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A Differential Equation for the Positive Zeros of the Function 
aJ,(z) + 'zJ,'(z) 

E. K. IFANTIS and P. D. SI&1IxAs	 - 

Md 

Es wird eine , Differentialgleichung für jede positive NulIstelle (v) der Funktion aJ,(z) + yzJ,'(z)	- 
angegeben, wobei J, die Besselfunktion erster Art der . Ordnung v> -1, J,' die Ableitung 
von J und'a, y reelle Zahlen sind. Es wird gezeigt:	 - 

•	(1) Die Funktion (v)/(1 +v) ist fallend mit v. > -1 im Falle a	1, und die Funktion

Q (v)/(a + v) ist fallend mit v> 

'
— Li im.FaIIe a < 1. 

(ii) Die Nullstellen der Funktion aJ,(z) +.zJ,'(z) wachsen mit v> - 1 im Falle a ^i, 1 
und mit v> — a, im Falle a < 1. Das erste Resultat führt zu eircer Anzahl oberer und unterer 
Schrankeh für die Nullstellen der Funktion aJ,(z) + zJ,'(z), die frühere bekannte Schranken 
vervollständigen und verbessern. Das zweite Rosultat erweitertein bekanntes Resultat. 

YcTaHaBJnIBaeTcH An44epeHixiia jibHoe ypauee Ran flO1138OJibHOFO HIH (v) 4yHH[ua1 
aJ,(z)+ yzj,'(z), re J, -- 4)YHHIAH.9 Becce3ia neporo O oga nopsa v> —1, J,' — upoiaa-
BomlIaa J,, a a, y BewecTBeHHale Muc1a. LOHa3aHO: 

(i) HKIU4H e(v)/( l + v) y6IiBaeT npn v> —1 B c1yae a	1, a iyxici LOMAC, + v) 
yOhIBaeT npli V> — a B cJiy4ae a < 1.  

(ii) Hy	yluciMnaJ,(z)+ zJ,'(z)Bo3pacTaloTnpuv> —1 Bc.nyaex	1 II lipli V> - 
B ciyae a < 1 flepoaifl peayjibTaT neëT H ita6opy BsepxHiix H HHHHHX rpaHi41-JJ1B HyJ1e1 
(jJyHl[Uf H aJ,(z) + zJ,'(z), qTo 110flOJIHRT H yjiy q uaaeT 6oiee paHHHC HaBecTilue rpaHiauhz. 
BTopou pe3yJlbTaT yjiy q iva.CT OHH xopouio 1l3BecTHblfl pe3yJIbTaT. 

A differential equation for any positive zero e() of the function aJ,(z) + yzJ'(z) is found, 
where J, is the Bessel function of the first kind of -order v> -1, J,' is the derivative of J, 
and a, yare real numbers. It is proven that: 

(1) The function (v)/(1 + v) decreases with v > -1 in the case a	1, and the funition

ü(v)/(a .+ v) decreases with v > -a in the case a < 1. 

(ii) The zeros of the function aJ,(z) + zJ,'(z) increase with v> -1 in the case a I 
and with v> -a in the case a < 1. The first result leads to a number of lower and upper 
bounds for the zeros of the function aJ,(z) + zJ,'(z) which complete and improve previously 

•	known bounds The second result improves a well-known result.	 - 

• 1. Introduction 

The study- of the behaviour of the zeros of the function cxJ,(z) + yzJ,'(z), where - 
J, is the , Bessel function of the first kind of order v > -1 and J,' the derivative 
of J,, dates back at least in 1884, Is we can see from a work of H. LAMB concerning 
the induction of electric currents in a cylinder placed across the lines of magnetic 
force [6]. Special cases were also studied by Schwerd in 1835 and Rayleigh in 1873 
(see the footnote in [11: p. 477]). Since then results concerning the interlacing of 
zeros, monotonicity of growth and upper or lower bounds fbr the zeros have been 
established by many authors. The reason for which the problem of the zeros of 
aJ,(z) + yzJ,'(z) is very interesting is that these- zeros arise in the solution of the 

- wave, equation in a sphere with mixed boundary conditions [1] and in other equa-
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tions of physical interest (see the references in [10]). In this paper we follow a new 
approach presented in [2] and find a differential equation for any positive zero o(v) 
of aJ,(z) -4-- yzJ,'(z) with v > —1. This differential equation for y = 0 is reduced 
to the differential equation for the k-positive zeros of J. found in [3]. For y = 1 
the differential equation has the form 

- (v) (L,h,h) -4- 'i	 1-1 for	^ 1,/
(11) dv	(h,h)+c+v' v>1_0 for a'< 1, 

•	- - 
where h is an element of an abstract Hubert space (H, (., .)) with orthonormal basis 
e 1 , e2 , . .., and L, is the diagonal operator defined by L,e = e,,/(n + v), n	—v.


. For a = 0 we find from (1.1) the differential equation for the k-positive zeros 
of the derivative J,' 

d),, k - ., (L,h, h) + I	
v>0.	 (1.2)
).k (h, h) + v 

Although we know nothing more about the element h we caii easily prove the dif-
ferntial inequalities 

d(v)	(v)
v>-1, for dv. 1-f-v 

d0(v)	ü(v) v> —x, for x<1. dv	xr 

The first inequality means that the function (v)1(1 +v) decreases with v > —1 
for a ^ 1 and the second one that i(v)/(a + v) decreases with v > - for a < 1. 
These results lead to a number of lower and upper bounds for the k-positive zeros 
e.k (k = 1, 2, ...) of the function aJ,(z) + zJ,'(z), which complete and improve 
previously known bounds. For oc = 0 we obtain the well-known result that the 
function Ik/v decreases as v > 0 increases ([9: Theorem 5] and [7: Theorem 4.1]). 
Also from (1.2) we obtain the wellknovn result that l+k increases as v> 0 increases 
[7, ii]. Finally, from (1.1) it follows immediately that the zeros of the function 
aJ,(z) + zJ,'(z) increae for v > —1 in the case a. ^ 1 and for v > - in the case 
a < 1; This improves the wel1-knon result that each positive zero of aJ,(z) + zJ,'(z) 
increases with v > 0 [10: Lemma 4.1]. 

2. The differential equation 

•	In this section we prove the following 

Theorem 2.1 Let v> —1 in the case a y and v> max {-a/y, —1} in the 
case a < y. Thenin each of the open intervals . (0, j, 1 ) and (j,k.	(k = 1, 2, ...) 

-	there exists a unique zero.(v) of the function aJ,(z) + yzJ,.'(z). It satisfies the differential - 
equation

do(v)	_'2(L,v, v) ± y2 

	

= (v)	 .	 (2.1) dv	2(v, v) + ay ± y' 

Here v is an element in an abstract Hilbert space (H, (., )) with the orthoiwrmal basis 
e 1 , e2, ..., and L, is the diagonal operator defined by Le = e,,/(n + v). 

For the proof of Theorem 2.1 . we use [2: Theorem 2.1], reducing the problem of 
the zeros of the more general function (a + . z) J,(z) + (fl + yz) J,'(z) to a special
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eigenvalue problem in the. abstract Hubert space (H, (., .)). In fact, in the 'case 
=.ô = 0, x, fi and v real numbers it is known that e(V) is a real zero of J,(z). 

+ yzJ,'(z) if and only if there exists an element u(v) == 0 in (H, (., ..)) such that 

(Co + v) u(v) -
	

T0u(v) = -	(v) e1,	
22)


(UM, el) = —(a+yv), 
'where CO is the, 'diagonal operator defined by Coe. = ne, T0 = V + V", V is the 
shift operator with respect to {e} and V* its adjoint. In the case v > —1 the prob-
lem (2.2) is equivalent to the following one: 

S,g(v) - -.- g(v) 
= y(v)' 

e,	 .	:.	,	( 2.3) 
(v)	Vl+v 

(g(v), e i )	—1 —+v (a + yv),	:	'	 (24)

where

u(v) = L,1 I2g(v) '	'	•,	-	,	 (2.5) 

and S. is the compact and self-adjoint operator 8, = L,1 1 2T0L,I2. The conditions 
stated in Theorem 2.1 exclude the case a . + yv0 = 0, for some real v0 > — 1, and 
essentially exclude the case that e(vo) is a zero of J,, ' . Also these conditions, in 
conformance with the results of [2], imply that there exists a unique zero of aJ,(z) 
+ yz.J,'(z) in each of the intervals (0, j,) and (j,j, ,k+1) (k = 1, 2,L.-..). 

Moreover, for the proof of Theorem 2.1 we need the following 

Lemma'2.1: Let. v > —1 in the case a y and y > max {—a/y, —1} in the case 
a <y. Then the element u(v) = ),(v) L,1I2A,e; where 1(v) = —y(v)/}"1 + v and 
A, = (I - 2'(v) 8,)-', as a function from (-1, oo) or. (max {-a/y, —1}, oo), 
respectively, into the abstract Hilbert space (H, (., •)) is strongly continuous, i.e, 

	

-* v implies 1u( 1u) - u(v)jJ -->0. ' -	 .	 (2.6) 

Proof: The continuity of' u(v) follows by (2.5) from the continuity of g(v) and 
this follows also if we prove that the operator A. is uniformly bOunded on every 
compact subinterval of the intervals (-1, oo) or (max {—a/y, —1}, oo), respectively., 
Let e() be a zero of aJ,(z) + yzJ,(z) in (0, j,). Then 1121o(v) S'II = e(v)/j,i < 1 
because IIS,II = 2/j, ,1 [4, 5]. So we find 

IIA ,II	i +	+	+ ....= :	.	' .	,	 (2.7) (v) 

Q (v) and j,, 1 are continuous functions of v as zeros of an analytic function with con-
tinuous coefficients [8]. To show uniform boundedness of A, on every compact 
subinterval 10 of (-1, oo) in case a	y or of (max {—a/y, —1},'oo) in case a < y, 
respectively, it is suffiëient to show that inf {j, ,1 —e(v): v € 1}	0. Let 2/e(v) 
= 2/j, 1 + e(v), j,, 1 — e() -* 0 as v -*'r0 for 'some v0 E /o. Then e(v)	as p - p0

and from (2.3) we find 

(S,g(v), e 1 ) - 4 (g(v), e 1 ) = e(v) (g(v), e ) + ____ .	 ( 2.8) 
jI1+v 

From (2:4) we see that  

lini (g(v), e 1 ) = _ j/' l' + v (a + Y\3'o) = (g(v0), e 1 )	 (2.9)
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and from (2.3)  
lini(S,g(v), e 1 ) = (8,,g(v0), ei).	 (2.10)


Now from (2.8)—(2.10) we obtain 

\(8,g(v0), e 1 ) (g(v0 )1  e)	'e("o)	 - 

This together with the relation 

,	 2	,.	 y(v)	 - 
y,,,g(v0), e 1 , -	g(v0), e 1 , = ________ 

ON)	jI1±v0 

•	implies (2/j,,,i	2/(vo)) (g(v0), e 1 ) = 0. But (g(v0 ), e 1 )	— 3/1 + v0 (x +yvo) 4 0. - 
(SO we have	= e(vo). This is impossible because the functions J, and cJ,(z) 
+ yzJ,'(z), y	0, cannot have common zeros [2: Cor. 2.41. Thus j - e(v)	ruin 
U.1 - e(v): v E lol = -r 1 > 0, and from (2.7) we have that IIA ,II	r max U,1: v E 11.

This proves the boundedness of A,. Since - 

A,, - A, = A,, [(I - -- (v)	- (i_ ..- z) sn)] 

1	 ,< •	-- A,,[(1u) 2,, - (v) S,,] A,, 

	

8, —0 and e() —(v) as u -->v,it follows that 11A, - A ,II —* 0 as	-*v.

From this, (2.6) follows easily. 

In the general case, i.e., in the case (v) E (j,,, J.k+I) (k = 1 1 2, . .), the theorem 
follows in a similar way from the expansion of the operator A, in terms of the coin-, 
plete orthonormal system of the compact and self-adjoint operator S. [2: Theorem 
4.1] I. 

Proof of Theoreh 2.1: The existence and uniqueness are known from [2: 
Theorem 4.21. Let	 - 

•

	

	
(C0 + /L) u) -	i) T0u(i).=	y() e 1	 (2.11)


and--. 

(C + v) i(v) - (v) T0u(v)-= YO(v) e 1, (212) 

where ;((), e 1 ) = —(x + v) and (u(u), e 1 ) = — ( x + y1u). Then scalar product 
multiplication of (2.11) on the right by u(1u) and of (2.12) on the left by u(v), sub- 
traction and passage to the1init u , —> v, using Lemma 2.1 and the continuity of 

•	•	-e(v), lead easily to	-•	-	•	---	-. --	• -	•	- 

(u(v), U(V)) + -- Y 22(v) =	
12- 

(T0u(v),u(v)) + xy(v) + 2v(v)1 

or	 •	 S	 - 

d(v)	•	 2(u(v), U(V)) + y2o2(v)	
S 

dv	2((Co •+ v) u(v), u(v)) + 2(v)(y + y)	- 

• By setting u(v) = L,312g(v) and g(v) = o(v) v(v) we find equation (2.1) I 

/



	

A Diff. Equ. for the Positive Zeros of aJ,(z) + yzJ,(z)	189 

Remark 2.1: For y = 0 equation (2.1) is reduced to the differential equation for the 
k-positive zeros i,.k of J found in [3]. Also for a = 0 and y = jI we obtain from (2.1) the 
differential equation for th'e k-positive zeros ofJ' 

711, k	, L,v,v) + 1 
—=1k  

•	dv	(v,v)+v	
v>0.

 

From this . it foIlov's that the zeros 1.k of J' increase as v > 0 increases. This result was proved 
first by Rayleigh [11: p. 510-5111 for v> 1/2, with the use of arguments concerning trans-
verse vibrations of a membrane in the form of a sector of a circle, and later with different 
methods by ,G. N. WATSON [11: P. 510] and J ,  LEwIS and M. E. MULDOON [7] for v> 0. 

• Corollary, 2.1: Let ay >0.. Then by (2.1) every positive zero of aJ,(z)+ yzJ,'(z) 
increases with v in (-1, oo) in the case a ^ y and with v in (max {—a/y, —1}, oo) 
in the case a<y. 

For y = 1, this corollary extends the range of validity of the order v 'known from [10: 
Lemma 4.1].  

	

In the following we set y = 1 and v(v)	h(v)/j'i and find'frorn (2.1) the equa-
tion	 - 

d')

 

(LA, h) '+ 1	 o(v) 

	

= (v) (h h) +	
g(v) = -=- h(v).	 (2.13)


. Remark 2.2: The conditions stated in Therem 2.1 imply the existence of a unique zero 
of aJ,(z) + yzJ,'(z) in the interval (0, j,) [2]. Note that for every real a and v > —t there 
exists a unique zero of aJr(z) + zJ'(z) in each of the intervals (j,.k,.l,.k+1) (k = 1, 2, ...). 
For these zeros we do not need the above conditions. In fact, Lemma 2.1 holds for every 
v —a/y and the differential equation (2.13) holds also for every v> —1 and v + —a. 
We can therefore state the following 

Theorem  2.2: For v > —1 and v —a any positive zero of aJ(z) + zJ'(z) 
satisfies the differential equation (2.13).	 - 

3. Differential inequalities  

In this section we prove the following  

Theorem 3.1: Every positive zero e(v) of the function aJ,(z) + zJ,'(z) satisfies the 


	

differential inequality -	-	S	

S • 

d(v)	e(v) , 'v>	i, for a 
dv	1-j--v 

de(v)	e(v) —< 	v> —a, for a<l., 
dv	a+v 

Proof: Since IL,II = 1/(1 + v) we obtain from (2.13)  

•	.	d(v)< e(v) (h,h)±1+v	e(v)	for a^t1' 
dv	1+v(h,h)+a+v1+v S	 -	 S

S	 •



190	E. K. IFANnS and P. D. SIAFARrEAS 

- In the case a <1 we find for v> —x 

d(v)	(v) (h, h) + I +v 
dv	l+v(h,h)+a+v 

e(v) 
( 1 +	

1 - a	 e(v) I + 1 -	- (v) 
i +v\	(h,h)+a+vJ 1 +v\	a+v)-a+v 

Corollary 3.1: Every positive zero (v) of aJ,(z) + zJ,'(z) satis/ieá the inequality 

	

<	V > IL> —1, in case a . ^i 1,	 (3.1) 

(v)  

	

<	, v-> p> —a, in case a < 1,	 (3.2) a -i -v .a+IL 

or

l5>leIL, —1< v <ii, in case a L> 1,	 0.3) 

(v)	e(IL) 

	

•	 >	, —a <v <u, in case a < 1.	 (3.4) 

	

•	 +1+	+.0 

Pr oof: From Theorem 3.1 it follows easily that 

v>-1, for a ^!1, dv 1 +-v -	 -
(3.5) 

d /e(v) \ 
— I	1<0, v> —a, for x<1. dv \a + v/	• 

This means that the functions e(v)/(l + v) and e(v)I(c' + v) decrease as v increases, 
which proves the desired relations I 

Corollary 3.2: Let j ,,k be thek-th positive, zero of the derivative J r '. Then, from 
(3.5) for a = 0, the junction J,' k/V decreases as v > 0 increases. 

Remark 3.1: Corollary 3.2 was proved independently and with different methods by R. C. 
MCCANN [9: Theorem 5] and by J. T. LEwIs and M. E. Mu'r.DooN-[7: Theorem 4.1]. 

	

•	4. Lower and upper bounds	 . 

	

/	.	 . 

From Corollary 3.1 we' can easily find a number of lower and uper bounds for 

	

•	the zeros of aJ,(z) + zJ,'(z). We denote by ek the k-th positive zero of aJ,() + zJ,'(z) 
-- -- .,and we. recall that e,kE ('.k,.k+I) (k =1, 2,-...) for v -> —1 [2: Theorem 4.2]. -' 

Also from the relation aJ(z) + zJ,'(z) = zJ_ 1 (z) we sec that 

= )a-i.k	 --	.	 ,	 (4.1) 

L. For IL = a in (3.1) we obtain	< (1 + v) e.kI( l + a), which together with (4'1) 

gives the upper bound 

	

< i	-i.k, v> a, in case a > 1.	 (4.2) 

'1

/
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In the same way for u	xin (3.3) we find the lower bound 

'1	•1+v. 
LO..k > + 7-1,k, -1 < v < x, in case 	1.	 (4.3) 

2. For /L = a in (3.2) and (3.4) we find 

c,,k < 2a )-i.k' v > a, in case ..	< 1,	-	-.	(4.4) 

P.k>	J-i.k, _iX <v <a, in case a <	 (4.5) 

3. For u ,= 0 in (3.1), (3.3), (32) and. (3.4) we find, respectively, 

• ',k < ( 1 + v) eo.k' v > 0, in case	I,	 (4.6) 

	

.k> (1 +v) eo,k' -1 <v <0, in case	1,	.	- (4.7) 

a ± V	
v > 0, in case a < 1,	 (4.8) 

e k >	k, - <v <0, in case a< 1.	 (4.9) 
•	a 

• Remark 4.1: The bounds (4.9), (4.5) complete, with respect to the range of validity of 
the order v [2: Cor. 4.5]. The bounds (4.7), (4.9) complete, with respect to the range of validity 
of the parameter a [2: Cor. 4.4]. The bounds (4.3), (4.5) for k = 1 comlete, with respect to 
the range of validity of the order v [2: (3.13)]. The bounds (4.6), (4.8) complete with respect 
to the range of validity of the parameter a [2: Cor. 4.2].-At last the bound (4.7) completes 
with respect to the range of validity of the order v [2: Cor. 4.3] for a	1. 
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