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On the Analysis of a Particular Volterra-Stieltjes Convolution 
Integral Equation 

B. .HOFMANN 

Es wird eine spezielle Volterra-Stieltjessche Faltungsgleichung, welche bei der mathematischen 
• Modellicrung von Aquifer-Untergrundspeichern von Interesse ist, aus der Sicht der Korrekt-

heit entstehender Aufgaben untersucht. Ein direktes tind zwei inverse Probème können 
formuliert und bezuglich Existenz, Eindeutigkeit und Stabilität von Losungen analysiert 
werden. 
HccJIeyeTca 4acT110e 1,111TerpaJlblloe ypantienile Tuna BoiiTeppa-CTuJ!TbeCa, }oTopoe B031-111-
KaCT B MaTeMaTH'IecKoM MogemluponauMIl n0g3eMlIblx cpaHHJ1Inu. DpMyJI11pyI0Tc1 ogHa. 

•	flHMH it gBe o6paTllble 3agaH. ,Li,i THHX 3alaq alIaJIH3Hpyl0TC$ cyn(ecTBoBaHne, egHu-
cTueluIocTb H ycT0fl4lln0cTh peweunf. 

A particular Volterra -Stieltje convolution integral equation arising in the mathematical 
modelling of aquifers is investigated. One direct and two ' inverse problems are formulated 
and analysed with respect to the uniqueness, existence and stability of associated solutions. 

1. Introduction 

Let C[O, 1] be the space of all real continuous functions on [0, 11, .II designate the 
associated maximum norm and also the norm in the space of all bounded linear 
operators in C[0, 1]. Analogously, let C1 [O, 1]	CEO, 1] be the space of all con- 
tinuoàsly differentiable real functions on [0, 1] and	with 1 g 11 = hIhI + hI g 'hh de-




signate thd associated norm (g' denotes the first derivative of g) as well as' the norm 
of all bounded linear operators from C'[O , 1] into CEO, 11. Moreover, Po ' v0 , v min and 
Vmax are assumed to be fixed positive values throughout this paper.. Finally, we 
denote by .	 . 

{p E C[0, lJ:p(t) > 0'(0	t 5 1), P(0) = Po '	 • S 

- .	

.	 V = {v E ' C[O, 11: 0< VrnIn ^5 v(t)	Vmax (0	:5; 1),v(0)= v0}, 

Y = x € C'[O, l]:x(t) >0, z'(t) ;S: 0(0	t :E^: l)}	• 

subsets which are under consideration in the sequel. 
Now we are going to deal with triples	. 

.1	(p, v, x) €	x V x I	C[0, l]x CEO, 1] X C'[O, 11 

satisfying the Volterra -S tie] tjes convolution integral equation 

f
X(t —t)dQ(r) =p(t) Po '	)  

\
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for'Which the following three problems are of interest: 

(P1) Find pE P if p0 >0, v E V and xE Yare given! 
(P2) Find -v € V if v0 > 0, p E P and x € 2áre given!	 - 
(P3) Find x€ Yifp€ P and v€ V are giveh! 

The purpose of the present paper is to make statementh regarding the existence, 
uniqueness and stability of solutions to these three problems. Thus, we are going 
to decide whether (PI), (P2) and(P3) are well-posed or ill-posed in the sense of 
Hadamard (of. è.g: [7, p. 16]). 

Remark 1: Triples (p, v, x) satisfying (1) arise in the mathematical modelling 
of aquifers by means of the influence function mthod (see e.g. [2]).' In this context, 
the time-dependent functions p and v represent reservoir pressure and volume of 
gas, i.e., the field data of an aquifer. The pore volume of the aquifer is reflected 
by the continuous function Q. Finally, the monotonic nonincreasing smooth funö- 
tion x has memory character. It is a material function expressing the response to 
field data changes caused by the special geometry and by , the geological properties 
of the aquifer. 

Remark 2: It is evidert that changes of the function values p(t) for growing 
time t are always caused by the behaviour of v(T) (0 t). The conditions of 
this causality are given by the function x. Therefore, (P1) is a direct-problem, where-
as (P2) and (P3) are both of inverse nature (as for inverse problems cf. [4]). From 
another point of view. (P1) is a prediction problem, since p is to be predicted when 
v is prescribed. Then, (P2) gets a control problem: How to choose v in order to 
obtain the desired function p. Finally, (P3) may be considered to be a problem of 
parameter identification (cf. e.g. [6]).	 -' 

2. Intrinsic properties of the occurring operators.	- 

For a given triple (p, V. x). € P x V x 2", the function F defined by 

F(p,v,) (t)=fx(t—r)dQ(t) —p(t) ±Po	(0	t S 1) 

is continuous (as for £2 cf. (1)). Namely, the integral 

f x(t - ) dQ(r) .-
'0	 f 

exists whenever  

fQ( r ) dx(t -.r) = -fx (1 - r) Q(r) dr 

- ' exists. Thus, we can express equ'ation (1) in the form of an operator equation 
N 

-	F(p,v,x)=0, -- F:xVxY->C[0,1].	 - 

From the partial integration formula we easily derive thatthe operator F is con-, 
tinuous with 'respect to all three variables p, v and x.. Moreover, the equation. (1)
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may be rewritten in the form  

J
x'(t -	dr ± x(0)	= x(t) Do + p(t) - Po ,	

1), (2) 

go	'0 
Po	 S 

Note that, for given p and v, equation (1) is a linear Volterra-Stieltjés convolution 
integral equation of the first, kind with respect to,x. Ther problem (P3) may be 
expressd by the operator equation  

Cx=O,	C.=F(p,v,.),	C:IC[O,1].	 . 
Here, C is an inhornogeneous linear continuous, operator. On the other hand,-for 
given v0 , p and x, equation (2) attains the form of a linear Volterra integral equation 
of the second kind with respect to v. Therefore, the operator equation 

Bv=O,,	B.=F(p;.,x),	B:V—>-C[O,1]  
expressing (P2) is also associated with an inhomogeneous linear continuous opera-
tor B. Finally, for given Pa ' v and z, equation (2) 'represents a nonlinear Volterra 
integral equation with respect to p. •Hence, (P1) may be written as an operator 

•	equation  

•	Ap = 0, ' A . = F( . , v, x),	A: 	C[0, 1] 

with nonlinear operator A. 'Due to (2) it can be shown that there exists a Fréchet 
derivative A'(): C[0, 11 -* C[0, 1] of the operator. A'a.t any points P E P such that, 
for (p, v, x) E C[O, 11 x C[0, 11 x 2, we have	 0 

(A'()	
()	 f 

X(t	v(t) p(r) dt -, (x0)vt) 
+	p(t) 

•	 S	 (0t1).	S 

•	
, ' Leni ma 1 The inverse (A'() ) -1 of the operator A'() exists and both operators 

are uniformly bounded with respect 'to all p E P and v E V, where the inequalities	
S 

IIA '()Il :5 2 ± 2x(0) IIv II I 2 II	(P E P, V E ?, x € 7)	•	 •	(3) • 

and	-	•	 S	 •	 , 

•	II(A'P)-'II	•	(	 x € .2")	
:	.	

•	 (4) 

hold.	•	-. 

Proof: Let us factorize A'()p = (A 2 + I) A 1 p, where I denotes the unity 
operator and	 0 

q(t) = (A 1 p) (t) = L(x(0)v(t) ± 1) p(t),	( 2q) '(t) =1 (t, x) q(T) ar,' 

0	r)	x'(t - i) v(r)	X' (t - r)	•. •	 ^k(t,=	 -	.•	 ' 

• •
	x(0)v(i) + p2 (r)	x(0)	•	

5	

•.'
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Here, A 1 and A 2 are linear bounded operators in C[0, 1]. We have 

11 A 111 = max	= max. (x(0 ) v(t) + 1)	1 + x(0) [v ii II2Ii, 
oi p (t )	o 	(t) 

iA 1 'ii = max	<1, 
-	o€	q(t) 

11 A 211 = max , I k (t,	dr = —max f 

X(t — 
d 

= x(0— x(1) 
-•	 x(0)	 x(0)	- 

-	-	0	 0 

Therefore, (A'())-' exists and clue to ll(A 2 +I)_ 1 1	01 — 1A 2 11) (see e.g. [5, 
p. 140]) we obtain

<	1A1-111 
< 

(1 — x(0) - x(1) 
\-' 

l!A 2I	 x(0) 	x(1) 

and thus the inequality (4). Moreover,	 S	 - 

IA '()[	IA H (11 A 211 ± 1) ;5 2 + 2x(0) IIv iE iiP-2H 

provides formula (3) I 
The factorization technique used above also helps to investigate the operator B 

•	and its Fréchet derivative B': C[0, 1] —± C[0, 1] defined as 

	

•	 (B5v)(t)fiuT) v(r)d+	v(t)	 1)	- 

0 
-1

for (p, v, x) € P x C[0, 1] x Y. Exploiting the ideas of Lemma I again we obtain 
Lemma 2': For all  € and x E Y, the inverse (B')'o/ the operator B exists and 

we have 

	

-	 1IB'II	2x(0) 11p111 ' -
	

n	 (5) 

as well as -	 - 

Ii(B Y u i	Hp II/x ( l ) .	 (6) 

Finally, let us consider the Fréchet derivative C': C'[0, 1]	C[0, 11 given by 

S	

(C'x)(t) =fx'(t —r)Q(t)dt ± x(0)Q(t)	x(t)Q0	(0	t --5: 1), 

where x € C'[0, 1] and Q E C[O, 1] with Q() > 0 (0 :!E^ t !E_^- 1) and Q(0) = Q0 (for


	

•	the definition of Q and Q0 cf. (1) and (2)). If considering the continuous function 

E(t) = Q(t) --L S?' - (0	t	1)	 (7) 

we can also write '	 S 

-	 (G'x) (t) 
= f x'(t	r) Z(r)VT + x(0) (t).	 (8 

This is due to	 S 

x(t)Q0 = i(0) Q0 ±f x'(t — T) 920 dr.	 -
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Lemma 3: For all Q €C[0, 1] with Q(t) > 0 (0 s- t	1), Q(0) = Q0 ,C': C'[0, 1] 
- C[0, 1] is a linear bounded and compact operator satisfying the inequality 

JJC'JJ I ;S 2 IlII .	 (9)


./- Consequently, C' is not surjective. This operator is injectie if and only if there is no 
real number >. 0 such that Q(t) = 120 (0	t :5: c). In the injective case, the inverse

operator (C')-' is unbounded. 

Proof: The inequality (9) follows from 

I	 - 

IC'xlI	max f x'(t - r)I Q(r)d-r + max {Q(t) x(0) + Q0x(t)} 
0tI  

(IIx 'II + 211x1l) JJQJJ	2	IiI. 
On the other hand, the compactness of C' is a consequence of formula (8). Define 
the operators  

C 1 : C[O, 1 ']	C[O, 1] by '(C 1 g) (t)	1 E(t - r) g(-r)dt	 -


(cf. (7)) and 

C,: C[0, 1] - C[0, 1] by (C,h) (t) = h(0) E(t)	(0	t	1). 
Then C1 and C, are both compact. As for C 1 we refer e.g. to [3, P. 247]. The compact-
ness of C, is immediately caused by Arzela's theorem (cf. e.g. [5, p. 20]). Thus any 
bounded subset of Y C'[O, 1] is transformed into a compact subst of C[0, 1] 
by applying the operator C'. This provides the compactness of C'. However, no 
compact operator of linear type is surject•ive and if it is injective, then its inverse 
is unbounded (see e.g. [4, p. 23]). If 12(t) = Q, and Z(t) = 0 (0	t	s), then the

values of x(T) and x'(T) (1 - s <-r :5,- 1) do not influence C'x. Therefore, C' cannot - 
be'injective whenever such an s > 0 exists. Finally, the stat'ed sufficient condition 
for the injectivity of C' comes from Lemma 4 proved below U 

Lemma 4: Let x E C'[O, 1] and y E C[0, 1] be functions so that 

fx(t - r)dy() = 0	(0 :5: t	1). 

Then x(t)' = 0 (0	t	1).. whenever there is no e > 0 such that y(t) = const (0 t 
Proof: As already discussed above we can write 

.	fx'(t—t)z(r)d+x(0)z(t)=0,	z(t)=y(t)--y(0)	(0t1) 

instead of (10). For x(0) 0, this would contradict the well-known fact that Vol- 
thrra integral operators with continuous kernels cannot-have nonzero cigenvalues 
(cf. e.g. [5, p. 435]). Therefore, (10) may be expressed by the couple of equations 

	

°x(0) = 0 and fx'(t - r)z(t)dt = 0	(0	t !E^: 1). 

When applying Tichmarsh's theorem in the form of [1, p. 138] we obtain x'(t) = 0 
(0	t:!^1) and thusx(t)=0(0t1) 1
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At the end of this section we still remark that A', B', C' are the partial Fréchet 
derivatives 

aF( . , v, x) =.A'( . ),	a(p, ., x)-= B( . ),	93.F(p, v, .) = C'(•)	- 

• of the operator F with respect to p, v and x, respectively.

( 
3. A particular maximum principle 

Now w6 return to triples (p, v, x) E	x V x	satisfying equation (1). As we will 
show; all values j(t) (0 £ 1) associated with such, triples are uniformly bounded 
below and above by a couple of positive values Pmin and Pniax• These upper and lower 
bounds depend on the given values Po' V0, Vmjn and Vmax . However, they are com- 
pletely independent of the function x E Y. Such a behaviour, reminds us of the 
maximum principle established.for classes of heat equation problems. Thus, problem' 
(P1) is closely related to initial-boundary value problems in parabolic partial differ-
ential equations. Furthermore, the particular maximum principle stated below 
helps studying the correctness of inverse problems' (P2) and (P3). On the other 

- hand, it is of particular interest for the theory of nonlinear Volterra integral equa-
tions. 

Theorem 1: Let (7i, v, x) E	x V x 2' satis/ying (1). Then we have 

Qmin =	:!E^Q(t)	2rnax = Q, (0	t	1)	•	 (11) 

	

V0	 V0. 

and  

0 prnn = - 'po 5 p(t)	 Prnax	'Po	(0t	1)	.'	(12)Vrnin

	

Vmax	 Vmin 

Proof: Choose E [0,1] t so that' Q(t)	Q() (0	£	1); Owing to '(t)	0 
(0	t :5^ 1) we.have	 -	'	, '	• 

.P() Po +x(0)Q() —x()Q0+fx'( -r)Q()dr 

PO + X(0) Q(!) —x(l)Q0 +Q(l)fx'(I -- r)dr  

= Po + x(0) Q() - x() Qo + Q(I) (x() - x(d))	 I 

= Po ±x()(Q()—Qo) Po 
Consequently, we get the right-hand side inequality of (11) 

•	 Q(t)^. = Q0	(0t1). 

	

P(I)	P0,,,•	V0 

This implies, 
•	

(0t.1)  

	

(t)	Vmax' 

and thus the left-hand side inequality of (12). By chOosing 1 so that Q(t)	Q(t) 

(0	t	1) the other couple of inequalities is derived in an analogous way I
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Thus we are able to confine our considerations in the sequel to the subset ci 
(cf. (12))  

{p E : 0 <Prnin	P(t)	Pmax	(0  

We can also suthmarize that, for fixed x E 2, the operatorsA'(p), (A'())-', B', 
(B')' and C' are unifornily bounded with respect to all P € 55 , p €	and v€ V. 
Moreover, if we consider a neighbourhood	Y of an elmént ± E Y such that 
x(0)< Xma and x(1)	Xmjn >0 for all € à°, then these operators are, also uni-. 
fomly bounded with respect to all x € Y.	 - 

4. On the well-posedness of problem (P1)	 -


First we are going to prove an existence and uniqueness theorem. 
Theorem 2: For 'any given po >0, v E V and x € .7, the problem (P1) is uniquely 

solvable with respect to p E .	 , -	 --
-	Proof: For given x € Y and  E V we consider the operator equation 

•	L(p,D) = 0,	p € C[0, 1], V E [0,1];	 (13) 
where the continuous nonlinear operator L: C[0, 1] x [0, 1] - C[0, 1] is defined by

 • the formulae' 

L(p ,?9 ).(t ) fx(t - ) d	- pr(t) +Po 

(O	l,0	01,0<<pmjn), 

v 0 (t)	v0 + D(v(t.) - v0 ),	pe(t)	max (, p(t)) 

As we have learned from Theorem 1, for an solution (p, V) -E C[0, 1] x [0, 1] of (13) 
we have p € . If we iit .iocluce a set 

according to a mall positive 'number ô, then in view of Seciori 2 we can state that 
L and its partial Fréchet cicriative a  are uniformly coiitinubus with respect to 
(p, ) € P 6 x [0, 1]. Moreover, (L(p, n))-' exists and is uniformly bounded with 
respect to all (p, 0) E Ta x.[0, 1]. Namely, 've have II0L(p,9))-1II x(0)/x(1) (cf. 
(4)). Finally, we a priori know that (13) has a unique solution with respect to p 
if =0. If we set vmjn	'V0	vmax, then it follows from Theorem 1 that Pmin = Po 
= Pmax rIl1 u 5 the constant function p(t) = Po (0 :!E^ t 1) is a solution of (1) for 
v(t) = v0 (0 ^-, t ^ I). Then under the conditions derived above a well-known 
corollary of the 'implicit-function theorem (see e.g: [8, p. 63]) yields that L(p, ) 0 
is also uniquel solvable with respect to p € C[0, 1] if9 = 1. Therefore, (P1) is 
uniquely sol'able with respect to p € P . In view of Theorem 1 this uniquely deter-
mind solution belongsto the subset of	I	 -	- 

In order to complete the proof of well-posedness for problem (Pt), we still have 
to show the stability of solutions with respect to small changes in v .and : For 
given x € .1, let p = -Pv, F: V •	, represent the dependence of solutions	to


- equation (1) upon the element v. On the other hand, Let p = Qx, Q: .2 .- , denote
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the dependence between p and x in (1) for given v € V. As Theoreni2 indicates, 
both operators P and Q are uniq31e1 determined.	 - 

Under the assumptions stated above the implicit-function theorem (of. e.g. [8, 
p. 51]) applies. Thus, the operators P and Q are continuous and even Fréehet-
differentiable. We obtain	- -	 - 

P'(0)=(A"(P))1 B'	( € V) and 'Q'() = (A'(Q))-' C'	( .f E Y). 

Due to the mean-value theorem (of. e.g. [5, p.-535]) these two formulae imply Lip-
schitz conditions stated as follows.	 -	 - 

Theorem 3: Let, for given p > 0 and x € X, = PD and P = P, where P and 
are arbitrary elements of V. Then,	 - - 

-	2(x(0)) 
-	I1 - Al	x(l)	- u.	 (14) 

On the other hand, let = Qt and = Q for given' Po > 0 and v € V, where t and 
are arbitrary elements of Y. Then,	 - 

2Vmax max ((0), (0))	-	 - 
li p -	I!	-	 --	 (15)Pill 

•
	

P0	ruin (2(1), x(l))	/	 - 

The results f this section show that (P1)-is well-posed in the sense of Haclamard. 
In addition, the formulae (14) and (15) yield measures for the sensitivity of solutions 
with respect to perturbations in the data.	- 

5. A uniqueness and stability theorem-regarding problem (P2) 

-As we know, problem (P2) is of inverse nature. Thus, we suspect that it is ill-posed. 
Indeed, if p € 594 but p J JP_ , then as a 'consequence of Theorem 1 there is, independent-
ly of the choice of x E Y, no element v € V such that equation (1) may be satisfied. 
Thus, the existence requirement of Hadamard 's well-posed ness definition, is injured. 
However, it is known that we-have at least one element of P, namely the constant 

•	function p(t)'= Po (0	t	1), that possesses a solution v € V to problem (P2) (see' 

the proof of Theorem 2). From the example formulated below we will learn that 
the obviously closed union set of solutions v € V to (P2) over all elements p - E S9 - - 

is not necessarily convex.  
Example: Let us now consider the extremal case x(t) = c > 0 (0 < t.:5-,1). 

- Then equation (1) attains the form	 -	- 

-	c(Q(t) - Q0) = P( t) Po , (0 t	fl 
The values	 -	 - 

Q	 'cQ2	1/2 
+cv(t)}	(0t :E^:1)	(17) 

verified from (16) form a continuous function p € 55. As formula (17) shows,1p(t) 
does not depend on v(r) (0 < r <t). On the other hand, for given p(t) > 0, we 
derive the uniquely determined value	 -	-	 - 

V(t) =	+ (cQ0 - p0)p(t)	p(t) (Q0 + 
P(t)_Po) (0	t 5, 1). (18)
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Thus, the function v may take- on even negative values whenever 0 < p(t) <Po 
and c > 0 gets sufficiently small. Now let for fixed t E [0, 1] the pairs (p 1 (t), vj(t)) 
and (p2(t),'v2(0) both belong to the rectangle [Prnin, Pmax] X [vmin, Vmax] and togethr 
with a pair (p3 (t), v3 (0) (p3(t)= (p ' t + p2 (t))/2) satisfy a condition (18) for the 
dependence between v(t) and p i (t), i = 1, 2, 3. Then, it may occur that v3(t) <	-	-. - 
since v(t) is a quadratic function of p(t). 

Now we are going to formulate a uniqueness and stability theorem for problem 
(P2).	 -	 -	 - 

Theorem 4: For any givent >0,p E Y 'and x E 2, there isauniquely deter-mined 
/unctionv E C[O, 1], v(0) = v0 , such-that the equation (1) holds. Consequently, if the 
problem (P2) is solvable with respect to v E V, then this solution is uniquely determined. 
Moreover, .f or given v0 > 0 and x E I, we have 

II .—•ll <	+ 21jmax - Po p -	 -	 (19) 

whenever E V and € V are solutions of (P2) corresponding to P € and P E 
respectively. On the other hand, for given 'v 0 > 0 and p € P, we obtain-

	

-	ll - Il	
2(o)Qo+prnax	Po 

l!Il 112 — ll	;.	 ' (20)


whenever b . E V, V € 'V are solutions of (P2) corresponding to 2 € X and I € Y, respec-
tively.	 'S 

Proof:For given v0 > 0, x Y and -p E P, the problem (P2) corresponds to the 
'equation	 - 

(B'v) (t)= x(t)Q0 + p(t) Po	(0 t	1). 
Due to Lemma 2 the linear operator B' is injectie. Therefore, (P2) is uniquely 
solvable if the requirement v € V is weakened to v € C[0, 1]. Now consider formula - - 
(2) as a linear equation with respect to Q E C[0, 11: 

f x'(t — ) Q(r) dr + x(0) Q(t)= x(t) 920 + p(t) — Po	(0	t	1). (21) 

For given x € I, let .0, .6 denote the solutions of (21) according top = and  = i, 
respectively. Then we have (see Theorem 1 and the proof of Lemma 1)	 - - 

II — QII	
-	and lJll < 

x(0) Qo + Pmax - Po, 
X(1)	 x(1) 

l!— ll ^	 ± iiIi lI - Il	
x(0) Qo	Po 

Now, for given p € , let Q, S'2 denote the solutions to (21) according to 2 and , 
respectively. Then  

^ Qo -	+ (0) Q0 + ( p.. - Po) 11 2 '	 - 
- -	—,	(1)	-	2(1)	(1) 

and finally 

	

-.	
II_ --	li -;S lip—	ll IiIl 

	2(0) Do
,2(1)	

) — Po 
lII 11 2 — 2 111	•
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/. 
If a solution v E V of problem (P2) according to p E J1 and x E Y satisfies the 

inequalities  

Vmjn < mill v(t),	Vmax > max v(t), 
S	Oj1 

then the estimations (19) and (20) show that (P2) is also solvable with respect to 
v € V'when the elements p ancl x change by a sufficiently small amount. Thus, at 
Iast the uniqueness and stability requirements of 'Hadamard's well-posedness defi- 
nition are satisfied for problem (P2): 

-	6. Notes on the ill-posedness of problem (P3)	 . 

•	Provided p € P and v E V are given the identification problem (P3) is expressed by 
- the linear equation  

V	

(C'x) (I) = p(t) —p0	(0	t1).	
V	

' (22) 

Therefoie, the properties of solutions to problem, (P3) may be derived from the 
V assertions of Lemma 3. It is evident that the existence requirement as well as the 

stability requirement of 1-ladaniard's well-posedness definition get injured for prob- 
V	 leru (P3) since C' is a compact linear operator of C 1 [0 , 1] into C[0,, 1], ,but. Y fails 

to be a compact subset-of C'[0, 1. As a consequence of the non-closed range of C' 
• the equation (22) can be inconsistent. Moreover, small perturbations of p and v 

• my lead to significant changes in the solution x, because the inverse (C')- 1 is un-
bounded whenever it exists. Thus, problem (P3) becomes an ill-posed one., How-
ever, we can formulate a necessary and sufficient condition for the unique solvability, 
of (P3) in theconsistent case.	V	

V 

-

	

	 Theorem 5: For given p € P and v € V, let exist a solution x E Y of problem (P3). 

- Then, this solution is uniquely determined if and only 'i/ there is no real number £ > 0 

such that v(t) = v0 (0	t	e).  

-	Proof: If (p, v, x) € c5° x V x 2 satisfy the equation (1), then v(t) = v0 (0	t ^ t) 
is equivalent to Q(t) =Q0 (0	t' e). This is due to the madniuru principle estab-




lished in- rrlleorern 1. Thus, Theorem 5 immediatel y follows from Lemma 3 I 

In order to identify the function x E .( in a unique manner, it suffices to require 
V	 a non-steady state of v for an arbitrarily small initial interval t € [0, s]. However, 
-	-in the computational identification of x based on observation data of p and v sub-

stantial difficulties arise from the instability of (P3) outlined above. 
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