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An Explicit Expression for the Korteweg-de Vries Hierarchy	 . 

R. SCHTMMING	. 

Für die Korteveg-de Vries-Hierarchic von solitonisclien partiellen Diffcrentialgleichungen 
wird cine bisher nicht bekannte explizite Darstelluna hergeleitet. 
l3blno(uTcrl nisuoe it ao cux itop Hen3RecTuoe npeadTaB1euue aJ1J! nepapxiiu 1-copTesera-
ie (l)puaa COJIIITOHOBbIX au	epenwuaJnHbIx ypaisHeuhtil.  
An explicit, representation for the Korteweg-de Vries hierarchy of solitonic partial differential 
equations is derived which has not been known before.
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Introduction .	.	 .	. 

A nonlinear partial differential equation is ca1ld sliton.ic if it admits- 
- particle-like solutions, the so-called solitous;	 . - 
- Bäckliind transformations;	-	.'	 I 

- a Lax and/or prolongation representation;	 .	. 
— application of, the inverse scattering method; 

infiiiitely many conservation laws.	 . 

The typical solitonie equations named after Korteweg-de Vries, Burgers, Boussinesq; 
Kadomtsev-Pet. viashvili, ..., have been discovered as physical models. The deeper 
mathematical reasons for their highly peculiar behaviour were difficult to recognize 
Some progress has been achieved by extending a "seed equation" to a "hierarchy", 
that means to an infinite sequence of related solitonic equations of increasing order. 
The hierarchies considerably enlarge the reservoir of differential equations in oliton 
theory.	. . 

P. D. LAX [8] proposd to extend the Korteweg-cle Vries equation 

Ut = 6uu + UXXX	 . 

for a function u = u(x, t) of position x and time t to hierarchy	S 

u j =u + 6uu1,  

u 1 = u 5 + 1Ouu + 26u 1 u2 + 30u2u1, 

u1 = u7+ 14uu5+ •.• ,	 . 

The general law for this	 -. 

-e	 - 
= ---. G,1 [u]	(n. =2, 3,
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usually is described by recursion relations for the differential polynomials C = G[u] 
(n = 1, 2, . . .). (A differential polynomial in u is a polynomial in u, u, u2 , . . . with 
constant coefficients and without an absolute term.) I. M. GEL'FAIcD and L. A. 
DIKIJ [16] presented formulas for the G which become explicit when certain multiple 
integrals or generating functions, respectively, are evaluated. The purpose of this 
paper is to derive a fully explicit representation fof the right-hand sides of the 
Korteweg-de Vries hierarchy, namely	 - 

n! [(2n - 1)!]_i G[i] 

=[(q2±m-1)(q3+n-2)..(qn+ 1)] 

X c(0, q2 ) c(q2 , 43 ) ... c(q_ 1 , (J) U_q,Uq,_q, . .. Uq__qUq . 

We use the notations	 . 

au	8u	 ?j'u 
U---,	U=U---,	UUz=--	(p2)

aXP t9t

and also formally 

u0 =u,	u_1=0,'	u_2=1. 

The numerical coefficients above are given by 

c(p, q) = () + ôq 2 foiiiitegcrs p, q > 0 

and the sum runs over all integers q2, q3, ..., q such that 

in § 1 we develop the definition of the sequence (0) = (G[u])^0 and introduce 
the Korteweg-de Vries hierarchy through Lax pairs. The calculation behind this has 
been clone essentially by J. L. BURCITNALL and T. W. CH4UNDY [2] as earl y as in 
1922. Their priority. is an interesting historical - fact we would like to emphasize. 
The § 2 is devoted to the proof of our formula. Tb be precise, a somewhat more 
general . formula concerning Haclamard's coefficients to the one-dimensional Sclii'ö-
dinger operator is established. Use of the ,Minakshisundaram-Pleijel asymptotic 
expansion of the fundamental solution to the heat equation is made. In § 3 we 
present. , for the sake of completeness, additional properties of the 0 1 , 02 , ... and 
of differential polynomials which are closel y related tothe 0 1 , 02, 

I ' Definition of the Korteweg-de Vries hierarchy 

The construction starts with the one-dimensional Scliröclinger equation (sometimes 
also called Sturm-Liouville equation). 

(Ljk2)y=y" +(u±k2)y0.  

Here L= D2 + u is the one-cliniensional Sclrochinger operator; D = e/ex; the 
energy constant k is assumed to be real and nonzero; the potential a = u(x) is 
assumed to be real-valued and smooth in some interval. (An additional dependence
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on a' time t is introduced later.) Using standard arguments from the literature (cf., 
e.g., [17, 18])one can construct a formal solution to (1.1) of the form 

y = et z(2ik'	-	 (1.2) 

with real coefficients z 0 = 1, z 1 , z, ... From it we build U	 /	S

(1.3) 

(The power series nia' converge or not; in fact they serve as generating functiqns 
for the sequences of their coefficients.) Here the ' G are'again real and G0 = 1/2. 
Considering the first integral 

	

- y' = const. = 2ik,	 - 

we obtain from (1.1) the nonlinear secohd-order equation 

2CC" G12 + 4(u +k2 ) C2 = 4.	- 

Differentiation with respect to x produces the linear third-order equation 

C" ± 4(u + k2 ) C' ± 2u'G = 0.	 (1.4) 

Equivalent to this, the sequence (G)^, 0 obeys a differential-recursion equation 
system which has been namec[after A.Lenard [3, 9, 10]: 

= G a " + 4uG' ± 2u'G,	G:= 1/2.	..	(1.5) 

- The next step will be the construction of certain linear differential operators A 
with respect to x. Note that 'e do not notationally distinguish between a function 
and the inul€iplication operator (or linear differential operator of zero order) .defined 
by it.	 ..	.	 - 

Proposition!.!: The operator-valued formal power series A in (2k)-' defined by 

4A = (C' - 2GD) (L + k2 ) -I 	 (1.6) 
satisfies	 .	S 

• AL. —LA[A,Li.=C'.	
5	

'(1.7) 

Proof: We calculate	 S	 S 

4[A, L](L ± k') = 4[A, L.+ k2] (L + k2)= [0' - 20D, L.+ k'] 

=[0' —20D,L]=... =4G'D 2 (G"+ 2u'G ) =40 '(D2 + u ± k2 )	S

-= 4G'(L + k2).  

- The factor (L - k') in the first and in the last expression can be cancelled because 
it poCsesses an inverse in the ring of formal power series in (2k)- 1 • 

• -

	 Proposition 1.2 .: The linear differential operators A defined by	-. 

A = 4A(-1) (2k)- 2 ' 	(1.8) 

admit the recursive representation	S •	 S	 • -•	• 

A,, 1 = 4AL ± 20D - C,,',	A' —0, ' A 1 =D	 • (1.9)	 •
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- c'ts:well as the explicit representation 

A 1 =(2OD - am') (4L)nm . - (1.10) 

Each operator A is formally anti-self adjoint, i.e. A* = —A,,. (Here * means the 
formal ad joint of a linear differential operator.) Further, there holds 

A,,L—LA,,[A,,,L]=O,,'.	 (1.11) 
Proof: The equations (1.9), (1.11) forthe squences(G,,), (A,,) are equivalent to 

the equations (1.6), (1.7) 1 for their generating functions a, A, respectively. Then 
(1.10) and A. ± A ,,* = 0 follow from (1.9) by mathematical induction with respect 
to n. Considering' L* = L and D' = —D we obtain in the induction step A,,1 

= ... =4[A,,L]—.4G,,'=0 I 

Our introduction of the differential operators A n is a standard one; of., e.g., 0. I 
BOGOJAVLENSKJJ [15]. A considerably older construction is dueto J.L. BURCHNALL 
and T. W. C1LAuNDY [2]; these authors directly worked with the'sequences (G,,), 

Now is the ti'me to introduce the Korteveg-de Vries hierarchy. 
Definition: Let u = u(x, t) and all objects constructed from u depend on the 

time I as  parameter. The partial differential equation for u = u(x, t) iii the Lax 
representation	 - 

•	 [A,,, L]	. ' (n = 2;3, ...)	 'S	 (1.12) 

or in the equivalent function representation 

au	a
(n=2,3,...)	 (1.13) 

is called n-th Korteeg-de Vries equation. The sequence of these equations is called 
Korteweg-de Vries hierarchy.	 -	 • 

Let us recall that two linear differential Operators A, L depending on t as a parani-' 
eter form a Lax pair if 

aL 
-	=[AL]ALLA.

 at 

Here aL/at is defined by the Leibniz rule 

-	 aL	ay' 
at	at - 

Particularly, for L = D 2 + u the' operator aLlOt is the multiplication by au!at; 
hence (1.12) and (1.13) are equivalent.	 - 

Example: The sequence (G,,)begins as 

0=1/2,	01=u,	G2=2+3u2, 

GI 
•	

= u4 + 10uu2 + 5u 1 2 + 10u,	-	 - 

•	 •4 = u8 + 14uu4 +,28u1u3 ± 21u2 2. + 70U2 
U2 ± 70uu 1 2 + 35u4. 

/
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These expressions are given in [4, 11, 14] and in other papers. The sequence of 
differential operators (A n ) begins as	 V 

A 1 =D,	A2=4D+D3u-l-3uD, 

A 3 = 16D5 + D320u + 20uD3 -4- D5(3112 -- u20 + 5(3u2 , -- U2 ) D. 

These are given in [17] and in other papers.	 V 

§ 2 Derivation oltho explicit expression 

• The times used in this paragraph has nothing to do with the timc't in the Korteweg-
de Vries hierarchy and is, therefore, notationally distinguished. 

V .	V	 V 

Definition: The fundamental solution K = K(x, x, s) 
of 

the heat equation 

aK .=LK=D2K+uK  
as	 V	 V 

or, shortly, theheat kernel is defined for s > 0 and x, x0 € 1, where I.	R is some 
open interval. Moreover, the function	.	 V 

H = H(x, x0 , s) = (4s)1/2 exp( _xo)2) K(x, x0 , s) 

is required to admit a sniooth extension to s	0 such that . H(x, x0 , 0) = 1. 

Proposition 2.1: If u = u(x) is defined and smooth in some interval, then there 
exists a subinterval 1 and a heat kernel K.= K(x, x0 , s) for x, x0 € I and s > 0. This 
is uniquely determihed, smooth and symmetric in its arguments x, x 0 , that means 

K(x, x0 , ) = K(x0 , x, s)	-	V 

The corresponding function H = H(x, x, s) satisfies	 .	V 

•	.[(x_x)D+s]II=sLH.	 '(2.2)as 

For the prof of existence, unicity, and.of further properties of K we refer' to 
the literature [1, 12]. in fact, the constzuction of the heat kernel works for quite 
more' general second-.order differential operators L. in our case, the formula (2.2) 

- is equivalent-to the heat equation (2.1).	.	 V	 • 

The follow'ing.proposition is essentially due to H. P. MCKEAN and P..vAN MOER-
,BEKE [11]. Our proof is a simplified . version of that in [11]. 

Proposition 2.2: The "diagonal values" ll(x,.$) := H(x, x, s) obey	 V 

2(25 _ - 1) .DH(xs) = s(D 3 + 2Du + 2üDH(x,$).	 (2.3)

Proof: We apply the operator D 4-3D0 to • 

[(x_'xo)D4-s-_]H=suI	 -
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and, analogously, the operator D0 + 3D to 

{(x0 —x)D0 +s_-]H=sLoH; 
where	 S 

D = -i--,	D0 = --,	L = D2 + u(x),	L0 = D02 ± u(x0). 

The second equation-for H = H(x, x0 , s) follows from the first and froni the symmetry 
in x, x0 . We add the results and restrict then to the diagonal x = x0 of I x I. The 
identities	 - 

(1? + 3D0 ) (x - x) D + (D0 + 3D) (xo T x) D0 

= —2(D+ D0 ) +(x - x0 ) ( D2 - D02), 

(D + 3D0 ) D2 + (D0 ± 3D) /)2 = (D + D0)3 

are taken into consideration as well as the rules 

[(.D + D0 ) y] (x, x) = d[y(x, x)],	[(D + D0 ) 3 y] (x, x) = d3 [y(x, x)], 

for two-point functions y = y(x, x0), where d = d/dx denotes the total derivative 
with respect to x. We arrive at . 

2 (
2s	--- i) dH(x, x, s) = s(d 3 + 4ud + 2u 1 ) Ff(x, x, s), as 

wlIich is equivalent to (2.3) I	 - 

The following classical construction is connected with the names S. MINAKSHI-
SUNDARAM and A. PLEIJEL [12]. 

Proposition 2.3: Leta sequence of two-point quantities H,, = I-1,,(x, x 0 ) (n = 0,1,...) 
be defined by	. 

[(x —x0 )D + n]H,, =LH,,_ 1 for n >1,	110=1.	 (2.4) 

With ,this there holds the 'asymptotic expansion 

H(x-x0,$).H,,(x,0)s' for s	+0. 

For a proof cf. [1, 11, 12]. 

In fact, the differntial-reeursion equation system (2.4) has a unique smooth 
solution Ii,, = H,,(x, x0 ), (n , = 0,1,...) in Ix I, I here denoting the domain of 
definition of u, which is recursively given by 

•	.	. H,,(x, x0 ) 
=

A-'(L,,_1) (),x. +(1 - A) xo) d2 for n	. 

This can be directly verified or already follov's from classical considerations by 
J. HADAMARD [6] for more general second-order differential operators L. We will 

-	call, following [5], the II,, = iI(x, x0 ) (n = 0, 1 ......"Hadanarcl's coefficients". 
S	 Proposition 2.4: The one-point quantities	 - 

H,, = H,,P(x) := (DPH,,) (x, x) for p, n 0	 -
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derived from the two-p Qint quantities H = H(x, x0 ) obey the algebraic recursion system 
P  

(p -f- n) HP = H: +	
/,\ 

E	up_qH_1 for n	1 ': H0 = 60 . (2.5) q=oq 
As a consequence, each H P for n ^! 1 is -a differential polynomial in u, that means a 
polynomial in'u, u 1 , u2 , ... with constant coefficients and without an absolute term. 

Proof: We apply DP = (a/ex)P to both sides of the equation (2.4) and restrict 
then to the diagonal x = x0 -of I x I. Throughout the paper âP denotes the Kron-
ecker symbol 
U 

•	Proposition 2.5: The diagonal values of Hada'mard's coefficients are proportional 
- to the quantities G of § 1, more precisely	 - 

2(n!) G[u] (x) = (2n)! 

	

n (xx) /or n	0.	 (2.6) 

Proof: The equation (2.3) for 

H(x, s) = _Y H(x, x) s

	

-	- 
implies the differential-recursion system	 - 
-	

2(2n - 1) DII°, 1 = (D3 + 2uD + 2Du)	'H00 = 1. 

The comparison with  

DG I1 = (D3 ± 2uD+2Du) G, -	= 1/2 . 

shows (2.6) by mathematical induction. The sequences (H°), (O n ) are uniquely deter-
mined by the above recursions and by the additional property of being differntial 
polynomials in u U	-	 - 

In the following, we use the notations 
S	

u0'= u,	U-1 	0,	u_2 = 1,	c(p, q) -= (P) + P2 

for integers p, q	0.	 S	 - 

Theoren\: There holds for ii > 2	 . 

	

= E f(q 1 + n) (q2 + n - 1) ... ( q + 1)]'	 -, 
........q,,	• 

	

x c(q 1 , q2 ) c(q2 , q3 ) ... c(q_ 1 , q) -	- 
-	 x	... uq_,quq ,	-	 (2.7) 

where q 1 = p and where the sum runs according to

-	(2.8)	- 

	

-	- • Corollar y 1: There holds for ii ^ 1	- •	 . . 

Hj	- = (n!)-1 (2n +P_ 1)_i 
u2+_2 + '	-	 (2.9) 

14 Analysis Bd. 7, Heft 3 (1088)
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where the points ... indicate terms in u of lower order and higher degree. Further, there 
holds for n > 1 

Hn[(ri+1)(ri+r2+2)...(ri±.+n+n)]1 

•	(	UrUr, ... Ur. +	 (2.10) 

- where the sum runs over all integers r 1 , r2 , ..., r	0 such that r1 ± r2 +	+ r = p. 

and where the points... indicate terms of lower degree. The symbol(
	r, ) 

= p!f
(r1 ! ... rn !) is the usual polynomial coefficient.  

Corollary 2: There holds for n	1 

nH° =	n - 1)(q3 + n 2) ;..(q + fl]1 

X c(0, q2 ) c(q2 , q3) ... c(q_ 1 , q) U_qUq_g ... uq __ q0uq ,	(2.11) 

where' the sum runs over all integers q2 , q31 ..., qn according to (2.8).	 - 

Proofs: With our special notations the recursion system (2.5) can be formally 
simplified to	I•-

p+2 
HP = ^' (p + n)' c(p, q) up _ qH_ j for n = 2, 

	

q=O	 . 

HOP-	= 0P ,	JJ = (p -j- 1) u. 

Hence (2.7) follows by mathematical induction with respect to n. The first assertion 
(2.3) of Corollary 1 is better shown by a mathematical induction directly applied 
to (2.5). The terms of maximal degree in IJ,1' appear for 

r := q1 — q2	0, ..., r2 :=	- qn	0, r1 := qn	0, 

c(q1,q2)=(:)
	

c(q2,q3) 
= 

(q),
I 

-	c(q1, q2 ) c(q2 , q3 ) ... c(q 1 , q) = (	
q1

r, r2l . 
. 

r.) 

This gives the second assertion (2.10) of Corollary 1. In order to obtain Corollary 2 
we have to insert into (2.7) the particular value p = q1 = 0. Our formulas (2.6), 
(2.11) together give 'the explicit expression for G quoted in the introduction U - 

Example: There holds	•	 -• 

(p+ 1 ) H I P =up ,	 • 

S •

	 (p+1)(P+2)(P+3)H2(P±1)Up+2+(P+3)(P)uqup-q. 
qoq 

J.,E. LAGNESE [7] explicitly calculated H,P too' in this fashion; we omit here, this 
lengthy expression.	 -	- 

/
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 3 Other properties of the differential polynomials 

The following notions have been introduced in [13] and are useful to describe differ-
ential polynomials associated to the Korteweg-de Vries hierarchy. 

Definition: A (differential) monomial 
cuk.u1k, 

with integers p ' 2^ 0, k0	0, ..., k_1	0, k.	1 has the order p, the degree 
•	d:=k0+k1+...+k, 

and the weight	 — 

w:=2ko+3k1+...+(p+2)k. 
A differential polynomial has as its order, degree, weightthe maximum of the orders, 
degrees, weights, respectively, of its nionomials. A differential polynbmial is called 
homogeneous if all its monomials have the same weight.	 S 

Proposition 3.1: The differential polynomial .FI P for n	1 is homogeneous .o/weight 2n + p, has the degree n and the order 2n + p - 2. The differential polynomial 
0,, for n	1 is homogeneous of weight 2n, has the degree n and the order 2n - 2. 

The proof is done by mathematical induction with respect to n I 
The dependence of our differential polynomials on the variable u = u0 is fully 

known.	 S 

Proposition 3.2: There holds for n	1 

	

(n ,-12\ 
U,, 7 	) (4u) m [ Om]uo,	 (3.1) 

	

m=O 	- m	 -	 - 

•	H,,	- rn)!]' U"m[Hm PJUO .	 (3.2) 

Proof: We define 

	

= ü(x,x0) = u(x) —.u(x0 ),	Ic = k(1 + k2u(x0))112 

and indicate objects belonging to ü, k+ by . There holds O = 0 because this gen-
erating function depends only on i + k2 = u + Ic2 . Inserting	• 

•  
(n 

(2k)- 2 ' =	+ m - 1/2) (_4u(x0 )) m (2k)-2(n+m)-1 S 

?n=o	m 
into

00	 00 

O(-1) 
(2k)_2n1	EG,,(-1) (2k). —2n-I	-	-. 

n=O

we obtain	 S 

	

-. 

On
( ) 

(u(xo )) m m ,	 S 

which is equivalent to (3.1). Theheat kernel transforms as	 • 

K(x, xo, s) = e"R(x, x0, s). 

14	-	 -
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Herefrom follows, step by step, 

H(x, x0 , s) = eu(8fl(x, x0 , s), 

H(x, x0 )	 - m)!]' U(Xo ) n—m fl 1 (x, x0), 
m=O  

Ii(x)	 - m)!]	(Xo)mHrnp(Xo). 
m=O  

The last formula is equivalent to. (3.2) I 

Proposition 3.3: Thre holds for n ^ 1 

I(p 
2n-2\ 1

Gflu2fl_2+	'(3.3) 

p+q n4 - 

where the points ... indicate fo	3 terms of degree greater than 2 and of order less 
- than 2n - 5. As a consequence, we have for the right-hand sides of the Korteweg-de Vries 

hierarchy	- 

a	 12n-1\ 

	

On	U21 +	'. (	J UpUq +	 (3.4) - 
vX	 p+q2n-3 \P T J- I 

• The sums in (3.3), (3.4) begin with j = 0 and end with q = 0. Further, there holds 
for n>6.

0 =30u-+ 10 (n) u 2ü2 + 3 
( n

) 
u 3 (u4 ± 5u12) 

± 6
 (n) 

u 4 (4u 1u3 L- 3u22) + 110 (n)'4._',u,2u'. 

- + 75 
( n

) 
uu j +	 (3.5) 

where the points ... indicate terms of degree less than n - 2. This expression is ao 
valid for n 0 -if terms with negative powers of u are formally omitted. As\a conse-
quence, we have for the right-hand sides of the Korteweg-de Vries hierarchy • 

60 
(2n)_l .- 

G = 30nu'u 1 ± 10 (n) —2 U3
 

± 3 () u 3 (u5 ± 20u1 u2 ± 5u13)  

-	
•	

+ 12'() u"(3u14 + 5u2u3) 

- + 10 () u 5 (23u1 u+ 31u 1 u2 2 )	• 

	

-	
(n) Un-GU'3 U2 +:.	•	 •
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Proof: Let L. clenote'the linear part of5O and Q the quadratic part, respectively. 
These obey the differential-recursion system ,	 .,	 . 

L +1 = D2Lh ,	L1 = 
= D3Q ± 2(D +.uD) L, Q2 = 3u2 

Mathematical induction shows 

	

-	 Q =	
{(2n _2) + (_1)P} upuq .	- 

/ 

	

p+q=2n	p + 1 

All other terms in G must have an order less than 2n - 5. Considering 

4fl—m 1n— 1/2\	12n5\ In \ (2m)_-' 
(( In—m/ \n/\m/m 

we rewrite (3.1) as 

2n'	' 

  " 
(2m)-1  (

	
n—m[Q]	 . .	 S 

m=O m	m 

and insert herein	 . 

= 1/2,	= u,	'G2 = u2 . + 3u2, 

	

'	
[G3],j0 = u4 + 5u 1 2 ,	[G4]=0 = 28u 1 u2 + 21u22 +..., 

[05 ] 0 = 462u 1 2U2 +...'	[G6]-=O = 1 155u 1 4 +..	. 

where the points indicate terms which do not contribute to (3.5). The result (3.3). 
is due to P. B. GrLREY [4], who established it by a quite other method, not being 
aware of the relation to the Korteweg-de Vries hierarchy I 

More 'properties of the sequence ( Ga ) can be found in the literature [3, 8-10, 16, 
17]. In [16] . it is shown that 

•	

-	

Gn+1 = O +i =2(2n	1) G • ,	 ,	 .5 

where  

•	
S 

•	denotes the, variational or Euler-Lagrange derivative. For each couple of integers 
m, ii ^ 1 the quantity Gm is a conserved density' of the n-th Korteweg-de'Vries 
equation u = & [u] [3, 9, 10, * 16].	 5	

S 

We will finish with a formula which merely follows from the symmetry property 
H(x, x0 ) = H(x0, x). The proof runs along the lines of [7] and will, therefore,' be 
omitted.  

- 0	 Proposition 3.4: There holds for integers n	1, k	0 
2k	 1 

2H' =	2k+ 
D	

( + ) 
(_))2k_ 

q	 S	

S 

qO	
S	 S 

As a consequence, H 2 ': can be expressed as a linear differential expression in H,°, 
• 

• ll2, ...) H2k.
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The relevance of the quantities G,1 (n = 1, 2, .0..) for the theory qf Huygens' 
• principle is discussed in the paper [14]. lithe wave-like operator in 2m ± 2 dimén-

sions	
32	 2m+2 32 

1=2	Xg 

is a Huygens-type one, then G[u] = 0 for n m. 
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