i

- Zeitschrift fir Analysis
- . und ihre Anwendungen
: Bd.7.(1) 1988, S. 85—903

7
’

A Variational Principle for General Polymer Systems

V. WARSTAT

¢

" Es wird ein neues Modell firr die klassische statistische Mechanik von wechselwirkenden

ausgedehnten’ Teilchen (Polymeren) eingefiihrt. Fiir Systeme von Polymeren wird die Kon-
-struktion des Konflguratlonenro.umes angegeben. Es folgt der Nachweis fiir die Existenz des
\t,hermodynamlschen Grenzwertes des lokalen Drucks. Fur diesen Grenzwert, den Druck des
Systems, wird ein Variationsprinzip bewiesen. AbschlieBend wird gezeigt, daf bei gegebener
Wechselwirkung dic Klasse der Gleichgewichtszustinde, die durch das Variationsprinzip be-
schrieben wird, mit der Klasse der verschiebungsinvarianten Gibbsschen Zustinde zusammen-
fallt. - ‘

Bpenétea HOBaA MOREIDb [ KNACCHUYECKOlt CTATHCTHIECKO! MeXaHMKH B3alMOJeliCTBY I0LIHX
TMPOCTPAHCTBEHHBIX YACTHIL (MoJuMepoB). JNA cucTeM NOJUMEPOB ONUCHIBACTCHA KOHCTPYK- .
K1 KOHQUIYPAUHOHHOrO MpocTpaHcTsa. IIoToM cilexyeT MOKa3aTesbCTBO CYLIECTBOBAHMA -
TEePMOIMHAMHYECKOT0. IPeesa JOoKanbHOTro laBnenua. A 3Toro npepesa, Tak Ha3uBae-
MOTO [ABJEHUA CHCTEMLI, N0KA3HIBAETCA BAPHALMOHHLIN NPUHIMUN. 3AKIIOYHTENLNO OKA-
3bIBAETCA, YTO OPH AAHHOM B3ANMONENCTBMM KJIACC. PABHOBECHHX COCTOAHMIl, ONiCHBae-
Mblif DTMM BADMALMOHHEIM TPUHIIMIOM, COBNaJaeT C hnaccom'rpaﬂcnﬂuuouuo HHBApHAHT-

HHIX ru66coBCKMX COCTOHHHﬁ
ol

A new model for classical statistical mechanics of mteractmg extended particles (polymers)
is introduced. First, the construction of the configuration. space for polymer systems is given.
_ Then'the existence of the thermodynamic limit of the local pressure is derived. For this limit
" which is called the préssure of the system a variational principle is proved Finally, for given
interaction, the class of cquilibrium states determined by this variational prmcnple is. proved'
to comclde with ‘the class of translation invariant Gibbs smtcs -
. : . ) !

|-

1. Introduction

Exactly soluble models are of great importance in the understanding of statistical mechanics
of phase transitions. Besides the classical models, general hard core or polymer models are
of interest, too [1, 5—9]. In these models the particles of the system can cover more than
one lattice point of the underlying lattice without, penetratmg each’other. The most interesting
examples are hard-rod models. They have been wndely used to explain the existence of liquid
crystals, Thus the theory of monomer-dimer systems is elaborated extensively [1, 7—9].
In (8] the reader can find more details about the relation of these models to’chemistry and
physics. & .

Most results are known for models without interaction bet\veen the particles; but'a successful
approach to the pra.ctlca.l models requires models with interaction. In [8)] the absence of a -
_phase transition is proved for translationally invariant systcms of non- interacting monomers
‘and dimers on the lattice.Z4. In [5] GRUBER and Kuxz incorporated jnto.their model particles
that are more complicated with respect to their geometry. They showed the absence of a
phase transition for non- interacting polymers and thus genemhzed the results by HELMANN
and Lies in [8]. In [9] HeiLMaNN and Lies succeeded in a rigorous proof of the existence
of a phase transition for monomer-dimer systems with two-body.interactions between the
dimers in t\vo(dimensipns. A similar result can be found in [1] for three dimensions.
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In our paper we describe a very general model for systems of polymers‘ that can
interact via many-body interactions. The underlying lattice is Z¢ for d = 1, and
-the polymers have the shape of finite subsets of the lattice. It is possible to have

- different, polymers of the same shape, but only finitely many shapes of polymers

are allowed in the system. We found this model in specifying the general method

- for the construction of conflgura.tlon spaces of classical lattice systems of RUELLE .
in [13]. » - '

The, proof of the variational principle for the pressure of the system (4, 10] was a milestone
-in the development of classical statistical mechanics. This result influenced hot only statistical
mechanics, but also ergodic theory. It was one basis for the further development of entropy
theory, especially for the generalization of the variational principle for the entropy, which
asserts that the topological entropy of a continuous transformation of a compact space is
the supremum of the measure-theoretic entropies of regular invariant probability measures.*
As one generalization of entropy, RUELLE developed the concept of the pressure of a continuous

-transformation of a compact space in [12). For further results in ergodic theory see (2, 3, 13]

and references therein. Some definitions and theorems that are used in our paper are sum-

* marized in the Appendlx i

~ In the second part we introduce our model. The thlrd part is devoted to the proof
of the existence of the pressure P(U) for systems of interacting polymers with
mteractlon U and to the proof of a variational principle’

P(U) = sup (507 (be) —w(0)). "

Herein A(u) denotes the entropy of the invariant state u, u(U) the specific energy
of the system, |&,/~! the number of different shapcs that polymers are allowed to
have. Knowing that this variational principle is true for a particle system, the

' problem of phase transition reduces to the question: Does ther(, exist niore than '

one state u being an equ111br1um state.in the sense that it fulfils the equatlon
7/
P(U) = 1507 (i) — s(D))? . . |
A uniqueness theorem, i.e. a theorem about the absence of a phase transition for
some systems of interacting particles, was published in [15]. In the fourth part
it is shown that the class of equilibrium states coincides with the class of translation

Ve

-invariant Gibbs states for the given polymer system with interaction U.

2. The‘-model‘

We start with the construction of the configuration space of the polymer system.
Let Z¢ be the set of all d-tuples of integers s = (s, ...,-84), Be(Z°%) the set of all non-
empty finite subsets of Z¢. We choose a set & = R¢(¥) of possible polymer shapes.
such that for each s ¢ 7% the set £, = {G €5 |s¢€ G} is non-empty and finite.

Furthermore we choose for each G € & a finite set 2; of possible species of polymers

-of-the shape G- and-assume that there-is an ‘element O €' for éach 'G'€ &~ Let

Qp, < J1 QalGEi"}be the set defined by
Y Py = U U {0, ...,0, w0, ..., 0)}. \

Gel, wsEQe . . /

The con/zgumtwn space L2 for the polymer model is defmed by -

. Q:{w’e]]QG
GeS

wly, € Dy, forall s ¢ Z"}. )

~N



S ‘ ) .
A Variational-Principle for Polymer Systems , 87

The space Q .consists of conﬁguratlons ) ha.vmg the property that for any point
© s € 29 there exists at most one @ E ¥y with wg + 0. :

So it will be Ccorivenient to interpret the configurations as arrangements oi non-overlapping
polymers on the lattice. The construction of the configuration space includes also the classncal
. case of a lattice gas. To see this, choose the parameters as § = {{s} | se€ Z"} and Q) = {0, 1}.

' A more abstract definition of configuration spaces with restrictions is glven in [13] Our.

model arises from this approach.

In the following, invariance under the group (O,)sczs of branslatlons actmg on
the ]attlce by

O =t —s (tezd) o

is assumed The translate of sets W ¢ ‘,Bf(Zd) or W ‘Bf(Z") is ‘denoted by o, WV
-or 0,%, respectlvely The set- 'S is supposed to be umquely generated by (6,) froml'

‘a finite set &, chosen in such a way that the origin of Z¢ is in the lexicographic
order the smallest -element in each G € &,. Furthermore we assume that Q; = Q,
if G = O,K for some's € Z4. . /

The, conflguratlon space £ is to be equ1pped with a metric. For this let [s]

= max {|8)], ..., [s4]} for s = (s,, ..., ) € Z4 and d(G)-= min {]s| | s € G} for GE€ . -

Then for each 9 € (0, 1) a metric 0s on 2 is defined by

s = exp () s 1)) o ) o

This metric is compatible ‘with the topology induced on Q = I (92| Ge&) by the
' product topology on [] £;. On finite sets Q; the discrete topology is assumed. So

- 8 is seen to be compact and metrizable. On 2 the e;\panswe group (see Appendlx) .

(Ts)seza of homeomorphlsms 7, is defined by .

“t

r,wlc—wle_. (w € L, sEZ" GE«?)

"The set of all Borel probablllty measures on £, the so-called. states, is denobed by M,
while all translation invariant elements of % form the set J.

For the proofs of the theorems we use some results of ergodic theory They are
shortly summa.rlzed in the Appendlx .

B 3. Thermodynamic limit and variational principle R a . Ca

In this part we introdiice mtcmctlons for’ systcms of polymers and prove first the existence
of the thermodynamic limit of the local pressure. For. this limit which is called pressure of
the system the variational principle is verified. The methods of the proofs are very close to
those used in [13: Chap. 3]. . ' .
‘Given a €2+ ={seZ s =0 forall 3}, we write v
V() = {sézum < g, for all 4}, V@)= {G€F|GnV(a) =0).

The cardinality of sets V € Be(Z) or V= ‘,B;(Z") is denoted.by | V| or |‘I/’| respectively,
while [‘U] denotes. :

(V] = U{m};seZd}

"For G ¢ S’o it is poss1ble to introduce an order relation in the set [{G}] in the follow-
ing way: Take on Z¢ the lexicographic order “<” and set Gy < G, if Gy-= O,¢

.

un
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and Gz O,G with's < . The set of nbn-empty finite subsets of & vis‘ denoted by

Re(& .
An interaction is a map U: ‘Bf(éf)x Q- R such that for fixed V € ‘Bf(S’) the
value U(?} ) depends only on w|y. An interaction U is translation invariant if

- U, w) = U(@‘U T,0) (?/E ‘Bf(g),wé.(?,s& Z").
The set (R, I+ of translatlon invariant interactions.U with -

||U” > X W“[{ }]["SUPIU(W w)l <°°
GeSo 'V(‘B/(

- is a Banach space. The sam’e is true for the set © — R with the norm

NN =F X sup U@, w)l..

GeS, ‘ve‘B,(S) weR

A ‘translation invariant interaction - U is of finite range, U € R,, if there exists a -

set, D € Pe($) with Dn &, 40 such that U(V,..) == 0 implies the ex15tence of an
s € Z¢ with 6,V — 2.

© For V € Py($) the projection of 2 into the set T Q¢ | GeVis denoted by Xy,

- For ¥ — & finite and U € R we define the partition function Zy(U) by

Zy(U) = Zexp(—ZU(ll,w*)), . s

XyQ

where w* >1s an arbrtrary configuration with w*|ly = w. By the deflmtlon of an
interaction the partltlon furiction does not depend on the special choice of w*
The local pressure is defined by . . :

Py(U) = VI~ log Zo(U) | (veﬂS(zs’),'Uem) : ' ;

Our aim is to. prove the existence of the thermodynaml(, limit of the local pressure,
. lLe. the existence of lim pr(a,(U) as @ — oo. For provmg thls, to each U € R we
adjoin a continuous function Ay: Q2—R by
Ay(w) = =3 X* |VUn & U(?/ w) .
GES, 715413,(3)

" Here the second summatlon means that we sum up only those sets V € Pe(8) for -
which @ is the G-greatest element in ¥ with respect to the order “<” in [{(}]. It
is not hard to see that U — Ay is a linear and continuous map from R into the set

£(£2) .of all continuous real functions on £ equipped with the.sup-norm. But thls
map is furthermore onto. We verify thls in two steps :

1. For V € Pg(8) let €y be the algebra of real functlons on £ dependmg only on
- w|y. It-is then clear that {Ay-|-U.€ R, is a subset of U.{€y |-V € R($)}, which is
dense in &(L2). For the demonstration of the inverse inclusion take an “arbitrary
Ve Bi(8), an 4 € Ey and an a € Z*“ such that V(a) > V. Ad]om to 4 thc inter-
action U € R, by -

U@, 0) = SAe)  (weR), - B
T UW) = —Aw) i V=00@) (weQ),

T UW, w) = 0 i Vi[V@] - wef).
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" also the limit

exists and is called the pressure P(U) of U.
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A short calculation shows that Ay = A. Moreover, the equallty [|U|| [$o| ||A|| ‘
holds. . - . '

. . S
2. Let A4 € £(2). Because of the- continuity of A one can choose an mcreasmg
sequence (V,) = R¢(¥) such that

' 1

- -sup {|4(w) A(f/llwnGQWItthv —nlv}<2

FoerQandnE\weset _ ‘ o
By(w) = (wlv' 0) and A, =B, =B, — Bn-la

- where wly 0 is t,he conflguratlon n with gy, = w]')) and 77|3\«p = 0. To the func-

tions 4, € €y, interactions U, € R, are adjoined as described in Step 1, to the func--
tion A the interaction U = 2 U,. This procedure ylelds

dylw) = =5  I* |Yn &l I(ZU v, w))
66, viBis) /

= Y Ay(o) = A(w) (wEQ)-

"The next inequality shows that U is indeed an element of R%:

= Z15l 4 <oo' W o
.
The partmon /uncuons in the finite volimes V € ‘Bf(Z") for contmuous functlons‘
. A and expansiveness constants ¢ > 0 are defined (see "Appendix) by -

Wy =

‘Z (A £) = sup { b3 exp (Z A(r,w)) Alis (v, e)-separat,ed}.

weA

We mentioned above that the group (t,) is expansxve This is true especially for
the expansiveness constant ¢ = & (see (1)). It is not hard to show that for a € Z**.
" the (V(a), ) separated subsets A < 2'have the property

w,n € A and w=+n=> w|"U(a) =+ N]var-

So we can write the partition function in V(a) for A and ¢ = @ in the-form

'\\ d?/(a)(A) 2 exp( 2 Az )), ]

) w€X 9 (g)Q s€Via) i .

where the configurations w* with w*|y) = w form that (V(a), 19) -separated set A

“that gives the supremum in Zy)(4, 9). It is known (see Appendlx) that the thermo-

dynamic limit - .
lim {V(a)|* log Zyad) = P(4) -

a—»oo .

exists for all 4 € £(2), and because of |‘U(a)|/|V( )| = 10l a;s @ — oo there exists

[y

lim V(@) log Zy(4) = [S™ P(A).

. Theorem 1: For each interaction U.€ R the thermodynamic limit ' o
lim |V(@)|"! log Zy(U) = lim Pyuy(U) = |5 P(dg)
a—00 g—ro0 . N

1
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Proof 1 Let U be of flmte range and let D be the set determining the range
of U. If a € Z*4 is sufficiently large and N(‘U a)) = |{s € V(a).| O, = V(a)}|, then
for all w € .Q

/ /

2 UY, o)+ X Au(raw)l

YcVia 8€V(a)
= y Z* Iy n g’ol—l( Z U(l’ T,w) — Z U(y: Tsw))’
GeS, ye‘B.(S) s€Via)
. Gey S G.yD'VW o
v S NV@) E Sk Y 0s s [UY, @ < NY@) U @)

GES, yiml(s
ey

oy,

Because of N(‘U(a))/|?}(a)| — 0 as a — o0, one can calculate

lim” |V(a)] 1 (log Zvai(U) — log Zya(4)]
a—»o0 - N .

2 eXP( .—Z uy, w*))

WEX ()2 YcVa

S = lim V(@) |log
. a—>c0

I exp( 3 Al
o wEXY(a)? seVia) '
< lim [Y(@)] N(V(@) U] = 0. - a L

This proves the theorem for U € R, )
.~ 2. Foran arbitx;ary U € R we take into account thét‘ forU' e R, ¢t ¢ Rand a € Z*

d
|5 Pral@ + ) ‘ <1011V + oY)

holds with ¢ € Z+¢ defined by ¢; = max {|s; — ¢ ]s€ G',te G” for some G, G'' € &), -
4= 1,...,d. This yields

d, .
— Pyo(U + YU’ = U))

|Pyay(U) — Py(U’)| < sup )
- -0st=1

<|\U — Ul [V(a + o)l|V(a)].

Because of |V(a + ¢)|/|V(a)].— |$o|™ as a — o0 and the possibility to approximate
U by elements U’ € R,, the last estimate ensures the existence of the thermodynamic
.limit- of the local pressure of U. From the continuity of the maps U — 4; and
A -> P(A4) we deduce that this limit is equal to |8, P(Ay) 1

Theorem 2: For u. €.J.and U € R.the finite thermodynamic limit
wO) = lim V@ [( 2 U@ o) duw)

YcVia)
exists. Furthermore uy(U) = —f Ap(w) du(w).

Proof: For U € R, the theorem follows from a multidimensional version of Birk-
hoff’s ergodic theorem (see [14]) and inequality (2). An interaction U € E)t can again
be approxlmated by interactions of %R,
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In the situation of polymer systems the entropy h(u)of a state u E J (5ee Appendlx) '
s calculated as

-~

W) = ~lim | V(@) z (Fvaw) (@) log (Xvia) (@)-
w€XY(q)

" Let £* denote the weak dual “of 8(Q). For A € 8’(!2) we set
' Ju = {u € 6% | P(A + B) = P(4) + w(B) for all B € 6(Q)}.

The elements of J, are called equilibrium states /or A, those of J Ay for an inter-
yaction U, equilibrium states for U. Now we can formulate our main result.

- Variational prmclple For each interaction U € R,
o PO) =sup ISl () — w@)y S
and . - ‘ _ .
‘ ={/tea|P(U> |30|1(h/¢)—yU))} .
The set 4, ts ‘non- emptq, convex and compact. o

"This result follows from Theorems 1 and 2 and the next Lemma, Wthh is due
to RUELLE [13] together with the variational prmc1ple quoted in.the Appendm

‘Lemma: For each A € 6(Q) the followmg assertwns are true. . -,
(i) Ju={ue I | PA) = hiu) + p(A)). |
(il) JTy4 s non-empty, convex and compact.
- (iii) Let X be a separable Banach space, ¢: ’c —E(2) a contznuous linear map with
dense domam, and for @ € X define . : :

Jo' ={FeX*| Pog(P + V) >Po<p(¢)+F(‘I/)/orall?1’€&}
Then Jo' = {co@| o€ Tyol ’

) In our special case of polymer systems one has to choose ¥ = R and <p U—Ay’
_and to mention that U {€y | V € Pg(S)} is dense in £(2). ‘ .

4. Gibhs siates

In the sct M of all states the class of Gibbs states for a given interaction is of great interest
in statistical mechanics [11]. It is our-aim to show that the equilibrium states are 7,-invariant

QGibbs states and vice versa. : > .

A state is_called Gibbs state for the interaction U if for each finite set V — & the
conditional probability that on ¥ there is the configuration wy € Xy, knowing
that on the set & \ V there is the configuration 7|g\y for some 7 € £, is equal to .

gb.n(wv) = Zyy(U) exp( ~2 U, wv’?lsw))

yeq;,m
.with - o
Zy(U)= X exp( —Z vy, w?/’?ls\v)) '
wyeXyR YnVUs
"'v'lls\'uff’ yeas,(s) .

\

It is a known fact that t,herset Ky of all Gibbs states for U ¢ C is non- empty, convex
_ and compa,ct (see [13}]). A . .
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\ ’ - . '
Theorém 3: For each invariant polymer configuration space 2 on Z¢ the class of
t-invariant Gibbs states for an interaction U € © coincides with the set of equiltbrium
states of U.

The followmg observatxon is an essential step towards the proof ' .,

Given the configuration space 2, one can fmd a ¢ € Z*% such that for all € Z*"
and all w,n €.2 there exists a £ € .Q w1th the property 0|y = El'ym, and nl‘yw(‘,ﬂ, )
= {ls\via+or \ -~

Let V ={s€cZ¢|s€ @ for some G’€ 8o and for Ti=1,..., d set ¢, =
max {|s; — ¢ |s,t € V}. The d-tuple ¢ = (c;, ..., ¢;) has the desired property. To see’

- this take any a € Z*%, w,n € Q and verlfy w1th the help of the.definition of £ that

; . wh(;, for Ge ‘I}(a)
g€ J] Q; with &) =9nley for GeF\ ‘l/(a + c)
GeS ’ ’
0 otherwise

is mdeed a configuration.’ \Tow one can carry out the proof of Theorem., 3analoguously
to the proof of a similar theorem of RUELLE for systems with a configuration space
that is a subset.of .Qoz‘ for a finite set Qo (see [13 Theorem 4. 2] I

Appendix

.We summarize here some defmmons and theorems of ergodic theory w hxch are the bams for

the proofs of the Theorems 1 and 2. More details can be found in'[2, 3, 12, 13]. .
Let Q2 be a compact space with metric ¢ and (r,)sezs & group of homeomorphlsms on' .
isomorphic to Zd.

1. Expansiveness: The group (rs) is ca.lled expansive if for an ¢ > 0 and- for all 0, €Q

. t,he implication .

- plraw, rm)SeforalisEL":)w—n N

is true. The number & is called expansiveness constant.

2. Entropy: For r;-invariant - Borel probablhty measures u on 2 and finite Borel partltlons

.‘21=(‘l[)of!?wcset,

~

Hio %) = — £ w2 'lo'g y(w), A" = erﬂl (Ve ‘B«(Z"))
. 8€

Then h (1, Ay = lim | V(a)|? H(y, AVia)y exnsts The number h(u) = sup he(pe, A) is called the
a—00 -
entropy of the measure u.
We write diam % = max diam Q((, where diam QI is the diameter of A; with respect to
the metric p.
3. Proposition: If the group (z) is e‘:panswe with e\pansweness constant g, then

dlam‘){Se:}k(y)-h(y,‘)() T -
4, Partition function: Let V 'be a non-empty finite subsct of Zd and e>Q A fm:te set

A < Qs called (V, ¢)-separated lf for some s ¢ V |

' w,nE.Q and w %= 7 => o(Tyw, Tan) > €.

o

For 4 ¢ 5’(.(2) V € B4(Z9) and ¢ > O the partition function Z:(4, ¢) is defined by

Zy(A, €) = sup { 2 exp ()_" A(tdu))) Ais (V, e)-sepamted},
!

we A sEV
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" 8. Pressure: If the group (‘[;,) is expansive with expansiveness constant € and 4 € £(Q),
then the limit ! . -

P(4) = lim | V(@) 10g Zy(a(4, )

a—>0 4

© exists mdependently of €. The value P(4) is called the pressure of the /unchon A. Elt,her .

.. P(4) = 400 for all 4 € £(R2), or P(4) < +o0 for all 4 € Z’(Q) In the latter case the map

A — P(A) is convex,.increasing and continuous.
8. Variational principle: 1f J denotes the set of all z,- mvanant Borel probabmty measures
on 2 and 4 € 8(Q), then

P(A) = sup {h(u) + #(A) | € T} . ,
In the case of finite pressure and expansive group (z,) the set
Ja=1{ued|PA) = h{n) + u(4)} '
is non-gmpty, convex and compact and coincides with the set ’
JS={ued | P4+ B) = P(A) =+ ,u(B) for all B € ().
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