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Inequalities between Entropy and Approxnmatlon \‘umbers

" of Compact Maps ' -

Fiir eine kompakte lineare Abbildung 7' mit unendhchdlmensnonalem Wertebereich von einem
Hilbert-Raum in einen anderen wird gezeigt, daB fir beliebig vorgegebenes N ¢ N gilt e,(T)

= 2ay,,(T) furalle n, die einer gewissen Unglelchung genugen Es werden dann Anwendungen .
dieses Resultates angegeben.

N
v

Hna Komnamnoro nnuefinoro orobpaskenus T ¢ 6eCKOvlle‘{HOMCpHOH olJlacrbo 3HaueHHIl
or ognoro I'npGeprosa mpocTpaHcTBa B APYroe I[10KasWBaeTcA, 4TO RJA MPOH3BOALHO
3anannoro N € N nninonueno e,(T) = 2ay,,(T) nas Bcex n ynosnemopmomu\ HCKOTOPOMY

~ HEpaBeHCTBY. ﬂalo'rcn TpitMEHEHHUA BTOrQ peayanTaTa.

_ltisshown thatif T isa Lompact linear map, with infinite-dimensional range, from one Hilbert

space to another, then given any N-€ N, ¢,(T) = 2aA+1(T) for any n satisfying 'a, certum
mequo.hty Apphcatlons of this are given.

1. Introduction. The object of this paper is to obtain upper and lower estimates of
the approximation numbers of a compact map acting. betweeri Hilbert spaces in
terms of its entropy numbers. This result is applied to show that, in various circum-
stances, upper and lower bounds for the approximation numbers give rise to upper
and lower bounds of the same type for the entropy numbers.  In particular,_it is
shown that if-the »'h approximation number is bounded above and below by con-
stant multiples of n~2, then so is the n'" entropy number Tlns recovers, in a Hilbert
space settmg, a 1esu]t of CarL [2). -

2. ’I‘he result. Given any Banach spaces X and Y, denote, the cloged unit ball in X
by By and let B(X, Y) stand for the space of all bounded linear maps from X'to Y.
The space of ‘all compact linear maps from X to Y will be denoted by K(X,7Y),

and K (X, X) will be abbreviated to K(X). For any T € B(X, Y) and any n € \
the n'" entropy number of T, e,(T), is defined by

en(T) = inf {e > 0: T(By) can be covered

‘ , " by 2"~1balls of radius &} - .

"and the ' approximation number of T, a,(T), by

a,(T) = inf {||T — F||: F € B(X, 'Y), rank F < n}.

Throughout thls paper H, H, and H, will denote Hilbert spaces; and, for "definite-
ness, we shall assume that all Hilbert spaces’occurring here are complex. '
We can now give the following theorem.

-~

Theorem 1: Let T € K(H) have infinite- dzmenszonal range. Tizen gwen any N-e€N,
ealT) < 205, (T) < 2V2 wall) s L (1)
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for'any n € N satisfying the inequality

N 3“1(T) }

(n — 1).log'2 g 2 ldg {H (2)

] laN+l(T) ) *

. Proof: Since dim T'(H) = oo it follows that am(T)'> 0 for allm ¢ N. Let u € H;
then (cf. Theorem 1.4 of SiMox [bj) . :

Tu= 3 a, (T) (1 4u) ¥

where d),,, is a normallsed elgenvector of |T'{, the non- negatlve square root, of T*T,
corresponding to the eigenvalue a,(T ) of |T'| and ¥,, = (1/a (T)) Té,.
Let N € N and defme Py ¢ K( ) by

PNu—)—‘a()(ud)m) m (’IL€H)

\ m—1 , . )
'Clearly, rank Py = N and |T — PNII = ay,(T). Since Py(By;) can be identified
with an ellipsoid £ in. R?¥ with semi-axes a,(T), a,(T), ..., ax(T9), ay(T), We claim
that given any ¢ € (0, av(T)], v(By) can be covered by N balls of radius &, where
N, = integer part of :

e (11 saAT))?_

j=1 £

v

Acceptmg this for the moment, xt follows that I‘(B,,) can be covered by N, balls

of radius ¢ + ay,,(T'). The choice of ¢ = ay (T) = &' shows that 7'(Bj) can be

covered by N. balls of radius 2ay,(T). Consideration of the inequality N, < 2n-1

shows now that e,(T) < 2ay,,(T), provided that n satisfies inequality (2). This
! completes the proof of the left-hand inequality in (1).

The nght -hand inequality follows since from CARL [1] we have aN“(T <V2
X en4af|T ]) and bv Epmunns and EpMUNDS [4], ey.o(|7]) = eno(T). )
It remains to establxsh the claim made above. To do this, let S = {2z j =1, .., M}

be a maximal family of points in E such that |2 — k)] = & w henevcr 7 :#: k.
Since every ball with centre z¢) and radius ¢/2 is contained in 3/2E, a volume argu-
ment shows that
v 2
M< (n ?’“_(T’) .
j=1 €

\

Moreover, the balls of radius & with centres zQ), .., i(“’{ cover E, for otherwise the
maximality of § would be contradicted. This completes the proof of the theorem 11

We now extend Theorem 1 so that.it applies to maps which act from one Hilbert
space to.another. To do this it is convenient to establish the.following result due
to H. TrIEBEL and pointed out to us by him. -~

Theorem 2 Let T € B(H,, Hy). Then for all n € N, e,(T') = e,(T*) = e,(|T).

Proof (Triebel): By the pblar deconiposition thcorem [5], there exists a partial’

“isometry U-€ B(H,, H,).from (ker T)l toim T such that 7' = U |T| and’ |T[ = U“‘T -
It follows thab for all » € N,

en(T) = eaIT)) IIUK = e;(ITI), e,.(ITI) = ea(T) |U*| = ea(T),
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and hence e,(T) = e,(|T|). Use of the facts that 7% = |\T| U* and |7 = - T*U shows

that e,(7*) = ¢,(|T), and the proof is complete @

Corollary 3: Let T ¢ K(H,, H,) have mizmte-dzmenszonal range. Then the con-.
clusion-of Theorem 1 holds. o

Proof: By Theorem 2, e,(lT]) = ¢;(T"); also a,~v(|T|) =‘d,~(T)'. These results, to-

- gether with Theorem 1, give the corollary

3. E\amplcs To illustrate the ‘usefulness of these results we glve the follomng'
examples

-Example A: Let T € K(H}, H,) and su.ppose.t'hat for some"d >0, d,,(T) X noe;
that is, there are positive constants ¢, and ¢, such that cyn=® < a,(T) < con* for all
n € N. Then e,(T) X n%, a result obtained by CarL ([2], Cor. 2) when H, and H, are

Banach spaces with H, and H,* of.type 2.

To shoiv this, let N € N and observe that E T

~

b 3ay(T) <y Beg (3c2)1’ ' ]
= —_— = N 1 aN N' a
i=1 an(T) —Q (N + 1)-° = ( +1) (. / )
= (_:;_2)” (N + 1)2¥ {c;,NN(N 4+ 1)1z g~ F}-a. .
1. _ . ;

'_&‘v._ N +1 1/2N"
B v A (e ACAR

) . < ¢yt etV 1)(3:2) .

. 1

Thus .

. . N

log'{ 11 “’(T)} KN + K,

j=1 aN-H(T)

and hence mequallty (2) will be satisfied by any # which is a suitably large multlple

of N. From (1 ) it now follows that e,(T) = O(n=°). The lower bound for e (T) is

an immediate consequence of the right-hand inequality of (1) 8
E\ample B: Let T ¢ K(H,, H,) and suppose that a,(T) X 1/log (n -+ 1).' Then -

e (T) X 1flog (n + 1). ‘
- .., To establish this let N = 3. For some constant K =1, .

log (3Nﬁ 4T

i N
)gNlogK+-N]0glog(N+2 Zlog]og(y—*-l),
j=1 ay(T) . ) = .

.and smce : o i

Z’log log (4 + f loglogxdx

j=3
! Tog N .

= Nloglog N — 3 log log-3 —/%efdy
log3 y
l_ogN
ZNloglogN —310glog3 — [evdy
log3d

= N(loglog N — 1) — 3(log log3 — 1),

15 Analysis Bd. 7, Heft 3 (1988) o
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it follows that for some K, > 0

T
l°g(3N17 ii<})

Use of the Mean-Value Theorem shows that

log N+2)

log log (N + 2) — Iog log N = O(N‘l),

and so for some positive constants K, Kj; .

log (3N H;aivl(l(%)) < K,N + K, forall N=3..

The result now follows in the same way as Example A 8

Example C: Let T ¢ K(H,, H,) andsupposethatforsomea >0, an(T) (loi n) :
Then e,(T) X (logn) ' . T .

n \

Thls is establlshed by using techniques similar to those in Examples A and B 8

ExampleD Let p,g€N, n=p+q, 6 >0, ¢’ > 0. Denote points of R" by
(x ), where x = (x) eR?, y=(y;) € RY, and let V: R" — R be defined by

Viz,y) = l=I° [yI”, where  |z| = é} i, - ‘vl'yl =;‘=Z; ]y;l-
Let L o -
HYP = {u € WI2(R): Vu € LYRn).
Endowed with the norm _ o
e | HE2M = (e | WRRRM)2 + ||V | LAR®) 212,
H!'" is a Hilbert space. DESPLANCHES has proved fn_[3] that the k™ approximation

* number a(I) of the embedding 1: H'" — L*(R") has the following properties as k — co: .

.k—v/pu+u+a'.) , if q0 < po’ -~ .
all) X 1 (6 log RPmitess) if go =o' S
k- "/‘7“*"’“’ . if qo > po’. . !

41& follows zmmedmtely from E’xamples A and C that the entropy numbers ek(I ) have

exactly the same properties.

' ’

Other: mequahtles connecting entropy numbers and approximation numbers may
also be obtained. For example, an obvious adaptatlon of Proposmon 2.d.3 of KoN1G
[56] shows that the following holds . . o

Theorem 4: Let T € K(H) be self-adjoint. Then for all k € N,
M £ en(T) = 6p, A ‘
where * -~ ' ,
: n 1/n . .
U = Sup {2“"2" (H ai(T)) in € N} . ,
i LY \j=1 . . -
Corollary 5: Let T € K(H,, H,). Then the conclusion of Theorem 4 holds.
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Proof: Simply combine Theorems 2 and 4 I
Corollary 6:'Let T ¢ K(H,, Hz).‘Then (a,,(T)) € IP if, and only if, (e,‘,(T)) € lr.
~ Proof: Similar to that of Corollary 2.d.3 of K6nta [5] § :
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