
Zeitschrift für Analysis 
und ihre Anwendungen 
Bd. 7(2)1988, S. 185-170 

Steady State Solutions of the Satsuma-Mimura Diffusion Equation 

L. V. WOLFEBSDORF

/ 

Die stationhren Losungen der Diffusionsgleichung von Satsuma und Mimura. werden durch 
Zuruckfuhrung auf eine gewohnliche komplexe .Differentialgleichung erster Ordnung_abge-
leitet. 

YcTanoBlinwilecH penieinia utyaiioiiiioro ypa13HeHHR CaTcyla it Miiiypa 131,I130HTCn C 
notomio peJyl-am1 iia o6LTloioneluloe hoMnileHcHoe i4epe11ujaJIbIIoc ypaniieiiue nepnoi'o 
nopnuca. 

The steady state solutions of the diffusion equation of Satsuma and Mimura are derived by 
means of reducing to an ordinary complex differential equation of first order.	 S 

Introduction. In their papers [3—' 51 J. SATSUMA and M. MiMuRA investigated a class 
of nonlinear nonlocal diffusion equations involving singular integral terms. They 
developed an exact linearization method for these equations and derived some inter-
esting particular solutions in explicit form by this method.In the present paper we 
rederive the steady state solutions of Satsuma and Mimura in systematic way by 
reducing the steady equations to complex differential equations of first order. We 
find that apart ç from an obvious invariant shifting transformation the steady state 
solutions found by Satsuma and Mimuia are the only ones with a prescribed asymp-
totic behaviour at infinity. Besides we obtain new periodic steady state solutions for 
some corresponding equations with variable diffusion coefficient. 

1. Coth-type kernel. At first we deal with the equation 
du—(Tu•u)1 =O,	d>O,•	 -	 (1) 

where

(Tu) (x)	fu() cothj ( - x) d, - ô o. 

We are looking for sufficiently smooth solutions u = u(x) of (1) having vanishing 
limits u( ± oo ) = 0 and u (+ ob ) = 0 as x -* ±00. Let w(z) = u(x, y) + iv(x, y), 
z = x + iy, be a holomorphic function in the strip TI: - oo <x < co, 0 < y < ô 
with Holder continuous boundary values on y = 0 and y = ô, where u(x, 0) = u(x) 
and	 - 

u(x,)=0;	—oo<x<oo,	 -	 (2) 
and there exist the uniform (with respect to y E [0, 6]) limits v(± 00 ) satisfying 
v(+ 00 ) = —v(—oo) and v1(± oo ) satisfying v (+ 00 ) = v(—oo) as x-- ±00. Then 
(cf. [6: §3.16])	 - 

w(z) =	fu() coth	( - z) d	in 17	- -	 - -,	(3)
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• with the boundary values v(x, 0)	—(Tu) (x). Therefore integrating equation (1), 
we obtain the boundary relation du + vu = 0 on y = 0 and due to (2) also on y = & 

• i.e. we have the boundary conditions Re [dv' - (i/2) w2] = 0 on y = 0, y = a for 
the function (3). Hence this function obeys the differential equation 

W1 - - w2 = iK0	in IT	 (4) 

with a real constant K0(= v (± oo ) + (1/2d) v2(±00)). We have to determine bob-
• - morphic solutions w of (4) in 17, (Holder) continuous in II with the supposed behaviour 

at infinity and satisfying additionally the boundary condition (2). 
• As can be easily seen for K0 = 0, no non-trivial solutions to (4) of suchuind exist. 

Therefore putting K0 = — ( 1/2d) K1 2 with K1 + 0 real or purely imaginary, we get 
the differential equation 

- K1 2 2d 

with the general solution 

-	1 + Ce w(z) = K1 1 - - 0K,/du'	C a complex number. 

The supposed behaviour for w at infinity requires K1 purely imaginary, i.e. K 1 = i dK, 
K>0,and	 •

(5) 

where, we put C= Lo e with e > Oand a, arbitrary real. From (5) there follows 

-	—2dKU sin x e_ 
- 1 + 2	- 2e	cos a - 

and
-	 —2dKe sin (cx - Kâ) e 

1 + e2 e2ICx - 2 eCx cos a 

Therefore (2) implies that a = Kô or a = Kô+ r. Further it remains to secure the 
analyticity of w in 17 and its cbntiñuity in 17. This demands that 1 - eiz + 0 
in 11 which is fulfilled in case a = Kô + r only if additionally 0 <Kô <.r. That 
is, the only solutions of (1) with the supposed behaviour at infinity are 

	

'2dKe sin Kô e 1C v	 . 
U(X) = 1 + 2 e-2KX + 2Q e	cos Kô 

•	-- or putting e =e", arbitrary real;  

sin 
•	u(x) = dK .	 , 0 <K </ã.	/	(6) 
. V •

	 cosKô
+coshK(x—P) 

These are (with = 0) the solutions of J. SATsuIi&and M. MIMUBA [5] (see also [3,4]). 

2. Cauchy kernel. In the limiting case 0 - + 00 of (1) we have the equation 

du—(Su-u)=0,	d>0,	 .	 (7) ••



-	 Steady State Solutions ...	167 

where

(Su) (x)=
7Z	X 

Again ,we are looking for sufficiently smooth solutions u of (7) having vanishing 
limits u(±oo) 0 and u(-Joo) = 0 as x -* ±00; The corresponding holomorphic 
function w(z) = u ± iv in the upper half-plane 17: -00 <x < oo, y > 0 'withthe 
boundary values u(z, 0) = u(x) should be bounded at infinity, such that v = 0 at 
infinity. Then	 -	 S 

W(Z) =Um d	in II	-:	,	 (8) 
.71 f	Z 

with the boundary values v(x, 0) = —(Su) (x). Therefore integrating equation (7), 
Ye obtain the boundary condition Re [dw' - (i/2) w9 = 0 on y = 0 for the function 
(8). Hence this function again obeys the differential equation (4). 

As can be seen from above now for K0'+ 0 no solutions to (4) of the requird form 
exist. Therefore putting- K0 = 0 we get the differential equation	 - 

•	w'	i'	 S	 -	 S 

-;-==-2d S 
with the geneial solution  
•	 2di 

-	w(z) = - ,,	C a complex number.	-	 •(9) 

Putting C = a - i19 with fl> 0 aidx arbitrary real, the function (9) -is holomorphic • 
in Hand (Holder) continuous in II with w(oo)' =0. That is, we have the solutions 

S	

,	 ( 10) 

These are (with a= 0) again the solutions of J. SATSUMA and M. MIMURA [5] (and 
[3,4]).  

3. Hilbert , kernel. In the case of periodic 11olutions of (1) (with period 2i) the equation 
•du88 — (Hu . u) 8 =0,	d>0,  

for u = u(s) occurs, where 

(Hu) (s) =	fu() cot	d.  

For sufficiently smooth solutions u of (it) we introduce the Schwarz integral W, of u 
(cf. [1: Chap. I, § 6]). W(z) = U + iV is a holomorphic function in the unit disk 

•	G: JzJ <1 with the boundary values U(e t ) = u(s) of U and' V(e i8) = —(Hu)'(s) of 
•

	

	V on the circumference F': z = e', where the conjugate harmonic function V of U
satisfies the condition V(0) =0. Integrating  equation (ii); we obtain the boundary' 
condition Re [idzW' - (i/2) W2] = 0 on 1' for W. Therefore W satisfies the differen-
tial equation	 S	 I 

•	dzW=-W2 +Ko	inC	 5	

•	 ( 12) 

with a non-positive real constant K0 (= —(1/2) u2(0)) . '	 S	 -
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As can be easily seen for K0 = 0 no non-trivial regular solutions to (12) in 0 exist: 
Therefore putting K0 =.—(1/2) K2, K > 0, we get thediffereñtial equation 

S ____	

1	- 
W2_K22dz 

with the general solution	 S 

l±CzK/d	 I 

W(z) = K	
CZK/a'.	

C a complex number. 

This function represents a holomorphic function in 0 with (Holder) continuous bound-
ary values on Fif K= nd, n EN, i.e. 

-	 1-4-Cz'-'	/ 
W(z) = nd 1 - Cz	 (13) 

with IC < 1 (cp. [2]). Putting C = - C-In3 with 0 < < 1,x arbitrary real, from 
(13)weobtain

.1— 2 
u(s) = Re W(e) = nd 1 + 02 + 20 cos n(s - 

or

u(s) = nd

	

	sinh 99	
97 > 0	 (14) cos n(s—c)+ cosh. 97 

where the parameter p is introduced by 

S	
-	 1+02	 - 

cosh = 29	or	sinh = 2o 

These are (with x= 0) again the solutions of J. SATSUMA and Al. ME1URA [5] for the 
period 2L = 2. -	- 

•	4. Variable diffusion coefficient. Finally, we consider the equation 

(d(s) u8 ) . - (Hu . u) 3 = 0	-	 (15) 

for some special (positive) 2-periodic functions d. If the eigenvalue problem 

•	u = A(s) Hu	 (16) 

for a positive sufficiently smooth function 2 has a 2-periodic (positive) solution u0, 

then obviously u0 is a steady state solution of the equation (15) with the diffusiou 
coefficient d = u0/2, The problem (16) is equivalent to the Steklov problem 

--------------	VIer - 2(s)V= 0	on I',	V(0) =0,	 (17)_ - 

for the harmonic function V in the-unit disk 0: r < 1, which is the conjugate func-
tion to the Poisson integral U of u. For instance, for A = k E N we have the eigen-
solutions rk cos ks, 7k sin ks of (17) and therefore the solution u0 = a0 +.a1 cos ks 
+ a2 sin ks with arbitrary constants a0 , a 1 , a2 of equation (15) for d = d0 + d1 cos ks 
+ d2 sin ks, where aj = kd,, j = 0, 1, 2. In the particular - case d = d0 + d1 cos s 
+ d2 sin s with -  

-	do >5 1/d 1 2 +d2 2 >0	-	S	 • -	 -	 ( 18) -
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(insuring d > 0) equation (15) as above leads to the complex differential equation 

A(z)W'= W2 —K2	 -	 0	 0 

for the holomorphic function WinG,.where K is a complex constant and 

A(z)== 2z[d±4 (z±!)+(Z 
-i.)] z	2i 

is a holomorphic function in G. We write	.	 0 

• A(z) = Dz2 + 2d0z + D =	- z1 ) (z - z2 ).	 . 0•	 - - 

0	 with D =d1 + id2and 0	

•	

0 

1 1 =--[—do+LJ]E0	z2=--[—do—Ll]EI0 

where = Vd02 - 1D1 2 > 0 by (18). That is, W satisfies the differential equation	
0 

0	

1	•-	 .	

0 

	

in G.	 (19).	0 

O	- K2	D(z - z1 ) (z - z2)	 0	

0 - 

•	As 
'
can . be easily seen lorK = 0 no non-trivial regular solutions to (19) in,G exist. 

0 

0 

ForiK + 0 we have the ?general solution	 0 

 

z—zI	 0 

0	
W(z) =	.1	QKI4'	=	C a complex number.	

0 

• This function represents a holomorphic function in 0 with (Holder) continuous 
boundary values on ['if K = n, i E N, i.e. putting C = Co", 

	

/ - Z21 T \fl I	fli - 11 'fl	
0 

W(z) - nzi	 0	 '.	-	/Ø 

	

(z - z2)' - C0 (z - z 1 )'	 0 

with the restriction on Co that (z - z2)" + C0 (z - z 1 )' for !zI ^5 1 1.e. 

Iz2Coe>1_ Coe	 zj,	0	k	n.-1.	0	 (21)	•.• ' 

Since 1z21 > 1, the condition (21) is fulfilled for sufficiently small 1C0 1. From (20) the 
steady state solutions u of (15) are given by	

0	
•	 0	

0 

0	u(s) = 

	

l eis _ z2 l2_ ICoI 2fl le
i s
 _ziI2	

?' E N.	 • (22)	
0is 

0 

Especially0 for n = 1 with Co = 1 we retrieve the above solution u0 = d.	0	

• 0 
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