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On the Reduction Procedure for a Nonlinear Integro-Dierrential'Equ.ation

\
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Es wird -eine vollstindige Charakterisierung des globalen Lésungszusammenhanges einer spe-
ziellen nichtlinearen Integro-Differentialgleichung angegeben. Dazu wird ein globales Reduk-
tionsverfahren angewendet, welches auf die Losung eines eindimensionalen Problems fithrt.

Haérca nonpHOe omicaHHe ri106aibLlON CBA3M pemeHud OXHOTO CHEeUHAJbHOI0 HHTErpo-
aupdepenunanbuoro ypasuenus. Jlas atoro NPUMEHACTCA T100aJbHbI METON NPUBENEHUA

OpUBOAAIMNA K PCLIEHHIO- HEKOTOPOIt ONHOMEPHO 3afayH.
A complete characterization of the global connexion of the, solutions of a special nonlinéar

* integro-differential equation'is given. To this end, a global reduction method is applied, which

leads to the solution of a one-dimensional problem.

-,

1. introduction.l Let G be a domain in R® -"w,ith k;oundary 9G. We consider the follow-
. ing boundary value problem for a nonlinear integro-differential operator:

."I/uj-i—"f(ﬁ)=g in &, w=~h ond@, : . B ¢))
where L is a strongly elliptic differential operator of second order, '
Lu= —Fa

. G2 oz oz’
'f is a real-valued function on R, and % — fud:c/]G’l',' |G| = fdx. Detailed " as-
. . M . D ¢ - .

sumptions on the domain &, on the coefficients a;;, and on the right-hand sides g, b
are formulated in Section 3. - ' k S
It is our aim to describe the set X of all triples (u, g, k) such that u is-a solution
of (1) for. the right-hand sides g, k. We apply the method -of global reduction to a
one-dimensional problem. Our result will be that £ has the structure ~ = o X S,
- where ¢ = {(s, ¢) € R? | (s) = ¢} with a suitable chosen function ¢, and S is a linear
manifold. : v - . ‘ ,
The method of one-dimensional reduction was used by BERGER and PopoLak [2]
and by CaraeNA and DonaTr [3] for the solution of boundary value problems for
semilinear elliptic differential operators. The differentiability of the considered opera-
tors and the kind of interaction of the nonlinearity with the spectrum of the linear
part of the operator play an important role for these considerations: We can look
at the problem (1) as a simplified semilinear elliptic equation. The effect of this
simplification is that .
(1) we need not'to make any assumptions on the nonlinearity f, .
(ii) the behavior of the nonlinearity f with respect to the spectrum of the linear
part does not play any role. . e e .
'In Section'2 we present abstract results, which we- will apply to the solution of .
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the problem stated above. The solution of the abstract problem is a special case
of the well-known Reduction Lemma (cf. BERGER [1; p. 226]). But'the situation is
so simple in our case that we will describe the elementar reduction procedure for
our problem. - . S
Section 3 contains the application of these results to “problem (1). The key as-
sumptions are the followings:. ' : : :

(i) the operator defined by the linear problem o oa
Lu=yg i_n/G, uw=~h onadQG

is a linear homgomorphism between two. function spaces,

i

(i) a maximum principle for the operator L holds. : -
- 2. The abstract problem. Let X, Y be real Banach spaces and let 4 be a mapping
from X to Y. We make the following hypotheses: :

: (H]‘) A is 4 linear hbmeomdrp_hism of X onto Y. P :
(H2) X is the direct sum X = X, @® X, of two subspaces X, and X,, where X,
is of dimension 1. : \ .

We denote be P, the projector from X onto X,. Choosing x4 € Xo, 2, =+ 0, we can
look on P, as a.mapping of X onto R with Py, = 1. If we set Y, = A(X,) and
- Y, = A(X,), then, by (H1) and (H2), we have ¥ = Y, @ Y;. Furthermore, Yois .
a one-dimensional subspace of Y, the base of which we can choose by y, = Az,
“We denote by 7y, 7, the projectors of ¥ onto Y, Y, respectively. ’ ‘
Now, let f be a real-valued function on R. We consider the following operator N

onX: C o . : ‘ o
' ‘N =4 -+ B,. where B(z) = f(qgPyx) %o, xeX, b
with a fixed real number g. We want to describe the set

= {z9) € XX Y| N =y).
To this end, we sect ]

o={(s D R s+ flgs) = 1)
Then we have the folowing

Proposition: Let x € X, x = sz, + ;. with s€ R and x, € X,, and let y€ ¥,
Cy =ty, + 1y, with t € R and y, € Y,. Then, (2,y) € 2 -if and only if (s,t) € 0 and
yl = Axl. . . . °

Proof: The inclusion (z,y)€ £ is equivalent to the equation Alszy + 1)
+ f(gs) yo = y, by definition of the operator N. Application of the projectors 7o, 7,
to this equation yields the equivalent system sy, + f(gs) Yo = 7oy, 4%, = Y. Now,
* one easily sees that this system is equivalent to (s, t) € o and y, = Az, 1 ’

Remark: The preceding proposition can be interpreted as 2 havil'lg the struc-
ture. X = o X §, where S = {(z, ) € X, x Y, |y, = Az} is a linear manifold of
codimension two in X. X Y. ’ . :

3. Solution of the integro-differential equation. Let G .be'a bounded region in R”
with boundary 8G. C%(@) will denote the space of the functions which are k-times
continuously differentiable on G and such that the derivatives can be extended
continuously on dG. With the usual norm fjull, = sup {|D"u(z)|: z € G,O0=r <k,
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CHG) is'a Ba_naé:h space. C¥*(@) (0 < « < 1) will denote the space of those func- .
tions w € C¥G) whose k-th derivatives are Hélder-continuous with the exponent «
in G. C**(() is'a Banach space with the norm ’ :
~ |\Dku(z) — Dtuly)|
lell.a = llulle + su - .
k | & 2%5 | Iz — gy L | B -
C*(@) will denote the space CO*(G). We shall say that G s of class C** if its boundary

has, in a neighbodrhqod of every point, a regular parametrization of class C*=: -
We make the following assumptions:

" (i) @ is a bounded region in R of class €< for fixed &, 0 < « < 1.
(i1) ai; € C4@Q) for all 3, j. S
(ii1) L is strongly elliptic, i.e., there is a constant x > 0 such that

2ai(x) &8 = p 3 (892 forall e R, z€@.
fj=1 i=1 : -
Consider the operator : '
4:02(G) > C*(@) x C*(8G)
defined through Au = (g, &) with .
Lu=g inG, w=~h ondG. o )

The homogeneous equation (2) has only the trivial solution .= 0. This follows.
from the classical maximum principle, c¢f. GILBARG and TRUDINGER [4]. Therefore,
the operator 4 is a linear homeomorphism, cf. TRIEBEL [5; Section 4.3.4]. Hence,
hypothtlasis (H1) of Section 2 is fulfilled if we set »

X = C>(G), Y = C*(G).x C>*(3G). ,
Now, let u, € C22(G) be the solution of the equation Au = (1, 0). Then %, = f ug dxf
. .- . G .

|G| > 0 holds. This follows from -the classical maximum principle, because Lu,
= 1> 0 implies 4, = 0 in G, and from u, % 0, because 4 is a linear homeomor- .
" phism. Let X, = Lin (u,) be the one-dimensional subspace of X spanned by u,.
We set X, = {u € X:% = 0}. We have for each u € C%%(G) the decomposition -

U =

&=

ot (o2 | w

where w = u — (/%) u, € X,, because of W = @ — (.Ta/ﬂo) %y = 0. This decomposi-
tion is unique, because 7 = %/%, is the unique solution of the equation % — 7%, = 0,
by %, # 0: Hence, hypothesis (H2) is fulfilled. Especially, from (3) follows

Pu =—, %=7uPu, and P, =1 '

\

S| =

if we look on P, as a mapping of X onto R.-The decomposition of X induces a de-
composition. of ¥, by ¥, = 4(X,) and ¥, = A(X,). We have ¥, = Lin ((1, 0)),
(1,0) € C*(@) X C>*(aQ). . . ’

Using this, equations (1) give a nonlinear operator

N = A4 + B: C**(G) — C(G) x C**(3G),

v
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B(u) = (/(@), 0) = ({(TPou), 0), ~~ u € C>(6).
The solution sef X' of \problem (1) is glven by the proposntlon of Section 2,
2 = g x 8, where

o= (s € R |5+ f(Ts) = 8, .
A',S = {(“1; (9, h)) € X, x Y, A':ul = ( gl’h)} : .
Reémark: If we are given (g, k) € C%(G) x C2+(06) for problem (1), the precedmg,

considerations give us the following way to get all solutions of this problem:

(i) We solve the equation Au = (1, 0). Let u, be the solution of this problem.

(ii) To determine the components of (g, k) with xespect ‘to the decomposition.
Y ="Y,@ Y,, we solve the problem Au = (g, k). 1f v is the solution of this equa-
_tion, we have the unique decomposition v = tu, + v,. w1th t € R and v, € X,. By
deflmtlou of Y, and Y,, it fo]lo“s that

“where g, = g — t (we cénsider ¢ as the functlon g= t) L -
(i) Now, all solutions of problem (1) with right-hand side (9, k) areu, = s,uq + ¥y,

.where {s,} is the set of all solutions of the equation s - f(%,s).= ¢.
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