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Es wird die quasilineare parabolische Differentialgleichung u1 = div (a(u) grad u) Alit eiñer 
konstanten Anfangsbedingung und einer Randbedingung 1. Art - betraclitet, wobei a eine 
positive analytische Funktion von u ist. Unter'gewissen Zusatzvoraussetziingen bezuglich u 
wird ein Eirdeutigkeitssatz für die Bestimmung des Koeffizienten a bewiesen. 

PaccliTpIlnaeTcn l-n3a3llJlI4lleiiIIoe llapa6ornliecKoe u4caepeH1ula.1bHoe ypaniieuise 
= div (a(u) grad u) c nOCronhIiibnl Ila q ajiblibiM YCROBneNt it rpaIlll q ili5lM YCJIOBh1M nep-
Boro poga,.npii qei a ecm no1oaI1TeJ1bHaa aIlaj ITli qecKasi 4yuu.uin OT U. [ba IICMOTOpbIMI-1 
aonoJ1llIire1bnI,iMIt npejliOnOaeHHaMlI OTIIOCIITCJIbIIO U AoHa3blBaCTCFI Teopema eJTJlHcTBell-
11OCT11 TtJlFi onpeaejieiinn HOa4ljl11ulellTa a. 

The quasilinear parabolic differential equation u1 div (a() grad u) with al constant initial 
condition and a boundary condition of the first kind is considered whre a is a positive ana-
lytic function of u. Under some additional assumptions on u a uniqueness theorem for the 
determination of the coefficient a is proved.	 - 

1. Introduction 

We use the following notations. D is a bounded region of the n-dimensional Euclidean 
space R with a sufficiently smooth boundary eD, T a positive number, Z = D 
,x (0, T), r = aD x [0, 7'). By M we denote the closure of a , set M. 9 Rn or 

R±'. Points of R. are denoted by x = (x 1 , x2 , ..., x), t is a real variable (time) 
with 0 t T. For points P = (x, t), F'. = (x', 1') E Zr we introduce the distance 
d(P,P') = (Mx - X '11 2 _ + It - t 1 j)' 12 . Using this metric we denote the space of all 
real functions which are unifoniily HölcleI continuous with the exponent a (0 <* LN 1) 
in Z- by C(Zr). By C 2+ (Z) we denote the space of all functions possessing urn- 
fornily HOlder continuous derivaties (exponent a) up to the order 2' with respect 
to x1 , ..., x5 and up to the orcler 1 with respect to tin Z-. For the precise definitions 
see [3: p. 61'].	•	 •	• 

We consider the boundaryyalue problem	'	 • 

u1 (x, t) = div (a(u(x t)) grad u(x', t))' in Z	 -•	• - 
'u(x, 0) = d (d 5constant)	 in iJ	 '	 • (1.1) - u(x, 

t) = (x, t)	 on ['4- 

with ip a given real function satisfying the conditions	-	- 

€ C(I'-),	- (x,0) = d (x € aD).	 • :	,	(1.2) 
•	Now we define	 • '	-	 •	'	I' 

• •	, v0 = min Jd, min (x, t+ 	= Max {d nax (x, t)}. 
•	 cx.OErT	S 
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We assume that v0 <v1 and thtIt a = a(u) is a real function of the iea1 variable it 
which is analytic in an interval [v0*, v i *] with v0 < v0 and v 1 < v 1 . Further let 
a(u) > 0 for all it E [v0 , v 1 ]. In this case we say that a is of the class A or a E A. 
Let the real function u satisfy the conditions 

U E C(ZT) n C 2+ (Z), u.s, E C(ZT) (i = 1, ..., n),	Ai E C(ZT).	(1.3) 

: Lastly we assume that, under the stated assumptions, for every a E A there exists 
a unique -solution it of the boundary value problem (1.1) which fulfils the condition 
(1.3). We denote this solution by it = u(a, x, 1). Using a maximum principle one 
obtains that v0	u(a, x 1) < v 1 for all (x, t) E ZT and a E . A. 

In this paper we consider the inverse problem of determining the coefficient a if 
(a, x0 , t) is known in an interior point x 0 E D for all .t € [0, T], and we prove a 

uniqueness theorem for this problem. The paper is closely related to that of S. 1)imIMEL 
[2] where the mentioned inverse problem is considered for the more simple equation 
U1 = a(u) Au. The special case where a(u) is constant can be found in S. DtMMEL 
11]. The equation it, = (liV (a(u) grad u) is investigated by S. MEYER [5, 6] for 
a(u) = b(u - v0 ) t ± c (b, c constant, 1 natural number). The last equation with 
additional information about u on the boundary of D can be found in some other 
papers, e.g. in N. V. MUZYLEV [7]. For further references see [2]. 

2. Some lemmas
'-S 

In this section we shall state some lemmas which will be needed in the proof of the 
uniqueness theorem. Let a1 E A and u11 U2 E C 2+ (Z). We. define functions /i and /2 
by

a1 (u 1 (x t)) —a1 (u2 (x,t))
if u 1 (x, 1) rl u2 (x, t) 

/ 1 (x, t)	u1(x, t) - u2 (x, t) 

ai '(u2 (x t))	 if U 1 (X, t) = u2 (x, t) 

-	 a1'(7t1(x,t)) - a 1 '(u2 (x t))
if ' u,(X, t) == u2 (x, t) 

12 (x, t) =	U, (X, t)	'u2(X, t) 
•	 S	 a1"(u2(XI t))	 if U 1 (X, t) = U2 (X I 0 

Lemma 1: One has / 1 ,/2 € C(Z).	- 
This lemma can-be proved as in [7]. 

We introduce the following notations: 

k - k/2 for even k	 k- J k/2 for even k 
(k - 1)/2 for odd k,	+ - 1 . (k + 1)/2' for odd k. 

Let 9 1 , 92 be r1eal analytic functions in an interval [c1 , c2 1. By W(u) we denote Wron-
ski's determinant 

-	g2	 S	 '	 1 (u) -  
91 '() 92 (u)	 •	•	 (2.

/
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Lemma 2: The derivatives W(k) (k = 1, 2, ...) of W are given by 

IV (k) -	 •+ b g
1	92 

	

g1 (k41) g2(kl)	' g 1 (k) g2 (k)	 - 

	

+ b2 g 1 ) :2	+	+ b	 g:(±21+)J	':	(2.2) 

where b 1 = k - 1 and b2 , ..., bk are real numbers.	 - - 
The proof can be made by mathematical induction. 

3. A uniqueness theorns	 - 

Under, the stated assumptions anti some additional conditions we obtain that the 
inverse problem of the, determination of the coefficient a has at most one solution, 
if we suppose that a(d) is known. 

Theorem:'For alla € A let u(a, , .)be the solution of (1.1) satisfying the conditions 
(1.3) and in addition the condition 

u 1 (a, x, t)	0.	((x, I) € ZT; a € A)	 (3.1) 
where the function ip fulfils the condition (1.2). Suppose that x 0 € D and h € C 1 ([0, TI'). 
Furthermore let there exist a positive number to such that h'(t) > 0 for all t € (0, t0]. 
Lastly let a0 be a positive number. Then there is at most one a € A with a(d) = a0 such 

-	that u(a, x0 , t) = h(t) for all t € [0, T].  
Proof: We suppose that there are two functions a 1 , a2 € A with a1 (d) = a2 (d) = a0 

such that	 . 

u(a1 , x0 , t) = u(a2 , x0 , t) = h(t) for all I € [0, T].	 , (3.2) 
For brevity we set u 1 (x, t) = u(ae, x, t) (i = 1, 2) and u12 = u 1 - u2 , ai s = a1 - a2. 
From

(u6), = div (a 1(u) grad u) = a,(u 1 ) zJug + a 1 '(u) (grad u 1 ) 2	(i = 1,2) 
we obtain a linear parabolic differential equation of second order for the function . U12 
by elementary computations: 

( U 12 ) 1 - a1 (u1 ) Ju12 - a1'(u1)' ((U ,) -" + ( u2 )r.) (u12), 

- [f 1 iJu2 + f2 (grad u2 ) 2] u12 = div (a 1 &2 ) grad u2 ) ((x, t) € ZT).	(3.3) 

Moreover u12 satisfies the conditions	 , S 

u12 (x, 0) = 0	(x € D) and u12 (x, t) = 0	((x, t) € f'T) .	 (3.4) 

Because of a E A, (1.3) and Lemma! the assumptions of [4: §4, Theorem 3] are 
fulfilled. Using this theorem we obtain that there exists a unique solution of the 
initial boundary value problem (3.3), (3.4). This solution can be represented by 
Green's function 0 of the operator of the differential equation (3.3). Consequently 
we have	 ' -	 - 

u12 (x, t) = f f,G(x, t, x', t').cliv (a12 (u2 (x, t') grad u2 (x', t'))) dx' dt'.	(3.5) 

16*	 1
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/ 

Because of (3.2) for the left-hand side of (3.5) there holds 

u12 (x0 , t) = u, (z0 ,0 - u2 (x t) = 0 for all I E [0, T].	 (3.6) 

The function a 12 is analytic in the interval [v0* , ;*]. From the identity theorem 
for analytic functions it follows that either a12 (u) = 0 for all & E [v0 , v 1 ], and we 
have the uniquenss of the function a, or ai2 has at most finitely many zeros in 
[v0 , V I ]. We investigate the second case Since au,/at ^ 0 in ZT, u2(x, .) is monotone 

• increasing for fixed x € D. Thus d = v0 , and we have a1 (V0 ) = a2 (V0). Hence v0 is a 
zero of.the function a 2 .By w we denote the smallest of these zeros which is greater 
than v0, if such a zero exists. If such a zero does not exist we set w = v1 . Then, for 
all u with v0 < u < w, either a[(u) >, 0 or a12 (u) <0 We consider the first case. 

•	The second case can be treated analogously. In [2] it was proved that there exists 
aT0 > 0 such that a 12 (u2 (x, t)) does not change the sign for all x. El) and all I E (0, T0). 
Nov we define T0* = mm {t, T0 }. Using h'(t) > 0 (t € (0, en]) We can see as in [2] 

• . that there exists a neighborhood S(x0 ) of x0 and an interval ('i, 12) c [0; T0*] such 
that	- 

(U2)t (X1.0 > 0 1	u2 (x, I) > V0	((x, t) ,E BTO . = S 1 (x0 ) x (11, 12)) .	 (3.7) 

From this we obtain that )
	 - 

a12 (u2 ) '> 0 and, a2 (u2 ) tlu2 + a2 '(u2 ) (grad u2 ) 2 = (U2)t > 0 

for all (x, I) E Br,.. Let W(u) be the determinant (2.1) with 91 = a2 and 92 = a2. 
Then we obtain 

div (a12 (z2 ) grad u2 ) = 12 (u2 )-'Llu2 + a 2 (u2 ) (grad u2)2 

	

W'u	.	 (3.8) 
>	2/ (grad u2 )2	((x, I) -E Br,.). -	a2(u2) 

Nov we prdve that there exists ,a real number w1 > 0 such that W(u) > 0 for all 
U € (V0 , v0 + w 1 ). The function a 12 = a12 (u) is analytic in a neighborhood of v0 and 
a12 (v0 ) = 0 Either thederivatives a4 (v0 ) = 0 for everyk, and we have a 1 (u), = a2(u) 
in a neighborhood of V0 , or there exists a natural number m such that 

a(v0) = 0	(Ic E (0, 1, ..., rn}) and a' 1 (v0 )	0.	 (3.9) 
- -

	

	We choose u such that v0 < u < th. Then by Taylor's theorem we obtain, for some 
E (v, u), 

-	
._ aj )(.) (u -'.- V0)m+I	(,n+I)	(ni + 1)! a2(u) > a 12 (u) —	(m --f- 1)!	

,	a 12	( ) 
-
	

(?t 	V0)m 1	 - 

and, because of'(3.9),-	 -'	- 

a' (vo)	lima' 1 () > 0.	- .	•	 '	 (3.10) 

W = W(u) is also. an analytic function and from (2.2) and'(3.10) we obtain for for 

•	-	W((v0) = 0.	(IcE {0, 1, ...,m - 1)),	-	 •' 

	

•	 (3.11) 
W(m)(V0 ) = a2 (v0 )	'(v0) > 0.	-	• 

For m	0. there holds . W(°) (V0 ) = W(v0) > 0. Again using Taylor's theorem, (3.7), 
(3.11) and the continuity of W(m)(u)'in [v0 , v] one can easily see that there exists 

-	 Q	 -	 -	 •
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a w 1 > v0 such that 
= W) (u2 - v0)m 

W(u2) 
	>0	(u2 E (v0 , v0 ± w 1 )).	 (3.12) 

As in [2] it can be proved that there exists a T 1 > 0 such that W(u2 (x, t)) cldes 
not change the sign for all (x, t) E Zr,. We define Ti * = mm {T0* , TI J and 
similarly as the set BT... Both 'Br,. and B,. can be chosen in such way that Br,. 

•	Then from (3.8and (3.12) . we obtain'	 S	 - 

cli (a 1 u2 ) grad.u2)> W(U2)
 

(grad u2)2 > 0	((x, t) E Br,.).	(3.13) 

Moreoyer for all (x, t) E ZT,. we have a12 (u2 (x 1 t)) > 0 and W(u2 )	0. Then if we
repeat the above consideration it ,follows from (3.1) that 

div (a12 (u2 ) grad u2)	1(u2) (grad u2) 2	0  a2(u2)	
((x, t) E ZT,.).	(344) 

S  

• Lastly we have (see 13: p. 83]) 

G(x, T1*, x, t) > 0	((f, t) E Zr,.).	 (3.15)

Now from (3.13)—(3.1) we obtain 

ff .O(x0 ,-T1 , x', t') div (a1 (u2 (x, t')) grad u2(x', t')) dx'dt' > 0. 
OD	 ¼ 

•	But this is a contradiction to (3.5) and (3.6), and thus a 1 (u) = a2 (u) for all 
u € [v0 , v 1j I	

S	 S 

Rem- ark: If we consider the class of coefficients a with the property: a is an •	analytic. function in the interval [v0*, v], a(u) > 0 and a'(u) <0 in the interval 
[vs, v 1 ], then the proof of the uniqueness theorem is very simple. 

In the uniqueness theorem we have used th6 supposition (3.1). In the following 
proposition ,we shall give sufficient conditions which imply this relation.	S 

Pr op o sit ion: Let a € A and u be the unique solution of, the boundary value problem 
(1.1) satisfying the conditions	,• 

u € C(Z) n C S+.(ZT),	u, € C(ZT )	(i = 1, ..., n),	 iJu € C(Z). 
S	

S	

(3.16) 

•	Suppose that the boundary junction fulfils (1.2) and in addition (x, . € C'([O, T]), 
0) = 0 for all x € OD, t(x, t) ^ 0 for all (x, t) € F. Then we have u,(x, t)	0 

for all (x, t) E ZT	
S	

•	 S	 • 

•	Proof: Set u t	w. From (3.16) it follows that w € C(ZT ) n C21 (ZT), and we 
have	 S -	 •	

0 

w 1 = a(u)4w + 2a'(u) gradu grad w 
• • - + [d'(u) zlu + a"(u) (grad u) 2] w • in Zr,	•	 •	 (3A7) 

w(x, 0)	0 in .D, w(x, t) = ',(x, t) on FT. The functions a(u), a'(u), a"(u), ui ,, ..., uz.

and zlu are bounded in ZT . Hence the coefficients in the differential equation (3.17) 
are also bounded in Z. On the boundary FT u.5 we have w(x, t) 0. Using a 
'maximum principle [4: p.8] we obtain 1 (x, t) = w(x, t) ^ 0 for all (x, t) € ZT I
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