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The Degree of Rational Approximation to MeromorphicFunctionsl) 

M. FREUND2) 

Die Ceschwindigkeit der besten rationalen Approximation meromorpher Fun'ktionen auf' 
kompakten Mengen wird durch das Wachstumsverhalten ihrer Nevanhinna-Charakteristik 
beschrieben. Die Ergebnisse sind in Form von 0-Abschtzungen der Approximationsgeschwin. 
digkeit und beinhalten auch Abschiitzungen von meromorphen Funktionen der Ordnung 
Null.  

OnucblbaeTcn CHopocm iiaiiity'iwefi paunoHaJlLIIou annpoHdnMaLIIH MepoMopMll,tx lJsyliKLUirt 
iia aoMnairrtihlx MFloa{ecTaax Elocpe(cTBOM xapaicrepa poca SIX XapaI-TepucTSlIus 1-IenaH-

.JIllIIIIhl. Pe3yJIbTaTII ilMeloT opy 0-Ql,(eIr0H cicopocTil annpoHcllMaqlili U IsHJllo'la}oT s ce6n 
OIklIHll .MepoMopiiIlx yuIWuti nopnjua Hy.nh. 

The rate of best rational approximation of a meromorphic function on a compact set is de-
scribed in terms of the growth 6f - its Nevanlinna characteristic. The results are ' cxpressed in 
terms of 0-estimates of the rate of approximation and include estimates of meromorphic 

'functions of zero order. 

1. Introduction  

Let / be nierdmorphic on the complex plane and analytic on a compact subset S 
of C. Convergence theorems for rational approximants of such / have been proved 
e.g. by WALSH [9], NUTTALL [5], POMME1IENXE [6], WALLIN [8].aricl KARLSSON [4]. 
Concerning the rate of convergence, there exist comparatively few general results. 
Denoting by

= {r,; r, = p/q,, p, € J, q, € cr,; q,(z)	O, •z E 
n, p € P = (0, 1, 2, . .}, 'the set of rational functions of type (n, v), where 11 ,, is the 
set of polynomials of degree 91, WC shall approxiniate / by € (S). WALSH 
[10, p. 222]. has shown that for a function f, meromorphie in C, there exists a se-' 
quenee of rational functions of type (n, n) which.converges to / as n - uniformly 
on any compact set S containing no pole of f . In [9] he showed that for such fuhc-
tions

iimE,[/, A(S)]'I =0  

Here 'E[f, A(S)] = inf / - r,j A(S), where the infimum is taken' overall r; € J,(S), and A(S) denotes the space of continuous functions on S which are hiolomorphic in 
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the interior of 5, with maximum norm JIIIA(s) To improve this result, KARLSSON [4] 

- employed the concept of order of a merornorphic function and showed that, if f is 
meromorphicof. order	, 0 < Q <I oo, then for some compact disc U (depending . - 
on /) and fdr any a > e we have 

•	E[f, A(U)]' I	n11,	/ S	 (1.2) 

for n sufficiently large.	 . 
The purpose of the present paper is to sharpen (1.2) and to admitalso functions 

of zero order. For fünctioiis fl -mcromorphic in C, with Nevanlinna characteristic 
T(r, /) = (r r - 00, we will show under an additional condition upon the poles 
off, that for any a>o	

S 

•	E[f, A(S)] = (e"d'' e+1)nn+),	n —> cc.	 (1.3) 

Here S is a compact set containing no pole off, d = max {Iz J; z E S} and g is given 
by the _assumptions on the poles. In conti'ast' to Karlsson's- result, (1.3) has the 
usual form of aii approximation theorem, theorem, i.e. the degree of convergence is deter- 
mined after fixing the compact set S on which / is to be approximated. In Section 3 
we. will give an extension of (1.3) admitting meromorpluic functions of zero order, 
too.  

2. Rational approxiinaton of meromorphic functions of -finite order, 

Let- / be - a meromorphic function in C. The* Nevanlinna characteristic /unction is 
defiied by	 S	 -. 

•	 T(r,/) = N(r,/) ± m(r,/)	(r >0),	 S 

where	 - 
S	

-N(r , n(t,	
dt,	mr, /) =	f log I f (r e °)l dO ,	 - f 

and n(t) = .n(t, /) is the numbr of poles of / in zl < t. For later use we collect some 
• simple piopertics [3, pp. 5-7]. •	 S	

- 

	

Lemma 1: a) If /, ..., f, are meronuorphic functions, one has	.	
0 

•  p 

	

/-\	p
	 (r,,	

r 
T(r,	'/,)	'T(r,/1) + logp, - T/7/,)	'T(r,/,).

1 	 =' 1 •	 -	- - 

	

b) If rmn € fl,,,,, m, -n € P, there exist M, so> 0 such that	 -	- 
S -
	 T(r, rmn)	max {m, n} log r + 111	(r >s)...  

Let / be of growth  
•	T(r, /) = O(re), 	r	cc,	 S	 •	 - (2.1) 

for some o > 0 and let the poles z1 , ..., z,	....off be numeated in such a way that 
• r <	n € N, with r = z I . We define for R >0 

--	-	
•	ntR)	 -	 S	 S 

•	 W2O(Z) -= fl (z' — z,),
	 (2.2) 

g(z) = f(z) n(R)(z), -	-	.	 ( 2.3)
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anciconsicler functions / with property (2.1) for which g is analytic in zi < B and, 
for each a > o, there exist a function g € Q'and constants A'f,r0 , B0 > 0 such that - 
for each B > B0 and r0 :!-, r <B  

M( 9R) = max IgR (z)l	MeAR(r).	 v-	 (2.4) 
jzl=T 

Here 

= Ig € 02(0, ); gx) > 0, g"(x)'< 0 Vx> 0, limg'(x) = 0,Jim g(x) = 

and, for g € Q' and 0 <?• <R;	 - 
- -	

Ig
/I R\	BAn(r) = exp((g')-1 log—) — (g')	log —) log - 

where 02(0, ) denotes the class of twice continuously differentiable functions on 
(0,).	 S 

Theorem 1: Let / be meromorhic such that (2'1)—(2.4) hold for some LO € (0,00). and g € 12'. Given a compact set S in the region of holomorphy of / and setting 
d = max {Jz; z € S}, it follows for each a > that 

E[f, A(S)] = (end n ± 1 ee(n±l1l(n+I)I), 

Proof: For r > 0 we have 

n(r) log 2fdt N(2r) 

and, in view of (2.1), N(r) = (re), r — oo: Thus n(r) = O$r), r - bo, and hence 
for a > e there exists s > 0 such that 

n(r)	r	(r >	 (2.5) 
Let c' denote the n-th Taylor coefficient of g R for'sorne B >0. Using a slight 
modification of Lemma 1 in [2] (adding a factor e in the assumption and the 
assertion, so that the c'-constant becomes independent of B) it follows that (2:4) 
implies 

•	c_^Me—(B>R0,n>.n1) 

for certain constants ill, n 1 . Using [2, Thrn. 1] in the same manner, one obtains for 
some n2€N 
-

	
W'o 

E[g5 , A(Ddfl M 
	e°' e1	(R > B 1 , n > n2), 

where D = {z; I ZI ^5 d} and'B 1 = max {d, B0}. Denoting by p,,0.€ ,, the polynomial 
of bet -approximation to g5 on Dd, it follows that	 - 

0	- dn+1 w '3	(f -	 ^ 
M (--)	

0g(n+I) e'	• (1? >. .1, m > n2), 

S	 •.	 •	(2.6) 
13*

/
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noting that S	Dd by assumption. Since the sequence of poles of / has no finite
- limit point, there exists a number B2 > 0 such that 

• 	(zES,jn(R2)).	'	 (2.7)' 

Setting k = min {I z - z11; z € 5, 1	j	n(R2 )} one obtains in view of (2.7) for 

lw(z)I = Iz	Z I I •.. Jz - Z fl(R, ) I Jz - Zn(R,)+1I 

12 - Zn(R)I ^ k'	(z € 5). 

Inserting this into (2.6) and setting B3 = max {B 1 , R2 } yields 

	

-	
a)n(1:) Q - J?....)	o 

A(S)	 A(S) 

M (-j-)	 e1	(R > R3 , n > n2), 

and thus
d.fl+l 

E n(!)[I, A(S)]	1W ()
	

e' eR4	(R > B31 n >n 2 ),	(2.8) 

•

	

	where ill is independent of B and n. Sett. iiig R = n' 1 , there exists n3 € N, such 
that n' 1 > R4 = max (B3 , s} for it > n3 . Then by (2.5) one has for these n and B 
n(R)	= n, and it follows by definition that E[f, A(S)] ;s; L,,,(fl)[/, A(S)], so 
that (2.8) gives	 -	S 

•	 E[f, A(S)] <. Md n + 1 en e9+1)nn+1	(n > 

which is the assertion I	 - 

Obviously, the statement of Theorem 1 is more precise than Karisson's relation 
(1.2). We made the additional assulnhition (2.4) however, which is somewhat technical. 

•	Therefore (2.4) will be replaced by more natural sufficient conditions in Lemmas 2 
•	and 4 below. 

Lemma 2: Let f be meromorphic and satisfy (2.1) for some e > 0.1/ / hIs a finite 
number of poles,' condition (2.4) holds with g(x) = p log x for any p > 0 and any 
a>.	 - 

•

	

	Proof: Let z, 1 	v, be the poles of / and B 1 = max {Iz I; 1	j	v}. Then
n(R) = v and g1 (z) g(z) for any B, B > B1 . By (2.1) and Lemma 1 there is a 
number t >' SO such that	 - 

•	T(r, 95 ) ;5 T(r,f) +T(r, w')	Mr + v log r + M	(B> R, r> t2), 

where 1W is independent'of r and B. THus we have	 • 

T(r,g5)	
<	, 

r-*oa 

uniformly for all B > B, and [3, Thru. 1.7] yields 

T17 

ru- 
log M(r, 95) ^ M	(R > B1), 

r-.o6
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i.e. for any a > e one can choose t3 > 0 such that 

M(r, g ) 15: e'	(R > B1 , r > t3). 

Next we want to show that for any p > 0 and B> r > - I one has 

e	(log 
-_)	 .	

(2.9)

The function x, - p log is strictly increasing for x>(i?-)., whence 

- p log r - (RI  j log B) p	 <r <B,	- 

	

/	- 
and, u s

ing 1 - 1/x :E^: log x, x >0, one has 

p (i - log	log [(log -f-) 
P]	 . .

r ) 

Exponeiitiating we get (2.9), which in turn implies (2.4) with r0 = B0 = max (- 

R 1 } since AR(r) 
= (p)P (log 

.)_P 
for g(x) = p log x where g E Q' 11/ 

Another class of meromorphic functions / with property (2.1) for wich.conclit.ion 
• (2.4) holds is described by the following restriction on the poles.,Withthe)lotation 

as in the proof of Theorem 1 and writing a(R) for the number of poles oft on Izi = R, 
we assume that there exist A, B > 0 such that 

•	(i) a(n)	4 (n € N),	(ii) lr - rl > B, r+ rm (n, mEN). (2.10) 

•	In order to show that (2.1), (2.10) imply (2.4) again, we need the following 
R 

Lemma 3: Let w?R)(z) = fl (z - z), R > 0, where zj are-the poles of a mero-
morphic function. Then, 

T(R,w 2 Th)= (n(2R) log 2R),	R-±oo.) 

P r o of:.%Ve use Cartan's identity for a meromorphic function (see e.g [3, Thm; 
1.3])

T(r, /) =	N (r 
i	eto) dO + log t 1(0)1	(r > 0) 

2n f

in case of / = cotO2lfl and r = (3/2) B, B > 0. Assuming first that Iz i l > 1, we find 
t0 > 0, independent of B, such that i(t, 1/(w' 21° - a)) = 0 for any 0 ,< t !!z^ t0, 
al = 1, and so for each (2/3) to :!E^ B, jal = 1 one has 

jy (-- 
R, 1/(af''0 - a))	n(2R) log -- B -- n(2R) log t0. 

By the unboundedness of the sequence 1z 1 1 for j. co one can choose R1 > 0 so 
thitlog 11/w'° 2 (0)l = 0,11 > R1 , and thus log+ 1w 2 (0)I = log Iw'"2 (0)l; R > R.
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Now 
• n(2R) 

log 1 (0 "(2R) (0)l	' log z	n(2R) log 2R	(R > 0), - 
and setting R2 = max {R, (2/3) t0 } one obtains for 11> R2 that 

•

	

	
T(- 

R,wn ( 2 )	n(2R) log -- R - n(2R) log t0 + n(2R) log 211,	
0

as asserted. In the general-case, let w2Th(z) = h(z) th' 210 (z), where 

A(z) = 17 (z - z1)	with v such that Jz > 1 for j > V. 
' j=1 

• By Lemma 1 we have 

T ( 11, wn(2	T ( R, ± ( R,	= 0(n(2R) log 2R), 

and the proof is complete U 

Lemma 4 :"Let / be merornorphic with property (2.1.) for some > 0. 11  satisfies 
(2.10), then (2.4) holds with g() =, .4 log x for any a > o. 

Proof: The function 92R(z) = /(z) (0"210 (z) is analytic in IzI < 211, 11 >00,so that 
[3, Thm. 1.6] yields for 0 <r <1?	 - 

•	log M(r, 92 )	 T (-- R, 

By Lemmas 1 a) and 3one has for 1sufficiently large R	• 

3	3	(3 log M(, g2n) ^ 5T ( 2
	92. R) 	5(T (-- 11, ± " 2 R, 02 R))) 

	

c ((--i) ° ± n(2R) log 2R	(0 <r < 11), 

where c is a constant. As in the proof of Theorem 1, for any a > onecan choose 
c, R,'> 0-such that	•	 0	 •	 •	0 

- n(2R) R I2 (R > RI), (2.11) 

and ± c <cx, and hence there exists R2 >R1 so that	- 

•	M(r, 2R)	
e9C • (0< r.< R, R >  R2 ).	 (2.12) 

To transfer this estimate from g2R to g we write  

= 9R ( Z) (z — zcm+i) . . . (z - Z. (-2R)) 

and find a lower bound for the last n(2R) - n(R) factors from which (2.4) follows 
by applying (2.12). Two cases al-c to be considered.	 - 

/
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a) At least one pole of / lies on jzj = 1?: With a(B) as in (2.10) we have 
0(R)	 -. 
11 IZ - Zfl(R)+jI	(R	7)0(R)	(tzl = r < R),	- 

j=1 

and, in view of asswnption (2.10), ((R - r)/R)°(	((R - r)/R) 0 < r < R. Thus,
for 1?

IZ - n(R)+1I •..IZ	Zn(R)+o(R) 2!
(R :LL )'•1	(2.13), 

For, estimating the last factors in the representation of 91R we Wsume without loss - 
of generality that the constant B in (2.10) (ii) is les g thin 1, i.e., on zI = r 

	

n(2R)	 . 

	

IT	Iz - \ Bn (2_	—a(S) >_ B(2mn; (2.14) 
jn(R)+a(R)+i - 

Now it follows by (2.13) and (2.14) that	 0	 I 

I92n(z) ^ g(z) (BR r).Bh(2)	(0< r <R, R ^ 1):	(2.15) 

) There is no pole of / om IzI = B: By assumption we have R' > R, where R' 
= rn (R)+ I . Now (2.15) can be obtainedby using a(R') instead of a(R) in case a). 
The analog to (2.13) is then valid for the first a(1') , facto rs. Since	- ;R)-o(R')+jl 
is bounded below by B for 1 :5: n(2R) - .n(R) - a(R') and Izi	r < R, we
have (2.15) also in this case. 

Thus, in both cases,
-  

max g,(z)j ^ max g2(z)-(	J B— " 21	(0 <7 < B, B ^ 1) 
lzl=r

I B 
-	Izi=r  

-and with (2.12) it follows for B3 = max {R2 , 11 that 

G

\A
max g,( (z) ^	 ) B'"2	(0< r< R, R > R3-)
zr	

B 
—r 

	

(log 
R)_A

	r <B, and so	- 

(B - r)	MAR(r)	(1	<B), -	 (2.16) -. 

where M is some constant. If R,> R1 is chosen such that R'2 log (11B) 
B > B4 , w find with (2.11) thab	 -	 - 

	

(B > R4 ):	 (2.17) 
Since	

0 

e2'RA	e 1	(R > B5 )	 (2.18) 

for some B5 > 0, one obtains by inserting (2.16)—(2.18) in- ' the last estimate of 
gft (z) that for any 1 r < R aiki B > B0	 . 

M(r, g1) !c^ 2R 'BA (R - r)_A	M e'AR(r),  

where B0 = max {R3, R41 R51, which is (2.4) 1	 0
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Combining Lemmas 2 and 4 with Theorem 1 we have 
Proposition 1: Let f be meromorphic with (2.1) for some e € (0, oo). If / has a 

finite number of poles and 8, d are given as in Theorem 1, it follows for any a > 
and p>Othat 

E[f, A(S)] = (d 72 + l efl?iPn+1V),	71 .._.	. 

Proposition 2: Let f be meromorphic with (2.10) and (2.1) for some 0 € (0, cc). 
- Then, for any a>0,	 -	 - 

E[1, A(S)] = (dn + 1 ennA n_(fl+ Ma ) ,	n	oo, 

where 5, d are chosen as before.	 S 

Propositions I and 2 improve Karisson's result (1.2) by providing a hiore precise 
bound as well as by admitting a free choice of the set 8 1 where f is to be approxi-
mated, only observing that .S must not contain any pole of I. 

Remark: Concerning a converse of the results presented so far we notice that in 
[1] an example is gien which demonstrates that the cnverse of (1.1) is not true, 
i.e. there exists a f with (1.1) which is not nicromorphic in the plane. For entire 
functions a converse of (1.2) in case of polynomial approximation is valid: f i entire 
of order e, 0 < o < oo, if and onl y if E o[f]" :^-, n_' 1 , OC. > p , for n sufficiently 
large: But in case of rational approximation, the converse of Theorem 1 does not 
hold, as is shown b y the counterexample f(z) = el . Here, 'pg M(r, f)' r, thus in 
view of Lemma 2 / fulfills condition (2.4) with g(x) = p log x for any p > 0; a > I, 
but for large n we have	A(S)]P" <_ n-21 c , e > ' O (TIIEFETHEN [7], see also 
[4]). 

In the next section it will be shon that the techniques used in proving Theorem 1 
also yield a convergence theorem for certain mcroniorphic functions of zero order. 

3. Extension to nieromorphic functions of zero order 

Apart from extending Theorem 1 to functions of zero order, Theorem 2 below-uses 
a more refined assumption in place of (2.1), namely 

T(r, f) = (9(B(r)),	r —i'- oc,	 (3.1)

where for sonic x0 > 0 

B(r)	(h')	(logr) log r -- h((h')' (log r))	(r > x0 )	 (3.2)

and h is an element of the following set 

9 = {h € C2 [x0 , oc); V(x) > 0 Vx >x0 , Jim h'(x) = 

Writing h(x) = 'h(x), e > 1, we define B(r), r'> x0, e > 1, corresponding to
(3.2). For the proof of the next theorem we assume that for each 1 < 6 < e and 
0- > 0 there exist 10, no >0 such that	 S 

(i) B(e'"1"') :5 71 (n > 710), -	(ii) B(2r)	CB(r) (r > t)	(3.3)



/
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Condition (2.4) now turns into the following: for / with (3.1) and each a > 1 there 
exist g € Q', M, r0 , R0 > 0 such that for each R > RO and r0 r < B 

-ill (r, UR)	M e 1C /0AR (r).	 (3.4) 

Theoreni2: Let / be meromorphic with properties (3.1) for some h E Q and (3.4). 
Suppose that B, fulfills (3.3). With 5, d as in Theorem I one has for each a > 1 

E[f, A(S)] = (dn±i g(n+ ' ) e_'tO + fl),	ii —> 

Proof: Lt 1 <ô '< a. Using (3.1) and (3.3) (ii) one finds as in the proof of Theo-
rem 1 that for r > s' 

n(r)	log  N(2r) < 111'B(2r)	B(r),	 /	(35) 

which is analogous to .(25). Assuthption (3.4) implies, as in deducing (2.8) from 
(2.1), that one can choose R2 , n 1 > 0 so that 

E n(R)I/, A(S)] < Mdn + 1 e9+ 1 ) e B R-( 1z +fl	(R > B 1 , n > n1). 

Now let 71 2 > n0 such that e ,'( n+J ) = R > s, n >' n 2 . Thus	- 

= e_'"	(n > 712),	 (3.6)

and one obtains in view . Of (3.5) and (3.3) (I) 

n(R) < B(1?) = B(e'' 1 ) ;^; n	(n> n). 
Together with (3.6) the last estimate implies the'assertion I 

Theorem  contains Theorem 1 as a special case, choosing h(x) = (x/o) log x, 0 > 0, 
andx = po. Then condition (3.3) is fulfilled- and '(34) reduces to (2.4).. We further 
note that Theorem 2 produces a better estimate thn Theorem 1 since by the sub-
stitution (36) the factor e' is avoided. 

The following propositions are analogous to Propositions I and 2. The proofs are 
similar to those in the preceding' section and areomitted. 

Proposition :3: Let / be meromorphic with. (3.1) for some h Q. I/f has a finite 
number of poles and if condition (3.3) holds for B,, 'a > 1, it follows for any a > I 
and p > 0 that	- 

E[/, A(S)] = O(dn+InP e-n+0 	n —* co,

with 5, d as in Theorem, 1. 

For an extension of Lemma 4 we need a, further technical restriction on B, which 
can be combined with (3.3) to the following sufficient condition: Let B, be defined 
corresponding to (3.2) for some h with h € Q, then for each 1 < 6	a we suppose 
that	 - 

-	
. Bo'(r) log r = ,	(ii) lim. B6(r) = 0.	 (3.7) 

r-	B, (r) r-00 rB, (r) 

- Proposition 4: Let / be miromorphic with (2.10) and (3.1) for some h € Q. 1/ 
condition (3.7) holds for B,, a > 1, one has for any a > 1 

• -	 E[/, A(S)] = (d lI + I n.4 e"'1'°), 

where 5, d are as in Theorem I and A is defined by (210) (i).	-
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The following example ensures that the results of this setion apply to functions 
of order	0. Choosing h(x) = x(log x) 2 - 2x log x + 2x, x> I, one has h € Q 
and	 S	 - 

B(r) = 2e(b05 f'[(1og r)h/2 - 1]	(r > 1).	 (3.8) 

By simple calculations one verifies that condition (3.7) is fulfilled in this case. Further-
more the definition of the order of a meromorphic function implies that all / with 
T(r, /) = (B(r)), r - ad, where B is given by (3.8), are of order zero.	

S 
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