4

On the Elliptic Sturmian Theory for General Domains Compt 4 The Elliptic Sturmian The E. MÜLLER-PFEIFFER

-S

Per bekannte Vergleichssatz von Sturm und Picone fur gewohnliche, seibstadjungierte Differentialgleichungen zweiter Ordnung wird auf sclbstadjungierte elliptische Differentialglcichungen verailgemeinert. Dabei sind dàs Grundgebiet G und die Koeffizienten der Differential gleichung nicht notwendig-beschränkt, und es werden keine Regularitätsforderungen an den Rand ∂G gestellt.

0:

Известная теорема сравнения Штурма и Пиконе для обыкновенных самосопряженных дифференциальных уравнений второго порядка обобщается на самосопряженные эллиптические дифференциальные уравнения. При этом основная область G и коэффициенты дифференциального уравнения не обязательно ограничены, и условия регулярности для границы *дG* не требуются.

The well-known comparison theorem by Sturm and Picone for ordinary, self-adjoint, second The well-known comparison theorem by Sturm and Picone for ordinary, self-adjoint, second
order differential equations is extended to self-adjoint elliptic differential equations. The
basic domain G and the coefficients of basic domain G and the coefficients of the equation are not necessarily bounded, and no regularity hypotheses on the boundary ∂G are required.
Consider the differential equations regularity hypotheses on the boundary ∂G are required. *(and Picone split-adjoint equation are* α *equined.
* $(x \in [a, b]),$ The well-known comparison theorem by Sturm and Picone for ordina

order differential equations is extended to self-adjoint elliptic differential

basic domain G and the coefficients of the equation are not necess

regular

$$
\mathcal{A}_0 u \equiv -(P(x) u')' + Q(x) u = 0
$$

$$
\mathcal{A}_g u \equiv -(p(x) u')' + q(x) u = 0
$$
 $(x \in [a, b$

 $\mathcal{A}_q u \equiv -(p(x) u')' + q(x) u = 0$
where $P, p \in C^1[a, b]$ and $Q, q \in C[a, b]$ are real-valued and $P(x), p(x) > 0, x \in [a, b]$. A wellknown version of the Sturm-Picone theorem is the following one (compare [8: Cor. 1], [13: *u* and the coefficients of the equation are not necessarily bounded, and no
 u hypotheses on the boundary ∂G are required.
 u $\partial u = -(P(x) u')' + Q(x) u = 0$
 $u \cdot \partial u = -(P(x) u')' + Q(x) u = 0$
 $u \cdot \partial u = -(p(x) u')' + q(x) u = 0$
 $p \in C^1[a, b]$

Theorem 1: *If there exists a real solution* $u \neq 0$ of $A_0u = 0$ such that

$$
u(a) = 0 = u(b)
$$
 and $\int [p(u')^2 + qu^2] dx \leq 0$,

then every real solution v of $A_qv = 0$ *is a constant multiple of u or has at least one zero in* (a, b) *.*

In the following this theorem will be extended to self-adjoint, second order, elliptic differential equations. The present investigation complements the paper [11], where the extension of the following version of the Sturm-Picone theorem is handled. Theorem 1.5]).

Theorem 1: If there exists a real solution $u \neq 0$ of $\mathcal{A}_{Q}u = 0$ such that
 $u(a) = 0 = u(b)$ and $\int_a^b [p(u')^2 + qu^2] dx \leq 0$,

then every real solution v of $\mathcal{A}_{q}v = 0$ is a constant multiple of u or has Theorem 1: If there exists a real solution $u \neq 0$ of
 $u(a) = 0 = u(b)$ and $\int_a^b [p(u')^2 + qu^2] dx$

then every real solution v of $\mathcal{A}_q v = 0$ is a constant mul

In the following this theorem will be extended to

ential equati *a*
 hen every real solution v of $A_qv = 0$ **is a constant multiple of u or has a**

In the following this theorem will be extended to self-adjoint, sec-

of the following version of the Sturm-Picone theorem is handled.

Th

Theorem 1': Suppose $p(x) \leq P(x)$ and $q(x) \leq Q(x)$, $x \in [a, b]$. If there exists a real solution $u \neq 0$ *of* $\mathcal{A}_Q u = 0$ *with* $u(a) = 0 = u(b)$, then every real solution *v of* $\mathcal{A}_q v = 0$ has at least one
zero in (a, b) if
(I) $q(x') < Q(x')$ for some $x' \in [a, b]$ or

•

zero in (a, b) if

(I) $q(x') < Q(x')$ for some $x' \in [a, b]$ or

(II) $p(x') < P(x')$ and $Q(x') \neq 0$ for some $x' \in (a, b)$.

Concerning the extensive investigations in the literature which deal with extending the Sturm-Picone theorem to the *n*-dimensional case we refer to the references in $[3, 7, 13]$.

Using the summation convention, let $\mathcal{A}_{\bm{Q}},$ $\mathcal{\breve{A}}_{\bm{q}}$ denote the differential expressions

78 E. MülLER-Pfelfrefer
\nUsing the summation convention, let
$$
\mathcal{A}_0
$$
, \mathcal{A}_q denote the different
\n
$$
\mathcal{A}_0 u \equiv -(P_{ij}u_{x_i})_{x_j} + Q(x) u \qquad (x = (x_1, ..., x_n) \in G \subseteq \mathbb{R}^n),
$$
\nwhere
\n(i) G is a (possibly unbounded) domain in the Euclidean space **R**
\nlarity hypotheses on the boundary ∂G are required;
\n(ii) the coefficients $P_{ij} = P_{ji}$, $p_{ij} = p_{ji} \in C^1$ $(i = 1, ..., n)$ and *t*
\nvalued and defined on *G*;
\n(iii) the smallest eigenvalues $E(x)$ and $e(x)$ of the matrices (P_{ij}) ;
\nrespectively, are positive on *G*;
\n(iv) there are positive constants $c_1 < 1$ and c_2 such that

where

(i) G is a (possibly unbounded) domain in the Euclidean space \mathbb{R}^n where no regularity hypotheses on the boundary ∂G are required;

(ii) the coefficients $P_{ij} = P_{ji}$, $p_{ij} = p_{ji} \in C^1$ $(i = 1, ..., n)$ and $Q, q \in C$ are real-valued and defined on G ; 78 E. MÜLLER-PFEIFFER

Using the summation convention, let \mathcal{A}_0 , \mathcal{A}_q denote the differential expressions
 $\mathcal{A}_0 u = -(P_{ij} u_{x_i})_{x_j} + Q(x) u$ $(x = (x_1, ..., x_n) \in G \subseteq \mathbb{R}^n)$,

where

(i) G is a (possibly unbounded) doma

(iii) the smallest eigenvalues $E(x)$ and $e(x)$ of the matrices $(P_{ij})_{i,j=1}^n$ and respectively, are positive on G ;
(iv) there are positive constants $c_1 < 1$ and c_2 such that

$$
A_0 u = -(F_{ij} u_{x_i})_{x_i} + Q(x) u \qquad (x = (x_1, ..., x_n) \in G \subseteq \mathbb{R}^n),
$$

\n
$$
A_q u = -(p_{ij} u_{x_i})_{x_j} + q(x) u \qquad (x = (x_1, ..., x_n) \in G \subseteq \mathbb{R}^n),
$$

\nis a (possibly unbounded) domain in the Euclidean space \mathbb{R}^n where no regu-
\napprotheses on the boundary ∂G are required;
\nthe coefficients $P_{ij} = P_{ji}$, $p_{ij} = p_{ji} \in C^1$ $(i = 1, ..., n)$ and $Q, q \in C$ are real-
\nand defined on G ;
\nthe smallest eigenvalues $E(x)$ and $e(x)$ of the matrices $(P_{ij})_{i,j=1}^n$ and $(p_{ij})_{i,j=1}^n$,
\nively, are positive constants $c_1 < 1$ and c_2 such that
\n
$$
|(Q^-\varphi, \varphi)| \le c_1 a_q + [\varphi, \varphi] + c_2 ||\varphi||^2 \qquad (1)
$$
\n
$$
(\varphi \in C_0^\infty(G)),
$$
\n
$$
|(q^-\varphi, \varphi)| \le c_1 a_q + [\varphi, \varphi] + c_2 ||\varphi||^2 \qquad (2)
$$
\n
$$
(\cdot, \cdot)
$$
 and $||\cdot||$ denote the inner product and the norm of the Hilbert space $L_2(G)$
\n
$$
Q^-(x) = \min (Q(x), 0), \qquad Q^+(x) = \max (Q(x), 0),
$$
\n
$$
q^{-}(x) = \min (Q(x), 0) \qquad q^+(x) = \max (Q(x), 0).
$$

where $\langle \cdot,\cdot\rangle$ and $\| \cdot \|$ denote the inner product and the norm of the Hilbert space $L_2(G)$ and

(IV) there are positive constants
$$
c_1
$$
 < 1 and c_2 such that
\n
$$
|(Q^-\varphi, \varphi)| \leq c_1 a_0^+ [\varphi, \varphi] + c_2 ||\varphi||^2.
$$
\n($\varphi \in C_0^\infty(G)$),
\n
$$
|(q^-\varphi, \varphi)| \leq c_1 a_0^+ [\varphi, \varphi] + c_2 ||\varphi||^2
$$
\nwhere (·, ·) and $||\cdot||$ denote the inner product and the norm of the Hilbert s
\nand
\n
$$
Q^-(x) = \min (Q(x), 0), \qquad Q^+(x) = \max (Q(x), 0),
$$
\n
$$
q^-(x) = \min (q(x), 0), \qquad q^+(x) = \max (q(x), 0),
$$
\n
$$
a_0^+ [\varphi, \varphi] = \int P_{ij} \varphi_{x_i} \overline{\varphi}_{x_j} dx + \int Q^+ \varphi \overline{\varphi} dx
$$
\n($\varphi, \psi \in C_0^\infty(G)$)
\n
$$
a_0^+ [\varphi, \psi] = \int_{G} p_{ij} \varphi_{x_i} \overline{\varphi}_{x_j} dx + \int_{G} q^+ \varphi \overline{\varphi} dx.
$$
\n($\varphi, \psi \in C_0^\infty(G)$)
\nIf Ω is a subdomain of G , let the inner product and the norm of $L_2(\Omega)$ b
\nby (·, ·) φ and $||\cdot||_{G}$; the index Ω will be omitted when $\Omega = G$. It follows from
\nthat the symmetric operators $A_{Q,0}$ and $A_{q,0}$,
\n
$$
A_{Q,0}\varphi = \mathcal{A}_{Q}\varphi, \qquad A_{q,0}\varphi = \mathcal{A}_{q}\varphi \qquad (\varphi \in C_0^\infty(G))
$$
\nare bounded from below. Consequently, the sesquilinear forms
\n
$$
a_0[\varphi, \psi] = (A_{Q,0}\varphi, \psi) = \int_{G} P_{ij} \varphi_{x_i} \overline{\varphi}_{x_j} dx + \int_{G} Q \varphi \overline{\psi} dx,
$$

If Ω is a subdomain of G, let the inner product and the norm of $L_2(\Omega)$ be denoted by $(\cdot, \cdot)_{\Omega}$ and $\|\cdot\|_{\Omega}$; the index Ω will be omitted when $\Omega = G$. It follows from (1), (2) that the symmetric operators $A_{q,0}$ and $A_{q,0}$, $\begin{array}{l} \displaystyle{ \begin{array}{l} \displaystyle{ \bar{\psi} \, dx,} \end{array} } \displaystyle{ \begin{array}{l} \displaystyle{ \begin{array}{l} \displaystyle{ \bar{\psi} \, dx,} \end{array} } \displaystyle{ \begin{array}{l} \displaystyle{ \begin{array}{l} \displaystyle{ \bar{\psi} \, d\bar{x},} \end{array} } \displaystyle{ \begin{array}{l} \displaystyle{ \begin{array}{l} \displaystyle{ \end{array} } \displaystyle{ \begin{array} \displaystyle{ \begin{array} \displaystyle{ \bar{\psi} \, d\bar{z}} \end{array} } } \displaystyle{ \begin{array} \displaystyle{ \end{array} } \display$

$$
A_{Q,0}\varphi = \mathcal{A}_Q\varphi, \qquad A_{q,0}\varphi = \mathcal{A}_q\varphi \qquad (\varphi \in C_0^{\infty}(G))
$$

$$
a_q + [\varphi, \psi] = \int_{G} p_{ij} \varphi_x \overline{\psi}_x dx + \int_{G} q^+ \varphi \overline{\psi} dx.
$$
\n
$$
[\varphi, \psi \in C_0^{\infty}]
$$
\nis a subdomain of G , let the inner product and the no, \cdot .)_O and $|| \cdot ||_{G}$; the index Ω will be omitted when $\Omega = G$, the symmetric operators $A_{Q,0}$ and $A_{q,0}$,
\n $A_{Q,0}\varphi = \mathcal{A}_Q\varphi$, $A_{q,0}\varphi = \mathcal{A}_q\varphi$ $(\varphi \in C_0^{\infty}(G))$
\nounded from below. Consequently, the sesquilinear form
\n $a_Q[\varphi, \psi] = (A_{Q,0}\varphi, \psi) = \int_{G} P_{ij}\varphi_{z_i}\overline{\psi}_{z_j} dx + \int_{G} Q\varphi \overline{\psi} dx,$
\n $a_q[\varphi, \psi] = (A_{q,0}\varphi, \psi) = \int_{G} p_{ij}\varphi_{z_i}\overline{\psi}_{z_j} dx + \int_{G} q\varphi \overline{\psi} dx,$
\n $\in C_0^{\infty}(G)$ are closable [5: p. 318]. Let the corresponding
\n $g[f, g]$ and $\mathring{a}_q[f, g]$, respectively. We shall always consid

 $(\varphi, \, \psi \in C_0^\infty(G))$ are closable [5: p. 318]. Let the corresponding closed forms be denoted by $\mathring{a}_q[f,g]$ and $\mathring{a}_q[f,g]$, respectively. We shall always consider real-valued solutions of the equations $\mathcal{A}_0u = 0$ - and $\mathcal{A}_0u = 0$ which belong to $C(G) \cap W^2_{2,\text{loc}}(G)$, where $W_{2,loc}^2(G)$ denotes the Sobolcv space of (complex-valued) functions the generalized. derivatives of which up to order two belong to L_2 on compact subsets of G. Assuming that *u* is a non-trivial solution of one of these equations the set $N_u = \{y \in G \mid u(y)\}$ $= 0$. is said to be the *nodal contour* of *u.* By a theorem of MCNABB [10] in every derivatives of which up to order two belong to L_2 on compact subsets of G. Assuming
that u is a non-trivial solution of one of these equations the set $N_u = \{y \in G \mid u(y) = 0\}$ is said to be the *nodal contour* of u. By a derivatives of which up to order two belong to L_2 on compact subsets of G. Assuming
that u is a non-trivial solution of one of these equations the set $N_u = \{y \in G \mid u(y) = 0\}$ is said to be the *nodal contour* of u. By a and ∂G the domain G is divided into at least-two connected subdomains. Such a subdomain Ω of θ is said to be a *nodal domain* of u ; *u* has fixed sign in Ω and $u(x) = 0$,

 $x \in \partial\Omega \cap G$. To formulate the following theorem we further require the set

Elliptic Sturmian Theory for General Domains
\nG. To formulate the following theorem we further require the set
\n
$$
D_q = \left\{ f \in W_{2,loc}^1(G) \mid \int_G p_{ij} f_x \bar{f}_{x_i} dx + \int_G q^+ |f|^2 dx < \infty \right\}.
$$
\n(3)
\nIt a function $f \in D_q$ is not necessarily contained in $L_2(G)$.

Note that a function $f \in D_q$ is not necessarily contained in $L_2(G)$.

Theorem 2: *Let the hypotheses* (i)—(iv) from above be fulfilled. If there exists a *non-trivial solution* $u \in D(\dot{a}_0)$ of $\mathcal{A}_0u = 0$ such that $u \in D(\dot{a}_0)$ and $\dot{a}_0[u, u] \leq 0$, then *every solution* $v \in D_q$ *of* $\mathcal{A}_q v = 0$ *is a constant multiple of u or changes sign in G.*

Proof: Let Ω be any nodal domain of u . (Possibly, G itself is a nodal domain of u .) Then the restriction u_{ρ} of *u* to Ω belongs to $D(\dot{a}_{q,\rho})$ as well as to $D(\dot{a}_{q,\rho})$, the domains Note that a function $f \in D_q$ is not necessarily contained in $L_2(G)$.

. Theorem 2: Let the hypotheses (i)-(iv) from above be fulfilled.

non-trivial solution $u \in D(a_0)$ of $A_0u = 0$ such that $u \in D(a_q)$ and *every solutio i*₄*f*_{*x*}_{*dx*} + *f*_{*q*}^{*t*} |*f*|² *dx* < ∞ }.
 h necessarily contained in *L*₂(*G*).
 s (i)-(iv) from above be fulfilled. If there ex
 *d*_Qu = 0 *such that* $u \in D(\dot{a}_q)$ and $\dot{a}_q[u, u] \leq 0$
 s a

aQ•Q[92,] = *f - - '(,E C0 (Q)), -. - P] =1 -r- qqnp]dx . . -* respectively [11: Lemma]. Since *u^Q E W ¹ (Q).* and *CJIQUs? == 0, u. E D(A ⁰⁰), -*

where $A_{Q,Q,0}\varphi = \mathcal{A}_Q\varphi$, $\varphi \in C_0^{\infty}(\Omega)$. Hence, it follows from $u_Q \in D(d_{Q,Q})$ that $u_q \in D(A_{Q,q})$, $A_{Q,q}$ being the Friedrichs extension of $A_{Q,Q,0}$. u_q is an eigenfunction of $A_{Q,Q}$ and $\lambda = 0$ is the corresponding eigenvalue. Hence, we have $a_{Q,Q}(u_Q, u_Q)$
 $\lambda = (A_0u_Q, u_Q) = 0$. Of course, we also have $a_Q[u, u] = 0$. By the help of (2), one

can easily prove that $a_q[u, u]$ is represented by
 a_q respectively [11: Lenna]. Since $u_q \in W_{2,10}^2$
where $A_{Q,\Omega,\Omega} \varphi = \mathcal{A}_Q \varphi$, $\varphi \in C_0^{\infty}(\Omega)$. Hence,
 $u_q \in D(A_{Q,\Omega})$, $A_{Q,\Omega}$ being the Friedrichs extens
of $A_{Q,\Omega}$ and $\lambda = 0$ is the corresponding eiger
 $= (A_q u_q, u_q)$ From the of the space of the space of $u_0 \in D$
respectively. $f = \int_{\mathcal{Q}} [P_{ij}\varphi_{x_i}\overline{\psi}]$
 $f = \int_{\mathcal{Q}} [p_{ij}\varphi_{x_i}\overline{\psi}]$

Lemma]. S

Lemma]. S

Lemma]. S

Lemma

S

S

S
 $\varphi\varphi, \varphi \in C_0$

being the **F**

is the corr

of course,
 $\int_{\mathcal{Q}} (\varphi_{ij}u_{x_i}\overline{u}_{x_j})$
 $\int_{\mathcal{Q}} (\varphi_{ij}u_{x$

$$
\dot{a}_q[u, u] = \int (p_{ij}u_{x_i}\dot{u}_{x_j} + qu^2) dx.
$$

Because $d_q[u, u] \leq 0$ there exists at least one nodal domain Ω of u such that

$$
d_q[u, u] = \int\limits_G (p_{ij}u_{x_i}\dot{u}_{x_j} + qu^2) dx.
$$

use $d_q[u, u] \leq 0$ there exists at least one nodal domain

$$
d_{q,0}[u_q, u_q] = \int\limits_G [p_{ij}(u_q)_{x_i}(u_q)_{x_j} + q(u_q)^2] dx \leq 0.
$$

At this point, without loss of generality, we can assume that $u_0(x) > 0$, $x \in \Omega$. The following.two cases are possible: (a) this point, without loss of generality

(i) $a_{q,\Omega}[\varphi, \varphi] \ge 0$ for all $\varphi \in C_0^{\infty}(\Omega)$.

(i) $a_{q,\Omega}[\varphi, \varphi] \ge 0$ for all $\varphi \in C_0^{\infty}(\Omega)$.

(1)
$$
a_{\alpha,\Omega}[\varphi,\varphi] \geq 0
$$
 for all $\varphi \in C_0^{\infty}(\Omega)$.

(II)
$$
a_{a,\Omega}[\varphi_0, \varphi_0] < 0
$$
 for some $\varphi_0 \in C_0^\infty(\Omega)$.

(110*a₀*, *a₀*) = 0. Of course, we also have $a_0(u, u) = 0$. By the m

n easily prove that $a_q[u, u]$ is represented by
 $a_q[u, u] = \int_{0}^{1} (p_{ij}u_{x_i}\tilde{u}_{x_i} + qu^2) dx$.

ccause $a_q[u, u] \le 0$ there exists at least one nodal doma *Case* I: In this case we have $d_{q,\Omega}[u_q, u_q] = 0$, and $D(d_{q,\Omega}) = D(A_{q,\Omega}^{1/2})$ [5: p. 331], $A_{q,0}$ being the Friedrichs extension of $A_{q,0,0}$, $A_{q,0,0}\varphi = \mathcal{A}_{q}\varphi$, $\varphi \in C_0^{\infty}(\Omega)$. It follows
from $0 = a_{q,0}[u_0, u_0] = ||A_{q,0}^{1/2}u_0||^2$ that $A_{q,0}u_0 = 0$. Therefore u_0 is also an eigen-4q, μ a_n, μ _a_n, μ ₂ *D*_{*i*}, μ ₂ *A*_{*z*} *p*₁ μ ₂ *A*_{*z*} *p*₁ μ ₂ μ ₂ \geq 0.

4d this point, without loss of generality, we can assume that $u_{\Omega}(x)$ > following two cases are possi following two cases are possible:

(1) $a_{q,\Omega}[\varphi, \varphi] \ge 0$ for all $\varphi \in C_0^{\infty}(\Omega)$.

(II) $a_{q,\Omega}[\varphi_0, \varphi_0] < 0$ for some $\varphi_0 \in C_0^{\infty}(\Omega)$.

Case I: In this case we have $a_{q,\Omega}[u_0, u_0]$
 $A_{q,\Omega}$ being the Fried *W*: In this case we have $\dot{a}_{q,0}[u_0, u_0] = 0$, and $D(\dot{a}_{q,0}) = D(A_q^{1/2})$
 g the Friedrichs extension of $A_{q,0,0}$, $A_{q,0,0}\varphi = A_q\varphi$, $\varphi \in C_0^{\infty}(\Omega)$
 i $\dot{a}_{q,0}[u_0, u_0] = ||A_q^{1/2}u_0||^2$ that $A_{q,0}u_0 = 0$.

function of $A_{q,\Omega}$ and satisfies the equation $A_{q}u_{\Omega} = 0$.
If there exists a zero of *v* in G, by the theorem of McNABB the solution *v* changes sign [11]. Thus, we can assume in the following that $v(x) > 0$, $x \in G$. Choose any

$$
w(x) = u\Omega(x*) v(x) - v(x*) u\Omega(x) \qquad (x \in \Omega).
$$

This is a solution of $\mathcal{A}_q w = 0$ in Ω with $w(x^*) = 0$. The identity $w = 0$ implies $v(x) = \text{const} \cdot u(x), x \in \Omega$. If Ω is a proper subdomain of G, then *v* vanishes on $\partial\Omega \cap G$, which implies that *v* changes sign in G. Because of the assumption $v(x) > 0$ $(x \in G)$, however, we have $\Omega = G$ and $v(x) = \text{const} \cdot u(x)$, $x \in G$. In the case where $w \not\equiv 0$ this function must change sign in every neighbourhood of x^* in Ω as repeatedly

remarked. Let $\omega \subset \Omega$ be a subdomain such that $w(x) < 0$ for $x \in \omega$ and $w(y) = 0$ for $y \in \partial \omega \cap \Omega$. We prove that $z \in D(\dot{a}_{q,\Omega}),$

d. Let
$$
\omega \subset \Omega
$$
 be a subdomain such that $w(x)$
\n $\omega \cap \Omega$. We prove that $z \in D(\dot{a}_{q,\Omega})$,
\n
$$
z(x) = \begin{cases} w(x) & \text{for } x \in \omega, \\ 0 & \text{for } x \in \Omega \setminus \omega. \end{cases}
$$

\n
$$
\subset C_0^{\infty}(\Omega) \text{ be a real sequence with } \varphi_m \longrightarrow u_{\Omega},
$$

Let $(\varphi_m) \subset C_0^{\infty}(\Omega)$ be a real sequence with $\varphi_m \frac{1}{\varphi_0 \Omega}$ ψ_0 , that is [5: p. 313]

$$
z(x) = \begin{cases} \infty & \text{for } x \in \Omega \setminus \omega, \\ 0 & \text{for } x \in \Omega \setminus \omega. \end{cases}
$$

\n
$$
C_0^{\infty}(\Omega) \text{ be a real sequence with } \varphi_m \xrightarrow[\overline{a_0, \Omega]} u_{\Omega}, \text{ that is [5: p. 313]}
$$

\n
$$
a_{q,\Omega}[\varphi_m - \varphi_{m'}, \varphi_m - \varphi_{m'}] \xrightarrow[\overline{m}, \overline{m' \to \infty]} 0 \text{ and } ||\varphi_m - u_{\Omega}||_{\Omega} \xrightarrow[\overline{m \to \infty]} 0.
$$

\n
$$
= \tilde{u}_{\Omega}(x^*) v(x) - v(x^*) w(x) (x \in \Omega) \text{ and define}
$$

Let $(\varphi_m) \subset C_0^{\infty}(\Omega)$ be a real sequence with $\varphi_m \xrightarrow[\alpha_0, 0]{} u_\Omega$, to $\alpha_{q,\Omega}[\varphi_m - \varphi_m, \varphi_m - \varphi_m] \xrightarrow[m,m' \to \infty]{} 0$ and $||\varphi_m$
Set $w_m(x) = u_\Omega(x^*) v(x) - v(x^*) \varphi_m(x)$ ($x \in \Omega$) and define Set $w_m(x) = u_{\Omega}(x^*) v(x) - v(x^*) \varphi_m(x)$ ($x \in \Omega$) and define

$$
w_m^{-}(x) = \min (w_m(x), 0)
$$
 and $\zeta_m(x) = \max (z(x), w_m^{-}(x)).$

Note that $\zeta_m(x) = 0$ ($x \in \Omega \setminus \omega$) and w, z, w_m, w_m , $\zeta_m \in W^1_{2,loc}(\Omega)$ [6: p. 50]. From $w_m(x) > 0$ we have $w_m(x) = 0$ and $\zeta_m(x) = 0$, $x \in \Omega \setminus \text{supp } \varphi_m$. Therefore, $\zeta_m \in D(\dot{a}_{q,\Omega})$. We now prove that $z \in L_2(\Omega)$ and $\|\zeta_m - z\|_{\Omega} \to 0$. It follows from Note that $\zeta_m(x) = 0$ $(x \in \Omega \setminus \omega)$ and $\zeta_m(x) = \max(z(x), w_m^{-}(x))$.

Note that $\zeta_m(x) = 0$ $(x \in \Omega \setminus \omega)$ and $w, z, w_m, w_m^{-1}, \zeta_m \in W^1_{2,loc}(\Omega)$ [6: p. 50].
 $w_m(x) > 0$ we have $w_m^{-}(x) = 0$ and $\zeta_m(x) = 0$, $x \in \Omega \setminus \text{supp } \varphi_m$. Then $|v(x^*)|$ Let $(\varphi_m) \subset C_0^{\infty}(\Omega)$ be a real sequence with $\varphi_m \frac{1}{\varphi_n \Omega} \star u_{\Omega}$, that is [5: p. 313]
 $\alpha_{q,\Omega}[\varphi_m - \varphi_{m}, \varphi_m - \varphi_{m}]\frac{1}{m,m' \to \infty} \star 0$ and $||\varphi_m - u_{\Omega}||_{\Omega} \frac{1}{m \to \infty} \star 0$.

Set $w_m(x) = \dot{u}_{\Omega}(x^*) v(x) - v(x^*) \varphi_m$ $\|w - w_m\| \le \|w - w_m\| = |v(x^*)| \|u_Q - \varphi_m\|$ $(x \in \omega)$ that $\|w - w_m\| \le |v(x^*)|$
 $\times \|u_Q - \varphi_m\|$ and, consequently, $w - w_m^- \in L_2(\omega)$. Thus, we have $w \in L_2(\omega)$

because $w_m^- \in L_2(\omega)$. But this implies $z \in L_2(\Omega)$. To prove $\|\zeta_m - z\|$ Lie (ym) \Box θ₀ (sz) so a central explicition with $\theta_m \frac{1}{\alpha_{e,B}}$ v a₂, such i
 $\alpha_{q,B}[\varphi_m - \varphi_{m'}, \varphi_m - \varphi_{m'}] \frac{1}{m,m' \to \infty}$ + 0 and $||\varphi_m - u$

Set $w_m(x) = u_0(x^*) v(x) - v(x^*) \varphi_m(x)$ (x ∈ Ω) and define
 $w_m^-(x) = \min (w_m(x),$ *d* $w_m^-(x) = m$ $m, m \to \infty$
 $w_m^-(x) = \min(w_m(x), 0)$ and $\zeta_m(x) = \max(z(x), w_m^-(x))$.
 $w_m^-(x) = \min(w_m(x), 0)$ and $\zeta_m(x) = \max(z(x), w_m^-(x))$.
 $d \zeta_m(x) = 0$ ($x \in \Omega \setminus \omega$) and $w, z, w_m, w_m^-, \zeta_m \in W_{2,loc}^1(\Omega)$ [6: p. 50]. From
 0 we have $w_m^-(x) =$ $w - w_m^{-1} \le |w - w_m|$
 $w - w_m^{-1} \le |w - w_m|$
 $\times ||u_g - \varphi_m||_{\omega}$ and, conceause $w_m^{-} \in L_2(\omega)$. B

stimate $||\zeta_m - z||_2 = ||\zeta$

Now we prove that ther
 $a_{q,\Omega}[\zeta_m, \zeta_m] \le$

By using (3) with f
 $2_m = \sup p \varphi_m$ we obtai
 $a_{q,\Omega}[\zeta_m,$ estimate $||\zeta_m - z||_0 = ||\zeta_m - z||_0 \le ||w_m - z||_0 = ||w_m - w_m||_0 \le |v(x^*)| ||\varphi_m - u_0||_0$.
Now we prove that there exists a constant $C > 0$ such that because w_m ⁻ \in $L_2(\omega)$. But this implies $z \in L_2(\Omega)$. To prove $\|\zeta_m - z\|_{\Omega} \to 0$ use the

$$
\dot{a}_{q,\Omega}[\zeta_m,\zeta_m] \leq C \qquad (m \in \mathbb{N}). \tag{4}
$$

By using (3) with $f = v$ and the Schwarz inequality [5: p. 53] and setting. $\Omega_m = \text{supp } \varphi_m$ we obtain

Now we prove that there exists a constant
$$
C > 0
$$
 such that $\ell = \lfloor \log_m - \log_m - \log_m \rfloor$ and $\ell = \lfloor \ell (d-1) \rfloor |\psi_m - \omega_0| | \beta$.
\nNow we prove that there exists a constant $C > 0$ such that $\ell = \lfloor \log_m - \log_m \rfloor$ (4)
\nBy using (3) with $f = v$ and the Schwarz inequality [5: p. 53] and setting,
\n $Q_m = \sup p \varphi_m$ we obtain
\n $d_{q,0}[\zeta_m, \zeta_m] \leq \int p_{ij}(\zeta_m)_{z_i} (\zeta_m)_{z_i} dx + \int q^2 \zeta_m^2 dx$
\n $\leq \int p_{ij} z_i z_{z_i} dx + \int p_{ij} (w_m^-)_{z_i} (w_m^-)_{z_i} dx + \int q^2 z^2 dx + \int q^4 (w_m^-)^2 dx$
\n $\leq \int p_{ij} w_{z_i} w_{z_i} dx + \int p_{ij} (w_m)_{z_i} (w_m)_{z_i} dx + \int q^2 z^2 dx + \int q^4 w_m^2 dx$
\n $\leq C_1 \left[\int_{Q_m} p_{ij} (u_{\Omega})_{z_i} (u_{\Omega})_{z_j} dx + \int_{Q_m} p_{ij} v_{z_i} v_{z_j} dx + \int_{Q_m} p_{ij} (\varphi_m)_{z_i} (\varphi_m)_{z_j} dx \right]$
\n $+ \int q^4 (u_{\Omega})^2 dx + \int q^4 v^2 dx + \int q^4 \varphi_m^2 dx$
\n $\leq C_1 \left[\int_{Q_m} p_{ij} (u_{\Omega})_{z_i} (u_{\Omega})_{z_j} + q^4 (u_{\Omega})^2 \right] dx$
\n $+ \int [p_{ij}(\varphi_m)_{z_i} (\varphi_m)_{z_j} + q^4 \varphi_m^2 dx] + C_2.$
\nIf follows from (2) that
\n $a_{q,0}^* \left[\varphi_m, \varphi_m \right] \leq (1 - c_1)^{-1} a_{q,0} \left[\varphi_m, \varphi_m \right] + (1 - c_1)^{-1} c_2 ||\varphi_m||_2^2.$
\nHence, in view of
\n

It follows from (2) that

 $\frac{1}{2}$

•

 $a_{q,\Omega}[\varphi_m, \varphi_m] \to \dot{a}_{q,\Omega}[u_\Omega, u_\Omega] = 0$ and $\|\varphi_m\|_{\Omega} \to \|u_\Omega\|_{\Omega}$,

 C_3 $(m \in N)$. Finally, we have, for $m \in N$,

$$
[u_q]_{\alpha} \circ p_m \circ p_m = \alpha_q \circ p[u_\alpha, u_\alpha] = 0 \quad \text{and} \quad ||\varphi_m||_{\alpha} \to ||u_\alpha||_{\alpha},
$$

ists a constant C_3 such that $a_q^+ \circ p[\varphi_m, \varphi_m] \leq C_3$ $(m \in N)$. Final,

$$
\int_{\Omega_m} [p_{ij}(u_\alpha)_{x_i}(u_\alpha)_{x_j} + q^+(u_\alpha)^\alpha] dx \leq \int_{\Omega} [p_{ij}u_{x_i}u_{x_j} + q^+u^\alpha] dx < \infty.
$$

Ξ

S

By using these estimates in (5) we obtain (4). It now follows from $\|\zeta_m - z\|_{\mathcal{Q}} \to$ and (4) that $z \in D(\dot{a}_{q, \Omega})$ [5: Theorem 1.16/p. 315]. we obtain (4). It now follows from

prem 1.16/p. 315].

belongs to $D(\dot{a}_{q,\omega})$, the domain of the
 $dx + \int q\varphi \bar{\psi} dx$ $(\varphi, \psi \in C_0^{\infty}(\omega))$

The restriction z_{ω} of z to ω belongs to $D(\dot{a}_{q,\omega})$, the domain of the closure of the form

Elliptic Sturmian Theory for General
\nng these estimates in (5) we obtain (4). It now follows for
\nthat
$$
z \in D(\dot{a}_{q,\Omega})
$$
 [5: Theorem 1.16/p. 315].
\nrestriction z_{ω} of z to ω belongs to $D(\dot{a}_{q,\omega})$, the domain of t
\n $a_{q,\omega}[\varphi, \psi] = \int p_{i,j}p_{z_{i}}\bar{\psi}_{z_{j}} dx + \int q\varphi\bar{\psi} dx \qquad (\varphi, \psi \in C_{0}^{\infty}(\omega))$
\nmmal. Further we have $z_{\omega} \in W_{2,\text{loc}}^{2}(\omega)$ and $\mathcal{A}_{q}z_{\omega} = 0$. Hence
\nno of the Friedrichs extension $A_{q,\omega}$ of $A_{q,\omega,0}$, $A_{q,\omega,0}\varphi = \mathcal{A}_{q}\varphi$

/

and (4) that $z \in D(d_{q,\Omega})$ [5: Theorem 1.16/p. 315].

The restriction z_{ω} of z to ω belongs to $D(d_{q,\omega})$, the domain of the closure of the

form
 $a_{q,\omega}[\varphi, \psi] = \int p_{i} \varphi_{z_{i}} \overline{\psi}_{z_{i}} dx + \int q \varphi \overline{\psi} dx$ $(\varphi, \psi \in C_{0}$ = 0 and, consequently, $d_{q,\rho}[z, z] = 0$. This relation implies $A_{q,\rho}^{1/2}z = 0$ which leads to $A_{q,0}z = 0$. Hence, $z \in W^2_{2,loc}(\tilde{G})$ (see [2], for instance) and z is a solution of the equation $A_qz = 0$. By considering the property $z(x) = 0$ ($x \in \Omega \setminus \omega$) and using the unique continuation theorem for solutions of elliptic equations (see [4: p. 224 and Remarks 3/p. 203]) it follows that $z = 0$ in Ω . Finally, $w(x) = 0$ for $x \in \omega$ implies $x(x) = 0$ for $x \in \Omega$. This proves that $v(x) = \text{const} \cdot u(x)$, $x \in \Omega$. In the case where Ω is a proper subdomain of G we have $v(y) = 0$ $(y \in \partial \Omega \cap G)$ which implies that *v* iust change sign in *G.* But this case is impossible because of the assumption $v(x) > 0$, $x \in G$. In the case $\Omega = G$, however, the solution v is a constant multiple $a_{q,w}[\varphi, \psi] = \int p_{ij}p_{z_i}\overline{\psi}_{z_i} dx + \int q\varphi\overline{\psi} dx$ (φ

[11: Lemma]. Further we have $z_{\omega} \in W_{2,10c}^2(\omega)$ and \mathcal{A}_q

function of the Friedrichs extension $A_{q,w}$ of $A_{q,w,0}$, A
 $\lambda = 0$ is the corresponding eig $w(x) = 0$ for $x \in \Omega$. This proves that $v(x) = \text{const} \cdot u(x)$, $x \in \Omega$. In the case where Ω
is a proper subdomain of G we have $v(y) = 0$ ($y \in \partial \Omega \cap G$) which implies that v
must change sign in G . But this case is imposs

Case (II): We conclude as in [11]. There exists a function $\varphi_0 \in C_0^{\infty}(\Omega)$ with $a_{q,\Omega} [\varphi_0, \varphi_0] < 0$. It follows from dist (supp $\varphi_0, \partial \Omega$) > 0 that there exists a bounded domain ω_0 with supp $\varphi_0 \subset \omega_0 \subset \overline{\omega}_0 \subset G$ belonging to the class C^{∞} (definition in *Case* (II): We conclude as in [11]. There exists a function $\varphi_0 \in C_0^{\infty}(\Omega)$ with $a_{q,\Omega}[\varphi_0, \varphi_0] < 0$. It follows from dist (supp $\varphi_0, \partial\Omega$) > 0 that there exists a bounded domain ω_0 with $\sup p \varphi_0 \subset \omega_0 \subset$ $|q(x)| \leq C_{\omega_0} < \infty$ ($x \in \omega_0$). It follows from $a_{q,\Omega}[\varphi_0, \varphi_0] < 0$ that the smallest eigenvalue λ_1 of A_{q,ω_0} is negative. The corresponding eigenfunction u_1 belongs to the Sobolev space $W_2^p(\omega_0)$ for every $p < \infty$ [2: Theorem 24/p. 93]. Hence, by an embedding theorem [12], $u_1 \in C^1(\overline{\omega}_0)$. Further, we have $u_1(x) = 0$, $x \in \partial \omega_0$. Without loss of generality, we can assume that u_1 is real-valued and takes on positive values in a subdomain of ω_0 . (One can show that λ_1 is a simple eigenvalue and that the (real) eigenfunction u_1 has fixed sign in ω_0 .) Because $v(x)$ is positive on $\overline{\omega}_0$ there exists a uniquely determined $\varepsilon > 0$ and a point $x_{\varepsilon} \in \omega_0$ such that $\varepsilon u_1(x) \leq v(x)$ $(x \in \omega_0)$ and $\varepsilon u_1(x_{\varepsilon}) = v(x_{\varepsilon})$. Thus, in a neighbourhood $K_e(x_{\varepsilon}) = |x| |x - x_{\varepsilon}| < \varrho$ $\mathcal{L} \omega_0$ of x_e we have $\mathcal{A}_0(\epsilon u_1) = \epsilon \lambda_1 u_1 \leq \mathcal{A}_0 v = 0$. Hence, by the theorem of McNABB. [10], $\epsilon u_1 < v$ or $\epsilon u_1 = v$ on $K_{\epsilon}(x_{\epsilon})$. The case $\epsilon u_1 < v$ is impossible because of $\epsilon u_1(x_{\epsilon})$
 $= v(x_{\epsilon})$. From $\mathcal{A}_q(\epsilon u_1) < \mathcal{A}_q v$, on the other hand, it follows that the case $\epsilon u_1 = v$

is also impossible. $v(x_i)$. From $A_q(\varepsilon u_1) < A_q v$, on the other hand, it follows that the case $\varepsilon u_1 = v$ is also impossible. Hence, *v* must change sign in *G* \blacksquare in a subdomain of ω_0 . (One can show

(real) eigenfunction u_1 has fixed sign

exists a uniquely determined $\varepsilon > 0$
 $(x \in \omega_0)$ and $\varepsilon u_1(x_i) = v(x_i)$. Thus, in
 $\subset \omega_0$ of x_ϵ we have $\mathcal{A}_q(\varepsilon u_1) = \varepsilon \lambda_1 u_1 <$ Set a uniquely determined $\varepsilon > \varepsilon$ ω_0) and $\varepsilon u_1(x_t) = v(x_t)$. Thus
 ω_0 of x_t we have $\mathcal{A}_q(\varepsilon u_1) = \varepsilon \lambda_1 u$
 \vert , $\varepsilon u_1 < v$ or $\varepsilon u_1 = v$ on $K_i(x_t)$.
 $v(x_t)$. From $\mathcal{A}_q(\varepsilon u_1) < \mathcal{A}_q v$, on v
 $v(x$

rem 2 was proved for uniformly elliptic (but not necessarily selfadjoint) equations by AHMAD *(vi)* α *q* α *x* as proved for uniformly ellaps are proved for uniformly ellaps are proved in the hypothese (v) $p_{ij}(x) \xi_i \xi_j \leq P_{ij}(x) \xi_i \xi_j$

(v) $q(x) \leq Q(x)$ $(x \in G)$.
 there exists a nontrivial solut **of 40** P is a constant multiple (but not necessarily selfadjo and Lazer [1].

Corollary: Let the hypotheses (i) -(iv) be fulfilled and assum

(v) $p_{ij}(x) \xi_i \xi_j \leq P_{ij}(x) \xi_i \xi_j$ ($\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$; $x \in G$

(vi) Under certain restrictions on the domain G , the coefficients and the set of s

n 2 was proved for uniformly elliptic (but not necessarily selfadjoint) equat

d LAZER [1].

Corollary: Let the hypotheses (i)-(iv) be fulfi

Corollary: *Let the hypotheses (i) — (iv) be fulfilled and aseume*

$$
(v) \quad p_{ij}(x) \xi_i \xi_j \leq P_{ij}(x) \xi_i \xi_j \qquad (\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n; \, x \in G),
$$

If there exists a nontrivial solution $u \in D(\dot{a}_0)$ of $\mathcal{A}_0u = 0$, then every solution $v \in D_q$ of $\mathcal{A}_qv = 0$ is a constant multiple of u or changes sign in G. (vi) $q(x) \leq Q(x)$ $(x \in G)$.
 \therefore there exists a nontrivial solution $u \in D(\mathcal{A}_q v = 0$ is a constant multiple of u or ch

Proof: Two cases are possible:

(I) $a_q[\varphi, \varphi] \geq 0$ for all $\varphi \in C_0^{\infty}(\mathcal{G}),$

(II) $a_q[\varphi, \varphi$ (v) $p_{ij}(x) \xi_i \xi_j \leq P_{ij}(x) \xi_i \xi_j$ $(\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n; x \in \mathbb{R}^n$ *q*(x) $q(x) \leq Q(x)$ $(x \in G)$.
 If there exists a nontrivial solution $u \in D(d_0)$ *of* $\mathcal{A}_qu = 0$ *, to* $\mathcal{A}_qv = 0$ *is a constant multiple of u or change hen every sol*
,
,

(I)
$$
a_o[\varphi, \varphi] \geq 0
$$
 for all $\varphi \in C_0^{\infty}(\hat{G})$

Case (I): It follows from the hypotheses (v) and (vi) that $0 \le a_g[\varphi, \varphi] \le a_g[\varphi, \varphi]$ **(***Case* (I): It follows from the hypotheses (v) and (vi) that $0 \le a_q[\varphi, \varphi] \le a_q[\varphi, \varphi]$
 $(\varphi \in C_0^{\infty}(G))$. Hence, we have $D(a_q) \subseteq D(a_q)$ and $a_q[u, u] = 0$ implies $a_q[u, u] = 0$.

Thus, Theorem 2 can be used. Thus, Theorem 2 can be used. *• Case (1):* It follows from the hypotheses (v) and (v) that $0 \leq$
 $(\varphi \in C_0^{\infty}(G))$, Hence, we have $D(d_Q) \subseteq D(d_q)$ and $d_Q[u, u] = 0$ is Thus, Theorem 2 can be used.
 Case (II): We can conclude as in the case (II) of the *a E.* MÜLLER-PFEIFFER
 a (G)), Hence, we have $D(\dot{a}_Q) \subseteq D(\dot{a}_q)$ and $\dot{a}_Q[u, u] = 0$ is
 a corem 2 can be used.
 I): We can conclude as in the case (II) of the proof of
 cm 3: *Let the hypotheses* (i) – (

Case (II): We can conclude as in the case (II) of the proof of Theorem 2

Theorem 3: Let the hypotheses (i)—(iii) and (1) be fulfilled and let $u \in D(\dot{a}_0)$ be a

$$
a_q[\varphi,\psi] = \int\limits_G p_{ij} \varphi_{x_i} \overline{\psi}_{x_j} dx + \int\limits_G q \varphi \overline{\psi} dx \qquad (\varphi,\psi \in C_0^\infty(G))
$$

is closable and that $u \in D(a_q)$, $\dot{a}_q[f, g]$ being the closure of $a_q[\varphi, \psi]$. If $\dot{a}_q[u, u] < 0$, *then every solution v of* $A_qv = 0$ *changes sign in G.*

Proof: It follows from $d_q[u, u] < 0$ that there exists a $\varphi_0 \in C_0^{\infty}(G)$ with $a_q[\varphi_0, \varphi_0]$ < 0 . Then we conclude as in the case (II) of the proof of Theorem 2

Theorem 4: Let hypotheses (i) and concerning the coefficients P_{ij} $(i, j = 1, ..., n)$ *and Q the hypothesis (ii) and (iii) be fulfilled. Assume that u and v are linearly in*
 dependent solutions of $\mathcal{A}_0 u = 0$. Then, the nodal contour N_v of v intersects each bounded
 nodal domain Ω of u with \over *dependent solutions of* $\mathcal{A}_0u = 0$ *. Then, the nodal contour* N_v *of v intersects each bounded nodal domain* Ω *of u with* $\overline{\Omega} \subset G$. *Additionally, we have* $\partial\Omega \cap N_v \neq \emptyset$.

Proof: Obviously, there are positive constants $c_1 < 1$ and c_2 such $|(Q^-\varphi, \varphi)| \leq c_1 a_0^+ [\varphi, \varphi] + c_2 ||\varphi||^2 \qquad (\varphi \in C_0^\infty(\Omega)).$

We nd Q
epend
odal d
Pro
Ve ha *P* **P** Ω *P Example 12 <i>P P*

Proof: Obviously, there are positive constants $c_1 < 1$ and c_2 such that

$$
|(Q^- \varphi, \varphi)| \leq c_1 a_0^+ [\varphi, \varphi] + c_2 ||\varphi||^2 \qquad (\varphi \in C_0^\infty(\Omega)).
$$

We have $u_q \in D(\dot{a}_{q,q})$ as remarked above. Further, concerning the solution *v* of $A_0v = 0$ we have

$$
\int\limits_{\Omega} P_{ij}v_{x_i}v_{x_j}\,dx + \int\limits_{\Omega} Q^+v^2\,dx < \infty.
$$

Hence, Theorem 2 can be applied with Ω in place of G. By assuming that $v(x)$ $=$ const $\cdot u(x)$ ($x \in \Omega$) the unique continuation theorem for solutions of elliptic equations implies $v(x) = \text{const} \cdot u(x)$, $x \in G$. Because u and v are linearly independent we have $v \neq \text{const} \cdot u$ in Ω . Hence, by Theorem 2, *v* changes sign in Ω . To prove Notational the set of the set of the set of theorem 4 is an extension of the set of the set of the set of \mathcal{U}_q , φ and $\mathcal{U}_q(\varphi, \varphi)$ are positive constand $|(\varphi - \varphi, \varphi)| \leq c_1 a_0^+ [\varphi, \varphi] + c_2 ||\varphi||^2$ (we have $\partial\Omega \cap N_v + \emptyset$ assume $\partial\Omega \cap N_v = \emptyset$. Then there exists a nodal domain Θ of v with $\bar{\theta} \subset \Omega$. This situation, however, is impossible because, conversely, the nodal con tour of *u* intersects θ **I**

Theorem 4 is an extension of Sturm's separation theorem to the *n*-dimensional case.

Example: Let

This student, however, is impossible because, conversely, the no
intersects
$$
\Theta
$$

l

$$
\mathbf{m} \cdot \mathbf{4}
$$
 is an extension of Sturm's separation theorem to the *n*-dimensional cap
ple: Let

$$
\mathcal{A}_Q u \equiv -(\sqrt{1-x^2} u') - \frac{u}{\sqrt{1-x^2}} = 0 \qquad (-1 < x < 1; P = p, Q = q).
$$

The hypotheses (i) $-$ (iv) are fulfilled. Concerning the estimate (1) we refer to [9: Theorem 4]. A non-trivial solution *u* of $\mathcal{A}_Qu = 0$ is $u(x) = \sqrt{1 - x^2} (-1 < x < 1)$ which belongs to $D(\dot{a}_Q)$. Each linearly independent solution *v*, $v(x) = C_1\sqrt{1-x^2} + C_2x$ (-1 < x < 1; $\overline{C_2} = 0$) belongs to D_q and has a zero in $(-1, 1)$. $\partial \Omega \cap N_y = \emptyset$ assume $\partial \Omega \cap N_y = \emptyset$. Then there exists a nodal domain Θ of v with
 $\overline{\Theta} \subset \Omega$. This situation, however, is impossible because, conversely, the nodal contour of u interests Θ ■

Theorem 4 is an e

- [1] AHMAD, S., and A. C. LAZER: On the role of Hopf's maximum principle in Sturmian theory. Houston J. Math. 5 (1979), 155-158.
- [2] BROWDEB, F. E.: On the spectral theory of elliptic differential operators I. Math. Ann. 142 (1961), 22-130.

-

- [3] HEYWOOD, J. G., NOUSSAIR, E. S., and C. A. SWANSON: On the zeros of solutions of elliptic inequalities in bounded domains. J. Diff. Equ. 28 (1978), 345-353. (3) HEYWOOD, J. G., No

elliptic inequalities in

[4] HÖRMANDER, L.: Lin

Springer-Verlag 1963.

[5] KATO, T.: Perturbat Elliptic Sturm

Elliptic Sturm

HEYWOOD, J. G., NOUSSAIR, E. S., and C. A.

elliptic inequalities in bounded domains. J. Di

HÖRMANDER, L.: Linear partial differential of

Springer-Verlag 1963.

Springer-Verlag 1966.

Spri [3] HEYWOOD, J. G., NOUSSAIR, E. S., and C. A. SWANSON: On the zeros of solutions of elliptic inequalities in bounded domains. J. Diff. Equ. 28 (1978), 345-353.

[4] HÖNMANDER, L.: Linear partial differential operators. B
- [4] HöRMANDER, L.: Linear partial differential operators. Berlin—Heidelberg—New York:
- Springer-Verlag 1963.
[5] KATO, T.: Perturbation theory for linear operators. Berlin—Heidelberg—New York:
Springer-Verlag 1966.
- [6] KINDERLEIIRER, D., and G. STAMPAcCRIA: An Introduction to Variational Inequalities and Their Applications. New York: Academic Press 1980. Springer-Verlag 1966.

KINDERLEIRER, D., and G. STAMPACCHIA: An Introdu

and Their Applications. New York: Academic Press 198

KREITH, K.: PDE generalizations of the Sturm compari

Soc. 48 (1981), 31 – 46.

LEIGHTON, W.: C
- [7] KREITII, K.: PDE generalizations of the Sturm comparison theorem. Mem. Amer. Math. Soc. 48 (1984), 31–46.
- [8] LEIGHTON, W.: Comparison theorems for linear differential equations of second order. Proc. Amer. Math. Soc. 13 (1962), 603-610.
- [9] MAN KAM Kwoso, and A. ZETTL: Weighted norm inequalities of sum form involving derivatives. Proc. Roy. Soc. Edinburgh 88A (1981), 121-134. FIR, K.: PDE generalizations of the Sturm comparison theorem. Mem. Amer. Math.

AS (1984), 31–46.

HTOS, W.: Comparison theorems for linear differential equations of second order.

Amer. Math. Soc. 18 (1992), 603–610.

KA
- [10] McNABB, A.: Strong comparison theorems for elliptic equations of second order. **J.** Math. Mech. 10 (1961), $431-440$.
- equations. Proc. Roy. Soc. Edinburgh 97 A (1984), $209-215$.
- [12] S000LEw, S. L.: Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik. Berlin: Akademie-Verlag 1964.
- [13] SWANSON, C. A.: Comparison and Oscillation Theory of Linear Differential Equations.
New York -- London: Academic Press 1968.

^I :.

VERFASSER:'

Prof. Dr. ERICH MÜLLER-PFEIFFER Sektion Mathématik/Physik der Padagogischen Hochachule ,,Dr. Theodor Neubauer" Nordhäuser Str. 63 DDR. 5064 Erfurt