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An Explieit Expression for the Korteweg-de Vries Hierarchy

R. SCHIMMING - ' o

.- . ) . f .

Fir die Korte.weg-de.Vries-Hierurchic von solitonischen partiellen Diffcrenbialgleichungen-

\vird cine bisher nicht bekannte explizite Darstellung hergeleitet.
\
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An explicit representation for the Korteweg-de Vries hierarchy of solltomc partial dlffercntnl
equations is derived which has not been known before.

Introduction
A nonlinear partvia-l differential equation is called solitonic if it admits’

— particle- lll\e solutions, the, so-called so]xtons K . ' \

'—Biicklund transformatidns; - '

— a Lax and/or plolongatmn rcplcsentatlon

— application of, the inverse scattering method; -
— infinitely many conservation laws.

The typical solitonic equations named after Korteweg-de Vries, Burgers, Boussinesq;,
Kadomtsev-Petviashvili, ... have been discovered as physical models. The deeper

- mathematical reasons for their highly peculiar behaviour were difficult to-recognize.

Some progress has been achieved by extending a ‘‘seed equation’ to a ‘‘hierarchy”’,
that means to an infinite sequence of related solitonic equations of increasing order.

The hierarchies considerably enlarge the reservoir of dlff(,rcntnal equations in sollton

" theory.
P D. Lax [8] proposed to e\tend the Korteweg -cle Vries equatlon N )

e = Buns + U, .

for a functlon u = u(z, ) of position z and time ¢ to a lnerarchy
U = u;, + 6uu, , )
Up = U —+— IOuu-, + 20u,u, + 30u Uy,

’ w = u; + lduug + -,

.

The general law for this

,

= ‘53;. Gl =23, ..)

»
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“usually is described by recursion relations for the differential polynomials ¢, = G,[u]
(n=1,2,...). (A differential polynomial in « is a polynomial in %, u,, %,, ... with
constant coefficients and without an absolute term.) I. M. GEL'’FAND and L. A.
Dikis [16] presented formulas for the G, which become explicit when certain multiple
integmls or generating functions, respectively, are evaluated. The purpose of this -
paper is to derive a fully explicit representation fof the right-hand sides of the
Korteweg-de Vries hlelmchy namely

n’[(?n — )17 Golu]

= 2 [(¢ga + 7 1—1)(q4—}—n—9) (q"_+_1)b]—1> ',‘

X (0, 5 ¢c(qa, ‘13) - ¢(gn-15 fl;:) U_gUgygs -+ Ui —gaUgn-
We use the notations ) )
ou . ou oPu -
’11.425, uIZutza: up:uz.:mz:é;}; (1)22)
and-also formally - ' B
C uy =, u, =0, u,=1.

The numerical coefficients above are given by
- c(p, Q‘j = (Z) + 6,7*2 for’integers p,q = 0

and the sum runs over all integers g,, ¢3, ..., g, such that

0 <20<qG<q+2..,0<q ¢, +2

In §1 we'develop the definition of the sequence (G,) = (G,[©])n20 and introduce .
the Korteweg-de Vries hierarchy through Lax pairs. The calculation behind this has
been .done essentially by J. L. Borenxarn and T. W. CHAUNDY [2] as early as in
1922. Their priority. is an interesting historical’ fact, we would like to emphasize.
The §2 is devoted to-the proof of our formula. To be precise, a somewhat more
general-formula concernmg Hadamard’s coefficients to the one-dimensional Schré-
- dinger operator is established. Use of the Minakshisundaram-Pleijel asymptotic
expansion of the fundamental solution -to the heat equation is made. In §3 we
present, for the sake of completeness, additional propertics of the @, 62, ... and
of differential poly nomlals whlch are closely related to'the ¢, Gn, .

§ 1" Definition of the Korteweg-de Vries hierarchy -

The construction starts with the one-di.mcnsidn'al Schrédinger equation (sometimes - -
also called Sturm-Liouville equation)-

L4 k)y=y +@t)y=0 ©oy

Here L = D* 4 u is the one- dm)ensnonal Schrédinger operator; D = 0/dx; the
energy constant k is assumed to be real and nonzero; the’ potentlal u = u(z) is
assumed to be real-valued and smooth in some interval. (An additional dependence
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'

“on a time ¢ is introduced later.) Using standard arguments from the literature (cf.,
Ce.g., [17, lS})'one can construct a formal solution to (1.1) of the form

y_eu:zz- 21Ic o : . i .(1.2)

. .n=0
" with real coefficients z, = 1, 2, 21, ... From it we build up ’
G’::.—; kg =4 3 Gul—1) (2070 ' C(1.3)

(The power series may converge or not; in fact they serve as gcnelang functxons -
for the sequences of their coefficients.) Here the G, are again real and Gy = 1/2
Considering the first integral , ) N

y'y — y§ = const. = 2ik,
we obtain from (1 1) the nonlinear second- order equation
"GG‘" — G2 + 4(u + k?) G = 4.
leferentmtlon with respect to x produces the linear third-order equation
G + 4(u + k) ¢ +%uG=0. C o - (1.4)

' Equivélen_t to this, the sequence (G;).z, obeys a differential-recursion equat-ioh
system which has becn named after A. Lenard [3, 9, 10]:

Ghor = G+ 4Gy + Gy, Cor= 12 (1.5)

- The next step will be the construction of certain lmuu dlffelentlal operators A,

with respect to z. Note that we do not notationally distinguish between a funcblon o

and the multlpllcabnon operator (or linear dlffelent,lal operator of zero order) (lefmed '
by it. \

\

Proposition 1.1: The opcrato; -valued formal power series A in (2k)! dejmed by
44 = (G' —2GD) (L + k¥~ : : : (1.6)
satisfies | | . e o
AL —LA=[A,L.= G ) ‘ (1.7)

‘Proof: We caleulate

. 4[A L) (L + k?) = 4[A L+t k2J (L + k%) = [ — 26D, L + ?)

L= [G” —2GD, L} = .- = 4G'D2_ — (@ + 2u'Q) = 4G'(D? + u + k?)
4@ L+ kY. } ' ' '
_;l‘he factor (L 4 k%) in th.e first-and in the last e\iplession can be cancelled because
it possesscs an inverse in the ring of formal power series in (2k)~! 1
Prop osntlon 1.2: The linear tlz//erenlwl operators A, defined b y A -
A= 4ZA )" (2k) et b , (1.8)

admit the recursive representation

Ay = 44,0 £20,D — G, Ao=0, "4, =D (L9
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- as.well as the exj)licit representation

Awr = Z06D =GO GDPE (1.10)

m==
E’ach operator A, s formally anti- selfadyomt, ile. A,* = —4,. (Here * means the
formal adjoint of a linear differential operator.) Further, there holds »
AL "LA,,:[A,,,L]_G' ' T (L1

Proof: The equatlons (1.9), (1.11) 101 ‘the sequences ((,,), (4,) are equivalent to
" the equations (1 6), (1.7) for their generatmg functions @, 4, respectively. Then
(1.10) and 4, + 4,* =0 follow from (1.9) by mathematical induction with 1espect
to n. Consldenng' L* =L and D* = —D we obtain in- bhc mductlon step wil
+ Ay = = 4[4, L) 4G, =0 B "

~ Our introduction of the dlffcrentlal operators 4, is a standard one; cf., e.g., 0. L
BocosavLENskig [15]. A cons1dembly older constxuctlon is due to J. L BURCH\ALL
and T. W. CHAUl\DY [2 ]; these authors dlrectly worked \nth the sequences (G,),

(45).

'Now is the time to mtroduce the Kortew eg-de Vries hlcrmchy

Definition: Let u = u(x t) and all objects constructed from u dcpend on the
time ¢ as a paramecter. The partial dlffelcntlal equatlon for u = u(z, t) in the Lax
) rcpresentatlon ~ .

(/L

- =4, L] (n=23,..) , ' o (1.12)

or in the equivalent function representation

'ﬂ;_i.(:,,[u]“ (n=2,3,..)

- (1.13)

is called n-th Korteweg-de Vries equation. The sequence of these equatlons is callcd
Korteweg-de Vries hzerarchz .

Let us recall that two lmear dlfferentla] operators 4, L depending on t as aparami .
eter form’ a Laz pair if

aaL [4, L) = AL — LA. colo ' o
o s i
Here 8L/at is defined by the Lelbmz, rule ‘
\ . o .
.0 cL : ' .
ey =ioiy+ LY . ST

Particularly, for L = D? + u ‘the operator 8L/ot is the multlphcatlon by oulot;
hence (1.12) and (1.13) are equn alent.

Example: The sequence (G,,)‘bcgms as

G0=1/2, G',:u, _(;'2:7&2—'}—’3?42,
- Gs = ug + 10uu, + 5u,2 +. 10u3, _
Gy =ug + }4du,, +.28uqug + 21u,® + T0uPu, + T0uu,® + 35ut.

o !
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These expressions are glven in [4, 11, 14] a,nd in other papers The sequence of
cllfferentlal operabors (4,) begms as . .

4, = zz, ' = 4D3 + D3u + 3uD,
Ay = 16D5% 4 D*20u + 20uD? 4- D5(3u? — u,) + {)(3u2 - uz) D.

These are glven in [17] and in other papels

§ 2 Deriv:i.tion of the explicit exprcssion ,
The time s usecl in thls paraglaph has nothlng to do with the time't in the Korteweg-
de’ Vrles hierarchy and is, therefore, notmtlonally distinguished.

l)efmltlon: ’]._he [undamenlal_ solution K = K(x, x,, s) of the heat equation

' K T . . . Ty . _‘
'Oas — LK — D2K+uK : : RN

or, shortly, the heat kernel is defmed for s > 0 and z, z; € I, where I. & R is some " -
open interval. Moreover, the function

~

H = H(z, x,, s) = (4ns)!/? exp'((x—‘is%)—) K(z, z,, s)

s required to admit a smooth extension to s = 0 such that H(z, :&0, 0)=1.

Proposition 2.1: If v = u(x) is de/med and smooth in some interval, then there
exists a subinterval I and a heat kernel K. = K(=, %, 8) for x, 20 € I and s > 0. This
is umquel y determined, smooth and symmetric in its arguments x, %, that means

K(x, zy, s) = K(2o, T, s). - T : ‘ . .

. The corresponding function H=H (x, x;,, s) satisfies

‘[(x—xo-)])-{—s-%]H=sLH. | o o N (2.2)

-~

For the proof of existence, unicity, and.of further properties of K we refer to ™

the literature [1, 12]. In fact, the construction of the heat kernel works for quite
more' general second-order differential operators L. In our case, the formula (2.2) .
" i8 equivalent-to the hedt equatxon (2.1).

The following.proposition is essentlally due to H. P. McKEAN and'P. _VAN MOER-
JBEKE [11]. Qur proof is a 51mpl|f1ed version of that in [11].

Proposition 2.2: The “diagonal values” H(x,‘.s) = H(z, z, s) obey

~

2 (2s a—i — 1)»DH(x, 8) = s(D3+ 2Du + 2uD) H(z, s). (2.3)

Proof: We apply the operator D +.3D; to -

o~

. 9 :
[(x—xQ)D-f—sa—s]H.-_—sLH‘
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and, analogously, the operator D, + 3D to

o ' Y o
[(a:o —z) D, +S§] ‘H = sL,H,
where » o '
0 9
D=, D°—8_xo’

— L=D? + u(z), Ly = Dy?+ u(xo).

The second equation-for H = H(z, x,, s) follows from the first and from the symmetry
" in zy25. We add the resu]ts and restrict then to the diagonal x = z, of I X I. The
identities

(D + 3D,) (x — ) D + _(Do + 3D) (=, — z) D0
= —2(D + D,) +'(? — ) (D* — Dg?),
(D 4 3Dg) D® + (Dy + 3D) Dy = (D 4 Dy}

are taken into consuleratlon as well as the rules

* for’ two-point functions y = y(z, z,), where d = d/dz (lcnqt-cs\ the total derivative
with respect to . We arrive at - ' :

2 (23 a—as - 1) dH(z, z,s) = s(d® + dud + 2u,) H(z, 2, s),

which is equivalent to (2.3) 8

The following classical construction is conne(,ted with t,he names S. ]\’[I\AKSHI-_,
SUNDARAM and A. PLEUEL [12]. :

Proposition2.3: Let a sequence of two-pomt quantities H, = H (x, ) (n =0,1,...)
be defined by

& —2)D+n]H,=LH,, for n=>1, Ho =1. (24)
With this there holds the ‘a,symptotic expansion ‘

H(r "oy S) ~ Z’ H(x, %) s® for s - +0:.

‘.Foraprooﬂf ef. [1,11,12]..

In fact,. the differéntial-recursion equatlon system (2.4) has a unique smooth
solution H, = = H,(x, ). (n,= 0,1, w) in Ix1, I here denotmg the domain of"
definition of %, which is recursiv ely given by

1

Hy(x,30) = [ 2" NLH,,) (2 + (1 —/‘.)'xo) a2 for n=1. T
0 . - . LT

This can be directly verified or already follows from cldssical considerations by
J. HapamarD [6] for more general second-order differential operators L. We will
call, following (5], the H, = H,(z, z,) (» = 0, 1, ...) “Hadamard’s coefficients”. '

Prop osition 2.4: The one-point. quantities

H,p =H /P(z):= (D?H,) (z, z) . for -p,n =0



A

]
'

o ~ On the Korteweg-de Vries Hiera;'chy 209

! derived from the two-point quantilie& H, = H,(z, x,) obey the algebraic recursion system

(p£n)Hp = Ho2 4 (;’) uplHY_, for n =1, HpP=6p. (2.5)
’ g=01\ : : - .

As a conseqdénce, each ‘H,? forn =1 isa di/ferential polynomial in w, that means a

polynomial tn'u, uy, u,, ... with constant coefficients and without an absolute term.

~ Proof: We apply D? = (9/0x)? to both sides of the equation (2.4) and restrict
then to the diagonal z = z,of I X I. Throughout the paper 0”7 denotes the Kron-
ecker symbol 1 : o L o ~

) Proposition 2:5: The diagonal values of Hadamard’s coefficients are proportional
. to the quantities G, of § 1, more precisely ; : - :

2(nl) Qulu] () = (2n)! Ho(z, ) ' for m = 0. R (2.6)
Proof: The_equation (2.3) for A

<~ H(z,s) = ) H,(x, x)s*
- n=0
implies the differénpial-recursion system

2(2n — 1) DHS., = (DS + 2uD + 2Du) H,0, “Hp —1.

The compqrison with -

-

DG,y = (D% + 2uD + 2Du) G, Go=1/2 - f
shows (2.6) by mathematical induction. The sequences (H,9), (G;,)-are' uniquely deter-
mined by the above recursions and by the additional property of being differe'ntial_ ‘
polynomialsin«w 8 . - :

In the folloxxjing, we use the notations

Uy'= u, U, =0, wu,=1, c(p,q) = (‘z) + 9Pt
for intcgei-s 2,q=0. '
Theorem: There holds for n = 2

~

. M \ .
HpP = X (g +n)(q - 1) ... (ga.+ ]! ) ‘ /

q3.93..-.Qn .
X ¢(q1; 42) €425 Ga) -+ C(n-1s Gn) -
- X Ug, qulgegy -+ uqu;:—'q..'”'qn’ . ' ’ . (2.7)

where ) = p and where the sum runs accordiﬁg to

0SS0 +20S0Su+2:5:,050, Sg +2: (2.8)

" Corollary 1: There holds for n =1 - . o o .
2 — 1\-! . b
 Hp = @) ( T et \ (2.9)

14 Analysis Bd. 7, Heft 3 (1088)
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N

;where the points ... indicate terms in u of lower order and hz:gher degree. Furt}.zer,’there
holds for n = 1 )

Hp= SUn + 1) +re+2) o (koo 7+ )]

X ( P r)u,lu,,...u,"—{—--- § | <. .(2.10)

7'1 ’ 7'2, ceey
P .
_ where the sum runs over all integers 1\, 7y, ..., 7y = 0 such thatry + 1, + -+ + 1, = p.

and where the points .. . indicate terms of lower degree The s meol( P ) = pl/
(r!...7.)) ts the usual pol ynomial coe//zczent _— N1 oo T
Corollary 2. There holds for n = 1
WHS = X[ +n—1) @ +n =2 @+ DI
~ o x ¢(0, qg (g2 43) - - (gn-1 Qn). % —0:%q2—0s * - - Ugn-1—0a¥gns (2.11)

where the sum runs over all integers q2, Q3s o+ qn according to-(2.8)..

Proofs: With our specml notatlons the recursion system (2. 5) can bé formally
31mp11f1ed to '

p+2 \ o
H.pP = 2 (p + n)” Le(p, q) ull—q[I‘r’:-—l for n =2,

q=0

Hyp = 6,7 ) H,” =(p+ l)‘1 u,,.

Hence (2.7) follows by mathematlcal induction.with respect to n. The first assertion
(2 3) of Corollary 1 is better shown by a mathematical induction directly applied
to (2.5). The terms of maximal degree in H,? appear for

Tni=g — Qe 20, ., Ty =Gy — Gn = 0,7,:=qn =0,

O ‘ 92
clqy, go) =" , c(qs, q3) = s es
(91 q2) (qz). (925 93) (qs)

c(q1s 92) C(q'z, q3) .- ¢(@n-1> Gn) = ( T . ).

T1s 725 <« oy

This gives the sccond assertion (2.10) of Corollary 1. In order to obtain Corollary 2 .
we have to insert into (2.7) the particular value p = ¢, = 0. Our formulas (2.6),
(2.11) together give the explicit expression for G, quoted in the introduction

-~

Ex'am};le: There holds
(P + 1) H? = u,,

. : ‘ o . . P (p 41 V
’(P +1)(p+ 2)(3"*‘ 3) Hp? = (p + 1) upyp + (P + )Z(q- )uqup—q~

q=0

J.E. LAGNESE {7 expllclt]y calculated HyP too' in this fashion; we omit here_this
lengthy expression. o . -
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§ 3 Other Iproperties of the differential polynon\lials

The following notions have been introduced in [13] and are useful to (lescrii)e differ-

ential polynomials associated to the Korteweg-de Vries hierarchy.

Definition: A (differential) monomial .

cubou, k. u,,’."n

with in'tegers =0,k = 0,“. . .,A k., =20, k,,21 has the order j), the degree )
di=ky+k + -+ ky, '

andlthe weighé \ ] - )

S w2k 3k e (p 4 2) K,

"+ A differential polynomial has as its order, degree, weight the maximum of the orders,
degrees, weights, respectively, of its monomials. A differential polynomial is called
homogeneous if all its monomials have the same weight. o

Proposition 3.1: The differential ;)olynomial H7? for n 21 is homogeneous .of

weight 2n + p, has the degree n and the order 2n + p — 2. The differential polynomial A\
G, for n =1 is homogeneous of weight 2n, has the degree n and the order 2n — 2.

! The proof is done by mathematical induction with respect ton B

The dependénce of our differential polynomials on the variable u = %y 18 fully
known. ' ' : '

P"roposition 3.2: There holds for n = 1 e

N - n n_1/2 —m : - . .
: o G,n _mé:) ( N — m) (4%) . [Gm]u=0s - (3.1) .
Hp = Sl =m0 v HyPluso. (3.2)
m=0 - . . .

Proof: We define
TR = U T) = u(r) —ulzg), k= k(1 4 k-2u(z,))
and indicate objects belonging to i, & by ~. There holds ¢ = @ ‘be-c'ause phis»gep-:

erating function depends only on @ + k2 = u + k2. Inserting

(212)_2"'_] _ f, (n +m—1/2

m=0

m ) (—4u(x0))"' (2]‘;)—2(.n+m)-1

into

\

2 Gy —1)r @Bt = T Gy~ (202
n=0

n=0

we obtain

G = (” - 1/2) (du(zo))=m G,

m=0 \ N —m
which is equivalent to (3.1). The heat kernel transforms as
K(x, 7y, ) = e"sK(x, z,, s).

14*
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Herefrom follows, step by step, '
H(z, 2, s) = e* =" H(z, 2, s), o7 '
o . . : i
Hy(z, z,) = 2 [(n — m)!]7* wu(zo)™™ H,.(x, ),
. m=0 .
Hp(zg) = X [(n = m)!] alzo)™™ HuPl@).
N m=0 . .
. The last formula is equivalent to.(3.2) B° .
: ‘ o J
. Proposition 3.3: There holds forn 21 .~
\ 2n — 2 ‘ " - '
G, = Uypo + . {( : ) —lp}uu e, . 3.3
RESTREA NN vy R RS e

' where the points ... indicate for n = 3 terms of degree greater.thdn 2 and of order less
- than 2n — 5. As a consequence, we have for the right-hand sides of the K orteweg-de Vries
hierarchy LT o T ;

9 : e — 1\ - ‘

. TGrL:’“Qn—l_*‘, Z ( )upuq+"" . (34)

{6 .. ptg=2n-3 . ) ’ '

* The sums in (3.3), (3.‘11).begin with p = 0 and end with g = 0. Further, there holds -
forn = 6. . : o T N

~ ‘: —l v \ .' .
% (2:) G, = 30um+ 10 (2) '~y + 3 (Z) "=y + 5u’)

i
[

' ’ < 46 (Z) ur Y (du,uy + 3up?) + 110 (:) w"~5u, 2u,
. 5 . - - n I 1 . - I . } -~
, o . 475 (6) un=but 4 - - (3.5)
where the points ... indicate terms of deéree less than n — 2. This ezpression s aiso

valid for n = 0-if terms with negative powers of u are formally omitted. As.a conse- .
quence, we have for the right-hand sides of the Korteweg-de Vries hierarchy

—1 v . 7 L
60 (2" 2 @, = 30nurtu, + 10 ( PN un—2y )
n ox : N2/ .

43 (7;) w3 us 4 20u,uv2 4+ 5u,%)

+ 12'(2) wn=4(3uytg + Sugus)
V A n . . ‘ . S
+ 10 (5) u—5(23u,2uy + 3luug®) .

-

~+ 960 (2) w4 ;.
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f

. Proof: Let L, denotethe linear parb of.G, and @, the quadratic part, respectxvely
These obey the dlfferentlal recursion system,

'L!H-l - DZL;,, Ll =Uu, .

DQ,,, = D*Q, + 2(Du +.uD)L,, @, = 3u®.
Mathematical induction shows 4 _
s - . E 2n
L,=p, 5, "= —1)P¢ uju, .
’ Yan-e ? P+q§n—4{(p+1)+( )}p.q

! , .
All other terms in G, must have an order less than 2» — 5. Considering

gn-m (n“— 1/2) _ (2n) (n) (2m)'—1
. n—m \n/\m/\m
we rewrite (3.1) as ' _
2n\~} -3 [2m\TY [ . '
[ 2, 2 (2) -5
and insort herein v . ¢
CG=1/2, G =u, 027u2+3u,"
[Gsico = ue + 5w, [Culumo = 28uyug + 2ug? +
[Gslu—o = 462u,2uy + -+, [Gelumo = 1155u,* + --

\ where the points indicate ter'ms which do not contribute to (3. 5). The result (3 3) )
is due to P. B. GILkEY [4], who established it by a quite other method not being
“aware of the relation to the Korteweg-de Vries hierarchy &

More properties of the sequence (G,,) can be found in bhe hterature [3 8—10 16
17] In [16] it is shown that ‘ .

2 P ' ‘ R
%’ G,".I = 6_u Gn+l =,2(2n ‘i" 1)‘G"', o . PRI ]
{vhege ' . , \ S /
= —Dyr : '
) 6?1. , p“é?o( p .-

denotes the variational or Euler-Lagrange derivative. For each couple.of integers
m,n = 1 the quantity G, is a conserved densmy of the n-th Korteweg-de Vries
equation 4, = G,[«]; [3, 9, 10,'16).
We will finish with a formula which merely follows from the symmetry property A
H (z, ) = H,(%y, ). The proof runs along the lmes of [7] and will, therefore, be
omitted. ' :

PlOpOSlthn 3.4: There holds for mtegers n=21,k2 0
2% + 1
2H k41 =D ( ) —D “H, 2"—0
q§0 q + 1 ( )

As a consequence H 2+ can be expressed asa Emear dzj/erenttal ea:presswn i H,9,
Hzp2, ..., HZ2
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The relevance of the quantities G, (n = 1,2, ...) for the theory of Huygens’

~pnncnple is discussed in the paper (14]. If the wave- llke operator in 2m 4 2 dimen-
" sions :

L A a 2m4-2 62
- =6_xz+u(x) —‘é; 3zg -

is a Huygens-type one, then G,[u] = 0 for n = m.
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