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On the Spectrum of. Schrodinger Operators at the Half Space 
with a Certain Class of Boundary Conditions 

-M. SCILRöDER 

Es wird das Spektrum von freicn Schrodinger-Operatorcn auf dem Haibrauni mit Randbedin-
gung q - Qt-p = 0 . (q,, ist die Normalableitung, Q cin seibstadjungierter Operator auf dem 
]Rand) untersuchtund ein Zusammenhang zwischen seinem negativen Ted und dem Spektrum 
einer Familie von Operatoren vom Klein-Gordon-Typ hergestellt. 

PaccMaTpnBaeTcn cncI-Tp cno60HbIx [upeuaiireponciiix oneparopon iia noiiynpocTpaucTae 
e rpaF111 1 111blM yc.noBueM. 97. - Qçv = 0 (3ecb 4P,, o6o3uaaer uopMaiIhuyio npOH3BO)HyIO, 
a Q - 11OTObI caMoconpaxeI1IIIIt1 onepaop Ha rpaHuue) 11 ycTaIIanJnIBaeTcH cRam Me-ly 
ero 0Tp11ILaTenb110f 'iacmio ti cne[ITPONI cesieüc-rna oneparopoB Tuna l-leflhIa-FopJotIa 

The spectrum of free Schrodinger operators at the half space with boundary condition 
- Qt-p = 0 (q being the normal derivative, Q a seif-adjoint, operator at the bpundary) is 

investigated and a, connection between its. negative part and the spectrum of a family of 
KleinGordon type operators is stated. 

0. Introduction 

For the understanding of surface effects it is useful to consider the motion of particles 
in domains with position-dependent -boundary conditions. In the one-dimensional 
case it has been shown that the operator H = —d 2/dx 2 with boundary conditions. 

= q(0), q € R, is the norm resolvent limit of —d 2/dx2 ± nV(nx) with Neu-
mann boundary conditions for n -* oc, where V is an L 1 -function satisfying 

fV(x) dx = q (see [1]). One can conjecture that an analogous property holds in 

the multidimensional case, when H0 = —LI in L2 (R	X- R + ) with boundary condi-
tions a1a 12 I = where Q is a multiplication operator representing the 
action of boundary forces. However, in this paper we 'will not restrict ourselves to 
multiplication operators. Thus our results may be applied to the case of non-local 
boundary forces too. A detailed analysis of HQ with convolution-type operators Q 
will be provided in a forthcoming paper [7]. Our main result, the statement of a 
connection between the spectra of HQ and KQE = ( —Id - E) 1 /2 + Q in L(ll1), 
E <0, is formulated and proved in Section 1. This connection enables us to make 
use of the theory of pseuclodifferential and, particularly, Klein-Gordon operators, 
which took a rapid development in the recent years (see, e.g., [4, 5, 10-12]). Sec-
tion 2 contains two propositions on the applicability of our Theorem for certain 
classes of functions Q. The last Section 3 is devoted to the proof of some technical 
lemmata. Applications of the results of the present paper will be published in [2, 
3, 8].	 -	-
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i. The main result 

In the following we will use the notations 

R+n= Rn—I xR+, 

for the norms of L2 (R+ ), L2 (R 1 ), resp., 

LI, LI' for the Laplacians in R,", R', resp., 

-	'.HQ= —LI,.	 . 

• .	 D(HQ) = (99 € L2 (R±"):LI9 € L2(4),	T	. 

l.i.m. (e/a2) 9(x 1 , ...,x.-I , h) € L2(R—'), 
h\O 

•	 l.i.m. Q(x i , ..., x_ 1 , h) € L2(Rn_1), 
h\O 

l.i.m.	:_	= O},	-	 (1) 
h\O 

	

= (—LI' - E)" 2 .+ Q.	 .	 (2)

(p x) = (2)(  _, )t2 fe	(y,x) d'y	 (3) 
R. 

. .
	 for the Fourier transform over the first n -- 1 variables. 

Now we can state 

Theorem 1: Let Q = Q* be K00-bounded with a relative bound less than 1. Then 
(i) . H, is self-ad joint, 
(ii) JO, oo)	a(H0),	 . 
(iii) 0 > E € a(HQ ) ill 0 € 7(KQE), 
(iv) 0 > E € a(H Q ) if/ 0 € c1 P p(KQR),	. 
(v) 0 > E€ 7ess(HQ) ill 0 € O• CSS(KQE),	.	.	. 

•	 .	 • S •	

S	 •_S 

where a, a, and Cess denote the spectrum, the pure point spectrum and the essential 
• spectrum, respectively.  

Proof: (i) D(H0) is dense in L 2(R."), since C0 (R,")	D(HQ ). Equipped with 
the norm	 S	 5 

IIIk = IIII ± IIL Ij +	 + 
S	 -	

.	 h'-.o	 . 

• . C0(R")\can he completed to a Banach space MQ which contains D(HQ). Since 
D(H0 ) is the kerilel of a continuous map from MQ into L2 (R'-'), it is closed, and so 
is HQ . From Gauss' Theorem (cf. [6]) it follows that HQ is symmetric. On the other 
hand, it is well known that (HQ ± i) C0 (R') = L2 ( R+ n ), which implies (i). 
• (ii) can be verified by taking C 0°°-test functions, which approximate plane waves. 

(iii) Here we need some technical lemmata, which we will prove in Section 3:, 

Lemma 1: Let 92 € D(HQ ) and q =	Then, for E.< 0, 
•	

•	IRH — E) q,11	21/2 IIK 'EKQ E4'I!'	•	 .	
. -	

I (4) 
and	'	 '-.	 -	,.	 -	•	S 

•	

•	 S	
-	

-	
91/2. jK 2 IL!	—- II(H —E)	I .	•	 (5)
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Leiu ma 2: Let 4) € D(K'J, E <0. Then there exists a /unction q € D(HQ ), with 
q'Lz,,=o = 4), satisfying 

II(HQ - E) q,11 	21/2 II K ' KQ.4)II'	 (6)
and 

•	 IJwIJ - 21/2 IIKWII'	
2(—E)3/4 IKQE4)Ij	 (7) 

•	Lemma 3: Let A = A* and 0 E (A). Then for all B,,B2 , with 
a) B1 and B2 * relatively bounded with respect toA, 
b) B2 -' bounded, 

it holds that 

0€ i(BAB2).	-	 (8), 

Now we continue the,proof of Theorem 1/(iii).	
I 

J. Let 0> E € c(H0). Then there exits a sequence (k) D(H0) with j kII = 1 
and I(H0 - E) 99kII - 0. Let 4)k = klz0 o and Vk = 2_ 1 /2K 2 4)k . From (4) it follows 
that 

• S
	 IlK O . E KQEK/v'k Ij' ' '--ll(HQ - E) kII -O, 

While IIkII' - I due to (5). Thus 0 € a(K'KQEK) and hence (since K	> (—E)114

> 0), 0 € a(KQEK ,'). Since the assumption' on Q imp1es D(KQE) = D(KOE), and 
thus D(KQEK) = •D(K), there exists , a sequence (k')	D(KIII 	Ik j I' = 1, 
such	K that JKQ ' k 'IV -* 0. Now let 4)k = Ky''. We obtain  

IKQ '. 4k 'II'1II4)k 'll' = IlK0 EK	kII/IIKkII	E)h/4'	0 K0 g[ - 0, 

and therefore 0 € a(K0).  

2. Suppose 0€ c(KQE), E <0. By reason of the Closed Graph Theorem, the as-
•	sunption on Q yields that K0 and, all the 'more, K 112. are K05-bounded. Thus O,E

Lemma 3 implies 0 € (KKQEK'). Hence there exists a sequence (V'k) L2(4"') 
= 1	 •	'	 '	 - such that IIPkII	and  

II KKo.EK kII ' -^0.	 (9) 01 12 

Now we set 4)k 
= 2 1I2Kpk . ACcording to Lemma 2, there exists a sequence (k). 

D(H0 ) with kIx=O =4)k We get jklI - 1 (it follows from (7)) and I(HQ - K) TkIl 
-^0, which proves K € (H0 ).	 S 

(iv) 1. Let 99 € D(H0 ), IJ,,q = &p, K < 0. Thus 4) satisfies the differential equa-
tion —4)(p, x)/ax2	p 1 2 4)(p, x) = E4)(p, x). Therefore 

4)(p, x) = exp (_1p1 2 - K) 112 x) 4)(p, 0).	• 

Define t(p) = 2Sh/2(Jp2 - E) / 4)(p,,0). Then ip € L2 (1V' - ') ft'll' =	and, ac-
cording to(1), KQ . EK'?P = 0. Thus Ko' p € D(K0) 

=' 

D(KOE),hence4) = 2112Kj 

=	 € L2 (R'), and K04) '0.	•	 S 

2. Suppose 4) € L2(R-'), KQE = 0 and 4)(p, x) = (p) exp (—Ip 1 2 - E)112 x),. 
Then € D(H0 ) and HQ. = E, with 1 19,11 :5 2 I2(—E)- 1/4 I14)1I'.	 ,
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(v) By choosing the 1Pk in (9) orthonormal one proves F € aess(Il) for 0 € ae,s(KQE). 
The analyticity of KQ,E and (iv) imply F € adISC(HQ) for 0 € aaISC(KQE) I 

Remarks: I. One could expect that HQ will be self-adjoint for all such Q, which 
define a self-acljoint operator KQE , but, however, this still remains to bei . verified 
generally; 

2. It is remarkable that, in the case of a multiplication operator Q,-the boundary 
values of the negative energy wave functions of HQ describe relativistic particles 
moving along, the boundry in a potential field Q with a rest mass corresponding 
to the binding energy —E. 

2. Examples 

In this section we state some classes of functions Q which are K00-boundcd (as 
multiplication operators) with a relative bound less than 1. 

Theorem 2: Let Q €L(Rm) + L(Rm), with p = 2 for m = 1 and p > m for 
m	2. Then Q is infinitesimally small with respect to K00. 

• Proof: Let € C0 (JIm ), 2 q <,2m/(m - 2) for m > 2 and 2- q < 00 other- 
wise, 1/q + 1/s = 1- (hence s > 2m/(2	m)). The Hausdorff-Young inequality 

I yields
114>11 q8	Cl IlIs	C' I 1J(u) dtmu 

c fu12 + fl_812 I(I u l + 1)112 (U)I dtmu

< c1 (ju 2 + 
1 ) - .112

1121(2- II( u i 2 ± 01/2 (u)12. 

= c2 J(ju1 2 +l) 2 I!28, 

and hence 1 1011, < c3 iI(1u 1 2 + 1)112 1I2 . Let cj(u) = rm /8q(ru) . Then we get 

1411.1 = iira ;^i C4 iI( 1u1 2 + 1)1/2 rii2 

C4(f(IU12 + 1)r2m 13 (ru)1 2 dmu)1/2 

= C4(r2mIim f (1u12 2 + 1) (u)1 2 , dmu) 1/2	- 

^ c4r 112 -' Il Ko.00112 + c4tmIS_m/2 II112. 

The first terni tends to zero when r tends to infinity. Thus, for all positive a, one 
finds a positive b such that 

IiI!q	a liK00412 + b I1I12	 (10) 

Now we suppose Q = Q1.± Q21 where Q, € L(Rm) (p > m), Q2 € L(Rm), 0 € D(Q) 
o D(1( 0 ). Then IiQcbI12	11Q14112 + 11Q21 114112 . Onthe other hand, 

211	Jj lIQ1II2	(f iQi2 dmx)1/2	(IiQ	2IIt)II2 Ip/2 

where 21p + 11t .= 1; hence 11Q14112	IlQiiipIiiI2. Since p > m, we obtain 2/ < 2m/ 
(m - 2). (If rn = 1, we set p = 2 and / = oo.) Finally, we get 11Q4112	!IQii 
x (a 11 K0.00112 '+ b 114112) + 1 IIQ211 114112	1
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Theorem 3 [4, 11]: Let Q =Lt I x  Rm, with 0 <a 1.Then 
(i) if a <1, then Q is infinitesimally small with respect to K00 , and 
(ii) for a=l, Q is K00-bounded with a relative bound Cm = 1/(m/2 - 1). 

Consequently, Theorem 1 will be applicable when Q = —ClxL 1 , with C .< (n - 3)/2. 

In analogy with [7: Theorem.XIII.96], one can get the following criterion. 
Theorem 4: Let Q be a uniformly local L(11m)function with• .p = 2 for m = 1 

and p > m for m 2. Then Q is infinitesimally small with respect to K00.. 
Proof: Given a real number r ^ 1 and a measurable set C < Rm,denote llilr,C 
lI!lLr(C) Let%Ck , Ck' (k E Z m) be the cube of that x ERtm for which jx - k11 ;51/2 

(3/2, resp.), i = 1, . ..,-m. ForQ as-in the assumption, we define IIIQIII = sup {IIQIIp.ck: 
k E Z m}. We note that, for € D(K00), tiieParseval identity iniplie 
•	IlK.0vII2 = IlVv,112;	 .	 (11) 

Now, let ,j € Co(Ck'), with (x) ^ 1 and ?1(x) = 1 for all x E Ck, and let q = 
(p - 2). Using (10) and (11) we obtain 

II4Iq,Ck	I?4q	a 11 K0.0( ,7(h)112 ± b I174)11 

= a 11 V ((k)I12 + b 1114)112	a ftij V4 2 •	
a 114) VnIJ2. 4- b 11174)112 

Il V4)lI2,c ± (a lI V iIl ,+ b) 114)112,Ck '	a IIV4)II2Ck' + b' lI4)2.c. 
Thus, we get 

IIQ4)1122 = E IIQ4)Il.ck	.^' IIQII,c ll4)II.ck 
k	 k	 - 

IIIQIII 2 (a IIV4)Il2.c + b' 14)I12c)2
- 

^ 2 11 IQI 11 2 Z 
(a2 II V4)IILCk. + b'2 II4II,c) 

k 

= 2 . 31 111Q1112 (a2 IIv4)II2 2 + b 12 11(h1122) 

= 2 31 I IIQI 11 2 (a2 11K0, 0012 2 + b 12 110112 2). 

The first step follows from the Holder inequality, the second uses the elementary 
inequality (x + y) 2 2(x' + y2), and the third one i , a consequence - of the fact 
that any interior polit of Ck is contained in 3". cubes C,,', jk - nI ;5 1. Since a 
can be ehoosen arbitrarily small, the statement follows I 
3. Appendix 

Here we recover the proofs of the three Lemmata used in the proof of Theorem 1/(iii). 

Proof of Lemma 1: Let (HQ - E) ip = f . Then 49 satisfies the differential equa-
tion	 - 

a'	 .	 • - 

	

0(p, X) +(p2—E)4)(p,x).=/(p,x).	 (12) 

We represent the solution of (12) in the form	/	 •	 - 

4)(p , x) = ê(p) exp(_(p2 - F) 112 x)	•	 - 

+	(p2W	1/2 f exp(_(p2 - F)' 2 Ix	z I) f(p, z) dz.	(13)
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Denoting (p)= (p, 0) and using the boundary condition we get the equation 

(p2 B)' 12 (p) + (Q)° (p)
= f	z)	

°dz = 
/ 	ex  ((p - E)' I z) 

Standard estimates imply II 2112 ( p2	E)114 P (p )II'	I/II . Thus (4) is verified. From 
(13)weget	 .	. 

1I 2. 1/2 (p2 - E) 114 (p )II' = II(p) exp ( (p2 - B)112 x)II 
I .	 00	00	 - Ii f d''p r	r	I	x - z	

2\1/2 
\ 

=,110+	- EJ 
dx j exp ( 

(p2 E)1/2) I(p) z) dz 

IIIl + 
3 11(p2- B)-1 f(p, x)II	.	 .	. 

and	 - 

11 2112(p2 - E) -114 Jj' ;5 I2'/2 ( p2 - Ey11 

+ 2- 3 I 2 (p2 --E)-3/4 f exp  (_(p2 - E)1/2 z) j(p z) dz 

112 -112(p2 	E) /4 J' +	II( p2 - E)' hi	IIi ± Il(P2 - B)- 1 /ll. 

Using the opposite direction of the triangle inequality and the bounclednss of 
(p2 - B)-' we get (5) 1  

Proof of Lemma 2: Let. E D(Kg'), (p2 - E)hI2(p) + (Q)? (p)	P(p), and 
set	 . 

f(p, x)	2(p2	)1/2 F(p) exp (_(p2 - E) 1 /2 x) .	. 

Obviously, iif(p , x)ii = 22 iiK '2EF II' .. Now we define afunction (p, x) as the unique 
solution in L2(R) of the differential equation 

+ (p2	E)(p,x)	1(p, X),	Cp, O)=4(p).	(14)

We iepresent j(p, x) as in (13) by setting, in correspondence to the initial condition 
of (14), (p )	(p) - 1/2(p2 -'E)-11/2 P(p), and get 

(p, x) = (p)exp (_(p2 E)1/2 X) +(P  x exp (—(p - E) 1/2 x). 

Using again the triangle inequality in both directions, we obtain (7) I 

Proof of Lemma 3: Suppose thatthere are positivereal numbers a 1 , a2 , b 1 , b2 
such that for all	 - 

fI.B 1 q II	a I1A9II ± b 1 1197 11 - and l!B2q11	a2 1I A97II + b2 !qj,
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and that A = .f tP(dt), where P is the family of spectral projectors of A We denote 

de. = B2 1.Ran (p, 	m.E N. For E M,,,, = 1, we get 

	

IIBpqI = (B2*B29 , q)	11B2 *B2c11	 - 

	

 a2 JJAB2-TJI -- b 2 J lBi p l 
;5 (-- ± b2) IIB2I .	 - 

Thus IIB2II ^ a 2 /m + b2 . Now we choose a sequence (m)811 that PmE '7 'm, IImII 
=1.Then 

IIB 1 ,4B2q mII ;5 a, IA 2B29 m II + b, IIAB2iII 

	

.
;5 ( a, 

+	I JB29. I I	a, +	+ b
2 --> 0 a 

In	m) (m 
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