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Generalized Solutions of the Cauchy Problem for a Ionlinear Functional Partial 
Differential Equation 

J. Tuio 

Es vird em Satz über die Existenz und Eindeutigkeit.der verallgemeinerten Losung (in Sinne 
,,fast überall") des Cauchy-Problems für nichtlineare Funktional-Differential-Gleichungen mit 
partiellen Ableitungen erster Qrdnung bewiesen. 

JJoKa3aHa' TeopeMa 0 cyu.ecTBoBallIIH H e14HcTI3eHHocTH O6O6LUeHIIOrO peiiieiuin (B CMbICJIü 
,,nO'ITII ncioy") aaa'iil Kouni iin HeJIFlHeflHoro sepeH Lim aJbHo-yHluHOHaJib11OrO 
ypanneiiin C '4acTHUMH np0113B0AF1MMII nepsoi'o nopnHa. 

An existence and uniqueness theorem for the generalized solution (in th sense "almost every- 
where") of the Cauchy problem for a nonlinear functional partial differential equation of first 
order is proved. 

1. Introduction. Let us consider. the Cauchy problem  

Du (x, y) = F(x, y,u(x, y), (Vu) (x, y), D 9u(x, y)) 
(a.e.in[O.a];yE'R),	 .	(1) 
u(O, y) = T(Y)	(yE R),':	 S	

(2) 
where D, a/ax, D	alOy, and V is an operator of Volterka type. ,	. 

Equation ('1) contains as particular , cases ((Vu) (x, y) = u(x(x, y), fl(x, y))) the differential 
equations with a retarded argument, the special cases of which arise in the theory of the distri-
bution of wealth [5]. A few kinds of integral-differential equations can be obtained from (1) by 
specializing the operator V. For instance, problems arising from laser problems in Nonlinear 

Optics are als&.particular cases of the problem with (Vu) (x, y) =f K(y - t) u(x, t) dt [1]. 

In recent papers P. BRANDI and R. CEPPITELLI [2], Z. KAMONT [6, 7], and A. SAL-
VADORI [8] have considered the existence and uniqueness of continuously differen-
tiable solutions of problem (1), (2) under the assumption that F is differentiable. 
The aim of the present paper is to extend these results to a more general case 
where the given function F is not necessarily continuous and solutions of problem 
(1), (2) are generalized (or weak) in the sense "almost everywhere" (a.ê.). The method 
applied is of fixed point type. It is based on defining an operator, whose range consists 
of solutions of suitable equations without functional argument. By applying differen-
tial inequalities (see Lemma 1) it is proved that this operator is a contraction, and its 
fixed point is a solution of problem (1), (2).. The solution is local in x and global in 
y, and it is unique in a class of bounded functions, absolutely continuous in x and 
possessing Lipschitzian derivatives in y.	. 

2. The auxiliary results. In the sequal we will use 'the existence thcbrem for the non-
linear partial differential equation  

Du(x, y) = /(x, y, u(x, y), Du(x, y))	(a.e. in [0, a]; y E R). .	(3)



128	J.Tuao	 -	 - 

	

Assumption H: Suppose that .. .	 - 
10 f(x, •): R3 -* R is continuous, and derivatives Df(x, ), D2f(x, •), D,f(x, •): 

R3 -* R exist and are continuous for every x E [0, a 0], a0 >0; 

	

2° f( . ; y, z, q), DI( . , y, z, q), D2f( . , y, z, q), Dl( . , y, z, q): [0, a0 ]	R are measur-



able for every (y, z, q) E R3; 
30 there are measurable and integrable functions M, L 1 : [0, a0] -* R = [0, + c,o) 

(i =0, 1, 2, 3) such that, a.e. in [0, a],	 0 

If(x , y, z, q)
.
1 ;5

. 
Mo(x),	Df(x, y, z, q)J ;5 M 1 (x),	 fl 

IDf(x, y,z, q)j ;5 .21/I2 (x),	IDqf(r, y, z, q) ^5 .2113(x) 
and	 S	 - 

If(x, y, z, q) — f(x, 9, i, )J ^5 L0(x) (I — i +I z - I+ I q — 
L 1 (x)(y— 91 + Iz —I + Iq—J),

	

• [D/(x, y, z, q) —Df(x, P, ,qjj ^5 L2(x) (I — 9 1 + 1 z —	+ I q - 
IDqf(x, y,z,q) — Dq/(x, , , )I -L3(x) (I — I + Iz — I + I q — 

for all	q), (, , )E R3 ;	.	 0 

4° the initial function -in (2) belongs to C'(R, R) (C(R., R) denotes the st of all 
continuously differentiable functions on R into R), and there exist constants k 1 , ic2 > 0 
such that	k1 and I'(y) — '()j ^5 k2 ly - I (y, i E It). 

•	 Let us define the constants	0 

K 1 = k 1 ± (1 + k i	k2)f ((L0 +,Q(ao)L3 ± M)exfGdt)dx.	- 

-. K=k2±( 1 + k +k2)f ((L i + _Q(ao) L2 + M2) exp f G dt dx 

/

- g0 = 1 —(1 + k 1 + k2)f (L3 exPf Gdt)dx	- 
where 

S	 G= Lo- ±Lj+L3 +Q(ao)(L2 +L3)+M2 +M3 ,	S - 

	

a. 

Q(i0) = expf M2 dt	+7 M, exp ( _f 1112 ds))dt}. 

- Theorem 1.[3, 4]: If Assumption H 1 is satis/ied, then there are a constant a E (0, a]. 
and a function U: E0	[0;a] x R-* R satisfying equation (3) and. condition (2). 
This solution is unique in that class of functions .u: E,, -k It for which u( . , y), D u( . , y):	- - 
[0, a] -- R are absolutely continuous for every y E B, and	•	- 

0	
5 

•	 /	
0 

IDu(x, y) ;5 Q(a0), -	
•	 I'	 - 

S	

•	Iu(x, yY— u(x, )I	Jy - 91,	Du(x, y) — Du(x,	 - -	. 

	

-	S	

S	 - 

-	 •	for every (x, y), (x, ) E B0. 
S	

-	 Remark: In the above theorem a is chosen sufficiently small such that g0 > 0.
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Set, for a,b >O,M O, and Masb, 

Eab {(x,y):O:5,x:!^a,IyI	b —Mx}, 

{(s, y) E EOb : s :5 x},	S = {y: (x, y) E EOb}.. 

We shall need , the following 

Lemma 1: Suppose that	 - 
l°u: Eab - R is continuous, and D1u exists for a.e. x  [0, a) and every y E [—b 

+ Mx, b—Mx]; 
2 0 for every x E [0, a]. u(x, .) fulfils a Lipschitz condition; 
.° there are constants c 1 , c2	0 such that -	 - 

Du(x, y) ;5 c1 u (X , y) + c2 + .1W Du(x;y)	(a.e. in [0, a); 
•	yb—Mx).

 

Them the' derivative y' of the function y 

y(x) = max {u(s, t)I : (s, t) E EXb }	(x E [0, a]);' 
exists ac. and y'(x) --:^ c 1 y(x) +, c2 a.e. in [0, a]. 

Proof: Since (x) = max Uu(x, y)I: y E $} is continuous on [0, a] (see [9 1) and 
Y(X) = max {O(s): 5 E [0, x]}, y is continuous on [0, a] 'and y' exists a.è. in [0, a]. 
Suppose that (, ) E EZb is such that 

Ax) = u()I,	 (4) 

and u( ', ),	), y'(x) exist. Thus we have 0	. First; let Y	0. From the
definitions of yand b it follows that-y(x) =.b(). For h < 0, we get 

y(x+h)^E!(x+h)	
a
nd ' y(x+h)—y(x) <ô(+h)—) 

Hence, by  - 0, we obtain 

y'(x)	D_ô(x)	 .'	 (5) 

(D_ is the left-hand'lower Dini derivative). For Y = 0 inequality (5) is certainly 
satisfied, since y is eonstnt in [0, x]. If (, ) is an interior point of EOb , then we have 

• [9) D_5() ^ Du(.x, )l and also IDu(, )I = 0. Hence, by (5) and assumption 30 

it follows that 
•	y'(x) ^5 D() ;5 IDu(x, )I ^5 c Iu(, )1 + c2 = c 1 y(x) + c2. 

• Now, suppose that (, ) is not an interior point of Eab . Then = b — M or 
= —b + M. We consider only the first case. Assume also, that in (4) we have 

Ax) =,u(, ) (for y(x) = —u(, ) the proof is quite similar). Let us consider the 
• function in defined by	(x) = u(x, b - Mx). Since	x)	ô(x), x E [0, ], and 
in-(Y) = 6(i),	• ,	 .	 ,	 - 

Ti( -+ h)—	)	+ h)— ô() for  <0.  

Hence, we get 
-	.	ñt'(x)	D_ô().	• •	 •	 (6) 

9 Analysis ]3d. 7, Heft 2 (1988)	
-	/
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From assumption 2° it follows that ift' exists a.e. in [0,a] and in- '(x) = Du(x, b — Mx) 
— M.D,u(x, b — Mx). In particular, we have An'() = Du(, ) — MDu(, ). 
Hence, and by (6), we obtain 'D_ö() ^5 Du(, ) — MDu(, ). The inequality 
together with assumption 3° yields 

D_6() ;5 Du(, ) - MDu(') ^5 c 1 u(, )I + c2 = c 1 y(x) + c2. 

Hence and by (5) we get the assertion of the lemma I 

3. The existence theorem. We denote by K(a, F, Q) the class of all continuous and 
bounded functions U: E,, -* R satisfying the following conditions: 

(i) u( . , ),-Du( . , y): [0, a] -. R are absoIutely5cortinuous for every . y E R; 
(ii) there are constants F, Q ^! 0 such that 

u(x,y)—u(x,)IFIy—j, 

for all (x, y), (x, y) E E0 .	 -	V 

Assumption 112 : Suppose that  
1° ' F(x, .): R4 -* R is continuous, and the derivatives DF(x, •), DF(x, ), 

DF(x, ), DF(x, •): R4 -* R exist and are continuous for every XE [0, a0]; 
2° F( . , y, z,p, q), DF( . , y, z,p, q), DF(•, y,Z,p, q), DF( . , y, z, p, q), D0F( . , y, Z, 

p, q): [0, a] -* R are measurable for every (y, z, p, q) E R4; 
3° there are a constant 10	0, and measurable and integrable functions rn1 , 1,: 

[0, a0] - R, (i = 0, 1, 2, 3,4; j	1, 2, 3,4) such that a.c.m [0, , a.] 

jF(x,'y, z, p, q)j 5 m0(x),  

DF(x, y; z, p, q)I ;5 m 1 (x),	DF(x, y, z, p, q) 1 ^5 m2(x),
 

V	

V	 IDF(x, y, z, p, q) ;5 MAX),	IDqF.(x, y,. z, p ' q)I ^ m4(x).,	
V 

and	
V	 ' 

F(x, y, z, p, q) —F(x,,	)I	 V 

V	
:	 l (I — ' I + Iz - [+ 1p -	+ Iq -u;	'V

DF(x, y, z, p, q) - DF(x,  

DF(x, y, z, p, q) - DF(x,	, , )I	V	
V V 

.2((Iy,-1+ Iz — ZI + I p -I + Iq —I),	 V 

	

. 	 .......;	... . ...
V 

13(X),(lY	9 1 ++l z - I + p.— p i + I q —I)	
V , 

•	 V	 •	-	 IDqF(X y, z, P,) — DqF(x, P, , , )I	 V 

14(x)( Iyy 1 + Iz—I +Ip —I + Iq — )I	
V 

for all (y,z,p,q),	ER4;	V	 V	 •	V 

40 (Vu) (., y): [0, a0] -- illS measurable for y E R, u E K(a0 , F, Q), there exists
D( Vu) E C(E, R) for each u E K(a0, F, Q), and there are measurable and integrable,
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functions p, r: [0, a0] —> R (i = 0, 1) such that a.e. in [0, a0] 
l(Vu)(x,y)—(Vu)(x,)l ;5r0(x)ly—° 
D( Vu) (x, )I ;5 p(x),	D( Vu) (x, y) - D( Vu) (x, y)l ^5 r(x) jy. - 

foreachuEK(a0 ,P,Q);	 S 

50 there is a constant ,s	0 such that llVu — V,, ^5 s Ilu - lL for any u,
i E K(a0,P, Q), where h ull2 = sup {lu (s, y)I : (s, y) E E2}, E. = [0, x] x R; 

•	6° the initial function q in (2) belongs to '(R, R), and there exist constants 
k0 , k1 > 0 and Ic2 ^ 0 such that l()l ;5 Ic0, l q '(y )l	Ic1 and q'(y) - 
:!g lc2 ly—l(y,E R). 

Lei 
I 
n ma 2: If Assumption H2 is satisfied, 'then there exist constants a E (0, a0] and 

• F, Q ^! 0, such that for every w E K(a, P, Q) there is a unique solution u[w] E K(a, F, Q) 
of the equation	\ 

D2ü(x, y) = F(x, y, u(x, y); (VW) (x, y), Du(x, y)) ,(a.e. in [0, a]; y ER) (7) 
satisfying condition (2).	 - 

Proof: In order to prove this lemma, we show that all assumptions of Theorem 1 
are satisfied with /(c, y, z, q)= F(x, y, z, (Vw) (x, y), q), where w E K(a, F, Q). From 
H2 /1°, 2° and 4° it follows that'H 1 /1°, 2° are satisfied, H[3° is satisfied with 

= m0 ,	M 1 = m 1 + m3p,	M2 = m21	•iiI = m4, 
Lo	10(1 + r0 ),	L, = (1 '+ r0) (l + P13) + m3r1, 
1'2 = 120 + r0 ),	43 = 140 +ro).	 • 

At last, H 1 /4° i covered by H 2/6°. By Theorem 1 it follows that there is a unique, 
function u[w] satisfying equation (7) and condition (2). Moreover, this solutonsatis-
fies the conditions	• 

1u[w] (X, Y) —u[w] (X , 9)1	ly -	.	 5 

go 

lDu[w] (x, y) - Du[w] (x,	;5

	

l y - 
go 

"•where

• R =k1 +(! + Ic 1 + k2)f (i ± r0) (i +(a0 ) 14 ) +m4}exPfOdt)dx l 

K2 ='k2 ± (1 + Ic1 .+ k2 )f ({(1 ±ro) (l + pl	(a) £2) + Pm3r + 

x. expfOdt)dx 

•	
•	 1•— (1 ± Ic1 + k2)f (14(1 + ro) expJ0 u) dx, 

= exp 7 M2 dt {k 1 + j ((m i ± m3p) exp (-i m2 ds))dt} 

O = ( + ro) (l + 4 +P13 + £4 + Q(a0 ) ( 12 + 14)) m3r1 + m2 + m4. 
Let P and Q in the definition of K(a, F, Q) be constants satisfying the inequalities 
i. ;5 P, K2 Q0 which axe certainly satisfied for a sufficiently small (for a-- 0 

9*
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these inequalities , reduce to k,	P, k2 5 Q) . Thus we have

u[w] (x, y) —u[w] (, 7) ;5 P ly - 
jD0u[w](x,y) -- Du[w] (x,	QIy -. 

Since u[w] is generated by characteristics [3], then writing the characteristic system 
for (7) it is easy to show that u[w] is bounded. Hence, we have u[w] E K(a, P, Q) for 
every wEK(a,P,Q)U	 0 

Theorem 2: If Assumption H2 is satisfied, then there are constants a, P, Q, 0 <a 
^ a0 , and a function U: E0 -> R, satisfying equation (1) and condition (2). Fur-
thermore, u is unique in the class K(a, P, Q). 

Proof: Let us define the operator T on K(a, P. 9) by (Tw) (x, y) = u[w] (x, y), 
where a, F, 9 are givn in Lemma 2. it follows by Lemma 2 that T maps K(a, P, 9) 
into itself. Let us introduce the norm 

liz Il = sup lz(x, y )I exp (—Ax),	where 2 > 1(1 + s). 
(X,y)( E	 - 

By H2/5° we have 

(Vu) (x, y) - (V) (x, )I exp ( i—Ax) ;5 s sup Iu(s, y) - (s, y)J exp (—Ax) 
(s.y)EE	- 

s sup lu(s, y) - (s, y) Iexp (—As)	s lu - 1). 
(3.y)EE	 - 

Hence 11 Vu - V ;5 s 1ju - Fi ll. Now, we prove that T is a contraction. * Indeed, for 
any w, E K(a, F, 9), we have 

lD[(Tw) (x, y) - (T) (x, )]l = D1,[u[w] (x, y) - U[iv] (x, )]l
l u[w] (x, y) - u[J (x, y)I + 10 l(Vw) (x, y) - (VW) (x, )l 

+ 10 IDy[u[w] (x, y) -.u[w] (x, )]I 
< l u[w] (x, i) T u[W] (x, )l + 10s lw - W II exp (Ax) 

+ lo D,,[u[w] (x. y) - u[W] (x, )]I' 

and u[w],(O, y) - u[] (0, y) '= 0. Hence, and by Lemma 1, we obtain y(x) 
^ 10y(x) + los 11 w -	exp (Ax), where y(x) = sup {Iu[w] (s, t)	u[R] (s, t)l: (s, t) 

-E E1b) and consequently, by the extended Peano inequality [3], y(x) ^ 1s(2 

- l) "11w - lj exp (Ax). Since this inequality is satisfied for every b, it follows that 

-	ll Tw - T II ;5 10s(; - la)-' 11 w - WJ,	10s(;. - la) - ' < 1. 

Thus, T is a contraction. it is 'easily seen that the fixed point of the operator T satis' 
fies condition (2) and equation (1) I 

Acknowledgement: The author is greatly indebted to Z. Kamont for his collabora-
tioninróvihgLemrnal'.  

REFERENCES 

[1] BASSANINT,P., and M. C. SALvAT0RI: Problemi al limiti per sisterni iperbolici quasilineari e 
generazione di armoniche ottiéhc. Riv. Mat. Untv.'Parma 4 (1979), 55-76. 

121 BRANDI, P., and R. CEPPITELLI: Existence, uniqueness and continuous dependence fora - 
hereditary nonlinear functional partial differential equation of the first order. Ann. Polon. 
Math. (to appear)..



, Gexieraized Solutions of a Cauchy Problem	133 

[3] CINQuINI-CIBRARI0, Al., and S., Cu%QUINI: Equazioni alle derivate parziali di tipo iperbolico. 
Roma: Ed. Cremonese 1964. 

[4] CINQUINI-CIBRARIO, M., and S. CINQuINI: Sopra una. forma piü ampia del problema di 
Cauchy per l'equazione p = /(x, y, z, q). Ann. di Mat. 32 (1951), 121-155. 

[5] EICHHORN, XV., and W. CLEISSNER: 'On a functional differential equation arising in the 
theory of the distribution of wealth. Aequ. Math. 28 (1985), 190-198. 

[6] KAMONT, Z.: Existence of solutions of first order partial differential-functional equations. 
Ann. Soc. Math. Polon., Ser I Comm. Math. 25 (1985), 249-263. 

[7) KAMONT, Z. On the Cauchy problem for non-linear partial differential-functional equations 
of the first order. Math. Nachr. 88 (1979), 13-29. 

[8] SALVADOR!, A.: Sul problemu di Cauchy per una struttura ereditaria.di tipo iperbolico. 
Esistenza, unicità e dipendenza continua. Atti Scm. Mat. Fis. Univ. Modena 32 (1983), 
329-356.	 . 

[9] SZARSKI, J.: Differential inequalities. \\'ar'1w: Polish Sci. PubI. 1967. 

Munuskripteingang 01. 12. 1986; in revidieiter Fassung 27. 05. 1987 

VERFASSER:	 . 

Dr: JAN Tu'o	 .	.	 . 
Department of Mathematics of the Technical University 
Majakowski 11	 .	. 
PL-80-952 Cdañsk

.	 -'I


