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i

.Es sei L(z, D) = Z a,(z) D° ein hnea.rer partlel]er lefercntlalopcrabor mit C®(@)-Koeffi-

lelsr
zienten a,, wobei G ein offenes Tellgeblet in R® ist. Ferner bezeichne /17 k(G) die minimale abge-.

schlossene Realisierung von L{z, D) in dem lokalen Hormander-Raum 3‘“;((}') Es wird die Ab-
geschlossenhext der Wertebereiche R(A;(G)) des Operators A5 (@) und R( ‘#(@)) des dualen

- Operators A }(@) untersucht. Unter anderem werden notwendige und' hmrexchende Bedingun-

S~

gen fur die Abgeschlossenhelt von R(A,(G)) angegeben. Die. Surjektivitit des Operators
Ay (@) wird cbenfalls charakterisiert. Als Anwendung wird eine hinreichcnde Bedingung fir
die Abgeschlossenheit von R(A3(B(0, R))), wo B(0, R) die offene Kugel in R® ist, unter ge-
wissen Apriori-Abschétzungen fiir den formal transponierten Operator L'(z, D) von L(z, D)
hergeleitet. L
Nycrs” L{z, D) = }: u‘,(x) De IMHelHbIM uu(b(l)epeuuuanbuun 0nepaTop C YaCTHHIMU npous-
lel=
BOIIth\IM rae a, — C®(G)- Koad)d)nuuen'rbl nG — OTKpblTaﬂ oGnacts B R?, O6Go3HaunM
AJ(G) MUHUMRJIBHYIO 3aMKHYTYIO peanmaumo oneparopa L(z, D) B TOKAIBHOM . npo-
crpancTee Xépmanjiepa ‘ZLW(G) WUcenenyercn 3a\muy'roc'rb obnacre#t srauenuft B(A, (@)

* oneparopa A, (G) n R(A;7(G)) nyansnoro onepatopa A7 }(G). Jlaorca Mexny npouum

Heo6xXoguMmLle U KOCTATOUHbIE YCIAOBUA B3aMKHYTOCTH R(A pk(G)) XapaKTepuayeTca TaKke

_CYypPBEKTUBHOCTb onepaTtopa A, ,(G). Kak npuMeHenne 1aeTca 10CTATOYHOE yCIOBHE 3aMKHY-

toctn R(Ag,(B(0, R))), rne B(0, R)' oTkputhilt wap B R®, npi HEKOTOPHIX anpHOPHHIX -

) ouenxax naiA (bopmanbuo Tpancnmmponamxor\o onepa'ropa L’(x, D) k L(z, D).

~ Let- L(x, D)= 3 a,(z) De be a lmear partial dlfferentlal operator with C'°°(G) coefflcxents

lolgr
»» where G is an open subset in R". Denote by A, ,(G) the minimal closed reahzatlon of L(z, D)

m the local Hérmander space ﬁ‘w(G) The closedness of the range R(A ,(G)) and of the range
R(A5 (@) of the dual operatorA 1(G) is considered. Among other things, one shows necessary
and sufficient conditions for. the doscdness of R(A, {(G)). The surjectivity of A7 (@) is also

characterized: As an appllcatxon a sufficient condition for the closedness of R(A{l B(0, R)))
where B(0, R) is the open ball in R", is established, when certam a pnon estimates for the for-
mal tmnspose L'(z, D) of L(z, D) hold.

1. Introduction

L(;,t G be an open subset in R® and let L(x, D) be a linear partial differential operator
with C®(G)-coefficients. Furthermore, denote by B%4(G) the local subspace of the.

_ distribution space D'(G) for whose elements 7' it holds

AR

IFGT) () k@)P dE < oo forall y € C,>(6),
R»

where F: &' — &' is the Fourier transform and where k is chosen from a class ¥ of
weight functions. Then one is able to construct the minimal closed realization Ay +(G):

A ~
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198(G) — B%(G) and the mazimal (closed) realization A% (G): BG) = BLUG)
of L(x, D). The operators /A (@) and A’ *(G) are the same w hcn LD ) L(z, D) has
constant coefficients (cf. Theorem 2. 1) The identity of the operators A, (@) and
t A% (G) is an analogical notion with the essential maximality of L(x D) considered in
the global case (cf. [3, 4]).

There are several kind of (algebraic) crltena under which for each f € Cy™ (V z) the
" distributional equation , '

AFAVu =t uw‘“( AR , oo,

-1s solvable in some nelghbourhood V,..of x € G (cf. [13] for example). In the case
“when the equality A;(V,) = A% (V.) holds and when the range R(A, V., ) is
closed in BRuV ;) one gets from the valldlty of (1.1) that

R(ApilV)) = R(AF(V)) = B(Va). ‘ S (12)

One knows that for the operators L(D) with constant coefficients the valldlty of (1.2)
implies a connection (a so-called L(D)-convexivity) between the operator L(D) and
the open set V, < R® (cf. [5: pp. 41—59], [10: pp. 57—91] and [7]). I~
In this contrlbumon one deals with the closedness of R(A (G’)) (for p € (1 o0)).
Applying the theory of linear densily defined closed operators (in the Frechet spaces
B2(@)) we show a characterization of the closedness of R( . k((*)) (cf. Section 4.3).
Al%o a characterization for the surjectivity of A, (G is given (cf. Section 4.4). Theo-
“rem 4.11 shows that the L(z, D)-convexivity (cf. [11: p. 391]) together with the .
validity of the inequation (with y > 0) -

(A8 s+ (@) wllyr e = v e~ ==( J1Ew @ (1/E7(©) 35)”"'

\ -
. for all u € D(A,, k¥ (G) ) n &'(G) is a sufficient criterion to imply the sur;cctwnty of - .
,,k(G') Here p' € (1,00) and k™ € J{’ are defined by 1/p + 1/p’ =1 and k' (&)

L(—é) The operator A,, k¥ (G): 59,, kv (G) — J?,, yiv (G) is the maximal reali- -
vation of the formal transpose L'(z, D) of L(x, D) In Sectxon 4.5 we give some appli-
catxons

2. Prellmmanes
1
2.1. For the standard notions about the distribution theory we refer to (5: pp- 1—3‘3]
Let K be the totality of weight functions as in [5: p. 34]. Suppose that p € [1 o0)
- and k € K. Furthermore, let G be an open subset in R". Then the lincar space 2,%(G)
is defined as a subspace of D'(G) such that the distribution T bclongs to B, (G) if
and only if the quantity ,

V_ _ . . i 1 1jp
Tl = ((2 7 f FT) (€) k(snvds) :

is finite for cach y € C,;®(G) (cf. [5 pp- 42—45]). Here F is the Fouricr transform from

the space &’ of all tempered distributions into itself. '
Let {K;} be some sequence of compact subsets. of G satisfying K; — int K;,, and

U K;,= G Choose functlons y; € CP(G) such that zp,(:c) =1, z € K;. Then the space

(G) equipped with the ‘topology defined by the denumerable number of semi-
norms g; such that gj(w) = llyullp. is a Frechet space. Defme new semi- norms
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BE(G) — R by the relation 3
j " ’ -

Then one has p; < p;,, and the topology 7’ defined by the semi-norms g¢; is equiva-
lent to the topology 7 defined by the semi-norms p;. The metnc which defines the
sopology of # k(G) can be chosen to be a mappmg d(-,): BREG) X B%(G) - R
tuch that

y .21 pilu— ) ' : \

du,v) =y — —— .,

) = 2 ST o — ) ~

Furthérmore, the space C,*(G) is dense in the space #)°4(G).

(22).

2.2. Let L(z, D) be a linear‘partial'differentia,l operator ‘with C®(@)-coefficients, that '
is, . . )
L(z, D) = } a,(x) D°,  a, € C®(@).
lotsr '

Define a lincar (dense).operator A, (G): ﬁ‘“(G) - 31 k(G’) with the requlrement
D(A,, H@B) ) = Co°°(G) Ap(G) @ = L(:z: D) @ forp € Cy>(G).
Denote the formal transpose Z( —D)° (a,,(z )) of L(x D) by L'(z, D) Since for
lol : .

..all @, v € C,™(G) and for cach u 6 B,%4(G) one has , ‘
?(Ly) = [ p(@) (L(z, D) y) (x) dz = (L'p) (v) o
- G
and‘ - ) :
@) = gl pllpe, ' o . (2-3)
where ! € N such that supp ¢ = K,_,, one sees that A, (@) is closable in #°%(G):

Here p’ € (1, oo] and k™ € K are chosen so that 1/p 4 1/p’ =1 and k™ (¢) = k( -&)-
The norm H(pH,, ks defmed by :

. ’ ~ - / M .
‘- (— f I(Fg) () k()P df)"" for p < oo,
e ) ™
. = i

sup [(Fp) (£) K(E) | for p — co.

Let A;k(Gj BHG) > J? %t(G) be the smallest closed extensmn of A @G,
Furthcrmorc we defme a linear oporator A #G): B k(G) - B ,‘(G) by

D(A,,,k )) = {u € By k(G | there exists an element f € B%(G)
' such that u(L'(z, D) ¢) = f(¢) for all g € C,™(G)},
A% G u=f B o

‘Then in virtué of (2.3) A #(G) is a closed opemtor and 4;4(G) = A4 %(G) (in other
words, Ap#(G) is an extensmn of A5 «(G)). For the opemtor L(D) = Z a,D° with
. constant coefficients a, € € we obtain lolsr

Theorem 2.1: Let L(D).be the linear partial differential operator with constant
coefficients and let G be an open set in R*. Then one has for p € [1, o0) and k € K the
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eqwz,lity : , . ,
v Apl@) = ARG, €. T (249)
\Proof It is sufficient to show’that Ty (G’) = A, lG). We suppose that u lies in
( k(G)) and that A’# "(G)u=f Letbe O’O such that (F6) (0) = 1. Define 6; € Cy®

through the relation 0,(:1:) = j*0(jz). Furthermore, let the functions p; € C,® (G) be
" defined as in the Sectlon 2.1.- Thenone sces that for each y € C’o°°(G) the convergence

Il ) » 6, = )l + (D) ((p52) * 65) — )lox >0

with | 7 — 00 holds. Hence « lies in D( z,,r(G)) and A,, (@) uw = f, which proves the
theorem ]

. The equality (2.4) holds also when L(:z: D) is a formally hypoelliptic operator with
- C®(G)-coefficients (cf. the regularity result of [5: p. 176]).

3. The dual operator of A, .(G)
3.1. Let ﬁ,, k denote the linear sukspace of &’ for whoseelements » the Fourler trans-
form Fu lies in L} (R”) and the quantity

. = ( 5 f () () k)P ds)

1s finite. Then the mapping v —- |[u||,, ¢ is & norm in B, ;. Equlpped with this norm
B ».k'becomes a Banach space. Using the reflexivity of LP(R") one sees that &, is a
reflexwe space for p > 1. Furthermore the space C,* is dense in B, ;. The dual space
»
P € (1, 09)).
« Lemma 3.1: Suppose that V lies in B, ;. Then tkere exists .a unique v € 3,, WEY
. such that Vo = v(p) for all p € &.

On the other hand, assume that v is in By .. Then the linear form V. & —>C de/med :

Bp.e of By can be characterized in the followmv way (in the sequel we assume that =

by Vo = v(<p) can be uniquely continuously be extended onto.the whole space Bpk- In

- _addition one has |V|| = [ollpr e~ -
«  For further properties of spaces &, we refer to [5: pp. 36— 42]
Let {K;} be a sequence of compact subsets as in the Section 2.1. Denote by &8, k(K )
the subspace of B, ; defined by \

S k(Kj) = By ne'(Ky).

Here ¢/(K ;) is the space of all distributions » € D'(R*) with support (which is denoted
by supp u) contained in K. Since K; is closed in R" one sees that #j, ,(K;) is a closed
subspace of B, ;. Hence B¢ k(K ) is a, Banach space and ﬁ (K )= B Kjn)-
.. Furthermore one has - - : -

k(G)I— Bk 0 E(G) = U A5 K;) .

-

" Equipp the space ‘19 (@) with the 1nduct1ve limit topology of Banach spaces A5 k(K i

‘ (cf [11: pp. 126— 149]) We need the following

Lemma 3.2: Suppose that U lies in the dual space B (G)+ o,‘ the space 3 °8(G),
where p € (1, 0o0) and k € H. Then there exists a unique u ‘€ By 1k~ (G) -such that Ugp
= u(g) for all p € C;™(G).

7
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On the other hand, suppose that wisin B% i~ (G). Then the linear form U: Cy™(G) —C.
defmed by Up = u(ep) can be uniquely contmumwly be extended onto the whole space
B G). ,
Proof:Suppose that U lies in~$'°§(G)+. Then there exist Cc> O'and 7 € N such that
|Uw] < C lyswllp.i for all w € #B%(G) L © o (3.1) -

(cf [11: p. 64]). Define a lmear form U’': &, C by U'v = U('Ulg), where 'Ul(;
denotes the restriction of » on G. Then'in virtue of (3.1) one has

U < C lpllp.e < C iyl ol - forallve u?p.k, (3.2)

" where M, € X is defined as in [5: p. 34). Thus U’ lics in &;,. In view of Lemma 3.1
there'exists an u € &~ _such that U'g —u(q:) for all ¢ € C3. Let 7, € C;™(G) be
such that 7;(x) = 1 for z € supp y;. Then by (3.2) U'p = U’(n;¢) for all p € C;> and
then u = »;u lies in B 15~ (G)..

On the other hand, assume that u lies in cﬂf, Vi (G) Let j€ N be such that pU=1u.
In virtue of (2 3) we obtain ) :

.

|U9’| = |(yyw) @) = |u(p@) < luflpre ool
for all ¢ E Co™(G) and then the proof is complete i
Using general properties of LF- spa.ces (¢f. [11 pp 126—149]) one sees also

Lemma 3.3: Suppose that V is in the dual space B% i+ (G)* of Bk~ (G). Then

' there exists a uniqueé element v € B%(G) such that Vo = v(p) for all € Cy™(@).
Conversely, the linear form V: C’ °°(G) — C such that Vo = w(<p) where w € B (G)

has a unique contmuous extension on By v (G). :

In virtue of Lemma 3:2 there exists a linear bl]cctton A: ﬁ kv (G) — x;,mdj’*
such that . : o

(1) (¢) = ulg) ~ for all p € C;=(G). SN

'Slmllarly by Lemma 3. ‘3 one sees that there exists a linear bl]ectlon x: BHG)
. —> Bpak~ (G)* such that - L

(x0) (p) = v(p)  forallg € Cu>(G). |

!

3.2. Define a linear operator I'¥ (G): B8] (G) — B5 (G) through the requlrement

( i k(G)) ={ve 85 AR there exists an element h e & (G)‘
such that v(L( (z, D) ¢) = h(p ) for all @€ Co°°} ,
T @v=nh. ’

. The connection between the dual operator A, 4(G)*-: Lﬂ;‘_’z(G)" - BR(G)F and the ‘
operator I‘,? e~ (G) is given (for p > 1) in the following '

" Theorem 3.4: The operators A, {(G)* and ]’f e~ (G) SallSlJ the relation I",, Ve~ “(G)
= Ao A5 (G)* o 2.

Proof: Suppose that v lies in D(F,, kY (G)) and that I‘fllk (G) v=~h. Let Vand H
be the images ¥V = iv and H = %h. Then onec has th = v(p) and He = h(p) for all
@ € C,°(G). Hence . we obtain V(A, (@) ¢) = v(L(z, D) ¢) = h(p) = Hp for all
¢ € C, .(G) and then by the defimtlon of the smallest closed’ extensmn A,, (@) of
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A, (G) one sees that V(A,, (@) u) Hu for all u € D( p4(@)). Thus V lies in D(A;_k
(G)*) and A;(@)* V = H. This proves that TE e (@)= A1 o A7 ()0 2. The
converse can be seen Wlth the similar conclusions ) -

4. Closedness of ranges R(A;,(G)) and R(I'y {1+ (G)) .

4.1. We assume further that p lies in the interval (l oo) and that kis in J. The weal'c+
topology in the dual space B24(G)” is a locally convex (Hausdorff) topology defined
~ by the semi-norms

2U) =1UM), ue ﬁ' k(G)
~ The strong topology in B%(G)* is a loca,lly convex (Ha.usdorff) topology defined by
the semi-norms

ps(U) = sup {|{U(w)|}, Bc »#! k(G) bounded

u€B

The following lemma is an immediate consequence of the theory of LF spaces (cf.
[2: pp. 37-53])..

Lemma 4.1: The range R(]’,, kY G’)) 8 closed n By~ (G) if and only if for each
j € N the linear subspace o .

R(r,, e~ (G)) 0 By~ (K,)

18 closed in By, 1k

Let p; be the semi-norms defmed by (2 1) and let d(-, ) be the metric (2.2). Then
one has N

Lemma. 4.2: For each o > 0 there exists a number j(p) € N such that
fu € BUG) | prolw) < of2) |
< B0, 0)i= {u € BHO) |dw,0) < o} - o '
The proof follows by a simple calculation by taking into account that p, < Pin
and that 2 1/2’ =11

Furthermore we need the next ~

' Lemma4.3: Let M be a subset of B5(G)* such that for each u € B%(G) there
exists a constant C, >0 with which i 4

O£ C, TforalUeM. - T 7T T T (4.

Then one can find a constant C > 0 and a number j € N such that /
[Uw)| < C llyjullp.e for all U € M and u € B)%(G).

Proof: In virtue of the Uniform Boundcdness Theorem and by (4.1) there exxsts
a number ¢ > 0 such that .

" sup|U()| =1 for a,ll.u € B0, o).
UeM .
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N

Let j(p) be as in Lemma 4.2. Furthermore let » bein $I°°(G) If pjip)(u) =+ 0, one sees
that (o/4) u/pj (%) lies in By(0,¢) and then |U(u)} < (4/0 Pjter(u). If pjp(u) = 0, one

, sees that qu belongs to By(0, o) with each ¢ > 0 (since pj,(qu) = 0). Hence |U(u)|
< 1/qforallqg > 0, which implies that |U(u)| = 0. Thus one has

4
IU(u)I = — P;(o)(’”') =— Z ”'/’;(o)”r m vl e
L2 =

“where 1 € \ is so large that Supp y; = int K, for all 7 €{1,...,5(). This completeé
. the proof 1 -

. 4.2, A subset M of ‘9‘°°(G)+ is said to be sequentially weak*-closed if it satisfies the
fol]owmg condition : Let {U,) be a sequence on M such that U, — U with some
U € B3%(G)* with respect to the weak*-topology. Then U lies in M We now show

Theorem 4.4: The range R(A;(@)*) is sequentially weak*-closed if and only if the
range R(T'y i+ (@) is closed. .

Proof: A. Suppose that R(]’f,[k (G)) is closed. Let {U,} = {A;k(G)+ W . be a’
sequence such that with some U € B%(G)* one has

Un(w) - U) foreachv € B%(@). . ; T (4.2)
In virtue of Lemma 4.3 there exist C > 0 and j € N with whiehA _
[Ua0)] =C ||1p,v|]p £ for all » € N and v € B (G’) 4.3)

Let u, be a dlstrrbutron in &5 1~ (@) such that Uy = } 1(U,,) and let U ='/“(U)
Then by (4. 3) -

supp Uy = supp vj , . T (4.4)
‘and o
| ) ”un”p'.l/k" < Ol forall = € N. ! y (4.5)
In according to (4.4) therle exists m € N so that {u, |n € N} u {u} = Bk (Km).
Since By v (Kn) as a closed subspace of a reflexive space By, v is reflexive onc sees
by (4.5) that there exrsts a subsequence {u,’} of {u,,} and an element «' of 8% kv (Kp) .
such that : .
V(u,,’) — V(u’) for each V € cﬂf,"l'/kr (Kn)t.

~

4.6) -

-

In view of Mézur’s Lemma one can find elements w,’’ from {u,’} sach that for each
j € N there exist n; € N and «,7 = 0 with which

"1' ) . ) . B . 0
2 aptu,” — =1/ : (4.7)
n=1 p'akY .
and g
n,‘ . .
o =1 for each j € N.
n=l

t

In virtue of Theorem 3.4 the clemcnts uy, lie in R(P,, BRI (G)) and then by the assump-

tion and by (4.7) %’ liesin R( Ak (G)) _Furthermore, in view of (4.6) we have u,’(¢)
— u'(¢) for each ¢ € C;®(@). Hence by (4.2) u =u'. Let w € B 1~ (G) besuch that

IE e (G)w = u. Then one sees that Aw € D(A,,k ) and A, Q)" (Aw) =
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’

B. On the other hand suppose that R( il @) +) is sequentmlly weak*-closed. Let -
{us) be a sequence in R(I'yui~ () 0 Bg 1~ (Km) and w in B5 4~ (G) such .that.
Iy — wllpr,1x~ — O with » — co. Furthermore, let, U, € #)5(G)* and U € 3 ,‘(G)+ )
be defined by U, = 2u, and U = Au. Then due to Lemma ‘3 4 the functional U lles
‘in the range R( 76(@)*). In addition one has

|Un(v) — U = len — wllpraje~ l@merullpe  for a“ v € BUG).

Thls showsthat{U,} is convergmg to U in the weak*-topology and then U A G W
‘'with some W ¢ D(A,, k(G)*) Hence by Theorem 3.4 u lies in R( Ak (G)) This -
completes the proof 1

4.3. In virtue of the general theory of linear densely defmed operators in I‘rechet
spaces we get .

Lemma 4.5 Tke range R( pk(G)) is closed m B ('G)‘z'/ and only if the range
R(A5,(@)*) is weak?-closed in B%(G)*. o
For the proof cf. [1]. In addltlon we have

) Lemma 4. 6: The range R(A,, & G’)*) s weak*-closed in <$‘ Q) if and only if zt is ‘
sequentially weak* -closed. .

Proof: Since Cy®(G) is dense in <§9,’,°°(G) one sees that the spaces $ (G) are- scp-
arable. Hence the convex set R(Ap k(G)*) is weak*-closed if and only 1f it is sequen-
tially weak*-closed (cf. [6: p. 273])

‘Combining Theorem 4.4 and Lcmmas 4. 5 and 4.6 we get

Theorem 4.7: The range R( (G)) 18 closed n <29‘°°(G) if and only of the mnge
R(I’,, Ve G)) is closed in 5.k~ (G)

Remark: The assertion of Theorem 4.7 can be shown also by noting that A: By 1k~ (G)
> ﬁ‘w(G +isa homeomorphism when (210‘“(0)+ is equipped with the strong dual topology. The
contmulty of A is easily seen. For p € (1, oo) the spaces $1°°(G) are reflexive and then ¢$‘°°(G')+
equipped with the strong dual topology is bornologlcal (cf [6: P: 400]) Hence also the contl
nuity.of 1-! can be shown (cf. [12: p. 46]).

Smce A is a homeomorphism one sces that R(4, k(G)+) is strongly closed if and only 1f

R( Sk (G)) is closed. Furthermore, one knows that R(A,,(G)) is closed if and only if
R(A, k(G)*) is strongly closed (since p € (1, 00)) (cf. [1: p. 84]). )

We still glve some characterxzatlons of the closedness of. R( ,',' k(G))
Lemma 4.8: For every v € B We(G)and | € w;, 1,,, v(G) one has (xv) (f) = (}/) (©).

Proof Let v be in B2%(G). Then there exists a sequence {p,} = C,®(G) such that .
n —->vin 4 k(G) and 50 We get :

hm f(tp,,) = (if) (v) for each/ € J@,, Ak (G). - o ,(4.8)

I‘urthermore let {w,,,} = CO°°(R") be a sequence such that llwm — Plpr i 50 with
m — oo. Choose 7 € C;®(G) such that #(z) =1 in an open neighbourhood of supp f.
- Then we have |l7yn — fll .~ —> 0,with m — co. For every n € Nand ¢ € C °°(R")

we obtain .

ty

/(qon)=1if; (9m) (ga) = lim gulm) = Gep) () (49)

N
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/

and - '
|(x@n) (np) — (xv) (ne)|
= |(ngn — nv) (w)l = (s — 10llp.e ”‘p”p'.l/k"
and then .
I(xgn) (f) — (x0) ()] < lIn@n — nollp. Mfllorase - .
Thus by (4.9) and (4.8) we obtain the. assertion l 4
Theorem 4.9: The range R(A;4(G)) s closed in BYG) if and only if

R(TE 1 (6)) ' '

= {1 € Bpan-(©) Vi) =0 for Al Ve x(N(A,, O @10
Proof: The range R( - k(G’)) is closed if and only 1f

R(A,, «(G)*) : R ,

={Fe $1°°(G)+'| Fy=0 forallve N( ,,,,(G))} S (41D

(cf. [1: p. 57]). Supposc that R( (@) ) is closed ,Let f be in R(F,, &+ (@)). Then by

Theorem 3.4 one has Af € R(4;(G)*) and so by (4. 11) (Af) (v) = Ofor allv € N(A,, k(G))

In virtue of Lemma 4.8 (xv) (f) = (4f) (v) = 0 for all v € N(A,, k(G)) Similarly. one

" sees that if f € B%~(G) such that (xv) (f) = 0 -for all v € N(A; (@), then f
€ R(4,, ,,(G)+) and so f € R(I'y. e~ (®). Hence (4.10) is valid. .

" . On the other hand, in the same way one sees that (4.10) implies (4.11) and so the

validity of (4. 10) implies the closedness of R(A,, k(G)) Thls finishes the proof | .

‘Remark: Bccause R(A,, k(G)) is c]osed if and only if.
R(A;4(6)) = {/ € BRUG) | V(f) = 0 for all Ve NAZ(O) .

(cf [l]) and because by Theorem 3.4 one has
N(A;(G)*) = )'(N(F;t‘,l)k'(a))) o

one also sees that R(//l;_,,(G)) is closed if and only if the relation v .

_ R(AGH®) = {1 € B19%6) | V(1) = 0 for all' V € 2 (N(If 10 (G)))}
. holds. '

4.4. This section considers the validity of the relation

v

} R(A54(@) = B2%(G). . N
Let R(A;,,(G)) denote the closure of R(A;k(G)). We begin with
. Lemma 4. 10' The .rélation

RA0) = @%@ S | (4.12)
Nis valid z/ and onl y if the relation ' ~ .
. NI (G))—{O - - - (4.13)

“holds.
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~
N

- A

P\r_oof:\"In virtue of Theorem 3.4 one sees that -
N(A56)*) = A(N(TF e~ () o (4.14)

Suppose that (4.12) holds. Let u lie in N( Ak (G’)) Forevery g € B 4(G) one can
find a sequence {g,} = R(A,, k(G)) such that g, — g in B}%(G). Hence we obtain by
(4.13) ‘

(Au) (g) = lim (Au) g,, = O forall g E ﬂ‘“(G)

n—00

. ahd then u = 0. This shows the vahdity of (4.13). . :
# Conversely, suppose that (4.13) is valid. Assume that (4.12) doesn’t hold. Then
one can find an element U from &°%(G)* such that U 3= 0 but U(g) =0 for.

every g€ R( ,,k(G)) (cf. [11: pp. 181—194]).. Hence U lies in N(A,,k(G'))
=2 (N( Sk G))) and U + 0 This is a contradiction I

Combmmg Theorem 4.7 and Lemma 4.10 we obtain : 7.

Theorem 4.11: The 7elatzon R(A,,_,,(G)) = B°UG) ts valid if and only if the follow .
.mg two conditions hold:

R(rE s closed n 69 G
( vtk ( @) v (Q) } (4.15)

NI () = 0.

The following two criteria are sufficient to impiy the validity of (4. lo) For cach

j'€ N there exists an m € N .such that the inclusion supp 1",, k(@) u K;
plies that supp v = K,, and, with some y > O

”I“,, Ak (&) u”,, ”,‘v = y [[llpr.1/k ¥ for all u 6 D(F,, kY G’))

4.5. We shall cstabllsh some apphcatlons in the case when p=2and k=1 Denote
the open ‘ball B0, R), R > 0, by B. Let B, (with I € N, I > 1/R) be a subset of B,
defined by B, = B(O R — (l/l)) Furthermore, let L3™: Lyo(B) — Ly(B) be the mini-

mal extension of 'L'(z, D) in L,(B). We show -

Theorem 4.12:, Suppose that the partial differential operator L(z, D) with C®(B)-
" coefficients obeys the following conditions:

(i) I'#H(B)v = Ly v for all v € D(I}%(B)),

(i) there exist constants C, > 0 and Cy = 0 such that

IL (z, D) @lly := L (2, D) glla,1 = C1 llglle.x~ — C: llpllo . (4~1G) ,
for all @ € Cy>(B), where k™~ € K such that k™ (&) — oo with |&} —> o0,
(iii) for each n € R™ there exist constants C > 0.and ty-= O such that - - - -*

et glly < C [le"» L’ (z, D) glly ' : (4.17)

'for all ¢ € Cy™(B) and t = ¢,.
" Then the range R(A;, (B) ) is closed n o%’ °¢(B) = L*°(B).

" Proof: A. Let v be in D(Lg"); then there exists a sequence {p.} = CP(B) such that
llgw — vllo + IIL'(x, D) @ — Lg v]ly = 0 with 7 — oco. Thus in virtue of (4.17)

et vlly < C |let Lol  forallv e D(Ly Yandt =t,. (4.18)
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Suppose that Liv lies in &5 ,(Bn). Let 2, be in B\ F,,.;, and let « be in the interval
(0, 1) such that B —.(1/m) — a(R = (1/m + 1)} < 0. Furthermore, choose & > 0
such that (o, z) = « |7,|2 for all z € B(z,, ¢) and that B(z,, &) = B. "Then we obtain
by (4.18) ,

PRUENE ( ) |v|2)‘/2 < ez lly < Cy, ||tz Ly vl
: Blzo.2) :
< O, etm(R=Im) Lo,
and so '
(,J 1oy = Ca el (R=ttim)=o{ R=tlm+ 1)) || L]
¢ ) B(zo.€) N\

" Letting t — oo we find that »(z) = 0 a.e. in B(z,, ¢). Hence v lies in B, (Bms)-

B. In virtue of (4.16) the range R(L}) of L is closed in Ly(B) (cf. [9]). Suppose -
‘that ]"fl\(B) v, = fin wg_l(Em). Then by (i) we have that. Ly v, — f i\rlL2(B) and so f
lics in R(L}). Let v be the solution of L v = f. Since f lies in % (B, the Part A
implies that v belongs to 85 ,(B.,). Hence f lies in R(ﬁﬁ(B)). The assertion follows
from Theorem 4.7 § | . .

“Remark:. Suppose that there exists a k € X such that IIL'(z, D) @lly < Cljgllp, for all -
“@ € Cy™(B) and D(F;ﬁ(B)).C B k- Then (i) holds. Thc operators with constant coefficients sat-
isfy the condition (i) (this follows from Theorem 2.1, for example). The inequality (4.16) holds
‘for the operators with constant coefficients if and only if L7(§):= ( z IL(")(E)I?\)”2 = yk~ (&)
) o : . . la| ST _ :
with y > 0 (cf. [9]). The assumption (ii) can be replaced with I1L (z, D) @lly = ¥ liglly for all
@ € Co™(B) (which holds for all operators with constant coefficients, since B is bounded).

.

Furthermore we have

Theorem 4.13: Let G be a bounded open set in R and let L(D) be a non-trivial
- partial differential operator with constant coefficients. Then we have :

e glly < C le! " L(D) gllo
for all g € C(G), t.20andneRe. A
Proot: Let 7 € R®and let ¢ g 0. Then we obtain for ali p-€ Co™(@) and £€ R"'
) |F(etg) (£)] = | f etV gp(y) e—_i(e',w dy| '
Hn

/

£) (€ +itp)] : SR
< C(L) [ I(£9) (§ + ity + 0) L + it + o)| do

lels1” - .
= C(L) [ | F(eo "+ L(D) g) (8)] do,

= lol =1

¢

where £ is the Fourier-Laplace transform of ¢ and where do denotes the Lebesgue

 measure in R?* (cf. [12: p. 186]). By C(L) we denoted a constant which depends only
on L(D). Let ¢ € Cy® such that ¢(z) = 1 for all z € G. Thenone has by the Parseval
Theorem S :

fle® ]l gO(L)( f 1)“2 lleie¢|ly .|let ' L(D).plly
lolS1 . .

(cf. \[5: p- 39]). In virtue of the Paley~Wiener Theorem we find that et gl = C
or all jo| <1 (cf. [9]) and then the proof is ready # IR

-



K "-"Weha_ve‘ T

\
.1-10. " J. TeErRVO ‘
A\
Let G be an open set in' R® and let L(z, D) be a partla] differential. operator w1th

C>(G)-coefficients. Furthermore, let I denote an open interval in R. Using the idea
.of [8: pp. 358— 362] we defme an operator L, in C, °°(I X G) by

(Lqu) (s, 2) = & )m/ f f L, & +ilel ) (Fu) (r, & st de dg,

0.
-

where F is the Fourier transform in R x R*. ) v
. Theorem 4.14: Suppose that for each n € R" there exist‘sba constant y > 0 such that
(Lgullo := Lzl xe %‘}'Z; IDJ=IL (z, D) ull T (419)
. as$
‘ for all u e Co™(I X @), where L*)\(z, &) = 6‘“'/65‘ Lz, &). Then for each n. € R" there
exzst constants C > Oandity =20 such that.

Z‘tral ||eun L) (2, D) (p||0 < O |l Lz, D) el . . v - (4.20)
a0 .. . . .

/orallcpEC”(G) andz>go |
. Proof: A: Choose a functlon ¢ € C,>(I) \ {0} and define

. ©uls, ) = P(s) plx) ?ila eltna) :

" where 9 € C™(G), t = 1 and 5 € R®. Then we have

(Ivv ) (1, &) = ( f¢(8) elts g—its ds) ( }'(p(x) el(;/.z) e—itt.2) d:c)

R

4

= (F19) (v — ) (L) (£ + itn),

where F, is. the Fourier transform in R. Hence we obtam by the Taylor s formula,

(Lqu) (s :c)

f f Lz, f+n|r| " (o) (¢ + i) (Fd) (z — ) e'«“w)drdf

R R* ™

= ((—2—%— f L@, &+ itn) (£) (6 itm) e "dé)( f (Fid) (x — 1y dr)
. . , 4

(2'!)"‘

| o . o
\ T ( f ’{‘f’(% £+ ity) (Lg) (& + ity) €= d§)

N X ( f,il“':’]d(i-rl —_ t)iﬂl (Fld)) (T — t)'e‘." dT)

R . .

1 fL‘“’(x £ + ity) (f<p) (& + itn) etz dé

(2a)"

(211);'/‘L(a)£x &) (Fo) (5) eité— igq 2) d§

= (L_(a)(x’ D) q,) (z) ettn2)
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(cf. [11: pp. 309--310]) and _ | . -

| [ itelp(jz] —o)iet (F,d)) (r—1) e“’ dr

) < pp| f l(z — &)l (Fyd) (r — B)] dr = ] D19,

_Thus we obtain . ' N

ILyully = [l L(=, D) @llo l1llo

. +2— Z’ In"l m(I) | D], 1\Ile“” L)z, D) #o .

T ak0
‘ u\ 9 ’ 4 lal ||ettn) Tta) ‘
= et L{z, D) ¢lly ||¢||oT é;l ||le“t? LNz, D) ¢llo, (4.21)

where m(I) is the measure of I and where C is large enough.

B. We now estimate the right-hand side of (4.19). For each o = 0 we gep
ID1(6 ) — 6 el < || T (1) (DI7H9) e et

0

4

< Z (|a|) ”D Ja| — kd’“o t" S C tlalt— . \

i

and thep
Z ”DamL(G)(x: Dz) u"o

a%0

= X IDJe (b &)l IL(a, D) (p ¢ ’)IIo .

a0

= é.; ei(lblle — Cat™) HL‘“’ z, D) (9 e"”"‘)llo
> .02 glel ||L(a)(x, )"(q) e“""))”o ' T ‘(4.22)'.

a*o \

(with ¢ > O) for allt large enough (sa.y t=t)). Letg = q) ettn), Then we find that

\

P Ile“” ’L‘“’(x Dy@ge My

a0
1 iy \
, =X 1o+ 8| L+ Dz, D) gl -
a0 igr—ie B! ‘ T
< ¢ Z Lz, D) glly -
K a+0

and so by (4.22) (with a suitable C > 0)-

2 IID felLt)z, D) ully 2 c Ztl“' (et ’L‘“’(z D) ¢llo ) (4.23)
- aspl ‘

for't = t,’. Hence one fmds by (4.19), (4.21) and (4.23)'that
Ild>ll le” ' L(z, D) ¢lly = C Z tiel [l L)z, D) llo

for t Iarge enough (say t = &) ThlS completes the proof | : ' )
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Remark: Suppose that there exists a & € No® such that Lte)}(z, D) = ¢, where ¢ € C®(B) so
that |g| = y > 0. Then one gets (4.17) from (4.20).

From the theory presented in [8: pp. 358 —370] one can show sufficient algebraic conditions
for the validity of (4.19).

Suppose that L{z, D) is an elliptic partial differential operator with real- dnaly tic and C°°(G)
coefficients. Then using the Holmgren’s uniqueness Theorem (cf. [8: p. 358]) and the method
we applied in the proof of Theorem 4.12 one sces that B(A5,(G)) is closed when @ is an _open
bounded set in R®, In the same way (by using [8: Cor. 2.9/p. 369) one sees that R(Az UG)) is
closed when L(x, D) is a second order elliptic partial differential operator with C%(G)-coeffi-
cients such that o is real-valued for |a| = r and when G is an open bounded set in R":
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