On the Elliptic Sturmian Theory for General Domains

E. MÜLLER-PFEIFFER

Der bekannte Vergleichssatz von Sturm und Picone für gewöhnliche, selbstadjungierte Differentialgleichungen zweiter Ordnung wird auf selbstadjungierte elliptische Differentialgleichungen verallgemeinert. Dabei sind das Grundgebiet G und die Koeffizienten der Differentialgleichung nicht notwendig beschränkt, und es werden keine Regularitätsforderungen an den Rand ∂G gestellt.

Известная теорема сравнения Штурма и Пиконе для обыкновенных самосопряженных дифференциальных уравнений второго порядка обобщается на самосопряженные эллиптические дифференциальные уравнения. При этом основная область G и коэффициенты дифференциального уравнения не обязательно ограничены, и условия регулярности для границы ∂G не требуются.

The well-known comparison theorem by Sturm and Picone for ordinary, self-adjoint, second order differential equations is extended to self-adjoint elliptic differential equations. The basic domain G and the coefficients of the equation are not necessarily bounded, and no regularity hypotheses on the boundary ∂G are required.

Consider the differential equations

$$\mathcal{A}_{Q} u \equiv -(P(x) u')' + Q(x) u = 0$$

$$\mathcal{A}_{z} u \equiv -(p(x) u')' \neq q(x) u = 0$$

$$(x \in [a, b])$$

where $P, p \in C^1[a, b]$ and $Q, q \in C[a, b]$ are real-valued and $P(x), p(x) > 0, x \in [a, b]$. A well-known version of the Sturm-Picone theorem is the following one (compare [8: Cor. 1], [13: Theorem 1.5]).

Theorem 1: If there exists a real solution $u \neq 0$ of $A_0 u = 0$ such that

$$u(a) = 0 = u(b)$$
 and $\int_{a}^{b} [p(u')^{2} + qu^{2}] dx \leq 0$,

then every real solution v of $A_{av} = 0$ is a constant multiple of u or has at least one zero in (a, b).

In the following this theorem will be extended to self-adjoint, second order, elliptic differential equations. The present investigation complements the paper [11], where the extension of the following version of the Sturm-Picone theorem is handled.

Theorem 1': Suppose $p(x) \leq P(x)$ and $q(x) \leq Q(x)$, $x \in [a, b]$. If there exists a real solution $u \neq 0$ of $\mathcal{A}_{q}u = 0$ with u(a) = 0 = u(b), then every real solution v of $\mathcal{A}_{q}v = 0$ has at least one zero in (a, b) if

- (I) q(x') < Q(x') for some $x' \in [a, b]$ or
- (II) p(x') < P(x') and $Q(x') \neq 0$ for some $x' \in (a, b)$.

Concerning the extensive investigations in the literature which deal with extending the Sturm-Picone theorem to the *n*-dimensional case we refer to the references in [3, 7, 13].

Using the summation convention, let \mathcal{A}_{q} , \mathcal{A}_{q} denote the differential expressions

$$\mathcal{A}_{Q} u \equiv -(P_{ij}u_{x_{i}})_{x_{j}} + Q(x) u \mathcal{A}_{q} u \equiv -(p_{ij}u_{x_{i}})_{x_{j}} + q(x) u$$
 $(x = (x_{1}, ..., x_{n}) \in G \subseteq \mathbf{R}^{n}),$

where

(i) G is a (possibly unbounded) domain in the Euclidean space \mathbb{R}^n where no regularity hypotheses on the boundary ∂G are required;

(ii) the coefficients $P_{ij} = P_{ji}$, $p_{ij} = p_{ji} \in C^1$ (i = 1, ..., n) and $Q, q \in C$ are real-valued and defined on G;

(iii) the smallest eigenvalues E(x) and e(x) of the matrices $(P_{ij})_{i,j-1}^n$ and $(p_{ij})_{i,j-1}^n$, respectively, are positive on G;

(iv) there are positive constants $c_1 < 1$ and c_2 such that

$$|(Q^{-}\varphi, \varphi)| \leq c_{1}a_{Q}^{+}[\varphi, \varphi] + c_{2} ||\varphi||^{2}$$

$$(\varphi \in C_{0}^{\infty}(G)),$$

$$|(q^{-}\varphi, \varphi)| \leq c_{1}a_{q}^{+}[\varphi, \varphi] + c_{2} ||\varphi||^{2}$$

$$(2) .$$

where (\cdot, \cdot) and $\|\cdot\|$ denote the inner product and the norm of the Hilbert space $L_2(G)$ and

$$\begin{aligned} Q^{-}(x) &= \min \left(Q(x), 0\right), \qquad Q^{+}(x) &= \max \left(Q(x), 0\right), \\ q^{-}(x) &= \min \left(q(x), 0\right), \qquad q^{+}(x) &= \max \left(q(x), 0\right), \\ a_{Q}^{+}[\varphi, \psi] &= \int_{G} P_{ij}\varphi_{x_{i}}\overline{\psi}_{x_{j}} \, dx + \int_{G} Q^{+}\varphi\overline{\psi} \, dx \\ a_{q}^{+}[\varphi, \psi] &= \int_{G} p_{ij}\varphi_{x_{i}}\overline{\psi}_{x_{j}} \, dx + \int_{G} q^{+}\varphi\overline{\psi} \, dx. \end{aligned}$$

If Ω is a subdomain of G, let the inner product and the norm of $L_2(\Omega)$ be denoted by $(\cdot, \cdot)_{\Omega}$ and $\|\cdot\|_{\Omega}$; the index Ω will be omitted when $\Omega = G$. It follows from (1), (2) that the symmetric operators $A_{Q,0}$ and $A_{q,0}$,

$$A_{Q,0}\varphi = \mathcal{A}_Q \varphi, \qquad A_{q,0}\varphi = \mathcal{A}_q \varphi \qquad \left(\varphi \in C_0^\infty(G)\right)$$

are bounded from below. Consequently, the sesquilinear forms

$$\begin{aligned} a_{Q}[\varphi, \psi] &= (A_{Q,0}\varphi, \psi) = \int_{G} P_{ij}\varphi_{x_{i}}\overline{\psi}_{x_{j}} \, dx + \int_{G} Q\varphi\overline{\psi} \, dx, \\ a_{q}[\varphi, \psi] &= (A_{q,0}\varphi, \psi) = \int_{G} p_{ij}\varphi_{x_{i}}\overline{\psi}_{x_{j}} \, dx + \int_{G} q\varphi\overline{\psi} \, dx, \end{aligned}$$

 $(\varphi, \psi \in C_0^{\infty}(G))$ are closable [5: p. 318]. Let the corresponding closed forms be denoted by $\mathring{a}_0[f, g]$ and $\mathring{a}_q[f, g]$, respectively. We shall always consider real-valued solutions of the equations $\mathscr{A}_0 u = 0$ - and $\mathscr{A}_q u = 0$ which belong to $C(G) \cap W^2_{2,\mathrm{loc}}(G)$, where $W^2_{2,\mathrm{loc}}(G)$ denotes the Sobolev space of (complex-valued) functions the generalized derivatives of which up to order two belong to L_2 on compact subsets of G. Assuming that u is a non-trivial solution of one of these equations the set $N_u = \{y \in G \mid u(y) = 0\}$ is said to be the *nodal contour* of u. By a theorem of McNABB [10] in every neighbourhood $K_q(y) = \{x \mid |x - y| < \varrho\} \subseteq G$ of a point $y \in N_u$ the non-trivial solution u changes sign [11]. If there exists a nodal contour $N_u \subset G$, by the sets N_u and ∂G , the domain G is divided into at least two connected subdomains. Such a subdomain Ω of G is said to be a *nodal domain* of u; u has fixed sign in Ω and u(x) = 0, $x \in \partial \Omega \cap G$. To formulate the following theorem we further require the set

$$D_{q} = \left\{ f \in W_{2,\text{loc}}^{1}(G) \mid \int_{G} p_{ij} f_{x_{j}} dx + \int_{G} q^{+} |f|^{2} dx < \infty \right\}.$$
(3)

Note that a function $f \in D_q$ is not necessarily contained in $L_2(G)$.

Theorem 2: Let the hypotheses (i)-(iv) from above be fulfilled. If there exists a non-trivial solution $u \in D(\dot{a}_q)$ of $\mathcal{A}_q u = 0$ such that $u \in D(\dot{a}_q)$ and $\dot{a}_q[u, u] \leq 0$, then every solution $v \in D_q$ of $\mathcal{A}_q v = 0$ is a constant multiple of u or changes sign in G.

Proof: Let Ω be any nodal domain of u. (Possibly, G itself is a nodal domain of u.) Then the restriction u_{Ω} of u to Ω belongs to $D(\dot{a}_{Q,\Omega})$ as well as to $D(\dot{a}_{q,\Omega})$, the domains of the closures $\dot{a}_{Q,\Omega}[\cdot, \cdot]$ and $\dot{a}_{q,\Omega}[\cdot, \cdot]$ of the sesquilinear forms

respectively [11: Lemma]. Since $u_{\Omega} \in W_{2,loc}^{2}(\Omega)$ and $\mathcal{A}_{Q}u_{\Omega} \stackrel{\sim}{=} 0$, $u_{\Omega} \in D(\mathcal{A}_{Q,\Omega,0}^{\bullet})$, where $A_{Q,\Omega,0}\varphi = \mathcal{A}_{Q}\varphi$, $\varphi \in C_{0}^{\infty}(\Omega)$. Hence, it follows from $u_{\Omega} \in D(\dot{a}_{Q,\Omega})$ that $u_{\Omega} \in D(A_{Q,\Omega})$, $A_{Q,\Omega}$ being the Friedrichs extension of $A_{Q,\Omega,0}$. u_{Ω} is an eigenfunction of $A_{Q,\Omega}$ and $\lambda = 0$ is the corresponding eigenvalue. Hence, we have $\dot{a}_{Q,\Omega}[u_{\Omega}, u_{\Omega}]$ $= (A_{Q}u_{\Omega}, u_{\Omega}) = 0$. Of course, we also have $\dot{a}_{Q}[u, u] = 0$. By the help of (2), one can easily prove that $\dot{a}_{q}[u, u]$ is represented by

$$\dot{a}_{q}[u, u] = \int_{a} (p_{ij}u_{x_{i}}\dot{u}_{x_{j}} + qu^{2}) dx.$$

Because $\dot{a}_q[u, u] \leq 0$ there exists at least one nodal domain Ω of u such that

$$\int_{\Omega} [u_{\Omega}, u_{\Omega}] = \int_{\Omega} [p_{ij}(u_{\Omega})_{x_i} (u_{\Omega})_{x_j} + q(u_{\Omega})^2] dx \leq 0.$$

At this point, without loss of generality, we can assume that $u_{\Omega}(x) > 0$, $x \in \Omega$. The following two cases are possible:

(1) $a_{q,\Omega}[\varphi, \varphi] \ge 0$ for all $\varphi \in C_0^{\infty}(\Omega)$.

(II)
$$a_{q,\Omega}[\varphi_0, \varphi_0] < 0$$
 for some $\varphi_0 \in C_0^{\infty}(\Omega)$.

Case I: In this case we have $\dot{a}_{q,\Omega}[u_{\Omega}, u_{\Omega}] = 0$, and $D(\dot{a}_{q,\Omega}) = D(A_{q,\Omega}^{1/2})$ [5: p. 331], $A_{q,\Omega}$ being the Friedrichs extension of $A_{q,\Omega,0}$, $A_{q,\Omega,0}\varphi = \mathcal{A}_q\varphi$, $\varphi \in C_0^{\infty}(\Omega)$. It follows from $0 = \dot{a}_{q,\Omega}[u_{\Omega}, u_{\Omega}] = ||A_{q,\Omega}^{1/2}u_{\Omega}||^2$ that $A_{q,\Omega}u_{\Omega} = 0$. Therefore u_{Ω} is also an eigenfunction of $A_{q,\Omega}$ and satisfies the equation $\mathcal{A}_q u_{\Omega} = 0$.

If there exists a zero of v in G, by the theorem of McNABB the solution v changes sign [11]. Thus, we can assume in the following that v(x) > 0, $x \in G$. Choose any point $x^* \in \Omega$ and define w by

$$w(x) = u_{\Omega}(x^*) v(x) - v(x^*) u_{\Omega}(x) \qquad (x \in \Omega).$$

This is a solution of $\mathcal{A}_q w = 0$ in Ω with $w(x^*) = 0$. The identity w = 0 implies $v(x) = \text{const} \cdot u(x), x \in \Omega$. If Ω is a proper subdomain of G, then v vanishes on $\partial \Omega \cap G$, which implies that v changes sign in G. Because of the assumption v(x) > 0 $(x \in G)$, however, we have $\Omega = G$ and $v(x) = \text{const} \cdot u(x), x \in G$. In the case where $w \equiv 0$ this function must change sign in every neighbourhood of x^* in Ω as repeatedly

remarked. Let $\omega \subset \Omega$ be a subdomain such that w(x) < 0 for $x \in \omega$ and w(y) = 0 for $y \in \partial \omega \cap \Omega$. We prove that $z \in D(\dot{a}_{q,\Omega})$,

$$z(x) = \begin{cases} w(x) & \text{for } x \in \omega, \\ 0 & \text{for } x \in \Omega \setminus \omega. \end{cases}$$

Let $(\varphi_m) \subset C_0^{\infty}(\Omega)$ be a real sequence with $\varphi_m \xrightarrow[\sigma_{\sigma,\Omega}]{} u_{\Omega}$, that is [5: p. 313]

$$a_{q,\Omega}[\varphi_m - \varphi_{m'}, \varphi_m - \varphi_{m'}] \xrightarrow[m,m' \to \infty]{} 0 \text{ and } \|\varphi_m - u_{\Omega}\|_{\Omega} \xrightarrow[m \to \infty]{} 0.$$

Set $w_m(x) = u_{\Omega}(x^*) v(x) - v(x^*) \varphi_m(x)$ $(x \in \Omega)$ and define

$$w_m^{-}(x) = \min(w_m(x), 0) \text{ and } \zeta_m(x) = \max(z(x), w_m^{-}(x)).$$

Note that $\zeta_m(x) = 0$ $(x \in \Omega \setminus \omega)$ and $w, z, w_m, w_m^-, \zeta_m \in W_{2,\text{loc}}^1(\Omega)$ [6: p. 50]. From $w_m(x) > 0$ we have $w_m^-(x) = 0$ and $\zeta_m(x) = 0, x \in \Omega \setminus \text{supp } \varphi_m$. Therefore, $\zeta_m \in D(\dot{a}_{q,\Omega})$. We now prove that $z \in L_2(\Omega)$ and $\|\zeta_m - z\|_{\Omega} \to 0$. It follows from $|w - w_m^-| \leq |w - w_m| = |v(x^*)| |u_{\Omega} - \varphi_m|$ $(x \in \omega)$ that $||w - w_m^-||_{\omega} \leq |v(x^*)| \times ||u_{\Omega} - \varphi_m||_{\omega}$ and, consequently, $w - w_m^- \in L_2(\omega)$. Thus, we have $w \in L_2(\omega)$ because $w_m^- \in L_2(\omega)$. But this implies $z \in L_2(\Omega)$. To prove $\|\zeta_m - z\|_{\Omega} \to 0$ use the estimate $\|\zeta_m - z\|_{\Omega} = \|\zeta_m - z\|_{\omega} \leq ||w_m^- - z||_{\omega} = ||w_m^- - w_m||_{\omega} \leq |v(x^*)| ||\varphi_m - u_{\Omega}||_{\Omega}$. Now we prove that there exists a constant C > 0 such that

$$\dot{a}_{q,\Omega}[\zeta_m,\zeta_m] \leq C \qquad (m \in \mathbf{N}).$$
(4)

By using (3) with f = v and the Schwarz inequality [5: p. 53] and setting, $\Omega_m = \operatorname{supp} \varphi_m$ we obtain

$$\begin{split} \dot{a}_{q,\Omega}[\zeta_{m},\zeta_{m}] &\leq \int_{\Omega_{m}} p_{ij}(\zeta_{m})_{x_{i}} (\zeta_{m})_{x_{j}} dx + \int_{\Omega_{m}} q^{+}\zeta_{m}^{2} dx \\ &\leq \int_{\Omega_{m}} p_{ij}z_{x_{i}}z_{x_{j}} dx + \int_{\Omega_{m}} p_{ij}(w_{m}^{-})_{x_{i}} (w_{m}^{-})_{x_{j}} dx + \int_{\Omega_{m}} q^{+}z^{2} dx + \int_{\Omega_{m}} q^{+}(w_{m}^{-})^{2} dx \\ &\leq \int_{\Omega_{m}} p_{ij}w_{x_{i}}w_{x_{j}} dx + \int_{\Omega_{m}} p_{ij}(w_{m})_{x_{i}} (w_{m})_{x_{j}} dx + \int_{\Omega_{m}} q^{+}w^{2} dx + \int_{\Omega_{m}} q^{+}w_{m}^{2} dx \\ &\leq C_{1} \left[\int_{\Omega_{m}} p_{ij}(u_{\Omega})_{x_{i}} (u_{\Omega})_{x_{j}} dx + \int_{\Omega_{m}} p_{ij}v_{x_{i}}v_{x_{j}} dx + \int_{\Omega_{m}} p_{ij}(\varphi_{m})_{x_{i}} (\varphi_{m})_{x_{j}} dx \\ &+ \int_{\Omega_{m}} q^{+}(u_{\Omega})^{2} dx + \int_{\Omega_{m}} q^{+}v^{2} dx + \int_{\Omega_{m}} q^{+}\varphi_{m}^{2} dx \right] \\ &\leq C_{1} \left(\int_{\Omega_{m}} \left[p_{ij}(u_{\Omega})_{x_{i}} (u_{\Omega})_{x_{j}} + q^{+}(u_{\Omega})^{2} \right] dx \\ &+ \int_{\Omega_{m}} \left[p_{ij}(\varphi_{m})_{x_{i}} (\varphi_{m})_{x_{j}} + q^{+}\varphi_{m}^{2} \right] dx \right) + C_{2}. \end{split}$$

(5)

It follows from (2) that

 $a_{q,\varrho}^+[\varphi_m,\varphi_m] \le (1-c_1)^{-1} a_{q,\varrho}[\varphi_m,\varphi_m] + (1-c_1)^{-1} c_2 \|\varphi_m\|_{\varrho^2}$

Hence, in view of

 $a_{q,\Omega}[\varphi_m,\varphi_m] \to \dot{a}_{q,\Omega}[u_\Omega,u_\Omega] = 0 \text{ and } ||\varphi_m||_\Omega \to ||u_\Omega||_\Omega,$

there exists a constant C_3 such that $a_{q,\Omega}^+[\varphi_m,\varphi_m] \leq C_3$ $(m \in N)$. Finally, we have, for $m \in N$,

$$\int_{\Omega_{m}} \left[p_{ij}(u_{\Omega})_{x_{i}} (u_{\Omega})_{x_{j}} + q^{+}(u_{\Omega})^{2} \right] dx \leq \int_{\mathcal{G}} \left[p_{ij}u_{x_{i}}u_{x_{j}} + q^{+}u^{2} \right] dx < \infty.$$

80

By using these estimates in (5) we obtain (4). It now follows from $\|\zeta_m - z\|_Q \to 0$ and (4) that $z \in D(\dot{a}_{q,Q})$ [5: Theorem 1.16/p. 315].

The restriction z_{ω} of z to ω belongs to $D(\dot{a}_{q,\omega})$, the domain of the closure of the form

$$a_{q,\omega}[\varphi, \psi] = \int_{\omega} \varphi_{i,j} \varphi_{x_i} \overline{\psi}_{x_j} \ dx + \int_{\omega} q \varphi \overline{\psi} \ dx \qquad (\varphi, \psi \in C_0^{\infty}(\omega))$$

[11: Lemma]. Further we have $z_{\omega} \in W_{2,loc}^2(\omega)$ and $\mathcal{A}_q z_{\omega} = 0$. Hence, z_{ω} is an eigenfunction of the Friedrichs extension $\mathcal{A}_{q,\omega}$ of $\mathcal{A}_{q,\omega,0}, \mathcal{A}_{q,\omega,0}\varphi = \mathcal{A}_q \varphi \left(\varphi \in C_0^{\infty}(\omega)\right)$, and $\lambda = 0$ is the corresponding eigenvalue. Therefore, we have $\dot{a}_{q,\omega}[z_{\omega}, z_{\omega}] = (\mathcal{A}_{q,\omega} z_{\omega}, z_{\omega})_{\omega} = 0$ and, consequently, $\dot{a}_{q,\Omega}[z, z] = 0$. This relation implies $\mathcal{A}_{q,\Omega}^{1/2} z = 0$ which leads to $\mathcal{A}_{q,\Omega} z = 0$. Hence, $z \in W_{2,loc}^2(G)$ (see [2], for instance) and z is a solution of the equation $\mathcal{A}_q z = 0$. By considering the property z(x) = 0 ($x \in \Omega \setminus \omega$) and using the unique continuation theorem for solutions of elliptic equations (see [4: p. 224 and Remarks 3/p. 203]) it follows that z = 0 in Ω . Finally, w(x) = 0 for $x \in \omega$ implies $\dot{w}(x) = 0$ for $x \in \Omega$. This proves that $v(x) = \operatorname{const} \cdot u(x), x \in \Omega$. In the case where Ω is a proper subdomain of G we have v(y) = 0 ($y \in \partial \Omega \cap G$) which implies that v must change sign in G. But this case is impossible because of the assumption $v(x) > 0, x \in G$. In the case $\Omega = G$, however, the solution v is a constant multiple of u in G.

Case (II): We conclude as in [11]. There exists a function $\varphi_0 \in C_0^{\infty}(\Omega)$ with $a_{q,\Omega}[\varphi_0,\varphi_0] < 0$. It follows from dist (supp $\varphi_0, \partial \Omega$) > 0 that there exists a bounded domain ω_0 with $\operatorname{supp} \varphi_0 \subset \omega_0 \subset \overline{\omega}_0 \subset \overline{G}$ belonging to the class C^{∞} (definition in [2: p. 28]). Let A_{q,ω_0} be the Friedrichs extension of the operator $A_{q,\omega_0,0}$, $A_{q,\omega_0,0}\varphi' = \mathcal{A}_q \varphi \left(\varphi \in C_0^{\infty}(\omega_0) \right)$. The spectrum of A_{q,ω_0} is discrete because $0 < c_{\omega_0} \leq e(x)$ and $|q(x)| \leq C_{\omega_0} < \infty$ ($x \in \omega_0$). It follows from $a_{q,\Omega}[\varphi_0, \varphi_0] < 0$ that the smallest eigenvalue λ_1 of A_{q,ω_*} is negative. The corresponding eigenfunction u_1 belongs to the Sobolev space $W_2^{p}(\omega_0)$ for every $p < \infty$ [2: Theorem 24/p. 93]. Hence, by an embedding theorem [12], $u_1 \in C^1(\overline{w}_0)$. Further, we have $u_1(x) = 0$, $x \in \partial w_0$. Without loss of generality, we can assume that u_1 is real-valued and takes on positive values in a subdomain of ω_0 . (One can show that λ_1 is a simple eigenvalue and that the (real) eigenfunction u_1 has fixed sign in ω_0 .) Because v(x) is positive on $\overline{\omega}_0$ there exists a uniquely determined $\varepsilon > 0$ and a point $x_{\epsilon} \in \omega_0$ such that $\varepsilon u'_1(x) \leq v(x)$ $(x \in \omega_0)$ and $\varepsilon u_1(x_{\varepsilon}) = v(x_{\varepsilon})$. Thus, in a neighbourhood $K_{\varepsilon}(x_{\varepsilon}) = \{x \mid |x - x_{\varepsilon}| < \varrho\}$ $\subset \omega_0$ of x_{ϵ} we have $\mathcal{A}_q(\varepsilon u_1) = \varepsilon \lambda_1 u_1 < \mathcal{A}_q v = 0$. Hence, by the theorem of McNABB. [10], $\varepsilon u_1 < v$ or $\varepsilon u_1 = v$ on $K_{\varepsilon}(x_{\varepsilon})$. The case $\varepsilon u_1 < v$ is impossible because of $\varepsilon u_1(x_{\varepsilon})$ $= v(x_{\epsilon})$. From $\mathcal{A}_{q}(\epsilon u_{1}) < \mathcal{A}_{q}v$, on the other hand, it follows that the case $\epsilon u_{1} = v$ is also impossible. Hence, v must change sign in G

Under certain restrictions on the domain G, the coefficients and the set of solutions, Theorem 2 was proved for uniformly elliptic (but not necessarily selfadjoint) equations by AHMAD and LAZER [1].

Corollary: Let the hypotheses (i) - (iv) be fulfilled and assume

(v)
$$p_{ij}(x) \xi_i \xi_j \leq P_{ij}(x) \xi_i \xi_j$$
 $(\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n; x \in G),$

(vi) $q(x) \leq Q(x)$ $(x \in G)$.

If there exists a nontrivial solution $u \in D(\dot{a}_0)$ of $\mathcal{A}_0 u = 0$, then every solution $v \in D_q$, of $\mathcal{A}_q v = 0$ is a constant multiple of u or changes sign in G.

Proof: Two cases are possible:

(I)
$$a_q[\varphi, \varphi] \ge 0$$
 for all $\varphi \in C_0^{\infty}(G)$

(II) $a_q[\varphi_0, \varphi_0] < 0$ for some $\varphi_0 \in C_0^{\infty}(G)$.

6 Analysis Bd. 7, Heft 1 (1988)

Case (I): It follows from the hypotheses (v) and (vi) that $0 \leq a_q[\varphi, \varphi] \leq a_q[\varphi, \varphi]$ $(\varphi \in C_0^{\infty}(G))$. Hence, we have $D(\dot{a}_q) \subseteq D(\dot{a}_q)$ and $\dot{a}_q[u, u] = 0$ implies $\dot{a}_q[u, u] = 0$. Thus, Theorem 2 can be used.

Case (II): We can conclude as in the case (II) of the proof of Theorem 2

Theorem 3: Let the hypotheses (i)-(iii) and (1) be fulfilled and let $u \in D(a_0)$ be a non-trivial solution of $A_0 u = 0$. Assume that the sequilinear form

$$a_{q}[\varphi, \psi] = \int_{G} p_{ij}\varphi_{x_{i}}\overline{\varphi}_{x_{j}}dx + \int_{G} q\varphi\overline{\psi} dx \qquad (\varphi, \psi \in C_{0}^{\infty}(G))$$

is closable and that $u \in D(\dot{a}_q)$, $\dot{a}_q[f, g]$ being the closure of $a_q[\varphi, \psi]$. If $\dot{a}_q[u, u] < 0$, then every solution v of $\mathcal{A}_q v = 0$ changes sign in G.

Proof: It follows from $\dot{a}_q[u, u] < 0$ that there exists a $\varphi_0 \in C_0^{\infty}(G)$ with $a_q[\varphi_0, \varphi_0] < 0$. Then we conclude as in the case (II) of the proof of Theorem 2

Theorem 4: Let hypotheses (i) and concerning the coefficients P_{ij} (i, j = 1, ..., n)and Q the hypothesis (ii) and (iii) be fulfilled. Assume that u and v are linearly independent solutions of $\mathcal{A}_{Q}u = 0$. Then, the nodal contour N_v of v intersects each bounded nodal domain Ω of u with $\overline{\Omega} \subset G$. Additionally, we have $\partial \Omega \cap N_v \neq \emptyset$.

Proof: Obviously, there are positive constants $c_1 < 1$ and c_2 such that

$$|(Q^{-}\varphi,\varphi)| \leq c_1 a_{\varrho}^{+}[\varphi,\varphi] + c_2 ||\varphi||^2 \qquad (\varphi \in C_0^{\infty}(\Omega)).$$

We have $u_{\Omega} \in D(\dot{a}_{Q,\Omega})$ as remarked above. Further, concerning the solution v of $\mathcal{A}_{\Omega}v = 0$ we have

$$\int_{\Omega} P_{ij} v_{x_i} v_{x_j} \, dx + \int_{\Omega} Q^+ v^2 \, dx < \infty.$$

Hence, Theorem 2 can be applied with Ω in place of G. By assuming that $v(x) = \text{const} \cdot u(x)$ $(x \in \Omega)$ the unique continuation theorem for solutions of elliptic equations implies $v(x) = \text{const} \cdot u(x)$, $x \in G$. Because u and v are linearly independent we have $v \equiv \text{const} \cdot u$ in Ω . Hence, by Theorem 2, v changes sign in Ω . To prove $\partial \Omega \cap N_v \neq \emptyset$ assume $\partial \Omega \cap N_v = \emptyset$. Then there exists a nodal domain Θ of v with $\overline{\Theta} \subset \Omega$. This situation, however, is impossible because, conversely, the nodal contour of u intersects Θ

Theorem 4 is an extension of Sturm's separation theorem to the n-dimensional case.

Example: Let

$$\mathcal{A}_{Q}u \equiv -(\sqrt{1-x^{2}} u')' - \frac{u}{\sqrt{1-x^{2}}} = 0 \qquad (-1 < x < 1; P = p, Q = q)$$

The hypotheses (i)-(iv) are fulfilled. Concerning the estimate (1) we refer to [9: Theorem 4]. A non-trivial solution u of $\mathcal{A}_{Q}u = 0$ is $u(x) = \sqrt{1 - x^2}$ (-1 < x < 1) which belongs to $D(\dot{a}_Q)$. Each linearly independent solution v, $v(x) = C_1\sqrt{1 - x^2} + C_2x$ (-1 < x < 1; $C_2 \neq 0$) belongs to D_q and has a zero in (-1, 1).

REFERENCES

- [1] AHMAD, S., and A. C. LAZER: On the role of Hopf's maximum principle in Sturmian theory. Houston J. Math. 5 (1979), 155-158.
- [2] BROWDER, F. E.: On the spectral theory of elliptic differential operators I. Math. Ann. 142 (1961), 22-130.

82

- [3] HEYWOOD, J. G., NOUSSAIR, E. S., and C. A. SWANSON: On the zeros of solutions of elliptic inequalities in bounded domains. J. Diff. Equ. 28 (1978), 345-353.
- [4] HÖRMANDER, L.: Linear partial differential operators. Berlin-Heidelberg-New York: Springer-Verlag 1963.
- [5] KATO, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer-Verlag 1966.
- [6] KINDERLEHRER, D., and G. STAMPACCHIA: An Introduction to Variational Inequalities and Their Applications. New York: Academic Press 1980.
- [7] KREITH, K.: PDE generalizations of the Sturm comparison theorem. Mem. Amer. Math. Soc. 48 (1984), 31-46.
- [8] LEIGHTON, W.: Comparison theorems for linear differential equations of second order. Proc. Amer. Math. Soc. 13 (1962), 603-610.
- [9] MAN KAM KWONG, and A. ZETTL: Weighted norm inequalities of sum form involving derivatives. Proc. Roy. Soc. Edinburgh 88A (1981), 121-134.
- [10] MCNABB, A.: Strong comparison theorems for elliptic equations of second order. J. Math. Mech. 10 (1961), 431-440.
- [11] MULLER-PFEIFFER, E.: An extension of the Sturm-Picone theorem to elliptic differential equations. Proc. Roy. Soc. Edinburgh 97 A (1984), 209-215.
- [12] SOBOLEW, S. L.: Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik. Berlin: Akademie-Verlag 1964.
- [13] SWANSON, C. A.: Comparison and Oscillation Theory of Linear Differential Equations. New York-London: Academic Press 1968.

Manuskripteingang: 28.04.1986

VERFASSER:

Prof. Dr. ERICH MÜLLER-PFEIFFER Sektion Mathematik/Physik der Pädagogischen Hochschule "Dr. Theodor Neubauer" Nordhäuser Str. 63 DDR-5064 Erfurt