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On the Analysis of a Particular Volterra-Stieltjes Convolution -
Integral Equation v T

-~

Es wird eine spezfelle Volierra-Sticltjessche Fa-ltungsgieichung, welche bei der mathematischen
- Modellicrung von Aquifer-Untergrundspeichern von Interesse ist, aus der Sicht der Korrekt-

heit entstehender Aufgaben untersucht. Ein direktes und zwei inverse Probléeme -konnen
formuliert und beziiglich Existenz, Eindeutigkeit und Stabilitit von Losungen analysiert
werden.’ . e

ViccaenyeTca YyacTHoe MHTErpasbioe ypasuenie Tina Boabreppa-CTuiTbeca, KOTOpoe BO3H-
KaeT B MATEMATHYCCKOM MOMNCJIMPOBAHMYK MOA3CMHBIX XpaHMAWIL. POPMYJIMPYIOTCA ONHA.
npavasa u iBe obparuble 3amauu. [[a1a Takux 3anay aHATHM3HPYIOTCA CYIICCTBOBAHHE, K-
CTBEHHOCTb M yCTO{YHBOCTD PELICHHI. . C :

A particular Volterra-Stieltjes convolution integral equation arising in the mathematical
modelling of aquifers is investigated. One' direct and two inverse problems are formulated
and ‘analysed with respect to the uniqueness, existence and stability of associated solutions. |

’

1. Int.r(fduction

" Let C['t_), 1] be the space of all real continuous functions on [0, 1], ||| d'esignzi-te the

associated maximum norm and also the norm in the space of all bounded linear
operators in C[0, 1]. Analogously, let C'[0, 1= C[0, 1] be the space of all con-
tinuously differentiable real functions on.[0, 1] and |-l with |lgll, = llgli + llg’ll de-
signate the associated norm (g° denotes the first derivative of g) as well as the norm.’
of all bounded linear operators from C'[0, 1] into C[0, 1]. Moreover, pq, ¥, Vpin and

 ¥max are assumed to be fixed positive values throughout this paper. Finally,. we
: |

denote by , : \

T

P = (p€CI0,11:p() > 010 < ¢ = 1), p(0) = 7l
TV =€ C0,1]: 0 < v = 9(t) S Vmax (0 S ¢ = 1),0(0) = v},
f:ueamuwm>mfmgowgzgm-'

subsets which are under consideration in the sequel. ‘
Now we are going to deal with triples B

J (v, 3) € PXYUX I = C[0,1]1% C[0, 11 % C[0, 1]
satisfying the Volterra-Stieltjes convolution integral equation ’
‘ f’x(tf,r>d9(r)=p(z)—po, =22 (Osts1, )

0 . : . i

—
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for which the following three problems are of interest:

(P1) Find p 6 P if p0' >0,veVand x € X are given!
" (P2) Findv e Vifv,>0,p¢Pand x € X are given!
(P3) Findx € X if p€ Pandve U are given! °

The purpose of the present paper is to make statements regarding the existence,
uniqueness and stability of solutions to these three problems. Thus, we are going
to decide whether (P1), (P2) and™ (P3) are well-posed or ill-posed in.the sense of
. Hadamard (cf. e.g. [7, p. 16]). : : : o

Remark 1: Triples (p, v, ) satisfying (1) arise in the mathematical modelling
of aquifers by means of the influence function method (see e.g. [2]): In this context,
the time-dependent functions p and v represent reservoir pressure and volume of
gas, i.e., the field data of an aquifer. The pore volume of the aquifer is reflected
. by the continuous function 2. Finally, the monotonic nonincreasing smooth func-
tion 2 has memory character. It is a material function expressing the response to
~ field data changes caused by the special geometry and by the geological properties
of the aquifer. . B o .
Remark 2: It is evident that changes of the function values p(t) for growing
-time ¢ are always caused by the behaviour of v(z) (0 < 7 < t). The conditions of
this causality are given by the function z. Therefore, (P1) is a direct-problem, where-
.as (P2) and (P3) are both of inverse nature (as for inverse problems cf. {4]). From
another point of view. (P1) is a prediction problem, since p is to be predicted when - -
. v is prescribed. Then, (P2) gets a control problem: How to choose » in order to
obtain the desired function p. Finally, (P3) may be corisidered to be a problem of
parameter identification (cf. e.g. [6]). : - v

- \
N

2, Intrinsi.cA properties of the oc'cﬁrring operators
N : , . ¢ -

For a given triple (lp, 2,%)€ P X VX T, the function F defined by
) ’ . . . ‘ N . B . ' ) . . .
F(p,v,2) () = [a(t —1)dQ) —p() +p, - (0St=1):
0 . . :
lis continuous (as for Q2 cf. (1)). Namely, the iﬁtegral '

t : .
[ (t —7) dQ(x)

-0

exists whenever A . oo
¢ ’ R TN : .
JR@da(t —x) = — [ 2/(t — ) Qz) dr
0 K 0 _ . - )
“exists. Thus, we can express equation (1) in the form of an operator equation
. oL : N s
F(p,v,2) =0, F:PxVUxZ —C[0,1]. . :

From the partial integration formula we easily derive that the olpérator F is con-:
tinuous with respect to all three variables p, v and z. Moreover, the equation. (1) - .

N
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may be rewritten in the form . . ° Loy -
] 2t =2 g b a0) 2 a0 ) —p 0=t=1),
»(7) - p(t) . :
o - . . (2).
%
20 = —.
Do -

Note that, for given p and v, equation (1) is a linear Volterra-Stieltjés convolution
integral equation of the first.kind wlth respect to,z.- Then problem (P3) may be
expressed by the operator equation

Cx=0, "¢ =Fpm, ). e T e 1),

Here C is an mhomogeneous linear continuous.operator. On the other hand, for
given vy, p and z, equation (2) attains the form of a linear Volterra integral equatxon
" of the second kind with respect to ». Therefore, the _operator equatlon

Bv—-O‘ B- = F(p; -, x), B:V - C[0, 1] ~

expressing (P2) is also associated with an mhomogeneous linear continuous opera-
tor .B. Finally, for given p,, v and z, equation (2)-represents a nonlinear Volterra
integral equation with respect to p. Hence, (P1) may be written as an operator
equation .

4p=0,  A-=F(,y, 2, A:3>—>"0[0 1]

A\
with nonlinear operator A. Due to (2) it can be shown that there exists a Fréchet
derivative 4'(p): C[0, 1] — C[0, 1] of the operator 4 at any point p € & such that,
for (p, v, z) € C[O, 1] X C[O 11X %, we have

x‘(O)v(t) ‘
(A (#) p) 0 = —f—— p(r) dr ( 0 +1)p(z)

0st=1). _ .

: Lemma 1: The inverse (A (p))‘1 of the operator A'(D) exists and both operalors
are um/ormly bounded wztk respectto all p € P and v € UV, where the inequalities

14’ (i’)ll <24 22(0) ol D2l (PeEPve Y, ze ) » -3
and . - . - . , ST .
L - 2(0) - . Do : 4
ll(4 (ﬁ)l) = P €PzeX) | , , (g)
hold.

Proof Let us factorize A’ (ﬁ)p = (A2 +I) ,p, where [ denotes the umt,y
operator and .

qit) = (4,p) (t) = "(x(gl( )( )+ 1) plt),  (4a0)( f k(t, z) dr,
't — ) v(r) x'(t - ) | . . .
2(0)o(r) + pXz) = x(0) .- -

0= kit,7) =
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. Here, A, and 4, are linear bounded operators in C[0, 1].‘VVe have

t/ N . . .
v = s 5 - e, ( G+ 1) 21 =
4,7 = max |2 ”
0t .
; .
4ol = md'( [lfc(t )| dv = —max fx—tw_)—ﬂ dr ='% <1i.

o=st=<1
0

Therefore, (A (ﬁ)) 1 exists and due to [[(d, + I)7Y < 1/(1 — [|4,]]) (See e.g. [5,
p- 140]) we obtain

Ia'm) ) = £

A (1 _ w0 — x(l))-' _ %0
I'A = " 2(0) 2(D)

and thus the mequalltv (4). Moreover,

HADN = 144l (14:0 + 1) = 2 + 22(0) [l ip~2)

provides formula (.3) | _ )
The factorization technique used above also helps to inv estlgate the operator B
and its Fréchet derivative B': C[0, 1] — ([0, 1] defined as

[4

(B'v)(t)=f%v(r>dr+%v(t) Osts1

\

for (p, v, ) € P xC[0, 1] x . Exploiting thé ideaé of Lemma 1 again we obtain
Lemma 2 For all pePandze L, the inverse (B ~'of the operator B exists and
we have : '
1Bl = 256(0) =3l ' ' (5)
as well as B . L , - '
B < llplfa(1). - ] (6)
Finally, let us consider the Fréchet derivative C': C'[0, 1] - C[0, 1] given by

¢ ) :
(Cx) =[x (t — 1) Lr)de 2(0 )D(t) — a(t) £, (-~

0

where z € CI[O 1] and 2 € C[0,1] with .Q( ) >0 (0 <t <1) and Q(0) = £, (for

‘the definition of 2 and &, cf. (1) and (2)). If considering the continuous function

=0t —2 _(0=t=<1) ‘ o @

-

.
we can also write

, . , _ _
(C'z) (1) = [2'(t —7) Z(z)'dr + 2(0) Z(t).+ : (8:

0

(t)Qo—x(O)Qo—,—f t—-r).Qodr
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Lemma 3: For all Q E"C[O 1] with Q) >0(0 =t 1), 20) = 2p,C": CY[0, 1]
— C[0, 1] is a linear bounded and compact operator satzsj ying the inequality

el < 2119 : : G

-~ Consequently, C" is not surjective. This operator is injective if and only if there is no
real number e > 0 such that Q(t) = Q, (0 <t < ¢). In the injective case, the inverse
operator (C’ ) ! 4s unbounded. . :

Proof: The inequality (9) follo“s from |

||0’x|| < max f |2’ (¢t — t)l O(r)ydr + max {Q( )Ix(O) + Qyz(t)} .\

- O0SIS10 . osrsn Ty
= (lle'll =+ 271i1) €21 <2IIQII IIxIII e 2

On the other hand, the compactness of C lS a consequence of formula (8). Define
t,he Operat,ors : ’

N

Cy: €0, 1J—>C’[0 1] by *(Cig)( z)_ fzu — 1) J('l’) dr

(ef. (7)) and , v N
C.: C[0, 1] - C[0, 1] by ( B =HhOED (O=t<1).

Then C, and C, are both compact. As for €, we refer e.g. to [3, p. 247]. The compact-
. ness of C, is immediately caused by Arzela’s theorem (cf. e.g. [5, p. 20]). Thus any "
- bounded subset of ¥ — C'[0, 1] is transformed into a compact subset of C[0, 1]
by applymg the operator C’. This provides the compactness of C’. However, no
compact opelator of linear type is surjective and if it is injective, then its inverse
is unbounded (see e.g. [4, p.23]). If Q(t) = Q, and Z(¢) = 0 (0 < ¢ < ¢), then the
values of z(r) and 2'(t) (1 — ¢ <.7 £ 1) do not influence C'x. Therefore C’ cannot
betinjective .whenever such an ¢ > 0 éexists. Finally, the stated sufficient con(htlon
for the injectivity of C" comes from Lemma 4 proved below 1

. Lemma 4: Let z € C'[0, 1] and y € C[0, 1] be functions so that
it
Jat —ndyry =0  (O=t=1). \ | (10)
0 ! '
Then z(t) = O (0 <t < 1), whenever there is no e > 0 such that y(t) = const (0 <¢ <z)

Proof: As already discussed above we can write

. ‘ . N .
o JEE =) e # +2(0)2() =0, 2() =ylty—y(0) (O=tX1)
0 C
instead of (10). For z(0) %= 0, this would contradict the well-known fact that Vol-
" terra mtegral operators with continuous kernels cannot-have nonzero eigenvalues
(cf. e.g. [5; p. 435] Therefore, (10) may be expressed by the. couple of equatlons

(0)_0 andf t—r)z(r)dz—O (ogzgn.

When applying Tichmarsh’s theorem in the form of [1 p- 138] we obtain « (t) =0
O0=st<1)andthusz{t) =0(0=t=<1) 1

7
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, At the end of this section we still remall\ that A , B, C are the partlal Fréchet -
derivatives

61’F(" v, (E) =Al(): avF(p) y x)___ Bl’(')7 axF(]” v, ) = C,()

of the operator F with respect to p, v and z, respectively.

3. A particular maximum principle 3
Now we return to triples (p, v, z) € # x ¥ x X satisfying equation (1). As we will"
show, all values p(t) (0 < ¢t < 1) associated with such.triples are uniformly bounded
bélow and above by a couple of positive values pyi, and pnay- These upper and lower
bounds depend on the given values py, g, min and vgay.- However, they are com-
pletely independent of the function z € Z. Such a behaviour reminds us of .the
maximum prineiple established for classes of heat equation problem’s. Thus, probleny
(P1) is closely related to initial-boundary value problems in parabolic partial differ--
ential equations. Furthermore, the particular maximum principle stated below
-helps studying the correctness of inverse problems: (P2) and (P3). On the other
- hand, it is of -particular interest for the theory of nonlmear Volterra mtegral equa-
tions. ‘

Theorem 1: Let (p, v, ) € 5’ XVUx I satzsljzng ) Then we have .

-Qmin = vmin.QO é Q(t) g -Qmax : Zmax QO (0 é t él) . . . (11)
' - Vo V% \ Vs
and '
. 7 min Umax L *
0 <lpmin - vn Po <]’(t) = pmax = 'v X Do (O § ¢ é 1) . . (12) ’
ma min P .

Proof: Choose € [0, 1] so- that Q(t) <.Q(t) 0 <t < 1): Owing to 2(t) =0
(0<t<1)wehavc : Lo

" : . ~

1

PO =70 +3(0)20) — 2 B+ [ -7) o) de |
i
= o + (0) Q(i) —x¢)90+ @ [z'@¢E—1)dr
0

=y + 2(0) 2() — 2()) Q, + Q) ) () —x(o) ;o
—p0+x(t)( ()—-Qo) = Do-
Consequently, we get the ught -hand side mequallty of (11)

A

POYLUN S P
) p(t) Do Yo
This implies, o V-
. : too(t) Vmin ' i ’
’ > 2min g 0 =e=1)
() = 2(¢) Umax Po

and thus ‘the left hand side mequallty of (12). By choosmg i so that Q(t) = Q)
(0 £t 1) the other couple of inequalities is derived in an analogous way -

~
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Thus we are able to confine our consu]emtlons in the sequel to the subset of &
(cf. (12)) ' ’

F=1{p€P 0 < Pnin < Pt) < Pruay wstsm.

We can also summarize that, for fixed z € &, the operators A'(D), ( '(p)) 1 B,

(B)~! and C' are uniformly bounded with respect to all p€ P, p € P and v €-V.

Moreover, if we consider a neighbourhood & = & of an elemént 2 € 2 such that
2(0) = Tmay and z(1) = zp;, > 0 for all z°¢ &, then these operators are. also uni--
formly boun(le(l with respect to all z N &

4. On the ‘well-posedness. of problem (P1) - ' T

. >

. _ o )
First we are going to prove an existence and uniqueness bheorem.

- Theorem 2: For any gwen py > 0,v € Vandz € I, the problem (Pl) X umquely
solvable with respect to p € P. :

.-

Proof P()r glven z€ X andv € UV we consmlet t;he operator equation
, L(p,9) = 0, p€ C[0, 1], 4 €[0,1], ' (13)

where the contmuous nonlmear operator L:C[0,1]x [0 l] — C’[O 1] is defmed bv
the formulae: : .

i

L(P: 29) (t) I; f:l:(l! - T) d vL(r')_ - p:(t) +Po

. "o-'_ . sz(_T') t
(ogzgl,ogﬂﬁg1,0<é<‘pman),,
volt) = vy + 9 (v( t) — Vo) ) pt(t)'zvmax (s 15(:))-. : -

As we have learned from Theorem 1, for any solution (p, 9)-€ C[0, 1] X [0, 1] of (13) v
we have p € &. If we introduce a set .

»ﬁ-—@€ﬁ0<e<%m—§§M0§mu+6W§téU} '

-according to a $mall positive number 9, then in view of Section 2 we can state that
L and its pmtml Fréchet derivative 9,L are umformly continuous with respect to
(p, ?) € $4 x [0, 1]. Moreover, {0,L( p,ﬁ)) ! exists and' is. umformly bouncled with
respect to all (p,#) € P x [0, 1]. Namely, we have ||(8,L(p, 9 N = 2(0)/z(1) (cf.
(4)). Finally, we a priori know that (13) has a unique’ solutlon with respect to p
if ¢ = 0. If we set vpin =y = VUmax, then it follows from Theorem 1 that Pmin = Po
= Pmax- Thus, the constant function P(t) =P (0 =t < 1) is a solution of (1) for
v(t) = v, (0 £t <1). Then under the conditions derived above a well-known
corollary of the 1mphcnt function theorem (see e.g: [8, p. 63]) yields that L(p,9) = 0
is also umqucly solvable with respect to p € C[0, 1] if-® = 1. Therefore, (P1) is
uniquely solvable with respect to p € P. In view of Theorem 1 this umqucly deter-
mined solution belongs to the subset PofP I

~ 1In order to complete the proof of well-posedness for problem (Pl), we still have
" to show the stability of solutions with respect to small changes in v-and z. For
given z € 2, let p = Pv, P: U — P, represent_the dependence of solutions p to
- equation (1) upon the element ». On the other hand, let p = Qz, Q: L — &, denote
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the dependence between p and z in (1) for gnen v €. As Theorem 2 mcllcates
both operators P and Q are umquelV determined.

Under the assumptions stated above the implicit-function theorem (cf. eg (8,
. p- 51]) applies. Thus, the opelatoxs P and Q are continuous and even Fréchet-
differentiable. We obtain . .

P'(d) = ( "(Pa))—lB' (0€V) and Q%) = (4 'Q:e))- ¢ (#e ).

Due to the mean- value theorem (cf. e.g. [5, p.-535]) these two formulae lmply Llp-
. schitz conditions stated as follows.

'

Theorem 3: Let, for given py > 0 and x € X i) Py ana? p = Py, where and )
are arbztmr y elements of V. Then,

. 2(2(0))2 ' _ '
llfb — Pl = (—“)—)'Pmm 15 — . - _ . (14)

" On the other hand let p= Q% and § = Qz jor given p, > Oand ve v, where Fand ¥
are arbitrary elements of X. Then, ’

Qmay MAX (x(O), (0)
Py min (x(l), (1))

The results of thls section show that (P1)-is well-posed in the sense . of Hadamard.
"In addition, the formulae (14) and (15) yield measures for the sensmvnty of solutlons »
with respect to pcx turbations in the data. ’

I — Bl <

il' . o (15)

5. A uniqucness and stabiliﬁy theoremiegarding problem (152)

-As we know, problem (P2)isof i inverse nature. Thus, we suspect, that it is ill-posed.
Indeed, if p € P but p ¢ P, then as a consequence of Theorem 1 there is, independent-
ly of the choice of z € ', no element v € ¥ such that equation (1) may be satisfied. .
Thus, the existence requirement of Hadamard’s well-posedness definition.is injured.
However, it is known that we-have at least one element of &, namely the constant .
function p(t) = p, (0 =t <'1), that possesses a solution v € ¥ to problem (P2) (see’
the proof of Theorem 2) From the example formulated below we will learn that
the obviously closed union set of solutions v € ¥ to (P2) over all elements p€¢ & .

is not necessarily convex. . N
. I

Example: Let us now cOnéider the extremal case z(t) =c >0 (0 < t.gel).
Then equation (1) attains the form :

N .
o) — Qo) =plt) —po (0=t =1). (16) .
- The values - - _
R ke °—} +onl” 0sesn (17)

verified from (16) form a contmuoué functlon pEP. As formula (17) shows,/p(t) '
does not depend on v(zr) (0 < v < t). On the other hand, for given p( ) >0, we
derive the uniquely determined value :

PEt) + (R —
.C

v(t) =

Po) P() pm(a +p“’ 2) osisn. s

'
P
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4

Thus, the function v may take on even negative values whenever 0< (t) < Ppo
and ¢ > 0 gets sufficiently small. Now let for fixed ¢ € [0, 1] the pairs (pl(t ) vy t))
and (p2(t), vy(t) ) both belong to the rectangle [Pmin, Pmax] X [Umins Ymax] and together .
with a pair (ps(t ), u(t)) (ps &)= (2:(t) + Dol t))/2) satisfy a condition (18) for the
dependence between v;(t) and p;(t), ¢ = 1, 2, 3. Then, it may occur that v,(t) < vmia
since v(t) is a quadratic function of p( )- . .

Now we are going t,o formulate a umqueness and stability theorem for problem - -
(P2). ‘

Theorem 4: For anJ given vo >0, peEP and z € X, there is a uniquely determmed

, v /unctzon v € C[O 1], v(0) = v,, such-that the equation (1) holds. Consequently, if the

problem (P2) is solvable with respect to v € U, then this solution is uniquely determined.
" Moreover, for gwen vo > 0and x € X, we have

( )QO + 2Pmax

o -3l < 0

pW¢ o (19)
whenever DEV and D EV are solunons of (P2) correspondmg to pe P and P e 2,
respectweiy On the other hand _for given vy > O and p € J’ we obtain'

#0) % + s = - - o
SO0 wa—ﬂl - ‘ (20)

whenever- DEV, V€V are solutions of (P2) correspondmg toze X and % e, respec-
tively. :

o — %l <

\ \

“Proof: For glven v9>0,2€ 2 andp e P, the problem (P2) corresponds to the
'equatxon -

(B'v) (t):x(t).Q +p(t)—po , (OS&SI) N

‘

" .'Due to Lemma 2 the linear operator B’ is mJectlve '1‘herefore, (P2) is uniquely

solvable if the requirement v € ¥ is weakened to v € C[0, 1]. Now consider formula - .

(2) as a linear equation with _respect to Q¢ [0, 17:
1

fx'(t —7) Q(v) dv + 2(0) 20t) = 2(t) 2o + p(t) —po (0=t =1). (21)
0 - . .

For givenz € X, let 9, O denote the slolutions of (21) according to p = pand p = p,
respect,ively Then we have (see Theorem 1 and the proof of Lemma 1)

“Q -Q“ = i — z(1 )P” and ”Q“ g 2(0) £, +(f)max — Po .

Q max X ) -
1o — ol S 101 1= 71 + 13110 — By < 2O i By

~No\v for given p € &, let .Q & denote the olutlons to (21) accordmg to £ and 5
respectively. Then o
— ' — tI !
19 — Q” < .Qo Nz — 2| £(0) 24 + (Pmax — Po)“x — 5
B “) » %(1) (1)

and fmally
0) 0 ax —
15 — 7 = 13 — By py < 0L+ Prex = o

(1) 2(1)

. ' ¢ 0

IpliE — 31, 8
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- If a solution » € VY of problem (P2) according to p € P and x € X satisfies the .
inequalities _ _ - ’ . . ’

Vmin << Min v(t), vmax > max v(t),
0stst OSlél

then the estimations (19) and (20) show that (P2) is also solvable with respect to
v € U'when the elements p and « change by a sufficiently small amount. Thus, at
least the uniquencss and stability requirements of Hadamald’s well- posedness defi-
nition are satisfied for problem (P2):

6. ‘\"otes on the ill-posédness of problem (P3)

Provided p € P and v € V are given the identification problem (P3)is expressed by
“the linear equation )

N

Cn) W =pt) ~ps OSrs1). o ©(22)

Therefore, the properties of solutions to problem. (P3) may be derived from the
- assertions of Lemma 3. It is evident that the existence requirement as well as the
st,ablllt,y requirement of Hadamard’s well-posedness definition get injured for prob-
lem (P3) since €’ is a compact linear operator of C'0, 1] into C[0, 1], .but X fails
. to be a compact subset-of C![0, 1]. As a consequence of the non-closed range of C’
the equation (22) can be inconsistent. Moreover, small perturbations of p and v
may lead to significant changes in the solution z, because the inverse (€')~! is un-
bounded whenever it exists. Thus, problem (P3) becomes an ill- posed one., How-
ever, we can formulate a necessary and sufficient condition for the umque solvability
of (P3) in the con51stent case.

Theorem 5: For given p € Pandve ‘l/ let exist a solution x € X of problem (P3)
Then, this solution is uniquely determined if and only if there is no real 'number £>0
such that v(t) = vy (0 =t < &). -

Proof: If (p, v, %) € PXUX Z satisfy the equatxon (1), then v(¢) = v (0 <t < ¢)
is equlvalent t0 Q(t) =2, (0 < t'< ¢). This is due to the maximum principle estab-
lished in. Theorem 1. Thus, Theorcm 5 mnnedmtelv follows from Lemma 3 1§

In order to identify the functlon z € £ in a unique manner, it sufﬁces to require
a non-steady state of v for an arbitrarily small initial interval ¢ € [0, ¢]. However,
in the compubatlonal identification of z based on observation data of p and v sub-
stantial difficulties arise from the instability of (P3) out]med above.

)
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