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The Degreé of Rational Approximation to Meromorphic Funections?)

M. FREUND?)

" Die Géschwindigkeit der besten’ rationalen Approximation mcromorbher Funktionen auf -
kompakten Mengen wird durch das Wachstumsverhalten ihrer Nevanlinna-Charakteristik
beschrieben. Die Ergebnisse sind in Form von O-Abschitzungen der Approximationsgeschwin-

digkeit und beinhalten auch Abschitzungen von meromorphen Funktionen der Ordnung
Null. ! o o ‘o )

OmitcbBaeTCH CKOPOCTS HAMILy UIE! PAIMOHATLHON AMMPOKCHMALIH MepomMopdubIX GyHKUMIT
Ha HOMNAKTHLIX MHOMCCTBAX MOCPCHCTBOM XAaPaKTepa POCTA MX XapakTepucTuku Hesaw-
-tunnbl. Pe3yabTaThl HMe0T GOopMy O-QUeHOK CKOPOCTH ANNPOKCHMALHH it BKIKYAIOT B ce6a
" oneHKH,MepOMOPPHHIX GYHKISIT NOPANKA HYIb. o :

. R N ]
The rate of best rational approximation of a meromorphic function on a compact set is .de-
scribed in terms of the growth of its Nevanlinna characteristic. The results are expressed in

terms of O-estimates of the rate of approximation and include estimates of meromorphic
‘functions of zero order. :

’ LN

1. Introduetion T . ' _ .

Let f be meromorphic on the complex plane and analytic on a compact subset S
of C. Convergence theorems for rational approximants of such f have been proved.
e.g. by WavLsu [9], NuTTaALL [5], POMMERENKE [6], WALLIN [8]).and KARrLssON [4]:
Concerning the rate of convergence, there exist comparatively few general results.
Denoting by ‘

‘Yln.V(S) = {7',,,; Tar = pn/q” P 6 ‘?n) q, € ‘7)” q.(z) =+ 6,'2 € S},

n,.v € P =+0,1,2,...}, the set of rational functions of type'(n,'v), where P, is the *
set of polynomials of degree < n, we shall approximate f by 74, € R, W(S). WaLsu
(10, p. 222). has shown that for a function f, meromorphic in C, there exists a se- -
quence of rational functions of type (n, n) which.converges to f as n — co uniformly
on any compact set § containing no pole of f. In [9] he showed that for such fune-
tions ' ' o ' o
lim B,,[f, A(S)]Y" = 0. ; L : (1.1)
. X n—>o0 - . .
Here'E,,[f, A(S)] = inf ||f — Tnol| as), where the infimum is taken overallr,, € &, (S),
and A(S) denotes the space of continuous functions on § which are holomorphic in
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the 1nteuor of S, mth maximum norm ]| lacs)- "To improve this result, KARLSSON (41
- employed the concept of order of a meromorphic function and showed that, if fis .
meromorphic of order < o, 0 < ¢ <00, then for some compact dxsc U (depending.
“on f) and for any « > ¢ we have _ .

/ -
Bl QR S0, B ou
for n sufficiently large. .
The purpose of the present paper is to sharpen (1.2) and to admit’ also functions
of zero order. For. functions f, meromorphic in C, with Nevanlinna charactcmstxc,
T(r, f) = O(re); r — oo, we will show under an addmonal condition upon the poles
of j, that for any a>0

nn[/’ ] — 0(endn+1 eg(n+l)n (n+1)la) . n — oo T ’ (1 3)

Here S is a compact set contamma no- po]c of f, d = max |z] z€ 8} and g is gwen .
by the assumptions on the polcs In contrast:to Karlsson’s. result, (1.3) has the
usual form of an approximation theorem, j.e. the degree of convergence-is deter-
mined aftex fixing the compact set S on which f is to be approximated. In Section 3
we, will give an extension of (1.3) admlttmg meromorphlc functlons of zero ordc1

too. '
BN

Ratlonal approxunatlon of meromorphlc functions of finite order,

Let f be.a meromorphlc functlon in C "Thé. Nevanlinna chamcterzstw functionis
defmed by
N

7’/):N(T’/)+m(r:/)‘ (7‘>0),

where T T L
. - . ro.. ' ) N 2.‘_' ’ .
c N, ) = f—n(tt—’f)‘dt, . m(r, f) = %‘[log1L |f(r €1%)] d6,
. 0 N N

and n(t) = n(t, f) is the number of poles of f in |z| <t For latel use we collecb some
" simple properties [3, 19:2 5—17].

Lemma 1:a) If f;, .. . fp are meromorphic functzons, one has

?@éﬁ;2TffH%%; @HQSZTfp

bj If rp, € Jl,,,,., m, n € P, there exist M, so > 0 such that
T(r, Trn) g‘ ma.\g fmyn)logr 4+ M  (r>"s).. |
. Let f be of'grdwth ' | - , ] :
Tir,f) = O),- 700, | e

for some o > 0 and let the poles z, ..., 2, ....of f be numerated n such a way that
T = Tyirs ® € N, With 7, = 2,]. We defme for R > 0
n(R) ’ ) o p
wmm( z) = n (' — z), ‘ : T (2.2)
Lj= D -

T | (23
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and consider functions f with property (2.1) for which gg is analytic in |z] < R and,
for each o > g, there exist a function g € 2"'and constants M, 7o, By > O such that -

foreach R > Ry and ry <r < R ' : . '

M(r, gp) = max |gp(z)] < M eR* A g(r). o T (24)
. o |zl=71 R . . - ' :
Here : ‘ ' ' v

Q = {g € C""(O,. 0); g(,:L) >0,9"(x) < 0Vx > 0, lim g'(z) = 0, lim g(z) = 00},
. . T—>00 . .

=00

and, forg € 2’ and 0 < » < R,.'

N \. R R R
ry —- < Yy -1 _ —_ 7y=1 —_ —
, Arlr) = exp {g((g) (IOg ; )) (g")3 (IOg r)log p }

where €?(0, o) (iel1otes the class of twice continuously differentiable functions on

(0, OO) ' 8 \ ’ . ' - .

_ Théorerp 1: Let | be meromarphic such that (2\.1)——(2:4) hold for some g € (0, o),
and g € Q'. Given a compact set S in the region’ of holomorphy of f and setting
d = max {|z|; z € S}, it follows for each o« > p-that 8 ' c

 Eulf, A(S)] = Oferdntt eotnitip=tnray gy o

Proof: For r > 0 we have
n(r) log 2 gfit‘)de S N@r) -
. ‘ ) r~ .

and, in view of ('2.1), N(r) = O(r¢), r - co: Thus n(r) = 0'(7'9), 7 — o0, and hénce
for o > o there exists s, > 0 such that ’ ' :

n(r) < re ’(1‘>_-sl). _ ‘ ‘ - ) a .(2.5)

© Let ¢,R .denote the n-th Taylor coefficient of g forsome R > 0. Using a slight.

modification of Lemma 1 in [2] (adding a factor-e®* in the assumption and the
© assertion, so that the O-constant becomes independent of R) it follows that (2:4)

. implies S o ) :

: ed(n) ot
lc.B] = M ek - (B> Ry, n > n,)
.

" for certain constants M, n,. Using [2, Thm, 1] in the same manner, one obtains for
some n, € N .

’

N s +1 . .
E.[gr, A(Dy)] =M (%) T et el (R > R, n > ny)

where D,={z;|z| £ 3} and R, = max {d, Ry}. Denoting by p,® € &£, the polynomial
of best_approximation to gg on Dy, it follows that )

p 0
w® (j - wn'zﬂ))

, d n+1 .
=M (—) edtntl eR® . (R> R,n>n,),
) B . -

(2.6)
13%
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noting that § = Dd by assumption. Since the sequence of poles of f has no finite -

limit point, there exists a number R, > 0 such that s

e —z 21 (z€8,j = n(Ry). - ' 2.7 "

Setting k = min{lz —z|;z€ 85,1 =7 = n(Rz)} one obtains in view of (2.7) for
R > .Ra L ~

Iw"“"(z)l = |2 — 2zl 2 = Zaral 12 — Znero 41l
) > frtke (z€8).

Inserting this into (2.6) and setting By = max {R,, E,}. ylelds ’

p’l ) pn
kn(ﬂ.) _ An < {leomtm [§ — £ 0
5 f T o ® s = @ (/ wn(m) “s
d\n+! . : '
=M (ﬁ) et el T (R > Ry,n > my),-
and thus i . ) ' ‘\
d \n+1 . T
Byl A = 2 () e ter (> Ry >, (2:8)

where M is independent of R and’ n. Settiﬁg R = nll*, there exists n, € N such
that n!* > R, = max (R, s,} for 7 > ny. Then by (2.5) one has for these n and R

n(R) = R* = n, and it follows by defmltlon that ]9,,,,[[ A(S)] £ E, wwlf, A(S)), so
that (2.8) gives

Bulf, A(S)) < Mdr+! e ewﬂ)n'-'n e (g > n:,),
which is the assertion

Obvxously the statement of Theorem 1 is more precise than Karlsson’s relation
(1.2). We made the additional assumption (2.4) however, which'is somewhat technical.
. Thenefoxe (2.4) will be replaced by more natural sufficient conditions in Lemmas 2
and 4 below. :

Lemma 2: Let | be meromorphic and satisfy (2. l) /or some p > 0.°If f }ms a finite
‘number of poles, condition (2.4) holds with g(x) = plogx for any p >0 and any
x > 0. -

Proof: Let z;, 1 S jis < v, be the poles of f and R, = max {[z,] 1 £j <v}. Then
n(R) = v and g,t(z) = gg(z) for any R, R > R,. By (2.1), and Lemma 1 thexe is a '
‘number ta > 8o such that .

T(r, gp) = T( ) T, w) < Mre +vlogr + M (R> Ry, r>ty),

where M is independentof r and R. Thus we have

lim <M< oo,
r—>00

T(T, gB)
re

uniformly for all R > R,, and (3, 'l‘vh‘m. 1.7] yields

lim =M (R > R)),

r—00

log* M(r, g,,A) ’
——
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i.e. for any &« > g one can choose £; > 0 such that
Mr,gg) < e (B> Ry,7>t). A
. . . 1/«
Next we want to show that for any p > 0 and R > r > (2) one has
& .

! __p : 4 .
et < ef (log g) . : : ‘ (2.9)

4 Ve

N , Q ) ) 1fa
The function z¢ — p log z is strictly increasing for z > (2) , whence
: . . . o v ; &

[a4 -

. s ’ 1/ -
" —plogr — (R*—plogR)<»p ((2—) <r<R), _ .

‘and, using 1 — 1/z < log =, > 0, one has

masl B e

; ’ . 1/a
E\poneutlatmg we get (2.9), which in turn 1mp]1es (2. 4) with o = Ry = max {(p) >
_ _ /.
t,, ‘Rl}, since AR(r) = (ﬁ) (log —) for g(z) = plog z w here g € ' l

e t.

Another class of meromorphic functions f with propcrty (2 1) for which.condition

© . (2.4) holds is described by the following restriction -on the poles. With the notatlon

as in the proof of Theorem 1 and writing a(R) for the number of poles off on |z] = R,
we assume that there exist 4, B > 0 such that .

(1) a(n) = A (n € N), (ii) |75 — r,‘,,|'> B, Tn & T (n,v.m € N). (é.}O)

In order to show that (2.1), (2.10) imply (2:4) again, we need the follo'wfng

n(R)
Lemma 3: Let w™B(2) = [ (z — ), R > 0, where z; are- the poles of a mero- -
mo:phzc functzon Then, i=1

T (% R, wmm) = O(n(2R)log 2R), R~ o0.]

Proof: We use Cartan’s 1dentlbv f01 a meromorphic functlon / (see e. g (3, Thm.
1.3)) ‘

/s

T =—f ( )do+log'm0)| (r > 0)

in case of f= 0@ and r = (3/2) R, B > 0. Assuming first that [z,| > 1, we find
_ty > 0, independent of R, such that n{t, 1/(w™2® — a)) =0 for any 0 <t < ¢t,
le] = 1, and so for each (2/3)ty < R, |a] = 1 one has : . :

(; R, 1/ m2R) _ a)) < n(2R) log% R — n(2R)log t,.

By the unboundedness ‘of the sequence |z;] for j — co one can choose R, I> 0 so
thatlog* |1/w™?R(0)| = 0, R > R,, and thuslog* [0"?R}(0)] = log |0*®”(0)|, R > R,.
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wa
. ‘ n(2R) ":
log ]w"‘“’“ ] = Z log lz g (ZR) log 2R (R >0), .
j=1 . 7

- and setting R2 = max {R,, (2/3) {,} one obtains for R > R, that

~

T (5 R,‘w"‘”\’) = n(2R) log E‘R — n(2R) log t, + n(2R) log 2R,
. . ) o )
-'as asserted.-In the general-case, let w"?R)(z) = h(z) @"2®)(z), where
- v . . ) - . . ‘
k(z) = [] (z — 2;)  with v such that [2;] > 1 for j > ».
v _ ' :

' By Lemma 1 we have

T (% R, w"‘“") =r (% R, _k) + 7T (21 R, am‘-’m) = O(n(2R) log 2R),
R — éo, )
and the proof is complete B

Lemma 4:Let f be meromorphic with property (2.1) for some 0>0.1If f satzs/zes
(2.10), then (2.4) holds with g(x) = A ]og x'for any & > p.

“Proof: The functlon g2r(2) = f(2) w"‘2R’(z) is analvblc in |z| < 2R R > 0 'so that
-[3 Thm 1.6] yields for 0 < r <R .

R+7

)
R —r

log* M(7, gor) =

w|w wlw

By Lemmas 1a) and 3 one has for rsufficiently large B
log ﬂl(r gm) = 5T ( R, ng) < 5<T (—;— R, f) +7 (%R,‘w"‘”’))
- 3 "
<c 2R J—n(ZR logZR »(O<r<R),

where ¢ is a constant. As in the pxoof of Theorem 1 f01 any o > p one ‘can choose
£, R, > 0-such that "

. n(2R) < Re+ei2 (R > R))- o - (2.11)
and 0+ & < «, and hence there exist-s R, >R, so that -

M(r, gog) < e (O<r <R R> Ry). v (2.12)
" To transfer this estlmate fxom gm to gg we w srite B

' 92r(2) = 93(2) (2.— Zn(R)+ 1) - (2 — Za(2R))

and find a lower bound for the lagt n(?R) — n(R) factors from w thh (2.4) follows

by applying- (2. 12) Two cases aie to be cons1deled

/
‘
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«) At least one pole of f lies on |z| = R:. With a(R) as in (2.10) we have’

a(R) ’ . .
11z — zn(RH—il 2 (B=r®  (l2h=7<R), ’ : -

s A3
i=1

and, in view of assumptlon (2.10), (R — n)/R)*® = ((R — r)/R) 0<r <R Thus,
for R =1,

. . M R _ r A N . Y
[z — zamsal -0 12 = Zamrtaml 2 ( ) . T (2.13),

R

. . ~ . . -
For:estimating the last factors in the representation of g,z we &sSume Without loss -
- of generality that the constant B in (2.10) (ii) is less than 1, i.e., on |2| =7

n(2R) b — 2 Bn(zm—n(ﬂ)—a'(li) > B.n(2R;: ' K - (2_,14)4 ,
. j=ntR)+a(R)+1 - e - C .
Now it follows by (2.13) and (2.14) that = o o : ' B
~ _ S(R—r\* wem ' : o
: . 19k = lgr@ | —5— ) - B™*E O<r<RR=I): - (2.15)

-
. t

B) There is no pole of f on |z| = R: By assumption we have R’ > R, where R’
= rym)y1- Now (2.15) can be obtained by using a(R’) instead of a(R) in case «).
‘The analog to (2.13) is then valid for the first a(R’) factors. Since |z — Zner)sa(R)+i]
is bounded below by B for 1 Sy = n(2R) —a(R) —a(R') and |z =r < R, we
have (2. 15) also in this case. . - e

Thus; in bobh cases, ~

. - . R A . ) ‘
© max |gg(z)] é max [gpq(2)] (13——7) BB . (0<r<RR=1)
o zl=r . |z|=r — . . P

-and with (2.12) it follows for Ry = max {R,, 1} that
Y . . . s :

-

A wef R \4 e ‘
max [gg(z)] < eR* (R r) B-neR (0 <r < R, R > Ry):
izl=r ) - o ’ Lo "
. ’ ) to. R —A4 . '
Now (R —r) 4 & (log —7). J1 < r <R, and so

(R-——r)ASMA() (1<7<R), , : (2.16) _

where M is some constant. If B, > R1 is chosen such that R"+‘/2 log (1/B) < Re*e,
R > R,, wé find with (2.11) tha i

B-nem < ef (R>Ry): N L 217)

Since - ’ . : o
R RA < eh® (R > Ry) ' ' o . (2.18)
for some R; > 0 one obtains by msertmg (2.16)— (2.18) in'the last estimate of

. gn(z) that for any 1 £ < R and R >R, - ' : .

CM(r, o) = < @RRAR — )4 < M R A n(r), ' y

where R0 max {R,, R,, Rs}, which is (24) 1

/
{
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.

Combining Lemmas 2 and 4 with Theorem 1 we have

Proposition 1: Let f be 'meromo'rphic'with_(Zl) for some g € (0, 00). If f has a
+ finite number of poles and S, d are given as in Theorem 1, it follows for any « > p
and p > 0 that ' .

Eilf, A(S)] = O(dr+! e"nPp~n+Dle) n — 00.

. ) \C )

Proposition 2: Let f be meromorphic with (2.10) and (2.1) for some ¢ € (0, co).

Then, for any « > g, . _. b , . - o o
Eylf, A(8)) = O+ emnn=tt0le), g s oo,

where S, d are chosen as before.

Propositions 1 and 2 improve Karlsson’s result (1.2): by providing a more precise
bound as well as by admitting a free choice of the set S, wherc f is to be approxi-
mated, only observing that S must not contain any pole of f. ~

Remark: Concerning a converse of the results presented so far we notice that in

[1] an example is given which demonstrates that the converse of (1.1) is not_true,

_l.e. there exists a f with (1.1) which is not meromorphic in the plane. For entire
functions a converse of (1.2) in case of polynomial approximation is valid: f is entire

~of order g, 0 < p < oo, if and only if E,[f]» < n=V & > g, for n sufficiently -
large” But in case of rational approximation, the converse of Theorem 1 does not

hold, as is shown by the counterexample f(z) = e*. Here, log M(r, {)'< r, thus in

view of Lemma 2 f fulfills condition (2.4) with g(z) = p log z for any p > 0; & > 1,

‘but for large n we have E,,le?, A(8)]/" < n=2'¢, & > 0 (TREFETHEN [7), see also

(4]).

In the next section it will be shown that the techniques used in proving Theorem 1
also yi¢ld a convergence theorem for certain meromorphic functions of zero order.

-

3. Extension to meromorphic functions of zero order

Apart from extending Theorem 1 to functions of zero order, Theorem 2 below-uses .
a more refined assumption in place of (2.1), namely

T(r,f) = O(B1), r— oo, S @
whe.lﬂ‘e for some z, > .0 _ ‘ _ ’

B(r) = (') (logr) log r — hl((h’)—‘l (logr)  (r>=z) (3.2)
and % is an element of the following set ‘. o

"2 = {h € C?x,, 00); B (x) > 0 Vz > 2, lim b/ (2) = o0}.

—>00

Writing A.(z) = &~ th(z), ¢ > 1, we define B.(r), > %y, € > 1, corresponding to
(3.2). For the proof of the next theorem we assume that for each 1 <4 < ¢ and
C > 0 there exist £y, n9->'0 such that

(i) By(et"+V) Sn (n>n,),  (ii) B@r) S CByr) (r>1):  (3.3)
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. -

Condition (2 4) now turns into the following: for f with (3.1) and each ¢ > 1 there
‘exist g € Q', M, ry, Ry > 0 such that for each R > Byand ry <7 < B

M(r, gg) < M eBaR A (1), : ©(3.4)

Theorem™2: Let f be meromorphw with properties (3.1) for some b € Q and (3.4).
Suppose that B, fulfills (3.3). With S, d as tn Theorem 1 one has for each ¢ > 1

E.[f, A(S)] = O(dr+! estn+) e—ht(n+l)) n — 0o.

Proof: Leb 1 < é'< & Using (3. 1) and (3.3) (u) one finds as in the pxoof of Theo-

rem 1 that for » > sy

'

n(r) g 1 N(2r) < MB(2r) < By(r), ‘ ' , 3.5) .

~ log 2

which is analogous to -(2:5).‘Assumption (3.4) implies, as in deducing (2.8) from
(2.1), that one can choose Ry, n, > 0 so that v

Epuiwlfy 4(S)] < Mdrt1 et eB«MR=+D (R > Ry, n > n,).

Now let n, > n, such that ett"+) = R > s, n > n,. Thus :
eBelR)

CORnt1,

and one obtains in view-of (3.5) and (3.3) (i) .

n(R) < ByR) = By(eh "+ S (n>n.).

— e—heinth) (n > ny), R ‘ (3.6)

Together with (3.6) the last estimate implies the assertion B

Theorem 2 contains Theorem | asa specidl case, choosing h(z) = (z/0) log 2, 0 >0,

and a = 0. Then condition (3.3) is fulfilled and «(3.4) reduces to (d 4).. We further
note tha.t, Theorem 2 pxoduces a better estimate than 'l‘heorem 1 since by the sub-
stitution (3.6) the factor e is ‘avoided.

The following propositions are analogous to Propositions 1 and 2. The proofs are
similar to those in the preceding section and are omitted.

.- Proposition 3: Let f be meromorphic with (3. 1) for some h 0. If f has a /mzte
number of poles and if condition (3 3) kolds for B,, ¢ > 1, it follows for any ¢ > 1
and p > 0that ~

E,.[f 4 S )] = O(d"“n” e"'E“"“”) ‘n — oo,
with S, d as tn Theorem 1.

For an extension of Lemma 4 we need a_further technical restriction on B, which
can be combined with (3.3) to the following sufficient condition: Let B, be defined
. correspondmg to (3.2) for some k with & € 2, then for each 1 < é < ¢ we suppose _
that

) {imB°—(’),-]-‘-’H —0, (i) lim Do)

r—>00 Bt (7) . ! r—>00 ?‘ (7‘) -

Prop031t10n 4: Let | be meromorphic wztk (2.10) and 31 ) for some h € Q. If
. condition (3.7) holds for B,, € > 1, one has for any ¢ > 1

nrx[/’ A(S)] = 0(d"+lnA e—h'("+l)); n — oo,
where S, d are as in Theorem 1 and A is defined by (2.10) (i).

(3.7

-
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The follow ‘ing example ensures that the results of this section apply'to functions
of order p = 0. Choosmg h{z) = z(log x) —2zlogx 4+ 2z, x > 1, one has h € Q
and R . R

‘B(r = 2e“°"""’[(log e — 1] (r > i) - ' ' (3.8)

By simple calculations one verifies that condition (3.7) is fulfilled in this case. .. Further-
more “the definition of the order of a meromorphlc function 1mp11es that all f with
r, f) = O(B(r)) r — oo, " where B is given bv (3.8), are of order zero. '

:
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