
Zeitschrift für Analysis 
und thre Anwendungen 
Bd. 7 (3) 1988, S.259-282 

On the Reduction Procedure for a Nonlinear Integro-Differential Equation 

F. BENKERT 

Es wird eine vollstiindige Charakterisierung des globalen Läsungszusamnienhanges einer spe-
ziellen nichtlinearen Integro .Differentialgleichung angegeben. Dazu wird em globales Reduk-
tionsverfahren angewendet, weiches auf die LOsung eines eindimensionalen Problems fuhrt. 

TaëTcn uo.abHoe ornicaHile rio6ajn,iioft ennan peWCHHtk oHoro cneIivaJmHoro IIHTCI'pO-
ul(4epeH[(1taJmHoro ypaBHeHHn. Jlmn aToro upuMeuneTca rJ!o6aJIbnhz1 AIMA npMBeJ(eHHH 
npMBoIuHt H peweHuloHeHoTopoil oJuloMepIIon aa)a qu.	 - 
A complete characterization of the global connexion of the solutions of a special nonlinear 
integro-differential equation is given. To this end, a global reduction method is applied, which 
leads to the solution of a one-dimensional problem.	 , 

I. Introduction. Let 0 be a domain in R'\vith boundary aG. We consider the fllow-
ing boundary value,problem for a nonlinear integro-differential operator: 

	

:Ifu'+/(ii)=g in 0,	u 	on 00,	 (1) 
where L is a strongly elliptic differential operator of second order,' 

Lu = TX a, a s.j=1	Xi 

/ is a real-valued function on Jt, and i f u dx/JG G I =f dx. Detailed as-

sumptions on the domain 0, on the coefficients aij , and on the right-hand sides g, h 
are formulated in Se'ction 3. 

It is our aim to describe the set I of all triples (u, g, h) such that t isa solution 
of (1) for, the right-hand sides g, h. We apply the method of global reduction to a 
one-dimensional problem. Our result will be that I has the structure I = a x 2, 
Where a = {(s, t) E R2 I (s) = t} with a suitable chosen function T, and S is ' a linear 
manifold.  

The method of one-dimensional reduction was used by BEROER and PODOLAJ [2] 
and by CAFAGNA and DONATI [3]' for the solution of boundary value problems for 
semiinear elliptic differential operators. The differentiability of the considered opera- 
tom and the kind of interaction of the nonlinearity with the spectrum of the linear 
part of the operator play an important role for these considerations We can look 
at the problem (1) as a simplified semiinear elliptic equation. The: effect of this 
simplification is that 

(i) we need notto make any assumptions on the nonlinearity 
(ii) the behavior of the nonlinearity / with respect to the spectrum of the linear 

part does not play any role.  
In Section2 we present abstract results, which we will apply to th6 solution of 

j7*	 - -
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the problem stated above. The solution of the abstract problem is a special case 
of the well-known Reduction Lemma (cf. BERGER [1; p. 226]). But the situation is 
so simple in our case that we will describe the elementar reduction procedure for 
our problem.	 - 

Section 3 contains the application of these results to problem (1). The key as-
sumptions are the followings: 

i) the operator defined by the linear problem 

- L(u g in Q,	u = h onaG 

is a linear homeomorphism between two. function spaces, 
(ii) a maximum principle forthe operator L holds.	 - - 

2. The abstract problem. Let X, Y be real Banach spaces and let A be a mapping 
• from X to Y. We' make the following hypotheses: 

(HI) A is a linear homeornorphism of X onto Y. 
(112) X is the direct sum X = Xo X 1 of two subspaces X0 and X 1 , where X0 

is of dimension 1. 

We denote by P0 the projector from X onto X0 . Choosing x0 E X0 , x0 r-f- 0, we can 
look on P0 as a mapping of X'onto R with Px0 = 1. If we set Y0 = A(X0 ) and 

= A(X 1 ), then, by (Hi) and (112), we have Y =	Y'. Furthermore, Y0 is 
a one-dimensional•sbspace of Y, the base of which we can choose by Yo = Ax0. 
We denote by	'i the projectors of Y onto Y0 , Y 1 , respectively. 

Now, let f be a real-valued function on R. We consider time following operator N 
on X:

= A± B,5 where B(x) = / (qP0x) Yo'	X E X, 

with a fixed real number q. We We want to describe the set 
-	S	 E'={(x,y)EXxYN(x)=y}. 

To this end, we set 

a = (s,t) E R.2 js + /(qs) = 

Then we have the following 

Proposition: Let x  X, x = sx0 ± x 1 with s  It and x1 € X1 , and let y  Y, 
•	y = ty0 + Yi with t E R and y 1 E 1' 1 . Then, (x, y) € Zif and only if (s, t) E a and 

= Ax1. 
Proof: The inclusion (x, y) € E is equivalent to the equation A(sx0 + x1) 

• ± /(qs) Yo = y, by definition of the operator N. Application of the projectors , m 
to this equation yields the equivalent system sy0 + f(qs) Yo = 'oY ' Ax1 = nay. Now, 
one easily sees that this system is equivalent to (s, t) E a and y = Ax 1 I 

•	Remark: The preceding proposition can be interpreted as 2' having the struc-
- -	ture. E = a x 2, where S = {(x, Yi) E X1 x 1'm I Y, = Ax,} is a linear manifold of 

codimension two in X . >< Y.	 - 

3. Solution of the integro -differential equation. Let 0. be' a bounded region in It'1 
with boundary aG. Ck(G) will denote the space of the functions which are k-times 

• continuously differentiable on 0 and such that the derivatives can be extended 
•	continuously on aG. With the usual norm I IU I l k = sup {IDTu(x)I: x € G, 0	r 
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- Ck(0) is -a Banach space. C(G) (0 < < 1) will denote the spaóe of those func- 
tions u E Ck(G) whose k-th derivatives are Holder-continuous with the exponent 
in G. C(G) is a Banach space with the norm 

Dku(x) - Dku(y)I 
IklIk = IIU IIk + SU P

I x	y1a

	

.	 .	-	. 
x+y 

C(G) will denote the space C0() . We shall say that G is ô/ class Ck., if its boundary 
has, in a neighbrnirhood of every point, a regular parametrization of class Ck,. 

We make thefollowing assumptions: 
(i) 0 is  bounded region in R" of class Cl, ' for fixed a,,O < a < 1. 

(ii) ajj E Ca(G) for all i, j.	 S 

(iii) L is strongly elliptic, i.e., there is a constant du > 0 such that 

	

a(x)	 (	for all	E	x € 0. 

Consider the operator 

A: C2 - ' (G) , C) X C(aG)	 S 

defined through Au = (, h) with 

Lu=g in G,	u==h onaG.	 .	 .	 (2) 
The homogeneous equation (2) has only the trivial solution u.= 0. This follows. 
from the classical maximum principle, cf. GILBABG and TRUDrNOER [4]. Therefore, - 
the operator A is a linear homeomorphism, cf. TRIEBEL [5; Section 4.3.4]. Hence, 
hypothesis (Hi) of Section 2 is fulfilled if we set	 . 

X =	 F = C).x c2(aG). 

Now, let u0 € C2.() be the solution of the equation Au = (1, 0). Then WO =f uO dx/ 

0 > 0 holds. This follows from the classical maximum principle, because Ltu0 
= 1 > 0 implies v 0 in G, and from u0 + 0, because A is a linear homeomor-
phism. Let X0 = Lin (u0 ) be the one-dimensional subspace of X spanned by u0. 
We set X 1 = (u € X: 11 = 0). We have for each u € C2 (G) the decomposition 

(U .—

\u = - u0 +  	=- u0 j ,	 ( 3) U0	 U0	/	 -	 - 

where w = - (/ 0 )u0 €X1 , becaue of =Tz - (/) UO = 0. This decomposi-
tion is unique, because r = UIVIO is the unique solution of the equation R - ñ1 0 = 0, 
by TZO	0: Hence, hypothesis (112) is fulfilled. Especially, from (3) follows 

P0u = -,	Z = 0P0u, and P0u0 = 1 

	

U0	
5	

0 

if we look on P0 as a mapping of X onto R. -The decomposition of X induces a de-
composition of F, by F0 = A(X0) and F1 = A(X 1 ). We have F0 = Lin ((1, 0)), 
(1, 0) € Ca() x C(aG). 

Using this, equations (1) give a nonlinear operator  

N = A ± B: C(G) –C)x C2 G),	 S
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where	 S 

B(u) = (f(u), 0) = (f(iz0Pou), 0),	u E C2(G). 

The solution set E of problem (1) is given by the proposition of Section 2, i.e. 
E=axS,where 

= {(s,t)E R28+1(ii08)=t}, 

S = {(u 1 ;(g1 , h)) E X 1 < Y 1 .j Au, =(g1 , h)}. 

Rmark: if we are given (g, h) € C(G) x C21 G ) for problem (1), the preceding 
considerations give us the following way to get all solutions of this problem: 

(i) We solve the equation Au = (1, 0). Let u0 be the solution of this problem. 
(ii) To determine the, components of (g, h) with respect to the decomposition 

Y =' Y1, we solve the problem Au = (g, h). if v is the solution of this equa-
tion, we have the unique decomposition v = 1u0 + v 1 . with t € R and v 1 € X 1 . By 
definition of Y0 and Y1 , it fo1lo i.s that  

(g, h) =(t 0) + (g 1 , h)	((t, 0) € Yo , (ga, h) € 17), 

where g 1 = g - t (we consider t as the function g = 
(iii) Now, all solutions of problem (1) with right-hand side (g, h) are u, = s,ua + V1, 

where {s,} is the set of all solutions of the equation s ± f(s) = 1. 
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