
Zeitschrift fUr Analysis 
und ihre Anwendungen 
Ed. 7(2)1988. S. 99-112 

On Solvability of Linear Partial Differential Equations in Local Spaces G) 

J.TERVO  

Es sel L(x, D) =	a 0(x) D' ein linearer partieller Differentialoperator mit C°°(0)-Koeffi. 

olr 

zienten a0 , wobei o ein offen'es Teilgebiet in R' ist. Ferrier bezeichne A;.k(G) die minimaic abge-. 
schlossene Realisierung von L(x, D) in dem lokalen HOrmander-Raum °(G). Es wird die Ab-
geschlossenheit der Wertebereiche des Operators Ak(G) und B(ç(G)) des dualen P.

- Operators n;(a) untersucht. Unter anderem werden notwendige und hinreichende Bedingun-
gen- für die Abgeschlossenheit von R(1; k(G)) angegeben. Die. Surjektivität des Operators 

wird ebenfalls charakterisiert. Als Anwendung wird eine hinreichende Bedingung fur 
die Abgesclilossenheit von R(A 1 (B(O, B))), wo B(O, B) die offene Kugel in R" ist, tinter ge- 2. 
wissen Apriori-Abschätzungen für den formal transponierten Operator'L'(z, D) von L(x, D) 
hergeleitet.  

rlycTb L(x, D) = E a0(x) JY JIMI-letti-Ibitt AH44e lpetiunaabimft onepaop C {acTIILiMH npoua 
Ior 

BojuibiMB, re a0 - C(G)-xoltuneHTai U 0 - OTXpLJTaH oOJlacrb B R". 06o3Hauri 
A; k (a) MUH14M3ThlIYJO 3aMHlIyTylO peaiaiiiio onepaopa L(x, D) B J!o}aJlbHoMnpo- 
CTpaiiCTi3e Xepiaiiiepa MccJ!eyeTdn laMIcHyTocm o61lacTei ana'ienufl R(Ak(0)) 
oneparopa A;k(°) H R(A;(G)) iyamiioro oriepaopa A(G). Ja10TcH meway flO41M 
IIeo6xo1a1b!e 14 AOMTOtlubie YUL01114H 3M}fl1T6CTI1 R(A, 1(G)). XapacTepn3yeTca Ta}o4e 
cyp1eFcTi1BH0CTb onepaopa Ak(0) Hai' npmaeeiae AaeTCFI gocaro'rnoe ycrioue 3aMscHy -

Rç4c1 (B(o, B))), me B(O, R) oTHpIIm1ft wap B R, upu nesoTopix arlpltopHblx. 
oEeHKax uiI 40psiamH0 TpaHCnonMpoBailHOiO onepaopa L'(z, D) K L(r, D). 

Let L(x, D) .=.	a0 (x) D' be a linear partial differential operator with COO  

a 0 , where 0 is an open subset in R'. Denote byAk(G) the minimal closed realization of L(x, D) 
in the loéal Hormander space °(0). The closedness of the range R(A k(G)) and of the range 

of the dual operatorA(G) is considered. Among other things, one shows necessaryp.k
and sufficient conditions for the closedness of R(A k(0)). The surjectivity of A;k(G) is also 
characterized: As an application a sufficient condition for the closedness of R(A 1 (B(O, R))), 
where B(O, B) is the open ball in R', is established, when certain a priori estimates for the for-
mal transpose L'(x, D) of L(x, D) hold.	.	5	

0 

1. Introduction 

Let G be an open subset in R' and let L(x, D) be a linear partial differential operator 
with C(G)-coefficients. Furthermore, denote by,°(G) the local subspace of the 
distribution space .Zl'(G) for whose elements T it holds 

f IF(VT) () k(E)J d < oo	for all v E C0(G),  

where F: °' -- ' is the Fourier transform and where k is chosen from a class X of 
weight functions. Then one is able to construct the minimal closed realization A.k(G): 

7 *	.
-	0/
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—* °(G) and the maximal (closed) realization A'k(G):	°(G) — 
of L(x, D). The operators A(G) and n;4 (G) are the same when L(D) = L(x, D) has 
constant coefficients (cf. Theorem 2.1). The identity of the operators A P-AG) and 
A'# (G) is an analogical notion with the essential maximality of 5i(x, D) considered in 
the global case (cf. [3, 4]). 

There are several kind of (algebraic) criteria under which for each E C0 00 ( V) the 
distributional equation 

A*k(Vx)u = I',	u E	 (1.1) 

is solvable in some neighbourhood V , .of x € G (cf. [13], for example). In the case 
when the equality 4,k(V)l = A'p*k(Vx) holds and when the range R(A k(V)) is 
closed in	°(V) one gets from the validity of (1.1) that 

R(/1 k ( V1)) =R(A(V)) =	 (1.2) P.
One knows that for the operators L(D) with constant coefficients the validity of (1.2) 
implies a connection (a so-called L(D)-convexivity) between the operator L(D) and 
the open set V ., ( It's (cf. [5: pp. 41-591, [10: pp. 57-91] and [7]). 

•

	

	In this contribution one deals with the closedness of R(A.(G)) (for p € (1, oo)).

Applying the theory of linear densily defined closed operators (in the Frechet spaces 

• °(G)) we show a characterization of the closednessof R(A k(G)) (cf. Section 4.3). 
Also a characterization for the surjectivity of Ak(G) is given (cf. Section 4.4). Theo-
rem 4.11 shows that the L(x, D)-convexivity (cf. [11: p. 391]) together with the 
validity of the inequation (with y > 0) 

1A , . /k - (G)	Ip',i/k	V Ikli,1Ik	
( 
I I) () (1Ik))IP' d 

R-

) 

" 

n '(0) is a sufficient criterion to imply the surjectivity of - for all u E D(A ,i/k " (0))  
A k(0 ) . Here p' € (I, Oo) and kv E X are defined by I/p + l/p' = 1 and k"() 

*	 be	 joe 
= k(—). The, operator A

' 
,9 Y9' ,l/k (0) -. is the maximal reali- 

zation of the . formal transp'ose L'(x, D) of Px, D). In Section 4.5 we give some appli-
cations. 

2. Preliminaries 

2.1. For the standard notions about the distribution theor y we refer to [5: pp. 1-33]. 
Let Xbe the totality of weight functions as in [5: p. 34]. Suppose that p E [1, co) 
and k E X. Furthermore, let 0 be an open subset in It'. Then the. linear space 

/	..	is defined as a subspace of 2Y(G) such that the distribution T belongs to 0 0C (G) if 
and only if the quantity	 •	. 

1	 •-	i/p•	-	...-- 
II TII.k :=	 .n/' IFT) () k(flI P d)	 -. 

is finite for ekch , E c000 (G) (cf. [5: pp. 42-45]). Here F is the Fourier transform from 
the space ' of all tempered distributions into itself. 

Let {K} be some sequence of compact subsets of 0 satisfying K,	mt K, 1 and

UK, = G. Choose functions yj E C°(G) such that (x) = 1, x  K,. Then the .space 

°(G) equipped with the topology defined by the denumerable number of semi-
norms qj such that qj (u) = IIVIUIIp.k is a Freehet space. Define new semi-norms
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p,:	G) —* R by the relation	 S 

Pj(U) =	ftvju JI .	 (2.1) 

Then one has p, pj,l and the topology r' defined by the semi-norms q j is equiva 
lent to the topology r defined by the semi-norms p,. The metric, which defines the 
sopology of	°(G) can be chosen to be a mapping d( . , •): °(G) x	—* R P,k
tuch that	-

1 •(u—v' 
d(u,v)='—	 /	 (2.2), 

2' 1 + p,(u — v)	 - 

Furthermore, the space c000(G) is dense in the space 

2.2. Let L(x. D) he a linear partial differential operator 'with C00(G)coefficients, that 
is,

L(x, D) = f a0(x)D',	a0 E C00(G). 
IaIr 

Define a linear (dense), operator A,fr(G):,°(G) —	°(G) with the requirement 

D(A k(G)) = C,- (G)	49fr(G) q = L(x, D) T	for? E C0°°(G). 

Denote the formal transpose ' (—D)° (a0 (x) (•)) of L(x, D) by L'(x, D). Since for 
oI:-!:r 

all T , '.E C°°(G) and for each u E	°(G) one has 

:=f q(x) (L(x, D) V) (x) dx = (L+) (is)  

and

frpIIp'.i,	IV'1 UIJp.k,	 +•	 •,	 (2.3) 

where 1 E N such that supp	K1_1, one sees that Ap k(G) is closable in	(G)

Here p' E (1, co] and k E X are chosen so that i/p + l/p' = 1 and k () = 
The norm I q I,.k is defined by 

/ 1  
j 

r 
(- I (Ep) (fl k()IPd

)11p	
for  <00, 

L(2')  
II9Ip.k =	\	R" 

sup I(Fq) () k(^)j	 for p= 00. 
tERn 

Let A.k(G):	0(G)	 ,°(G) be the smallest closed extension of Ak(G). 
• Furthermore we define a linear operator i1,4 (G): 3,°(G) —k ,°(G) by 

D(A'(G)) = {u E	0 (G)l there exists an element / E	0(G) 

such that u(L'(x, D) p) = f(p) for all p E 00 00 (G)}, . 

-Then in virtue of (2.3) A(G) is a closed operator and A.k (G)	A'# (G) (in other
P.
words, A'# (0) is an extension of A.k(G)). For the operator L(D) = + a0D 'with 
constant coefficients a 0 E C we obtain	 '	IoIr 

Theorem 2.1: Let L(D) be the linear partial differential operator with constant 
coefficients and let 0 be an open set in It". Then one has for p E [1, oo) and k E X the
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equality

	

,AP.k(0) = fl'*(G)	 (	 ( 2.4) 
Proof. It is sufficient to show' that A'# (0) c A.k(G). We suppose that u lies in 

and that A'(G) u = j. Let 0 E Co such that (FO) (0) = 1. Define 0 E C0
P.through the relation 0,(x) = j'0(jx). Furthermore, let the functions	E Q01 ( G) be 


- defined as in theSection 2.1. Thenone sees that for each p E G0 (G) the convergence 

II u) * O - u)IIp.k + Ih4L(D ) ((V u) * O) -  

with	co holds. Hence u lies ' in D(A.k(G)) and A k(0) u = f, which proves th	- 
theorem I 

The equality (2.4) holds also when L(x, D) is a formally hypoelliptic operator 'with 
C00 (G).coefficients (cf. the regularity result of [5:'p. 176]). 

3. The dual operator of A(G) 
3.1. Let V,,k denote the linear sulspace of J" for whose elements u the Fourier trans-
form Fu lies in L(R) and the quantity 

I

	R.

 lip 

IUIIp.k	
( 

1	

.! 
(Fu) () k()I d) 

is finite. Then the mapping u --> RU11p,k is a norm in p.k: Equipped with this norm 
, k becomes a Banach space. Using the reflexivity of L7'(R') one sees that p.k is a 

reflexive space for p> 1. Furthermore the space C0 is dense in	The dual space 
of	.k can be characterized in the following way (in the sequel we assume that 


P E (1, co)). ' 

i Lemma 3.1: Suppose that V lies in	Then there exists ,a unique v E 
such that 	= v(q) for all q' E X. 

On the other hand, assume that v is in p'.11k .. Then the linear form V: cT	defined

by Vq. = v(q) can be uniquely continuously be extended onto the whole space p.k• In 

	

-addition. one has II V = IIvIIp.11k' .	 . 
For further properties of spaces LRp.k we refer to [5: pp. 36-421. 

	

Let {K,} be a sequence, of compact subsets as in the Section 2.1. Denote by	k(1j) 
the subspace of	defined by  

=	n  

Here e'(Ki) is the space of all distributions u E .Zl'( Rtl ) with support (which is denoted 
by supp u) contained in K,. Since K, is blosed in R' one sees that . k(KI) is a closed 
subsace of	-Hence LRc k(K) is a, Banach space and	.k(Kj)	k(Kj+I). 

-.
 

-Furthermore one has	-. -	-	-.	..-..	--	'-	'-•	. 

p.k(0) := L99p,k n e'(G)=U LAKj). 

	

- Equipp the space"k(G) with the inductive limit topoloy of Banach paces	k(KJ)

(cf: [11: pp. 126-149]). We need the following 

• -	Lemma 3.2: Suppose that U lies in the dual space,°(G)' of the space 
where p E (1, cc) and k E X. -Then there exists a unique u E '.1/k" (G) such that UT 

	

u() for all q E c000 (o):	-

/
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On the other hand, suppose that u is in '.1/k (G). Then the linear form U: C0 (0) -+ C. 
defined by Up. = u(p) can be uniquely continuously be extended onto the whole. space 

Proof ,: Suppose that U lies in°(G). Then there exist C> 0 and j E N such that 

Uw ^S C 1 1VjW11p.k	for all w.E	°(0)	:	 (3.1) 

(cf. [11: p. 64]). Define a linear form U': Wp . L. --* C by U'v = U (vI), where vc 
denotes the restriction of v on G. Then-in virtue of (3.1) one has 

•	IUVI	C IItPjVIIp.k	C IIV'jIIt,M II vI,,k	for all y E	 (3.2) 

where Zlffr E Xis defined as in [5: p. 341: Thus U' lies inIn view of Lemma 3.1 
there exists an u E p.1/k such that U'q= u(q) for all q E C°. Let , E C'°((?) be 
such that (x) = 1 for x E supp V'j• .Then by (3.2) U'q == U'(ç) for all ç E C0 and 
then u = mu lies in .1Ik" (G). 

On the other hand, assume that u lies in Z)1/k (0). Let j € N be such that lp,u = u. 
In virtue of (2.3) we obtain 

IUqI = ftu) ()I	Iu(ff)J	IIU tp.IIk' IItPjWIIp,k 

for all 92 E C0 (G) and then the proof is complete I 

Using general properties of LF-spaces (6f. [11: pp. 126-149]) one sees also 

Lemma 3.3: Suppose that V is in the dual space	1fk" (G) of ''.i/k (C). Then 
there exists a unique element v €,°(G) such that Vq = v(q) for all q E C0(G). 

Conversely, the linear form V: C000(0) -- C such that Vtp = w(9') where w E	Q) 
has a unique continuous extension on W1, IlL. v (C).	 - 

In virtue of Lemma 3:2 there exists a linear bijection A:	Ilk (C) -. 

such that

().u) (q,) = u(9') -	for all p € C0(G). 

Similarly by Lemma 3.3 one sees that there exists a linear bijection : 
P'.1Ik (0) such that	 S 

(v) (q') = v(9')	for all 9' E C0°°(0). 

3.2. Define a linear operator P k(G) : '2p,k(G) - 21. L.(G) through the requirement 

= {v € . k (G)I there exists an element h E	k(G) 
such that v(L(x, D) q, ) = h(p) for all 99 € Co'), 

The connection between the dual operator 4k(GY.: 0 (G) --	G) and the
P.
operator F j/k' (0) is given (for p > 1) in the following 

Theorem 3.4: The operators A,k(G) and J', 1 /k'(G) satisfy the relation rP ..I,k V (C) 
= A-' o A;. k(o)' ° A. 

Proof: Suppose that v lies in D(T' .L ,k (G))and that 1 l/k' (0) v = h. Let V and H 
be the images V = Av and H = 'M. Then one has Vçv = v(q) and Hp h(9') for all 

€ C°°(G). Hence. we obtain V(A. k(G) ) = v(L(x, D) ) = h(9') = H9 for all. 
q' E C(G) and then by the definition of the smallest closed ext&nsion A,k(G) of
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-	Ak(G) one sees that V(A; k(G) u) = Hu for all u E D(A k(G)). Thus V lies in D(A'k 
(G) + ) and A, k(G) V = H. This proves that I' ,1 /k' (0) c: A' o A.k(G). o 2. The 
converse can be seen with the similar conclusions I	 - 

4. Closedness of ranges R(A,k(G)) and	(G)) - 

4.1. We assume further that p lies in the interval (1, co) and that k is in X. The weak-
topology in the dual space °(0 is a locally convex (Hausdorff) topology defined 
by the semi-norms 

p(U) = I U(u)I,	u E 

The strong topology in	is a locally convex (Hausdorff) topolgy defined by 
the sei-norms	 S 

p5(U) = sup {IU(u)I},	13c	0(Q) bounded. 
-	 uEB 

The following lemma is an immediate consequence of the theory of LF-spaces (cf. 
12: pp. 37-53]). 

Lemma 4.1: The range R(PI/k-"(0)) is closed in	'i/k (0) 
if 

and only if for each 
j E N the linear subspace	 . 

•	 i,Ir*	,cv'\	zc	Ii' 
LIL p'.1/k YJ I,I	'-'p',I/k	-'j 

is closed in 

Let p, be the semi-norms defined by (2.1) and let d( . ,.) be the metric (2.2). Then 
one has	 - 

Lemma 4.2: For each > 0 there exists a number j() E N such that 
•	 {u E	G) I Pj (U) </2} 

B(O, o) := {u E	°(G) d(u,) < }.. 
•

	

	The proof follows by a simple calculation by taking into account that p, 
and that E1/2'= ii 

•	Furthermore we need the next	 •	 . 

/ Lemma 4.3: Let M be a subset of	°(G) such that for each u E	0 (G) there

exists a constant C >0 with which 

- - -

	

	 IU(u)LC	for all U  M;	 '	(4.1)


Then one can find a constant C > 0 and a number i E N such that 

IU(u)I ;5 C IIv uIP.k	for all U E M and u E 

Proof: In virtue of the Uniform Boundedness Theorem and by (4.1) there exists 
a number g > 0 such that 

SUP I U(u)I ^ 1	for all u E Bd(O, ). 
UEM
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Let j() be as in Lemma 4.2. Furthermore, let u be in,°(G). If p,(u) == 0, one sees 
that (14) U/P)(p) (U) lies in Bd(0,) and then I U(u) (4/o) p (Q) (u). If p(u) = 0, one 
sees that qu belongs to Bd(0, ) with each q > 0 (since p ( Q) (qu) = 0). Hence I U(u)I 

11q for all q > 0, which implies that IU(u)I = 0. Thus one has 

4	47(Q)	 . 
•	I U(u) I	- j(Q) (U)	- Z JI t IIi.c II1PIUIIp,k 

-	 - 

where 1 E N is so large that supp	mt K 1 for all j E 1, ..., j()}. This completes 

the proof I- 

4.2. A subset .111 of °(G) is said to be sequentially weak-closed if it satisfies the 
follocving condition: Let { U} be a sequence on M such that U8 - U with some 
U E °(G) + with respect to the weak-topology. Then U lies in M. We now show 

Theorem 4.4: The range R(A k(G)) is sequentially weak4-closed 
if 

and only if the P. 

range R(rlI Ik (G)) is closed. 

Proof: A. Suppose that R(P lfk (G)) is closed. Let {U 8} = A. k(G) W8} be 'a 
sequence such that with some U E °(G) one has 

U8 (v) — U(v)	for each v E(4.2)


In virtue of Lemma 4.3 here exist C > 0 and j E N with which 

1U8 (v)I	C IIjV IJp.k	for all n E N and +v E	1.k	 (4.3) 

Let u, be a distribution in	Ilk. (0) such that u,= 2- 1 ( u8) and let u = 2'(U). 
Then by (4.3)	 0 

supp u,, c supp p,	 (4.4)

and

iJUnIIp'I/k	C I1rp	 for all n E N.	 /	,	(4.5) 

In according to (4.4) there exists m E . N so that iUn I n E N} u {u}	(Km) 
Since	';1/k (Km ) ag a closed subspace of a ref leive space p,Ifk is reflexive one sees

by (4.5) that there exists a subsequence {u8 '} of {u,} and an element u' of o • i,i ic (Km) 
such that	 - 

V(u8 ') - V(u')	for each V E i9 .I Ik V (Km )+ .	-	 (4.6) 

In view of Mazur's Lemma one can find elements-u 8 " from {u,'} such that for each 
j E N there exist n5 E N and a,i 0 with which	•

- 

	

- u'	•	1/j	 (4.7) 
n=I	 p.I/kV 

and
nfl •	 - 

i	for each jEN. 
nI 

In virtue of Theorem 3.4 the elements u8 lie in R(f' .I/k V (0)) and then by the assump- 
tion and by (4.7) u' lies in R(1' .I1 ,V (G)). Furthermore, in view of (4.6) we have u8'() 
— . 0 '(q) for each 9) E C0 (0). Hence.by(4.2)u=u'. Let w  .1/kV(G) be such that 
r,YI/k V (G)W = u. Then one sees that AwE D(A k(0) + )' and itk(G) (2w) = U.



106	J. TERVO 

B. On the other hand suppose that	 is sequentially weak'1 -closed. Let' 
{u} be, a sequence in R(P .1 /k (G)) n ''.1/k (Km ) and u in	i/k (G) such that 
lu,, — Ullp 1 Ik v -^0 with n '-* co. Furthermore, let, U. E °(G) and U E °(0) 
be defined by U. =,)u,, and U = Au. Then due to Lemma 3.4 the functional U. 1ie 

In the range R(Ak(G)1). In addition one has 

I U,,(v) - U(v)l	II	— UIIp. ,,/ k v lIlPrn+lUlIp.k	for all v E .°(G) 

This shows that {U} is converging to U in the weak'4  -topology and then U = Ak(G) 4-W P. 
with some W E D(Ak((;)). Hence by Theorem 3.4 u lies in R(f7.1/k - (G)). This P. 
completes the proof U 

4.3. In virtue of the general theory of linear densely defined operators in Frechet 
spaces we get  

Lemma 4.5: The range R(A k(G)) is closed in	°(G) if and only 'if the range

R(A(G)'4-) is weak-closed in,°(G)'4. 

For the proof cf. [1]. In addition we have 

Lemma 4.6: The range R(A.k(G)'4') is weak4- -closed in °(G) if and only if it is p,k
sequentially weak -closed.  

Proof :Since G000(0) is dense inR p̀ c one sees that the spaces (G) are . Sep-
arable. Hence the convex set .R(A'k(G)+) is weak'4--closed if and only if it is sequen-
tially weak-closed (cf. [6: p. 273]) I 

Combining Theorem 4.4 and Lemmas 4.5 and 4.6 we get 

Theorem 4.7: The range R(A' k(G)) is closed in .°(G) if and only 'if the range 
R(P .l jk -' (0)) is closed in Z . I/k v (0).	- 

Remark: The assertion of Theorem 4.7 can be shown also by, noting that A:	'. ilk ' (G) . Remark:
 is a homeomorphism when . °(G)+ is equipped with the strong dual topology. The 

continuity of A is easily seen. For p E (1, co) the spaces d°(G) are reflexive and then 
equipped with the strong dual topology is bornolôgical (cf. [6: p. 400]). Hence also the conti-
nuity-of A-' can be shown (cf. [12: p. 46]): 

Since A is a homeoniorphism one sees that R(A k(G)+) is stro'ngly closed if and only if 
R( l'IIk (a)) is closed. Furthermore,, one knows that R(A'k(G)) is closed if and only if 
R(flk(G)'4-) is strongly closed (since p E (1,	)) (cf. [1: p. 84]). 

We still give some characterizations of the closedness of.R(Ak(G)). 

Lemma 4.8: For every v E .°(G) and f E	"1fk (G) one has (cv) (/) = (1/) (v). 

Proof: Letv be in,°(G). Then there exists ,a sequence p,,}	G(G) such that 
q,,' — v in	G) and so we get 

•	
- limf(q,,,) = (2/) (v)	for each  6..,,kv(G).  

Furthermore, let { lpm} O(W)' be a sequence such that 11Pm - I iIp',Iji "-* 0 with 
m -- co. Choose 77 E C0°°(G) such' that 1)(x) 1 in an open neighbourhood of supp f. 
Then we have [,,,'— fliP' /k' -^ Owith m --> co. For every n. E N and E C0(R") 
we obtain	 - 

= urn ( ,m) (p,,) = lirn n(71Pm) = (c,,) (/) '	'	-	(4.9) 
m-'	-	 '
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and
(xn) ('i') - (xv) (ijq)I 

1( 7197n	iv) (qi)	- ?)VI!p.k II9'IIp'.i/k'


and then

I(x) (I) - (xv) (1)1 5 II ?792n - JVM	11111p.I/k" 

• Thus by (4.9) and (4.8) we obtain the.assertion I 

Theorem 4.9: The range R(A'.k(G)) is closed in	G) if and only if 

•	-	 (G)) 

= {/ E (G) I V(J) = 0, for all y E x(N(Ak(G)))}.	 (4.10)


Proof: Thç range R(A, k(G)) is closed if and only if 

P. 
= {F E	°(G)'I Fv = 0 for all v € N(A k(G))}	 (4.11) 

(cf. [1: P. 57]). Supposethat R(A .k(G)) is closed. Let / be in .,(G)). Then by 
Theorem-3.4 one has 2/ € R(A;.k(Gy) and so by (4.11)(A/) (v) = 0 for all v E N(A.k(G)). 
In virtue of Lemma 4.8 (xv) (/) = ./) (v) = 0 for all v € N(A;k(o)). Similarly, one 
sees that if. / E such that (xv) (f) = 0 'for all v € N(/1 k(0)), then 2/ 
E R(A k(G)') and so f E R(PI,kv(G)). Hence (4.10) is valid. 

On the other hand, in the same way one sees that (4.10) implies (4.11) and so the 
validity of (4.10) implies, th6 closedness of R(A7k(G)). This finishes the proof I 

Remark: Because R(A k(G)) is closed if and only if. 
•	

R(A,(G)) = (I E $,°(G) I V(/)	0 • for all V E N(Ak(0))}	•	•	• 

(cf. (1]) and because by Theorem 3.4 one has	 . 

N(n; k(a) +) = A(N(rtl/k(o)))  

one also sees that R(A k(G)) is closed if and only if the relation  p. 

R(/1p.k(G))	If E (1 ( G) I V(f) = 0 for all' V E A (N(r I  (0)))}	.	 • 
holds. 

4.4. This section considers the validity of the relation 

•	R(Ak(G)) =	°(G)..	 '	 • - 

Let R(A k(G)) denote the closure of R(A PT k(G)). We begin with P.
Lemma 4.10: The relation, 

•	R(A;.k(o)) = Z(0)	• •	 •	(4.12) 

"is valid if and only 
if 

the ;elation •	 •	• •	•	- 

N(r.lIk-(G)) = {0}	•	 (4.13) 
'holds.	 .•
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Proof In virtue of Theorem 3.4 one sees that 

N(1l;k(o)) = A(N(r 11 . (G))).	 (4.14) 

Suppose that (4.12) holds. Let ulie inN(J',l/k..-(G)). Fore.rery g E > k ( G) one can 
find a sequence {g,,} c R(A. k(G)) such that g -^ g in °(G). Hence we obtain by 
(4:14)	 - 

(Au) (g) = lim (Au) g,, = 0	for all g E	G) 

and then u = 0. This shô's the validity of (4.13).	 - 
Conversely, suppose that (4.13) is valid. Assume that (4.12) doesn't hold. Then 

one can find an element U from	°(G) such that U + 0 but U(g) = 0 for. 
every g E R(A JT k(Q)) (cf. [11: pp. 181 - 194]) .. Hence U lies in N(4k(G)±) 

= A (N(r j/k . (G))) and U	0. This is a contradiction I 

Combining Theorem 4.7 and Lemma 4.10 we obtain	 I. 

Theorem 4.11: The relation R(A, k(G)) =	0 (G) is valid if and only 
if 

the follow..

• ing two conditions hold: 

R(J' I/k (G)) is closed in '.L/k (G)	
(4 15) 

N(P,l/kv(G)) = 0.	 J	 ..	
I 

The following two criteria are sufficient to imply the validity of (4.15): For each 
jE N there exists an mEN such that the inclusion supp f.I/k(G)ü Ki im-
plies that supp u Km and, with some y > 0, 

IIT.1/k; (G) UIl p S.iIk v	y II U IJp'.1/k	for all u E D(P I/k v (0)). 

4.5. We shall establish some applications in the case when p = 2 and k = 1. Denote 
the open ball B(0, R), R > 0, by B. Let B, (with 1 E N, 1> 11R) be a subset of B 
definedby B, = B(0, R - (Ill)). Furthermore, let I: L2 (B) —>4(B) be the mini- 
mal extension of L'(x,D) in L2 (B). We show 

Thorem 4.12 :,Suppose that the partial differential operator L(x, D) with C°°(B)-
coefficients obeys the following conditions: 

(i) P 1 (B) v = Lv for all v E D(P2 (B)) , 
(ii) there exist constants C 1 > 0 and C2 L, 0 such that 

IL'(x, D) 9,110 := IIL'(x , D) 99 112.1 ^ C1 II912.k— - C2 IJIJ	 (4.16) 

for all q E C000 (B), where k E X such that k() -*oo with I	oo, 
(iii) for each ,j E - Rn . there exist constants 0> 0. and to	0 such that 

Ie'IIo :!9 C Ie'L'(x, 1)) II	 • (4.17) 

for all- T E C0 00(B) and t > t0. 
Then the range R(A 1 (B)) is closed in .°(B) = Loc(B). 

Proof: A. Let v be in D(L); then there exists a sequence {q,,} c C°(B) such that 
- vJ 0 + j l L'(x, D) q —LvI 0 --> 0 with n --> oo. Thus in virtue of (4.17) 

Ie'vIo	C liet ''LvlJ0	for all v E D(L) and t ^ t0 .	 (4.18)
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Suppbsethat Lv lies n	i(m)• Let x0 be in B	ml and let xbe in the interval

(0, 1) such that B —(1/m) - x(R - (1/rn + 1)) < 0. Furthermore, choose e > 0 
such that (x0, x) 	1 x01 2 for all x E B(x0 , a) and that B(x0 , s)	B. Then we obtain 
by (4.18)  

e1z1' ( f v 2\/ 2	lie	viio ^ C, lle'°1Lv110	
0 

\Rz,.	/

	

^ 0.	jIz.1(R(1) IL'vlio 
and so

f f v2\"2 < C, e1zoI( 5 ( 1 1 m	( fl—iifm+u)) lJLvIl0. 
\B(x,.e)	/ 

	

- Letting t	oo we find that v(x) = 0 a.e. in B(x0 , a). Hence v lies in  
B. In 'virtue of (4.16) the range R(L) of L'B is closed in L2 (B) (cf. [91). Suppose. 

that J'(B) v, —^ / in	j(m). Then by (i) we have that.L'jv. - / i1nL2 (B) and so 
lies in R(J1). Let v be the solution of Lv = I . Since flies in	.i (Bm) the Part A 
implies that  belongs to -,i(m+i• Hence/lies in R(r2 (B)). The assertion follows 
from Theorem 4.7 I	 . 

Remark:. Suppose that. , there exists a k EX such that IIL'(x, D) T110 ;5 C. 11 9)112,k for all 

99 E C0 (B) and D(F2*j(B)),c: 22,k. Ththl (i) holds. The operators withconstant coefficients sat-
isfy the condition (i) (this follows from Theorem 2.1, for example). The inequality (4.16) holds 
for the operators with constant coefficients if and only if L) := (	IL()I2\" 
-	•0	 IIr	/ 
with y > 0 (cf. [9]). The assumption (ii) can be replaced with IIL '(x, D) op ljo ' y IIIIo for all 

E C0 (B) (which'holds for all operators with constant coefficients, since B is bounded). 

Furthermore we have	 . 

Theorem 4.13: Let G be a bounded open set in •1t' and let L(D) be a non-trivial 
partial differential operator with constant coefficients. Then we have 

liet	2 Iio	C ii et ' tL (D) q'110  

for all E C(0), t 	0 and q E	 - 

Pro6f: Letq E Rn and let t 0. Then we obtain for all q-E 0000 (G) and E R 

F(e'( q ) ()i = 5 c'tVtq(y) e t dy  R. 
0	

= l() ( +'it)I	 - 

< 0(L) 5 l() ( + it + a) L( + it.+ a)l da 

	

•	-	 IaI1	 ,	,	 - 

= 0(L) 5 I F(e ° )+ttL (D) ) ()I dci,	. 

where . is the Fourier-Laplace transform of q7 and where da denotes the Leesgue 
measure in .R2 (cf. [12: P. 186]). By 0(L) we denoted a constant which depends only 
on L(D). Let 0 E Col such that (x) = 1 for all x E 0. Then one has by the Parseval 

	

-'	Theorem	 0 

^ C(L) ( 5 1 ) 1 /2 j I e 'tt ii1 .ilie'tL(D).clio 

	

-	 \loII 	+	 0 

0	(cf. [5: p. 39]). In virtue of the Paley-Wiener Theorem we find that l[ell1.i	C 
or all j al ;5 1 (cf. [9]) and then the proof is ready U ,	' •	 0 "
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Let C be an open set in R and let L(x, D) be a partial differential operator with 
C(G)-coefficients. Furthermore, let I denote an open interval in R. Using the idea of [8: pp. 358-362] we define an operator L in C000 (I x 0) by 

(Lou) (s, x) = (2fl+l)ff	+i 1 ,rl ) (Fu) (r,) e1(z)+T8)drd, 

where P is the Fourier transform in R x R.	 - 

Theorem 4.14: Suppose that for each 77 E R' there exists aconstanty >0 such that 

liLu llo := liLuliL.Ixc ^ y Z. iID8'L "(x, D) uI0	 (4.19) 

for all u EC0 (I x 0), where	) = (&II/d) L(x, ). Then 'for each jE R° there 
exist constants C > 0 and t0 0 such that 

' t	 D) 9,11 0	C JJe''L(x, D)	 (4.20) 
a+O 

/or all 92 E C000 (G) and t > t0. 
Proof: A. Choose a function 4) E C0 (1) \ 01 and define	- 

-	u(s, x) = O(s) (x) eits et(M, 

vher	E G0 (0), t > 1 and E R". Then we have 

(Fu)(r, ) 
= ( 

f 4)(s) e8 e- it ds) (f 97(X) e'	dx) 
Rn 

= (F1 4)) (r - 1) (1)( + it), 

where F1 is the Fourier transform in R. Hence we obtain by the Taylor's formula 

•	(L,u)(s,x)

ff L(x + i ITI )() ( + it) (F1 4)) (r - t) ei(()±8)dr d 

=	 fL(x, + itfl) (192) (+it)e"d) (i-f (F 1 4)) (r - t)eiTsdr) 

+ (2)''	(I L(x + it1) (197 ) ( + it) e' 1 d) 
R. 

- t)11 (F1 (k) (r - t) & T8 dr).	-. 

We have

D )(x + it) (197 ) ( + it) e 
Rn 

= (2n )n f L()(x, ) (F9 ) (' el( I ) d4 
Rn 

-	= (L(x, D) 92) (x) et(.z)	-	 -
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(cf. [11: pp. 309-310]) and	 ..	
0 

f i't(Itl -. t)I"I (F14) (r - t) ei8 dr1  

rpf I (r - t)'"' (F14. ) (r - t)l dv = ,j IlD '4IlI .1 

- Thus we obtain. 

IlLu llo	IIe' L (x , D ) 92I10 IlIIo
 

+ 10 10 in(I) IID 'IIi.1JIe'' L()(x, .D) 
21z.,0a 

lle"	L(x, D) 99 I10 IIIIo -	t	IIe	D) 92110 '	(4.21) 

where m(I) is the measure of I and where C i large enough. 

B. We now estimate the right-hand side of (4.19). For each ot == 0 we get 

IID8(4 e l") - tII4. e11 11	L' (I) (D I T ) tk e" 

	

k<aj	 0	-	 - - 

-	

^	' (i) 1D8 I—k4j 0 k	Catt1 

and then 

•	 'E ID8 1	(x, D) u IIo	 .	 ;	. 

= .	lD3 ( 
e18)0 

IIL (x , D) (99 e")Ilo 
•	-  

•
	 0 (IIII0 - Cy1) j lL (x, D) (99 e')II0  

0	 -	
C y t' IIL (x, D) (ç 01-1I10	 (4.22). 

(with C , > 0) for all t large enough (say t	t0 '). Let g =	Then we find that 

	

t11 I1eL(x, D) (g e17)IIo	
0• • 

•	/	 E	t'' jl	 D) g 1l0	 0 

*o pjr—	/9.	 .


^ C Z t iIL(x, D) g1l0 

and so by(4.22) (with a suitable C > 0)	•	 •	 0 

•	 EilD8'L'(, D) u110	C E t Iie'tL (x, D) 9,110	 (4.23) 

•	fort	to'. Hence one finds by (4.19), (4.21) and (4.23) that 

114Ilo iIe ' 1 (x, D) 9'1Io	C ' t	e L)(x, .D) 92110 

for t large enough (say t	). This completes the proof I	
0
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Remark: Suppose that there exists a E N 0 such that L()(x, F)) = q, where q E C(B) so 
that.q	y> 0. Then one gets (4.17) from (4.20). 

From the theory presented in [8: pp. 358-3701 one can show sufficient algebraic conditions 
for the vulidity of (4.19).	 - 

Suppose that L(x, D) is an elliptic partial differential operatr with real-analytic and C(G)-
coefficients. Then using the Holmgren's uniquenes Theorem (cf. [8: p. 358]) and the method 
we applied in the proof of Theorem 4.12 one sees that R(11 1 (G)) is closed when G is an open 
bounded set in R. In the same way (by using [8: Cor. 2.9/p..361)) one sees that R(A 2 (G)) is 
closed when L(x, D) is a second order elliptic partial differential operator with C°°()-coeffi-
cients such that a is real-valued for Jul = r and when 0 is an open bounded set in H": 
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