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On the Elliptic Sturmian Theory for General Domains 
-S 

E. MULLER-PFEIFFER	 0:

4 

Per bekannte Vergleichssatz von Sturm und Picone fur gewohnliche, seibstadjungierte Diffe-
rentialgleichungen zweiter Ordnung wird auf sclbstadjungierte elliptische Differentialglci-
chungen verailgemeinert. Dabei sind dàs Grundgebiet G und die Koeffizienten der Differential 

• gleichung nicht notwendig-beschränkt, und es werden keine Regularithtsforderungen an den 
Rand c9G gesteilt. 

l43BecTIiaH TeopeMa cpaueun LHTypMa 11 fluione Ann o6bnul0Be6Hb1x caMoconpneHIlhLx 
Jui44epeHuItaJihHax ypaBHeHlin noporo nopnja o6o6I1aeTca iia caMoconpmIe1iHbIe 
anj11enTH qecII1e )e144epeuILHaJ1bHhIe ypaBMeHuM. ilpu aroM ocHoBHan o6JlacTb G It 

1I1eHTb1 Ai444epeHuHaJIbHoro ypanieunn He 06n3aTeibII0 orpaHu4eHal, u 'ycioniin peryJ!np-
HOCTH AJIFI rp4HI1Lai bU HO Tpe6y}0TcH. 

The well-known comparison theorem by Sturm and Picone for ordinary, self-adjoint, second 
order 'differential equations is extended to self-adjoint elliptic differential equations. The 
basic domain 0 and the coefficients of the equation are not necessarily bounded, and no 
regularity hypotheses on the boundary eo are required. 

/	 S 

•	Consider the differential equations 

4QU = --- ( P(x) u')'+ Q(c) u = 0
(x	b)),€

4q  = —(p(x) u')' q(x) u = 0 

•	where P, p E C'[a, b] and Q, q E C[a, b] are real-valued and P(x), p(x) > 0, x E [a, b]. A well-
known version of the Sturm-Picone theorem is the following one (compare [8: Cor. 1], [13: 
Theorem 1.5]).	 - 

• Theorem 1: If there exists a real solution u 0 of 4QU = 0 such that 

u(a) = 0 = u(b) and •f[p(u)2 +,qu2]d	0, --	 -	 S - 

then every real solution v of 4qV = 0 is a constant multiple of u or has at least one zero in (a, b). 

- - In the following this theorem will be extended to self-adjoint, second order, elliptic differ-
ential equations. The present investigation complements the paper [11], where the extension 
of the following version of the Sturm-Picone theorem is handled. 

Theorem 1': Suppose p(x)	P(x) and q(x)	Q(x), z E [a,b]. I/ there exists a real solution€
U = 0 of s4QU = 0 with u(a) = 0 = u(b), then every real solution V of çv = 0 has at least one 
zero in (a, b) if	 -	 S	 -	 •	 - 

•	 (I) q(x') < Q(x') for some x' E [a, b] or.	 • S	 - 

• (II) p(x') < P(x') and Q(x') = 0 for some x' E '(a, b).	•	- 

•

	

	Concerning-the extensive investigations in the literature which deal with extending the 
Sturm-Picone theorem to the n-dimensional case we refer to the references in [3,- 7, 13].
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Using the summation convention, let 04Q, 	denote the differential expressions 

dIQU —(Fu	± 'J(x)u (x 
= (x 1 , ..., x) E 0 c 

c4u —(puj, + q(x) u	 -€
where

(i) 0 is a (possibly unbounded) domain in the Euclidean space Rn where no regu-
larity hypotheses on the boundary eo are required; 

(ii) the coefficients P1, = P, p, = pjj E C' (i = I. ..., n) and Q, -q € C are real-
valued and defined on 0;	 - 

(iii) the smallest eigenvalues E(x) and e(x) of the matrices (P1))Z1_1 and 
•	respectively, are positive on 0;	 -	 -	- 

(iv) there are positive constants c 1 < 1 and c, such that 

- (Qq, )J ;5 ca[p, p] + C2 IJ q'11 2.	 (1) 

-	 E C°°(G)), 
I(q , )J ^ ca[p, q] ± C,	 (2) 

where (.,.) and .fl denote the inner product and the norm of the Hubert space L2(G) 
and  

Q(x) = miii Mx), 0),	Q(x)	max (Q(x), 0), 

q(x) =.min (q(), 0),	q(x) = max (q(x), 0), 

= f P1 ipdx + f Q . dx	S 

] f Px1 x, dx +f	dx.	
E C0G)) 

If Q is a subdomain of C, let the inner product and the norm of 4(Q) be denoted 
by( ., .) and I•; the index Q will be oiriitted when Q= G. It follows from (1), (2) 
that the symmetric operators A Q,0 and Aq0, 

•	A Q0	 Aq,o	4q	(9, E coc0(o)) 

are hounded from below. Consequently, the scsquilinear forms	S 

•	aQ[, ] = (AQ.O, ) = f	dx + f tQ9,Tp dx, 
C	 C 

aq[, ,] = (A 0 , )	 dx	qçvJ dx,	 S	

- 

(, 
p € C(G)) are closable [5: p. 3181. Let the corresponding closed forms be denoted 

by & Q[/, g] and à[/, g], respectively. We shall always consider real-valued solutions 
of the .equations dLQU =0- and 4u-= 0 which belong to C(G) - f)-	 where• - - - 
W 10 (C) derotes the Sobolcv space of (complex-valued) functions the generalized. 
derivatives of which up to order two belong to 4 On compact subsets of G. Assuming 
that u.. is a non-trivial solution of one of these equations the set N = (y E 0 I u(y) 
- 0). is said to be the nodal contour of u. By a theorem of MCNABB [10]in every 
neighbourhood K(y) .= {x I Ix -- I <e}	0 of a point yE NU the non-trivial 
solution u changes sign [11]. If there exists a nodal contour Nu	G, by the sets N. 

• and OG the . domain G. is divided into at least- two' connected subdomains. Such a 
- subdomain Q of 0 is said to be a nodal domain of-u; u has-fixed sign in Q and u(x) = 0,
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x E Q n C. To formulate the following theorem we further require the set 

D	{f E W1(G) fp1fj, dx +Jqt I1I2dx< o	 - - ( 3).

Note that a fuition / E D4 is not necessarily contained, in L2(G). 

Theorem 2: Let the hypotheses (i)—(iv) from above be f-ul/illed. If there exits a 
non-trivial- solution u E D(dQ) of CS4QU = 0 such that u E D(a) and dq[U, U] .O, thefl 
every solulion V E Dq of c4v = 0 is a constant multipl of u or changes sign in C. 

Proof: Let Qbe any nodal domain of u. (Possibly, C itself is a nod.l domain of -u.) 
Then-the restriction u0 of u to Q belongs to D(dQQ) as well as to D(dq, o), the domains 
of the closures d[ . , •] and dqQ[ . , -] ' of the sesquilinear form	- 

aQ•Q [92, ] = f	+ Qq5] dx	 .	.	. 

-	-	'(,E C0 (Q)),	-.	- 
P] =1	-r- qqnp]dx .	 . 

	

-	respectively [11: Lemma]. Since uQ E W 1 (Q). and CJIQUs? == 0, u. E D(A 00 ), - 
where A QQ0 p = qE Co0 (Q).' - Hence, it follows froni -UQ E,D(d00) that 
US E D(A Q,Q), A Q ,s? being the Friedrichs extension of A QQ,0 . uis an cigenfunction 
of A QQ and 2 = 0 is the corresponding eigenvalue. Hence, we have dQn[us?, Us?] '= (A 0u, UQ) = 0. Of course, we also have dQ[U, u] = 0. By the help of (2), one 

	

-	can easily prove that dq[U, u] is represented by 

	

-	
.d[u, u]	f	± qu2) dx.	- 

Because 45[u, u] :5-, 0 there exists at least one nodal domain Q of u such that 

-- dq.s?[UQ, u4] =f [p J(u), (u0),± q(u0 ) 2)4x	0.  

At this point," without loss of generality, we can assume that . UQ(X) > 0, x E Q. The 
following.two cases are possible:  

(1) aq,[q, q']	0 for all	E C000(Q).  

(11) aq,o[o, Pol < 0for some o E C000 (Q).	 .	..	- 

Case I: In this ease we- have (iQ, Q[Us?, us?] = 0, and D(d Q) = D(A) [5: p. 331], 
A;s? being the Friedrichs extension of A q',Q,0 , Aq.s?.o9? = cJt, q' E Co— (.Q). It follows 
from 0 = dq Q[UD, u0 1 = IIAus?II 2 that Aq.QUs? = Q. Therefore u0 is also an eigen-

	

•	function of A q p and satisfies the equation 4qu12 = 0.	-	- 
If there exists a zero of v in C, by. the theorem of McNABE the solution v changes 

sign [11]. Thus, we can assume in the following that v(x) > 0, x E G. Choose any 
point x E .Q and define w by	-.	- 

W(X) = Uo(X*) v(x) - V(X*)Us?(X) . (x E 

This'is a solution of d4w = 0 in Q with w(x*)'= 0. The identity w 0 implies 
V(X) = const . u(x), x € Q. If Q is a proper subdomain of C, then v vanishes on 
aQ n C, which implies that v changes, sign in C. B1ecause of the assumption v(x) > 0 
(x E C), however, we have 'Q,= C and .v(x) = const u(x), x € G. In the case where 
w 0 this function must change sign in every neighbourhood of x ià Q as repeatedly
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remarked. Let . to= Q be a subdomain such that w(x) <0 for x E to and w(y) = 0 
for . y E ato n Q. We prove that z € D(dq9), 

I:w(x) for x  co, 0 

t°	for xEQ\w. 
Let (m) c C0°°(Q) be a real sequence with Pm -- 129, that is [5: p. 313] 

S	

aq.n[çvm - m', 99M — 12*] M'm'-+00 0 and ll 2m - u9119 m-*	0. 
Set Wm(X) = ?19(x*) v(x)	v(x*) fPm(X) (x E Q) and define 

Wm(X)	I1Iifl (Wm(x), 0) and	m(X) = max (z(x), Wm(x)). 

Note that m(X) = 0 (x E Q N co) and w, z, vim, m E W 1 (Q) [6: p. 50]. From 
Wm(X)'> 0 we have Wm(X) = 0 and ,n(X) = 0, X € Q \ supp l'p m . Therefore, 

m E D(dq,9 ). We now prove that z € L2(Q) and llm - a1l9 - 0. It follows from 
1w - Wml	lvi - UYml = l?)(X*)L 1129 - 'PmI (x € cv)	that	1 1w - uimI!	lv(x*)l 
X 1 1u .Q	and, consequently, W - Wm € L2((v). Thus, we have w € 4(w) 
because u',, E 4((U). But this implies . a € 4(Q). To prove II,,,	all9 --> 0 use the 
estimate II,,,	Z9 = lIm - a lL,	lkvm - alL, = lIWm - Wmll,,, ;S Iv(x*)l Il'Pm - UQllQ. 

•	Now we prove that there exists a constant. C> 0 such that' 

dq.n[m, m1	C	(mEN).	 (4) 

By using (3) with / = v and the Schwarz inequality [5: p. 53] and setting 
= supp 'Pm 'we obtain 

•	aq,n[m; m]	I Pij(m)z	dx + f q 2 dx - 
9	 0 

f pjjZZz dx + f pij(Wm)x i (m)x, dx + f qz2 dx + f q(wrn) 2 dx€

pw,w dx +f P( Wm)x, (Wm)x, dx+fq+w2 dx +f qwrn2 dx 

S	

Ci [f P ij (UQ )z, (u)x dx + f P1Vz2Vz, dx + f P j (q'rn)x, (9m)z, dx 
-	 9	 9 

0	 +f q(u9 ) 2 dx +f qv2 dx +f q99 2 2 dx]	 - 

•	 Ci (f [p11 (u9 )1 (u9), + q + (U,2)2] dx	 - 

+f [p (c'm), ('Pm)z, + + 92m2]dx) + C2 .	•	 (5)

It follows from (2) that  

-. 0	 q.Q['Pm''PmI ^.(1	aqa['Pm, 'Pm] + (1	 C O—. ' C2 ll 'Pm l192...	0 • - -. 

Hence, in view of	 °•	 , 

q.Q['Pm, 'Pm] * dq, Q[U9, 129] = 0 and lI'Pmll9 ' 1k9llQ, 

•

	

	there exists a constant C3 such that a 9[q7m, 'Pm]	C3 (in € N). Finally, we have, 
for mEN,  

f [Pij()xg (u9), + q(uQ )2] dx	f [PjjUz4Uz, + qu2] dx < 00.
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By using these estimat 'es in (5) we obtain (4). It now follows from II,,, - zIIo - 
and (4) that zE D(d 0) [5: Theorem 1.16/p. 3151. 

The restriction z, of z to to belongs to D(dq. ,), the domain of the closure of the 
form

VI =f	dx +f q9,Tp dx	(, p E Uo°°(w)) - 

[11: Leninia]. Further we have z,,. E W.10 (w) and C4qZ	0. Hence, z,,. is an eigen-



function of the Friedrichs extension 4. of A 0 , , 0 , A00 p = c/lp ( E Co(w)), and 
A = 0 is the corresponding eigenvalue. Therefore, we have dq w[z,, z,]= z0) 
= 0 and, consequently, dq , Q[Z, z] = 0. This relation implies Az = 0 which leads 
to Aq;oz = 0. Hence, z E W 10 (0) (see [2], for instance) andz is a solution of the 
equation 4z = 0. By considering the property z(x) = 0 (x E Q \ co) and using the 
unique continuatioii theorem for solutions of elliptic equations (see [4: p. 224 and 
Remarks 3/p. 2031) it follows that	0 in Q. Finally; w(x) = 0 for xE CO implies 

x) = 0 for x E Q. This proves that v(x) = const . u(x), x E Q. In the case whereQ 
is a proper subdoniain of G we have v(y) = 0 (!IE L9Q r 0) which implies that v 
iust change sign in G. But this case is impossible because of the assumption 
v(x) > 0, x E 0. In the case £2 = 0, however, the solution vis a constant multiple 
'of uinG.	 - 

Case (II): We conclude as in [11]. There exists a function PoE C0 'Q) with 
ag,Q[o,o] < 0. it follows from dist (supp , Q) > 0 that there exists a bounded 
domain & with supp q'	a 0	c G belonging to the class C°° (definition in - 

• [2: p. 28]). Let A0,,,, be the Friedrichs extension of the operator A q ,, 0 , A00,0q 
= '-4q? (p E Co°°(wo)). The spectrum of Aq, ,, is discrete because 0 <c',	e(x) and 

C, < 00 (x E a). It follows from aq, o[ 0 , 9901 < 0 that the smallest eigen- 
• value A 1 of Aq , is negative. The corresponding eigenfunction u 1 belcngs tO the 

Sobolev spade W2P (w0) for every p < oo [2: Theorem 24/p. 931. Hence, by an eni- - 
bedding theorem [12], u 1 E 0 1 (Zi 0). Further, we have u1 (x) = 0, x E au)0 . Without 
loss of generality, we can assume that u1 is real-valued and takes on positive values 
in asubdomain of w0. ( Onecan show that A 1 is a simple eigenvalue and that the 
(real) eigenfunetion u1 has fixed -sign in a)0.) Because v(x) is positive on ii0 there 
exists a uniquely determined a > 0 and a point x, € 0 such that au(x) v(x) 
(x. E w0) and au1 (x) = v(x). Thus, in a neighbourhood Ke(xe) = {x I Ix - xj <} 

w0 of x we have 40 (ru i ) = e2 1 u1 <4v = 0. i-lence,-by the theorem of MCNABB. 
• [10], au 1 <v or au = v on Ke(Xe). The case eu1 <v°is impossible because of eu1(x,) 

= v(x). From c4q(U 1 ) < 4v, on the other hand, it follows that the case aU 1 = V 
is also impossible. Hence, v must change sign in 0 I 

•	Under certain restrictions on the domain 0, the coefficients and the set of solutions, Theo-



rem 2 was proved for uniformly elliptic (but not necessarily selfadjoiñt) equations by AHMAD 
and LAZER [1].	 . 

Corollary: Let the hypotheses (i) — (iv) be fulfilled and aseume 
(v) p,(x)	P, (x)	( = (.., ) E WI; x E ), 

(vi) q(x)Q(x)	(xEG). 
If there exists a nontrivial  solution u E D(d0) of CIIQU = 0, then every solution v E Dq 
of 40 = 0 is a constant multiple of u or changes sign in G.	. 

Proof: Two cases are possible:	•. 

- (I) aq[q, ]	0 for all	€ C01(6),  
(II) aq[o, q] < 0 for some po € C0°°(G).'	 - 

6 Analysis Ed. 7,. Heft 1(1088)	•	 -	•	•	I	•
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Case (I): It follows from the hypotheses (v) and (vi) that 0	a[9 , ] ;5 a[q q] 
( q € Co°°(0))., Hence, we have D(dQ )	D((i) and dQ[U, u] = 0 implies dQ[U, uJ = 0.
Thus, Theorem 2 can be used. 

Case (II); We can conclude as in the case (Ii) of the proof of Theorem 2 I 

Theorem 3: Let the hypotheses (i)—(iii) and (1) be fulfilled and let u € D(d Q ) be a 
•	non-trivial solution of c4 0u = 0. Assume that the sesquilinear form 

aq[q, v] = f	+ f qpi5 dx	(2, p € Co-(G)) 

is closable, and that u € D(dq), d[/, g] being the closure of a q[çv, v,]. If d[u, UI < 0, 
then every solution v of 4qV = 0 changes sign in 0. 

Proof: It follows from dq[u, u] <0 that there exists a 990 E C000(0) . with aq[q,0,qo} 
<0. Then we conclude as in the case (II) of the proof of Theorem 2 1 

Theorem 4: Let hypotheses (i) and concerning the coefficients F,, (i, j= 1,..., n) 
and Q the hypothesis (ii) and (iii) be fulfilled. Assume that,u and v are linearly in-
dependent solutions of (JIQU = 0. Then, the nodal contour N of v intersects each bounded 
nodal domain Q of u with Q c G. Additionally, we have eQ n N,, == 0. 

Proof: Obviously, there are positive constants c 1 < 1 and c2 such that 

I	 (Q9,, )J	c1a[9, çJ + C2119'11'	(97 € 

We have UQ 6 D(dQ.Q) as remarked above. Further, concerning the solution v of 
4Qv = 0 we have 

f P .,v1,4v, dx + f QV2 dx < 00.	 - 

Hence, Theorem 2 can be applied with Q in place of G. By assuming that v(x) 
= const . u(x) (x € £2) the unique continuation theorem for solutions of elliptic equa-
tions implies v(x) = êonst, u(x), x 6 G. Because u and v are linearly independent 
we have v const u in Q. Hence, by Theorem 2, 'v changes sign in £2. To prove 

n N,, + 0 assume OS2 n N,, = 0. .Then there exists a' nodal domain & of v with 
& Q. This situation, however, is impossible because, conversely, the nodal eon 
tour of u intersects 0 I 

Theorem 4 is an extension of Sturm's separation theorem to the n-dimensional case. 
Example: Let 

	

QU(vTX2U)_ u =0	(-1<x<1;P=p,Q=q). 
11ix2 

The hypotheses (i)—(iv) are fulfilled. Concerning the* estimate (1) we refer to [9: Theorem 4]. 
A non-trivial solution u of IIIQU = 0 is u(x) = 1/1 - x2 (-1 < x < 1) which belongs to D(áQ). 
Each linearly independent solution v, _V(X) 01 } 1 x2 ± C2x (-1 <x< 1;C2 r 0) be-
longs to Dq and has a zero in (-1, 1). 
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