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On the Elliptic Sturmian Theory for General Domains
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s 1 , : T

Der bekannte Vergleichssatz von Sturm und Picone fiir gewohnhche selbstadjungierte” Diffe-
rentmlglelchungen zweiter Ordnung wird auf selbstadjungierte elliptische Differentialglei-
chungen veraligemeinert. Dabei sind das Grundgebiet G und die Koeffizienten der Ditferential.,

- gleichung nicht notwendig beschmnkt und es werden keine Regulantutsforderungen an den
. Rand 0G gestellt. -

Vlanecmaﬂ 'reopema cpasHenuA llltypma un I'Im.one INA OGBIKHOBEHHBIX camoconpnmemlu\
nddepeHuaTBHEIX ypaBHeHHit RTOpOro nopAaka o60o6WaeTcA HA CaMOCONPAKEeHHBE
sanunriyeckue auddepenunansusie ypashenns. IIpi atom ocHoBHana obnacth G 1 KoadPi-

" uneHTH TUdPepeHUMATBHOTO YPARHEHHS He 06A3aTEIbHO OTPAHNYCHB, I 'ycaoBus peryJsp-
HOCTH A TpaHuUB 0G He TpebyloTes.

The well-known comparison theorem by Sturm and Pncone for ordmary, self-adjoint, second
order differential equations is extended to self- adjoint elliptic differential equations.: The
basic domain G and the coefficients of the equation are not necessarlly bounded, and- no
regularity hypotheses on the bounda.ry 9@ are required.

Consnder the differential equatlons
i N
Agu = —(P)w’) + Qz)u =0 ) - )
= (P WY Qe = (& € [a, b)), '
Aqu = —(p(z) v')" ¥ qlx) u =0 . : ,

where P p € C'[a, b] and Q, q € C[a, b] are real-valued and P(:v), p(z) > 0, z € (a, b].- A well-
known version of the Sturm-Picone theorem is the follovung one (compare [8 Cor. 1], [13:
Theorem 1. a])

Theorem 1: If there exists a real solution u =§= 0 of Agqu = 0 such that ‘ -

]
u(@) = 0 = u(b) and . [ [p(u)? +.qu=J dz <0,

then every real solution v of 4w = 0 i3 a constant multiple of u or has at least one zero in (a, b).

In the following this theorem will be extended to self-adjoint, second order, elliptic differ-
ential equations. The present investigation complements the paper {11], where the éxtension
of the following version of the Sturm-Picone theorem is  handled.

' Theorem Al’ Suppose p(z) < P(x) and q'(:c) < Q(z), z € [a, b). If there exists .a real solution
I =#= 0 of Agu = 0 with u(a) =0 = u(b), then every real solutwn v of Av = 0 has at least one
zero in (a, b) 1.[ CL

(I) gz') < Q(x') for some z’ € (a, b] or _. .
(II') p(x’) < P(2) and Q(z') % O for some z’ €'(a, b).

o

Concernmg -the extensive investigations in the literature which deal with extendmg the

Sturm-Picone theorem to the n-dimensional case we refer to the references in (3,7, 13]. \

‘ '
. \



* are hounded from below. Consequently, the sesquilinear forms ‘

..of the equatlons Aqu =-0-and Azu-= 0 which belong to C(G)n W3,.(G), where - -- '
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Usmg the summation converition, let Ag, A denote the dlfferentm] expressxons
Aqu = —(P;ju x) ’ ' ‘
Q ( if x‘)r; + Q( (x = (T, ..., 2,) € G & Rn)’
‘Aqu = _(piiux‘)x, + Q(x) u ' \ v
where .-
(i) Gisa (possibly unbounded) domam in the Euclidean space R? where no regu-

larity hypotheses on the bouridary G are required ;

(ii) the coefficients P;; = Pj;, p;; = p;; € C* (i = 1,...,n) and Q,q € C are real-
valued and defined on G; ) -
(iii) the smallest eigenvalues E(z ) and e(z) of the matrices (P;;)};-, and (p;;)8-1,
respectively, are positive on G - s T ’
(iv) there are positive constants ¢; < 1 and ¢, such that .
@9, 9 = ciag*le, 9] + il S (1
o : ) o (eeC@), ,
g7, 9 = arag* (e, 91 +- ca ligll? . (2) .
where (, -) and |}-|| denote the inner product and the norm of the Hilbert space Ly(G)
and ' : o T ) .
R /
Q~ (%) = min (Q(z), ), @*(z) = max (@), 0),
¢ (z) =.min (q(x), 0) q*(z) = max (g(z), 0),
ag*lps¥] = f P:‘i‘l’zﬁ’z; dz + f Q*W,dx T
{p, v € C=(@) -
a7 [, "I’] fpv‘pzﬂl)z; d:l: + f q PP dz. | A

If © is a subdomain of G, let the inner product and the norm of L,(2) be denoted
by (-, -)o and |||lo; the index 2 will be omitted when Q.= G. It fol]ows from (1), (2)
that the symmetnc operators Ag,o and A4,

Ao.ow —dop, A=A (9€ C()

aO[‘P,, 1/)] (AO 0¢) w) f P|)¢z(wz, dx + f QW dx’ .
aq[(p, 1/’] = (Aq.ofi’» IP) = fpij‘pzﬂ?’z,‘dx + f qW dx’

(<p, w € C'0 ( )) are closable [5: p. 318]. Let the correspondmg closed forms be denoted
by &4lf, g1 and &[f, g], respectively. We shall always consider real-valued solutions

W2 10c(G) denotes the Sobolev space of (complex-valued) functions the generalized.
derivatives of which up to order two belong to L, on compact subsets of G- Assuming
that u.is a non-trivial solution of one of these equations the set N, = {y €G| u(y).
== 0} is said to be the nodal contour of u. By a theorem of Mcl\'ABB [10)'in every
neighbourhood Ke(y) {z||lxr+yl <o S G of a point y.€ N, the non-trivial
solution % changes sign [11] If there exists a nodal contour N, < G,\ by the sets N,

.and @G the domain G.is divided.into at least- two connected subdomains. Such a
.subdonain 2 of ¢ is said to be a nodal domain of u; w hasfixed sign in 2 and u(z) = 0,
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LT €82n G To formulate the following theorem we further require the set

f p.,/:./z, dz + f gt If)fde < °°} ‘ ‘ (3)-

-

D, = {/e W1 6)

Note that a functlon f € D, is not necessarily. contained in Ly(G).

+Theorem 2: Let the hypotheses (1)—(1v) from above be fulfilled. If there e:msts a”
non-trivial  solution u'c¢ D(dy) of JlOu = 0 such that u € D(d,) and d[u, u] < .0, then
“every solutwn v€ Dyof Aw =01s a constant multiple of u or changes sign in G. :

Proof: Let Q'be any nodal domam of . (Possibly, @ itself is a nodal domain of u. )
Then the restriction u, of u to 2 belongs to D(dg, o) as well as to D(d,,g), the domains
of thc closures do,ol+> -] and Gy o[+, -] of the sesquilinear forms

ag,ol@, v) = f [Pijpr ¥z + Q7] dz ‘ - A \
v K . o i
' o (@ w € C>(9Q), -
.ol® ¥] = [ [ij92Ps, + 9PPlde -
2 , . .
respectively [11: Lemma]. Since ug € Wg,loc(Ql: and Aoug =0, uf).é_D(Aa_g_;)),‘. .
where Ag .09 = Agp, @ € C;>(2)." Hence, it follows from .ug € Didg.q) that
ug € D(Ag,0), Ag.0 bemg the Friedrichs extension of Ag, g,0. ug is an’ cigenfunction .
of Ag.o and 2 = 0 is the correspondmg eigenvalue. Hence, we have dg o[ug, ug]
= (Agug, ug) = 0. Of course, we also have dofu, ] = 0. By the help of (2), one
can eas1ly prove that d [u, u] is represented by :

Aolu, ) = f (pijuzttz, + qut) dx.
. ¢ .

Because d,{u, w] < 0 there éxists at least one nodal domain Q of u such that

. 'dq.o[ulz, ug) = f [?.‘j(ua)’z} (uo)z, + q(ug)?} dz < 0.

e

At this point, wnthout loss of generality, we can assume that’ ug(x) >0, z¢€ Q The
following.two cases are possible: .. .

(1) d,alps @) 2 O for all ¢'€ Co(2). -
*(I1) ag;alpo, @) < 0,for some @y € Co>(R).

Case 1:. In this case we have d, g[ug, ug) = 0 and D(d, q) = D(A;'3) [5: p. 331},
A,.o being the Friedrichs extension of Ay g9, A 0,09 = Ap; @ € Co°°(.Q) It follows
from 0 = dy o[ug, uo) = ||4;/5ugll® that 4, quy = 0. Therefore ug is also an eigen-
function of 4, , and satlsfles the equation AL u, = 0.

If there exists a zero of v in G, by.the theorem of \/ICNABB the solution » changes
sign [11]. Thus, wé can assume in the following that o(x) > 0, z € G. Choose any
point z* € 2 and define w by ot

w(z) = Ua(a*) o) — v(a*) uglz) - (z€ Q).

" This'is a_solution of #w =0 in 2 with w(z*)'= 0. The identity w = 0 implies -

v(x) = const - u(x), z € 2. If Q'is a proper subdomain of @, then v vanishes on
v 02 n G, which implies that v changes sign in G. Because of the assumption v(z) >0
(z € G), however, we have 2 = G and »(z) = const - u(z), « € G. In the case where
w == 0 this function must change sign in every neighbourhood of z* in 2 as repeatedly

\
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remarked Let W Q be a. subdomaln such that w(z) < 0 for z € w and w(y) = 0
for Y € 0w n £2. We prove that z € D(aq 2)s
_ Jw(x) for 7€ w, ) S
z(x)"{o for z€ 2\ w. S : Y

Let (@) = Cy>(£2) be a real sequence with Pm 5 U that is [6: p. 313]

/

'

@, 0lPm — P, Pm — <Pm ] ,,,,,,—_,;* 0 and |lgn — uqllo Py 0.

Set w,(x) = dg(x*) v(x) — v(x*) Pm(z) (¢ € 2) and define
Wy~ (2) = min (wn(2),0) and _¢,(z) = max (z(x), Wn(2))-

Note that {,.(z) =0 (z €2\ w) and w, 2, Wy, Wp™, Cn € Whieo(2) [6: p. 50]. From
wn(z) >0 we haver w, (x) =0 and {,(z) =0, v € Q \ supp ¢,- Therefore,
{m € D(dg,0). We now prove that z € Ly(Q) and ||, — z|lo — 0. It follows from
[0 — ™ IS | — Wl = o) Jug — pul (€ w)  that |w — wall, S [p(a¥)]
X |lug — @mll. and, consequently, w — w,~ € Ly(w).' Thus, we have w € Lyw) -
because w,,~ € Ly(w). But this implies z € Ly(2). To prove ||{,, — 2|l — O use the

‘estimate [|{y — 2llo = [l{m — 2o S llwn™ — 2llo = lwp™ — wallu < [0(@*)] lpn — vollo-
Now we prove that there exists a constant C > 0 such that -
dgallm Cal € (mEN). (4)

By using (3) with f = v and the Schwarz mequallty [6: p. 53] and settmg,
£2,,.= supp @, we obtain

g.ollms Ca) = f Pis(Cm)z, (Em), 42 + f q*m? dx

-.< fp,,z;‘zz) dx + fp,, (Wn™)s, (w ),, dx + fq’fz2 dx + fg*(w,,, 2dx

2

g f Dift 0z, dx,+ [ 2ii(Wn)z, (Wa)z, dz.+ f qtu? do + f W, sz
o,

= Cl [ fpu (0, (uﬂ) dx + fpuvz(vz, dz + fP.;(‘Pm )z, (q’m)z‘, dx

+f¢1+(u92dx+fq v"’dx-{—fq P 2dx]
<, (D{ [pij(%0), Qm);, +q (u9)2] dz |
S Bilonde onde + 4ot ) + G . (5)
It follows fromm(2) that -

L @, Q[‘pm’.q’m] = (1 =) lac O[‘pm; ‘pm] + (1 —.c) e, ”‘Pm"ﬂg- : .
Hence, in view of v '
aq, 0[‘pm’ ‘Pm] g a’q olua, ug]l =0 and [lpmile = luallo,

there exists a constant C; such that a; Q[q),,,, qo,,,] < (03 (m € N). Fmally, we have, ‘
for m € N

o J [Pif(ua)z, (uo)z, + ¢ ()l dz < [ [Dijunus, + q*uzl dz < .
D - e -

. .
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By using these estimates in (5) we obtain (4). It now follows from ”C,,, — 2o >0
-and (4) that z-€ D(d,, ) [5: Theorem 1.16/p. 315].

The restriction 2z, of z to w belongs to D(d, ), the domain of the closure of the~
form

a,, o, w] f Dii P2, dT + f gpp dz (g, p € C’o°°(w)) S

[11 Lemmal. Further we have 2, € W2 10c(w), and chza, =0. Hence, 2, is an elgen-
function of the Friedrichs extension Ag. of Ay 0y Agwop = Agp (tp € Oy (w)) and
A = 0is the correspondmg eigenvalue. Therefore, we have d, .[z., 2.] = (44,020) Zu)o
‘= 0 and, consequently,. d,,0[z, 2] = 0. This relation implies A;’}iz = 0 which leads
" to 4,0z = 0. Hence, z € W2,,.(G) (see [2], for instance) and z is a. solution of the
equatlon Az = 0. By considering the property 2(z) = 0 (z € 2 \ w) and using the
unique continuation theorem for- solutions of elliptic equations (see [4: p. 224 and
Remarks 3/p. 203]) it follows that z = 0 in 2. Finally, w(z) = 0 for z'€ w implies”
w(x) = 0 for z € 2. This proves that v(xz) = const - w(z), z € Q. In the case where'Q
is a proper subdomain of G we have v(y) =0 (y'€ 02 @) which implies that v
must change sign'in G. But this -case is impossible because of the assumption
v(z) >0,z €. In the case 2 = G, however, the solution v-is a constant multlple ’

N

of win G. . -

Case (II) We conclude as in [11]. There exists a function g, € CO“’(Q) with
© g, 0[P, (po] < 0. 1t follows from dist (supp o, 22) > 0 that there exists a_bounded a
~ domain ", with supp g, = w, < @, = G belonging to the class C (definition in
‘ [2 p. 28]). Let A, be the Friedrichs extension of the operator Aq w000 Ag.we.0®
P ((p € Cy®(w )) The spectrum of 4, ,, is discrete because 0 < Cu, < €(x) and
- |q(x)| =C, <o (€ wp). It follows from a, o[y, o] < O that the smallest eigen-
 value 4, of Aq w is negative. The corresponding eigenfunction u, belongs to the
Sobolev space W,P(w,) for every p < co [2: Theorem 24/p. 93]. Hence, by an em- _
bedding theorem [12], u, € CY(@,). Further, we have u,(z) = 0; z € dw, Without
loss of generality, we can assume that u, is real-valued and takés on positive values
in a-subdomain of w,. (One can show that %, is a simple elgenvalue and that the
(real). eigenfunction w, has fixed -sign in w,.) Because v(z) is positive on @, there
-exists a uniquely determined &¢ > 0"and a point z, € w, -such that eu;(z) < v(z)
(@ € wy) and eu(x,) = v(z,). Thus, in a neighbourhood K,(z.) = (z| |zt — z.| < o}
< w, of z, we have A (su,) = eyu; < A = 0. Hence, by the theorem of McNaBB.
[10), eu, < v or eu; = v on K(z,). The case eu, < v'is impossible because of eu,(x)
= v(z,). From A,(eu,) < A, on the other hand, it follows that the case e =v
is also 1mp0ssnble Hence, v must change sign in ¢ 1§

Under certain restrictions on the domain G, the coefficients and the-set of solutions, Theo-
rem 2 was proyved for uniformly elliptic (but not necessarily selfadjomt) equatnons by AHMAD_
and LAZLR (11 .

Corollary: Let the thotheses (1) —(iv) be ful/zlled and assume
(V) pu(x)éflspu(x)§§] . (5—(51’ ,E")ER”,ZIJE?), ’ .'
(vi) ¢(z) SQ@x) (z€0). E

If there exists a nontrivial solutzon u € D(dg) of c/lou =0, then every solution v € D, |
of A, v = 0 is a constant multiple oj u or changes sign in G. .

Proof: Two cases are possible: . ;o
1) ale, @] 2 0 forall ¢¢ Co (G’)
(1) agl@o, g0l < O for some @, € C’0°°(G) . s =

6 Analysis Bd. ,.Hcft 1 (1988)
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' Case (I): It follows from the hypotheses (v) and (v1) that 0 = afe, ¢] = ao[tp, @}
((p € Co°°(G)) . Hence, we have D(do) S D(d,) and dg[u, u} = 0 implies d,fu, u] = 0.
Thus, Theorem 2 can be used.

Case (I1): We can conclude as in the case (II) of the proof of Theorem 2 B

Theorem 3: Let the hypotheses (i)—(iii) and (1) be fulfilled and let u € D(do) bea.
non-trivial solution of Aqu = 0. Assume that the sesquilinear form

e, v] = f Dii Pz, + f gppdz (g p€ Co""(G))

18 closable and that u € D(d,), dyf, ] bemg the closure of ay[e, 1p] If aq[u, u] < O,
' then every solution v of Ap =10 changes szgn n G.

Proof: It follows from aq[u, u] < 0 that there exists a ¢, € 00°°(G) with aq[tpo, @0}
< 0. Then we conclude as in the case (II) of the proof of Theorem 2. 1

Theorem 4: Let hypotheses (i) and concerning the coefficients P;; (1,5 = 1,...,n)"
and Q the hypothesis (ii) and (iii) be fulfilled. Assume that uw and v are linearly in-
dependent solutions of Agu = 0. Then, the nodal contour N, o/ v intersects each bounded -
nodal domain 2 of w with 2 < G. Additionally, we have 02 n N, =+ 0. .

Proof: Obviously, there are positive constants ¢, < 1 and ¢, such that
Q¢ @) < cag*le, @) + o llplF (@ € Co=(2))-

We have ug € D(dg,) as remarked above. Further, concermng the solution v of
 Aqv = 0 we have

fP,,v,‘v,, dz -+ fQ*‘v2 dx < oo. ‘ '

Hence, Theorem 2 can be apphed with .Q in "place of G’ By assummg that v(x)
= const - u(z) (x € 2) the unique continuation theorem for solutions of elliptic equa-
tions implies v(z) = const - u(x), € G. Because u and v are linearly independent
we have v == const - % in Q. Hence, by Theorem 2, v changes sign in 2. To prove
020 N, & 0 assume 92 n N, = @..Then there cxists a: nodal domain @ of v with -
@ — Q. This situation, however, is impossible because, conversely, the nodal con:
tour of u intersects € 1 .

Theorem 4 is an extension of Sturm’s separation theorem to the n-dimensional case.
Example: Let

dgu=—(T—2w) - Z—=0 '(—1,<z<l;P=p»Q=~q)-‘

The hypotheses (i)—(iv) are fulfilled. Concerning the estimate (1) we refer to [9: Theorem 4].
A non-trivial solution u of Agu = 0 is u(z) = }/1 - 1:2 (—1 < z < 1) which belongs to D(ao)

Each linearly ‘independent solution v, v(x) = C1 V1 — 22 4 sz (—l <z<iy 02 %+ 0) be-
longs to D, and has a zero in (—1, 1).
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