) ;S const (1 + r)112 
(see KINDERLEHRER and STAMPACCIHA [5]).	- 

Theorem 5: Let (a, u) be the solution. of Problem II and let u0 E V besuch that€
u 0	0 and u°	1. Then -u(t)	0/or every t . E S.	 -	. -
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4. Proofs 

In this section all proofs are summarized. For the proof of our first, the Existence-
Uniqueness Theorem, we need two Lemmata. 

Lem ma 1: Let w = (a, u) be a solution o/ Problem ll and let M = max {1, IIu°11L00w}. 
Then, for every I E S,  

(i) 0	u(t) ^5 M,	(ii) aO	a(t)	aO exp ((1 + 1)). 

Proof: (i) By v, vz we denote the positive a,nd the negative part of a function v, 
respectively. Choosing Tv = (0, u-) as a test function for the equation w' + Aw = 0 
we find, for every I E *S', -	 V 

0=f((w' +Aw)(s),i(s))ds 

=	Ju(t)	 + a[u i (u (xu-)),, 

+P(o.± 1)u0 + q(u 1 ]}ds.	 0 , 

(To simplify 'the notation we have omitted the argument s of the functions of. the 
V 

last integrand. We shall do this also in further calculations.) Since, for every; v € V,€

	

V	

V 

(v, (xv)4H =f (v(x)I2 + xv(x) v(x)) dx = -- I V II, v  

	

V	
this implies that u- 	0, i.e., u ^0. Using i3 = (O,), where Ii = (u — M) as a	

V 

•	test function we obtain	 V	

-	 V 

o =	(t)12 + / {I1 2 + a[u i ( ± M, (xii)),,	
•	 • 

V 

	

•	 +p(o+M— 1 o ±quii]}ds.	•	 - 

• Consequently, i = 0, i.e., u ^ M. 
(ii) It is easy to see that from w' + Aw = 0 it follows that a' = u1 a2, where 

V a € Hi(s) and a' is to be understood as the derivative of a in the sense of this Sobolev 
space. Therefore 'a(t) ' a, I € 8: Moreover, denoting by x and 1 the functions 

V 

(I, x) -- x and (t, x) i-* 1, respectively, we obtain	'	 V 

	

•	

•	

0 =f {(u', x) + (ui , 1),± aui((u,2:);, + q)}ds	•	 V 

•	T 
IIXU ( t)IILTh — IIxu°IILD) ± q log -- +f (u1 — u0 + 2au1 IIXuIL(Q)) ds V 

V	 •	 ^ —M(1 +') ± q log 1. V	 V 

ao 

This proves the second assertion' •
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If one wants to solve Problem II, one has to overcome difficulties ' connected with 
the growth properties of the nonlinear parts of the operator A. Lemma 1 suggests 
to introduce besides A a "regularized" operator A: R x V --> R x V* by 

= (ui, iWH + ã[ii 1 (t, (xiz)4,, + P(fio - 1) Z0 + fl1 (q11 1 - 

.1	IM where w(a,u), 3 =(d,)E RXV and a = nh i n 1a 4 a?exp(, — (1 +T))J 
= min. {u, M}. Note that A can be regarded as a mapping from L2(S; It x V) 

to L2(S; R x V*). Lemma 1 shows that if w is a solution of Problem II, then w is 
•	also a solution of	-	 - 

w' + Aw =0,	w(0) = w0 , - .w € W.	 (4.2) 
Lemma 2: If (a, u), (b ; v) € R x V. then 

(A(a, u) - -A(b,v),(a - b, u - v))	lu - v11 2 - c((a - b) 2 + JU - 
where c is independent of (a, u), (b, v). 

Proof: Let a, 6 and t, be defined as a and ft above. Then	-	- 
(A(a, u) - A (b, v), (a —b, u - v))  

= u - v 2 + (au 1 - 13) + a.(u 1 -	13 + (a - ) -6 1 0, (xu - 

+0(20 - 13) + (a b) (13 - 1)}p(u0 - v0) 

	

+ {a(1 1 - 13) + (a - &) 13} q(u1 - v 1 ) - {a2 ( 1 - 13) + (a2	62 ) 13} 
X(a — b) 

Ilu - v11 2 - lu - v1 2 - c ( lu - v11/2 JJU - v113/2 ± ja - bi 1 ju - 

+(a_b)2) 

-- lu - V11 2 - c((a - b) 2 ± u - v12).; 

here and laterc denotes (possibly different) constants the exact value of which is 
not important • 

Proof of Theorem 1 (weak solvability): In view of standard results on evolution 
equations in Hubert spaces (see, e.g., [3: Ch. VI]) it follows immediately from Lemma 
2 that the initial value problem (4.2) has a unique solution (a, u). In the same way 
as Lemma 1 one can prove that 0 ^ u(t) M and a° a(t) a0 exp ( (1 + T)). 
Thus, (a, u) is also a solution of Problem II. Since we know already that any solution 
of Problem II is a solution of (4.2), this completes the proof of the unique solvability 
of Problem II I 

Proof of Theorem 2 (regularity): Let (a, u) be asolution of Problem II. From 
results by GRÔGER (see [4: Th. 1 and Rem. 5]) it follows that u € C(S;.V) and 
u' € L(E; V) n L(; B). Since a' = u 1 a2 -this implies that a E H(S'). We define 
A 1 , A 2 , A 3 : V -* V* and / E V* by 

(A v, 17) = (vi, T .-)H,	(A2v, ) =(v, (x13)X)H, 

(AO, 13) = pv0130 + qv1131,	(I, v) = PVo,
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where U, v € V are arbitrary. From w' -1 Aw = 0 it follows that 

u' + A 1 u - a(u1A2u ± A 3u •+ j) = 0.	 -	(4.3)
Different. iatin this equation (in the sense of V*valued distributions) we get 

u" + A 1 u + a(u1 A 2u' ± u 1 'A 2u + A 3u')+ a'(u1 A 2u + A 3u +1) = 0. 

	

S	

(4.4) 

On account of the regularity properties of a and u which are already known we 
conclude that u" € L(; V*). This result along with u' € L(i; V) proves that 
u' E C(& H). The continuity properties of a, a', u,and u' show that w'(t) + Aw(t) = 0 

- must hold for every I € . 
Let E . Then, for 1p E C,-(Q), 

• — (U t	, 	 u'(t) - a(t) u, (t) xu(I), )jj. 
This means that  

	

•	u(I) = u'(t) — a(t) u 1 (I) xu(I).	 (4.5) 

Since u € C('; V), u' € C(; E), and a E C(S) we obtain u,E C(E; H2(Q)). Further, 
for every vE IV,	 - 

•	
- (u(I), v4H = (u'(I), v)H 

•	 .	
-	-f- a(t) (u i (t) (u(I), (xv)), -4-- p(u(t) — 1) v -4- qui(t)-v1) 

By means of the divergence theorem the applicability of which is guaranteed by the 
preceding results we get 

	

•	(u(e), V)H - u 1 (t) v 1 + u 0(t)v0	•	

5 

= (u'(I) — a(I) u1 (I) xu(t), v)E	
• 

+ a(t) (p(u0(t) — 1) v0 + u, (t) (uj(I) ± q) v1). 

In view of (4.5) this gives	 • . 

•	vo(—uo(I) + a(I) p(n0(t) - 1)) + v1 (u 1 (I) + a(I) u1 (t) (u 1 (I) + q)) = 0. 
Because v0 and v1 can be chosen arbitrarily this proves the assertions (3A). 

Since u' E L(; V) we have, for a.e. t € 8, 

lhn	(u(I + a) — u(t)) -, u'(t) = 0.	 -	 (4.6) 

This is a consequence of a result on the differentiability of Bochner integrals. In 
order to prove 'u" € L(; II) and u' € L' (&; V) we may assume without loss of 
generality that u € C(S; V), u' € C(S; 11) n L2(S; V), and that (4.6) is valid for 
= 0. Let 1> 0 and a> 0 be such that t + a E 8; Then,' using the notations 

Ua(S) = u(s + a) - u(s), a0 (s)	a(s + a).— a(s), 0 :!E^ s	I, we find (cf. (4.3)) 
-	I	•	 -	

•	 / 

= f ((u0' +A 1 u0) (s) + a(s +a) (v( +a) A2u0(s) 

	

\•	 0	 - 

+ (u01A 2u + A 3u0) (s)) '± a0(s) ((u1 A 24 ±A3u) (s) + I), u0 '(s)) ds
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f

- a(s + a) [u(s _l-' a) ((uax(s), xu ' (s)),j — Ui(s) u(s)) 

+u(s) ((ui(s), Xa' (8))1 - u i (s) 141(8)).1 
- - 

a'(s-+ a) (p(uo(s))2 + q(u01(s))2) 

- ag(s) [u i (s) ((ui(s), XU '(8))H - u i (s) ui(s)) 

- p(uo(s) —1) u(s) - qu 1 (s) u(s)]} ds  

+ u(t) —	kcx(0)I + -- a(t + ci) (p(uoo(t)2 + q(uoi (t))2 )	I 

- —	d(a) (AU.0(0))2 + q(u0(0))2),	
2 

fI' u (s) — c Ikta(S )11 2 — cftu II(S V) + 1) lUa(S)I2 

T ca2(1 + ju'(8)11 2) — c(a'(s))2}. ds +	ju(t)I 2 - c IIu(0)II2 

+ ç (p(o(t))2 ± qoi(t))2)'_ ca(I uao( t)I + u1(t)I)— ca2. 

Hence

IIu ( t)II + 'f Iu'l ds ^ c {a2 + lIUa (0)112 + f , (luo lI 2 ± lao l 2 ) ds} ^ ca 
•	 0  

• (cf. [4: Lemma i]. This shows that u' E L; V)and u" E L?; H). 
From (4.4) it follows that', for a.e. 1€ S, 

u'(t) + B(t) u'(t) = g(t), 
where 

•	B(t) v = A 1v +a(t) (u 1 (t) A 2v, + v 1 A 20) + A 3v),	v E V, 

g(i)	a'(t) (u, (t)A 2u(t) + A 3u(t) + ). 

In view of the regularity properties of a and u proved so far we are allowed to apply 
Theorem 1 of [4] to the problem (4.7). , In particular, we obtain that u' E QS; V) 
and u"E L?; V).2 flecause a' = u1 a2 this implies that a Ei1(S). Finally from 
(4.5) it follows that u E C( ;' H3(Q)) and that (3.2) is valid I 

Proof of Theorem 3 (regularity) `  u° satisfy the conditions (34) Then 
u' E,L2(S; V) n QS; H), where Hw is the space H equipped with its weak,topology 
(see GRöGER [4: Th. 3 and Rem. 5]). From Theorem 2 we already know that 
u' E C(; H). Therefore in order' to provç-u' E C(2; H) it is sufficient to show that 
U ' : B -. H is continuous from the right at 0. This can be shown by means of Propo-
sition 3.3 in BREzIs [1]. We omit the details. From u'.E L2(S; V) it follows that
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a' = u 1 a2 E H'(S). Since. u E V we have also u E C(S; V). Using once more (4.5) 
we obtain i E C(S; 112(Q)). This completes the proof of the sedond part of Theorem 3. 

Let again u° satisfy the conditions (34). Then (cf. (4.3)) 

0=f (' ± A 1 u + a(u 1 A 2u± A 3u	ds	 . 

= / {ii2 ± (ui, uZ' )H + u1 (u, (zu')4H + p(u0 - 1) U0' + uiui '} ds 

-	
M lu ll lu 'l} ds +	lu(t)i2 -	 ... 

-	
+	((u(t) - 1)2	(uO - 1) 2) +

2 
((U1 (t))2 - (u0)2) 

+	((uj(t))3 - (u0)3) 

Nov let u° be any non negative element of V and let w = (a, u) be the solution of 
Problem II corresponding to the initial value (a°, u°). It is easy to see that there 
exists a sequence (u°) of nonnegative functipns satisfying (3.4) and converging tb u0 
in V. Let w,, be the solution of the initial value problem 

w' + Aw = ;	w(0) = (a°, u°),	w E X. 

- Standard results on evolution equations can be used to show that the sequence 
(wa ) = (as , u) converges to w in W. The estimate derived above is true with a,, u 

• instead of a, u. Passing to the limit as n - oo we obtain firstly. that u € L°°(S; V) 
and u' € L2(S; H). Since u € QS; H) we have also u .€ C(S; V), where V is V 
with its weak topology. Secondly	 . 

2a(t) lu(t)l
2 -j-- .- (u(t) - 1) 2 + 1.. (Ui(t))2 +	(ui(t))3 

/ .	

lul IL	(u°— 1)2 + f (U,0)2(ti°) ± C/llull2ds. 

In view of the properties of a and u which are already established this implies that 
LE !Iu(t)ll	ju°j. This inequality along with u € QS; V) n C(; V) proves that qO 
u € QS; V). The assertion a' € C(S) is an easy consequence of u E C(S; V) and 
a'=u1 a2 I	.	

0 

Remark 2: The proofs of the Theorems 2 and 3 indicate that, with sornewhat,more effort, 
one could prove even better regularity properties of a and u. We -did content ourselves with 
the results stated in these theorems in order to avoid furthertedious calculations. 

5 Analysis Bd. 7, Heft 1 (1088)	 1	 •	

0

-'I
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Proof of Theorem 4:By means of the tst function (0, a + pa2x) it follows from 
w' + Aw = Othat,jor every t E S, 

•	 0	a(t) 11u(t) (1 + pa(t) x))Iv(Q) - a0 IWO + pa°x)IIv(c1) 

+ f {—a'(l + 2pax, u),1 + a2[p(u1 — u0 ) •+ u1 (u, I ± 2pax)H 

+p(u0-1)+qu1(1+pa)]}ds 

a(t) Iu(t)IlLp + P(a( t))' ixu(t)IILlm - a0 !Iuo(1 + pa°x)IIL'm 

- (p + q) (a(t) - a0) + -pq ((a(t))2	(a0)2) _pfa2 ds. 

Here we used that a' = u1 a2 and (a2)' 2u1 a3. In view of Lemma 1 the assertion 
of Theoreni 4 is an immediate consequence of the equality just derived I 

Proof of Theorem 5: Let z = ui.. From Theorems 2 and 3 it follows that 
z E C(&.H2 (Q)) n QS; H), z' € QS; H)n L2(& H 1 (Q)), and 

z' — z — au 1 (xz) = 0 on 

.	z0 = up(u0 - 1) and . z 1 = —a'a 1 (ui + q) on	z(0) = u°. 

The hypotheses of Theorem 5 imply that z0 . ;5 0, z1 ;5 0, and z(0)- 0. Therefore, 
using the test function z 4 , we obtain (cf. (4.1)) 

•	.0 =	z+(1)12± / 

{Iz 2 - auj((xz), zt) ds 

z(t) +f{zx 2 -	au Iz+ 1 2} ds ^	z(t)I2 — cf Iz+ 1 2 ds 

In view of Gronwali's Lemma this yields z = 0, i.e. z = u ^5 0 
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