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General Limit Theorems with a-Rates and Markov Processes 
under Pseudo-Moment Conditions 

P. L. BUTZER and 'H. KIRSCHFrNK 

-Mit--Hilfe der Dvoretzkyschen Erweiterung der Trotter- Opera toren-Methode wird ein all-
gemeiner Konvergenzsatz mit q . Ordnung für abhiingige, reellwertie Zufallsvariable, die einer 
Pseudomomentenbedingung ienfigen, bewiesen. Dieses Ergebnis wird auf ailgemeine Grenz 5

-wertsätze, einen zentralen Grenzwertsatz sowie auf ein schwaches Gesetz der groBen Zahieti 
für Markovsche Prozesse mit diskretem Zeitparameter angewandt. Ferner werden Pseudo-
mômentenbedingungen diskutiert und die Materie mit Ergebnissen aus der Theorie der \Vahr- - 
seheinlichkeitsmetriken verglichen.	- 
C nOMOubio p acwtipenim Lnopeiiioro MeToJa oneparopon Tpo'rrepa Jo14a3l,1naeTcn o6IuaR 
eopeaa CX0MM0CTM c o-nOpnLuwM g im He3aBud11Mux BeE1(ecTBeI1110-3HaI1b1x -cJIy'IaftHblx 

nejai quit yjTX013JlCTB0pFll0LU11X 0;tH0My.ycjioBmo nceBIloMoMeHToB. aToT pe3yJlbTaT 'npuMeH-
HeTCR it o6IuuM TCopemam cx01uM0cru, i- oiuofl 1e11TpaJ1bH0fI flpeJ(eJ1bHol reopeMe it 
oc.-Ia6116I1HoMy aioiiy 60J!bwux tiHceii jrn npol.(eccon MapIoBac JUCRTl1blM flMt1LIbIM 
napaMeTpoM. Ranee, o6cyHaloTcn eTaJ1bHo yC.TIOBH	M	II H flCB)00MHT0B	pe3yJ1bTlTbI 
epanhlunaloTcu C Teopuefl B0HTH0CTHbIX MeTpHK. 

Making use of the Dvoretzky extension of the Trotter-operator method, a general convergence 
theorem with 0-rates for dependent, real-valued random variables satisfying a pseudo-moment 
condition is established. Applkations are to general convergence theorem, a central limit 
theorem as well as a weak law of large numbers for Markov processes with discrete time param-
eter. Further, pseudo-moment conditions are discussed in detail and the results are compared 
with the theory of probability-metrics. 

I. Introduction 

The fundamental limit theorems of probability theory are generally concerned with 
the convergence of sums of random variables towards a given limit random variable. 
Apart from the type of convergence, the dependeney structure of the random varia-
bles in questions as well as the particular limit random variable have to-be speôified. 
This paper is devoted to limit theorems with a-rates of convergence for SUITIS of not 
necessarily independent nor identically distributed random variables, thus for 
arbitrarily dependent. random variables. In order that the approach is rather broad, 
the results will be based upon a general limit theorem with rates in form of conver-
genee in distribution (Theorem 1), thus	 - 

IE[/(T + )] - E[/(Z + u )]I	(	J7)	 - -, 

for each fixed-u € IR; here the normalized sims T = ç(n) E. X- 1 , (X l ) IEN being an 

arbitrary , sequence of real, possibly dependent random variables, : IN - IR is a 
normalizing function with (n) = (1), n 00, Z a -decomposable random variable 
(i.e. for each n € N-there exist independent random variables Z 1 (=Z 1 ),1 :!E^ i :!^ ii, 
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such that for the distribution Pz of Z one has P = P'	), / belongs to the con- 

vergence determining class Cr(IR) for any r € = 0, 1, 2 i . . .} (see (2.1) for the 
definition), and V(n) is defined in terms of the absolute pseudo-moments of order 
of the random variables in question (see (2.12ii) for the definition). This general 
theorem will-be applied in particular to (sums of) random variables X, i € IN, which 
form a non-homogeneous Markov process with a discrete time'parameter.(Theoreñ'i 2), 
namely to a stochastic process distinguished by the Markov"property (see (4.1)). 
- Until 1975 most of the results known in this direction, at least in the particular case of the 
central limit theorem (for which the limit random variable Z	X*, the normally distributed 

S	 jfl 
random variable with mean 0 and' variance 1 and p(n) = ( E Var (X 1 ))	), dealt with not 

\i=1 
necessarily independent random variables that satisfy Doeblin's condition or the so-called 
q-mixing condition. Both additional assumptions roughly mean that the random variables are 
"asymptotically independent"; they are rarely satisfied for Markov processes. In this respect,' 
for example, LIFSIHTS [26] established under a c6nditiori upon the maximuin coefficient of the 
co'rrelation (related to the above assumptions [27]) the result sup F(x) — Fx.(x)I = 

zEfl?

a	 I	In 

n —>00, where Fn(x) is the distribution function of Z (X, - EX1) / Var	X1). Then in 
1976 LANDERS and R000E [24] studied the central limit theorem 's for Markov chains for the 

convergence of the distribution function of (i' /(X 1 (w)) _nrk)/Var V'k, whereak is defin - ' 

ed as the reciprocal of the mean recurrence time of the state k and = 1j}, towards F1., obtain-
ing the order O(n) for each cc < 1/4 under just a weak third moment condition. In this regard 
BOLTEAUSEN [5] established the rate o(n) for e < 1/3 — 1/6(c + 1) and some c =-:^ 3 for which 
E[1X 1 1 C] < 00. Both papers actually deal with positive recurrent irreducible Markov.chains 
with countable state space. 

Our version of the central limit theorem for Markov 'processes (Theorem 3) gives 
for each fixed u € IR the estimate 

E [1 (A,,- I 
Z,X +	- E[/(X* + u)]= 0j(AnM(n)) (n — oo) 

/n	\1/2	 5'. 

for € C', where An = (	a) , the a i being positive reals and M(n) ain (2.12i). 

In the particular case of Markov processes having stationary, independent increments 
with mean 0 (thus for identically distributed random' variables) this estimate turns 
out tobe	\I	 S 

E [/-(n112x +	- E[/.(X* + u)]	((2-r)/2) (a - 00) 

for each a E IR with An _.711/2  
Concerning the' assumptions needed for our results, moment type conditions will 

also be required, namely the conditional pseudo-moment condition (3.3) of order r as 
'vell as a pseudo-Lindeberg condition (2.11) of order r. Whereas the dependency 

- structure of the random variable i's unrestricted, it will depend indirectly upon mo-
ment conditions, in particular upon our pseudo-moment condition. It sill in any ease 
cover Markov processes (and martingale difference sequences) for both of which the 
dependency structure "depends" on the past, i.e., the random variables depend only 
upon tifeir predecessors; thy will be said to be dependent from below. This aspect 

• will especially be dealt with in Sect-ion 3.2. Alternative conditions to the weak pseudo-.
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moment condition (3.3) will also be examined (Section 5); it can indeed 1y replaced 
by the same non-conditional moment condition already used in BtJTZER' and HAHN 
[8], noting that the functions of CT are bounded. In fact, (3.3) can be replaced by the 
condition	 - 

E[jX - Z]J = (W(n), E[IX -	(1	r). 

This will enable one to extend assertion (1.1), valid pointwise in u EIR, to the uni-
form assertion (5.8) of Theorem 6. 

It is rather interesting to note that results such as these may also be deduced from 
the well-known Kantorovitch-Rubinstein-Dudley theorem ( gee e.g [17, 37]), or for 
the analogous M(n)-version by a lemma' and a theorem of ZOLOTABEY [36]. The 
Kantorovitch-Rubinstein theorem gives for the distance of two random variables the 
estimate	 '	 0 

sup ( I E[f(X + u)] - E[/(Z -1- )]I} 'E[IX - Z 8] ,	0 <8	1,	(1.2) 
IL€IR 

where / E D3 , D8 as in (6.5). Applying it to our situation, one has for I = T and 
Z = Z the estimate (compare Theorem 8) 

- '	sup { I E[/(T + u) - /(Z ' + uHI)	E(n)8 E[IX - Zd8]. 
UEJOR	 i=1 

However, it is important that this version of (1.2) is only valid for independent ran-
dom variables X i and -Z 1 . Thus our Theorem 6 can be regarded as a certain generali- 
zation of' the Kantorovitch-Rubinstein-Dudley theorem to the case of dependent 
random variables and stochastic processes. This matter is elabcrated upon in Sec-
tion 6. It should be mentioned that BERGSTRoM [4] used pseudo-moment conditions 
in the case of independent identically distributed random variables already in 1953. 
The recent papers by PADITZ [30] and SAzoNov and ULYANOV [33] re-emphasize the 
importance of such conditions. 

.Not only will limit theorems' be studied for the sums T,,= E q(n) X 1 but also 
1=1 

for the processes X themselves for n - 00, as indicated. The latter will depend upon 
the structure of the increments. Whereas the literature abounds with results concern-
ing the rate of convergence of sums of random' variables which are connected in a 
Markov process, at least in the case of the central limit theorem, the results for the 
X mostly deal with the behaviour of n-step transition probabilities (cf. CHUNG [16, 
pp. 1] Or. GIHMAN and SKoRonon [19, pp. 282]) whereby in the instanèe of independ-
ent and-stationary increments there is a direct connection between the increments 
of Markov chains and 1-step transition probabilities (cf GIIUIcG [16, p. 10]). It is 
interesting to observe that in the particular , ease of independent increments the pre-
sent results practically coincide with those of BTZER and HA-[8] of 1978 on the 
convergence of sums of independent random variables towards a '—decomposable 
limit random variable (Section 4.3). The latter. were generalized to the case of not 
necessarily independent random variables which form martingale difference sequen-
ces or al-rays in ' BuJTZER, HAHN and ROECKERATH [10, 11], and to more general types 
of dependent random variables in BUTZER and ScHuLz [13-15], 'as well as to arbi- 
trary sequences for the particular case of identically distributed random variables in 
BUTZER and KmscIEFINK [12]. As faras the authors are aware, there are no comparable 
general limit ,theorems with rates in the literature.	 0 

19*
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• The type of convergence considered in this paper is more general than that in 
BUTZER, HAHN and ROECRERATH [10], or in BUTZER and SCHULZ [13] where the 
dependency structure is of type of martingale difference sequences. In fact; the con-
vergence considered in (1.1) is that for the difference 

f /(x + u) dFT,,(x) — f /(x ± u) dFz(x)	 (1.3) 
IR	 R 

pointwise in u € IR, and not just for the particular case u = 0 treated in the papers 
mentioned above. This is-even generalized to uniform convergence for It E IR in 
Section 5. Although both assertions are equivalent in case of convergence, at least in 

- the case of independent, identically distributed random variables, this equivalence 
need not remain valid for convergence with rates. if the assertion (1.3) is equippd 
with the rate 0(n_(t_2)/2) for / E CT, then it is equivalent to 

f /(x) dFr(x) — f f(x) dF(x) = (_(T_2)/2)	(n -* no)	 - 
IR 

or even to each -of the two '	 -	 -	- 

J xidFr(x)	f x dF(x) = (-(r-2)/2)	(1 :5:	r - 1), 
fl.	 IR 

- -

 

E[Xi] = E[Zi] -	(1 :5: j	r — 1)	 -	-	- 

in the independent identically distributed case (see BUTZER and HAHN [9]). How-
ever, nothing ems to be known in this respect if the random variables are not 
necessarily independent identically distributed or if the 9(n -(r _2)/2) -rates are replaced 
by c-rates, which is the situation of the present paper.	-	-	- 

2. Notations and preliminaries	-	 -	 - 

Let C = C(IR) denote the class of all real-valued, bounded, uniformly continuous 
functions defined on the reals IR, endowed with norm	:= sup It(x)I . For r € 

- -- =Nu JO) set	 ZER - 
- CO	C, Cr={gEc;(i)Ec,1!Ez:j;;E.^r},	-	 (2.1) 

the seminorm on Cr being given by IgIc, = jg() pI. Concerning the random variables 
in question, the class (Q, {) plays an importent role. If (Q, 1t, P) is a probability 
space; then 3(Q, 't) := {X; X is t43-mcasurahle}, where 8 is the Bore] a-algebra on 
IR. If X E 3(Q, vt), and	a sub-a-algebra of 91, then the(Y-measurable fuiction 
E[X I	defined by f E[X I ] dP	 XdP for every F € , is known 'as the 

F.  
conditional expectation of X, given . Its properties will also be needed. Let X, Y 

E 
3(Q, t) such that E[X] < no, E[Y] < +oo, and ( cI. They read:	 - - 

-	X	Y a.s; implies E[X (]	E[Y ICfl a.s.	 (2.2) 
-	X = c a.s. (c a constant) implies E[X	] = c a.s.	 (2.3) 

•	
E[cxX + flY I (] = aE[X I (] ± flE[Y I (] a.s. (a, 9 € IR)	 (2.4) 

E [E[X I c]J = E[X].	-	-	 (2.5) 
Let X be (s-measurable; then E[X I (] = X a.s.	 (2.6)
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Let X be (9-measurable and E[XY] < co, then E[XY I Cfl = XE[Y 
a.s.	 -	 (2.7) 
Let t(X) and be indpendent; then E[X I Cfl = E[X] a.s.	(2.8)


Let t(t(X), ) and 2 be independent for two sub-a-algebras 

t. Then E[X I ] = E[X I '] a.s. with	= -(-2).	(2.9) 

For the proofs of these properties see LAnA and ROHATGI [23, pp. 358], BAIJER [3, 
pp. 289] or GAENSSLER and STUTE [18, pp. 185]. 

The following generalizations of the well-known Lindeberg condition will play an 
important role in' the proofs.	 -	 - 

Definition 1: The sequence (X i ) i , ,.% of real random variables having a finite 
•	moment of order r, some 0 <r < 00, is said to satisfy the generalized Li-ndeberg 

'	condition 
of 

order r if, for every 6.> 0, 

I	I xI I dF(x)	 - 
i1 IzI^ã/g'(n)

	

—*0	(n	00).	 (2.10) 

E E [ I X 1I T ]	- 
1=1 

\ I/2 
The case r = 2 with rp(n) = ( ' E[X 1 2]} reduces to the usual Lindeber condi- 

	

/	 S 

tion (of. BUTZER, HAHN and WESTPHAL [7]). 

Definition 2:Two sequences (X I )IE% and (Z)IE of real random variables with


	

1) finite absolute moments of order r or	 - 
ii) E[ I X, -- Z1V] - 00, 

are. said to satisfy a generalized pseudo-Lindeberg condition of order r if, for esery 

S	 I c.o(/lf(n)) or	 (2.11 i) 
E	I )xV d(Fx(x) - F(x)) =	(n —^ cc),  

1=1 zI6/q,(n)	 IcokJ (n))	 (2.11 i i ) 

where	S	

5 - 

-:	

M(n) = E (E [I X 1I T]- + E[ I Z ]), .	-	 (2.12 i) 

= E (E[1X1- Zd]) .	 S	
-	 (2.12 ii) 

There is the following trivial connection between the generalized Lindeberg and the 
generalized pseudo-Lindeberg condition (2. lii).	 S 

Lemma 1.: Let (X)1 and (Z)j E s be two sequences in 3(Q, 91)'having finite absolute 
moments of order r, 0 < r < cc. If each of the sequences fulfils a generalized Lindeberg. 
condition of order r, the4 both together fulfil a generalized pseudo -Lin deberg condition 
(2.lIi)o/ order, r. -	-	-.	 S	 - •	 -	 -

:.
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3. General limit theorems with o-rates - 

The followingm* ain approximation theorem for sums of not necessarily independent 
randdm variables will be established by a niÔdification of the Lindeberg-Trotter 
operator-theoretic approach as tailored to the situation of dependent random variab- 
les by means of Dvoretsky's telescoping argument. For this purpose the assumtions 
are the genera1iied pseudo-Lindeberg condition of order r for the random variables 
X, and the decomp'osition components Z i as well as a conditional pseudo-moment 
condition of order r.	 - 

The ore b f: Let (X) I(N be a sequence of 3(Q, t) (not necessarily identically distrib-
uted nor independent) and Z a q?-decomposable random variable with E[Z] 0, such 
that 

•	 = E [ I X1l] < oc and	rj	E [ I Z1I < 00,	 (3.1 i) 
or	 -	 I 

•	 = E[IX - Z V] < co	 (3.! ii) 
- for some r 2. Assume further that the sequences of random variables (X 1 ) i s and de 

composition components (Z)€s together satisfy	 S	 - 

the generalized pseudo-Lindeberg condition (2.11 i)	-	 (3.2i) - 
or	 - 

•	the generalized pseudo-Lindeberg condition (2.11 ii) -	 (3.2 ii) 
of orders r, as well as	 - 

— Z) !t,]l (w)	
{

o (op(n)f M(n) ) , or  
+9(n)T V(n) ) , a.s.	

(33••) 
where-%.= 91(X 1 ,	Xii, Z 1+1 , ..., Z,).	- 

Then for any f E ,CT there holds for each fixed u E JR the estimate	
• S 

	

(ip(n)T 111(n))	 (3.4i) 
S	

E1f(T ±t)1 - EU(Z + u)Ij	
{ ( r V(n))	

00).	 (34ii) 

Proof: Regarding the first case, setting R, = E;Xk + . E Zk, 1	i	n, 

	

k-I	k=i+i 
n E IN, the telescoping argument and a double application of Taylor's formula for 
f E Cr yields for each u E JR ;the identity and estimate	S 

IE[f(T + u)] - E[/(Z + u)] 

-	• =	
(i' p(n) X 1 +	_ f (i'n Z, ±	

-	
S 

S -	 - 

• = E E[/((n) R. j + u + (n) X 1 ) - /((n) R + u + (n) Z1)J	
S 

Z j'	E[f(i)(q(n)R + u)	- Z)1	 S 

-	 •	i)1

•	•	(r ' 1)! f (1	t) r	E[f(T)((n) R 1	t(n) x) ((n) X)r 

- •	- - /(r) ((n) R + u) ((n) X] dt	
•
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/ 
I	 -. 

-	 + E	1)!	(1 — g)rl E[f()((n) R 1 + u + t(n) 

x ((n) Z	- f(r)((n)	+ ) ((n) Z I)J dt.	 (3.5) 

To estimate the first term, namely	 S 

E	j! E[/(' i)(99 (n) + u) (X —Z)],	
•'	

(3.6) 

i=1 j=1

one has on account of (2.4)—(2.6), noting the t-measurability of the Re ,, and that 
It( ' ) (x)I :^-,N1(', x E IR, for 1	r since / E C , together with condition- (3.3), for 
each uE1R '	 • 

E[/® (q(n)R + u) (XI, - Z)]	'	 •	 •	• 

=	
E[/W((n) R . j + u) E[(X,— Z) I Li]	 S	 • 

E[E[(X — Z)I t] (w)] .	 • •.	 - 

= Nj(1 (q(n)' M(n)) a.s. • 

Mu1tipling this estimate by (n) i/j! and summing over 1	j	r yields that (3.6) - 

is of the, order .(Nj(r, q) (n) M(n)) with N1 (r, q) := 'q(n)' N1(1) ,Ij!. Concerning 

the second and third terms of (3.5), let us show that they are of order (1) after being 
*iultiplied by q(m)" M(n) 1. Indeed, since / E C, I/'((n) R' 1 + u + t(n) X.) 
- /( ) (p(n)	u)I < e for IXd < ô/p(n) since 0 < t,< 1. Hence 

DE(t)	EEI{/((n)	± u + t(n) X1) - /(r)(() R 1 + u)} X	• 

•	 'S 

•	 • •

	 )<	IxIôI(n) + lxI2:61(n)}j	+ 2 I/Icr f	IxI T dF1(x): 
•	 -	

- zô/q'(n) 
This gies  

M(n)	(r - 1)! / (1 - t) ,--1 DE(t) dl	 •	'•	

•	 - , 

-'	 •	 '	 )	 i' (r— 1)! {!'._ g)rl {eri ±21/Icr f xlrdFx(x)}'dt} 
-	 0	 zI^6/q'(n) 

+ 2 I/;crM(fl)r!Z{ f IxIVdFx(x)}	
-	

(3.7) 
I4 614n)	- 

• • On account of the estimate of (3.6), as well as of (3.7) and its counterpart for Z, this 
• yields for each u E IR in view'of the generalized pseudd-Lindberg condition (2.1Ii)
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for the random variables X i and Z1, 
1_____ 

tp(n)T M(n) {E[/(T + u)] - E[/(Z + ufl}	Oj(1) +	+ 2 I/Icr

r! 

x— f JXI r d(Fx,(X)_ Fz,(x)) = 

The proof for the second case follows similarly as above by replacing conditions 
(3.1 i),(3.2i), (3.3i) by (3.1 ii), (3.2ii), (3.3ii), and M(n) by V(n), respectively U 

Remark 1: An analogous proof for the same result could also be carried out by using the 
random variables 

I-I	 - 
R 1 = E Z + '' X,	91L 	91(Z......, Z_1, X_1 , ..., X)	- 

k=1	k=i+1 - 
instead of the R 1,{ 1 and, in place of condition (3.3i),	- 

- - E EtX1 - Z7 I 21,] = o(9 (n) 1 M(n)) a.s.	(n -+ cc).	 (3.3i) 

A 17 (n)-version follows analogously. Both results are due to the 9i.measurabil,ity of the R. 
Co r o 11 a'r y 1: If the random variables , X, as well as the decomposition components 

Z, i € IN, are in addition identically distributed and is such that (n) = e( I), n -> cc, 
then under assumption (3.3i) one has for / E:CT and each u€ JR 

E[/(T + u)] - E[f(Z ± u)]I = cj((n)1	+ r1)) = 
(nY)	

(n -* cc). 

The result follows from Theorem- I if the pseudo-Lindebergcondition for the:X 1 and 
Zi can be shwn to follow for (n) = (i). But for identically distributed random 
'Variables this condition reduces to f IxI dFx,(x) -- 0 for each ô > 0, which is 

satisfied automatically since 6/(n) -± cc, n -i- co I 

Remark 2: 1. The term IEI!& ± u)i — E[/(Z) + ull in (3.4) tends to zero for n -* cc if 
rp(n)' M(n) (or (n)VV(n)) is bounded. In the.identically distributed case this is fulfilled for 

(n) = nIIT. 2. According to our knowledge, no results directly comparable to those of Theo-
rem I seem to be contained in the literature. However, results are known for more particular 

• sequences 'bf random variables for which the dependency structure is fixed (which are also 
subsumed under Theorem 1). In the case of martingale difference sequences let its refer to the 
papers of BASU [2]. KATO [21], PRAKASA RAO [31], RYCHLIK [32], SCOTT [34] and STROBEL [35]. 
3. The constant 2 I!Icr/r! in the estimate (3.7) has in the case of independent random variables 

v-i 
in regard to 0-estimates been improved by the factor f cj 1 11W11CIP + .2L1/r!, whereLf is the 
Lipschitz constant of /(r-1), by ANASTASSJOU [1].	j0 

Since- most of the applicable structures are actually dependencies upon the past, ' 
the f9llowing differentiation is meaningful, especially for Markov processes. Part c) 
was formulated in the case of Banach-valuedrandom variables in [12] in connection 
with Donsker's weak invariance principle. 

Definition 3: Let (X j ) j c % be asequence of real random variables on some prob-
ability space (12, W, P). It is said to he 

a) dependent from below if, for each I < i 15 n, n € N,	 - 
P(X 1 € B I X 1 , ..., X_ 1 , X +1 , ..., X) = P(X 1 € B I X1 , ..., X. 1 ) a.s. (B E ). (3.8) 

b) dependent from above if, for each I :E^ i :!z^ n, n € IN, - 
P(X i € B I X12 . . .,.X i- 11  X 1+ ..., X) = P(X 1 € B I X, ..., X) a.s. (B € ). (3.9)
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c) expectationally dependent from below or from above if, for each 1 :!E^ i	n, n E N, - 

	

E[X . I	•.. X,_1 ]	 (3.10) 
I E[X I X 1 , ..., x1, x1, ...,	

= I E [X: I X 1 , ... X].	
a.s.	

(3.11) 
Examples for random variables that are expectationally dependent from below, 

are martingale difference sequences (see' [12]) and Markov processes (see below); 
dependent from above are inverse martingale difference sequences and inverse Mar-
kov chains. 

Lemma 2: Examination of condition (3.3) in the light of Definition 3 leads to the 
following statements: 

a) If X is any random variable, t2, a are two sub-a-algebras of 91, then P(X E B I ()	( 
=P(XEBI) for all BE8 implies E[XI5]=E[Xj]a.s. 

b) If (X 1 )i5 is a sequence of random variables that is dependent from below, then it is 
expect ationally dependent from below. 

c) If (X)1EN is dependent from above, then it is expectationally so. 
Proof: The hypothesis gives in 'particular for. B = (- . 00, t] that P(X :-<. t I ) 

=P(X	t 5,), so that F(t I ) = Fx(t I ). This yields E[X I ] =f  dF(x I 

= E[X I ], which completes the proof of part a). Parts b) and c) follow, directly 
from a) I 

Lemma 3: If the sequence (X) 1 €N is expectationally dependent from below such that, 
for I <	r, n	o0,

	

I 0(9(n) 1I(n))	or	 (3.12i) 
•	 ' E[(X - Z) 5] =	 a.s. 

	

c(q(n) r V(n)),	 (3.12 ii) 
where	91(X, ..., X 1_), and Z, are the decomposition components of Theorem I,

then condition. (3.3 i) or (3.3ii) is satisfied. 

Proof: By Lemma 2b, and the independence of the Z, from 9t,, one has with 
(2.4), (2.8) and (2.9),	 - 

E[(X li 	E[XJ9t1] - E[ZI9i]) 

= ' (E[X I €] - E[Z']) = L' (E[(x - Z') 13i_iI) I 
Remark 3: 1. On account of Remark 1 one-can also formulate both versions of Lemma 3 for 

sequences of random variables that are expectationally dependent from above, employing 
condition (3.3)* in place of (3.3). 2. The conditions "dependent from below" or "dependent 
from above" are rather severe restrictions upon dependence. For a sequence (Xi)iEN that is de-
pendent from below it means that for each X. the past is not influenced by the future. In this 
sense, dependence from below may be more restrictive than (general) Markov dependence. In the 
next section, where only a pecial Markov-property is allowed, Markov -dependence is an example 
of dependence from below. 

'4.' General limit theorems for Markov processes 

A Markov process with discrete time parameter is a sequence of random variables 
on some probability space (Q, 91, P), where each random variable X i is only 

) restricted by the Markov property  

	

P(X E'B I X 1 , ..., X_ 1 ) = P(Xi E B I X_ 1 )	(B €	; i ;^-_ 2).	(4.1)
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• It is obvious that such a Markov process is dependent from below according to Defi-
nitionl. A Markov process with (possibly) dependent increments is a process (X)1 E - 
for which the sequence of increments Y 1 with 

- Y 1 := Xi - X 1 1 1	X0 = 0	a.s.	 (4.2) 
- is (possibly) dependent. Whereas for a Markov process the increments are not neces-

sarily dependent, they are nevertheless expectationally so as is seen by the following 
Lemma'4: If (X I ) IEN is a Markov process, then1the sequence of increments (Y)1€ 

is expectationally dependent from below. 
In fact, (X 1 ) being a Markov p rocess,. 

-E r y i I Y11 ..., Y_ 11 Y1,11 ": Y] = E[X1 I Y 1 , ...,Y _ 1 , Y 1 , ..., YJ 
• —	 Y1, . . ., Y, 1 , Y 1 , . . :, 1',,] = E[.K, I Y,.. 1J - E[1 1 _ 1 I Y_2 , Y_11 
= E[(.X - K,. 1 ) I Y 1 _2 , Y,.. 1 1 = E[ Y, I Y 1 _ 2 , ' Y1_11. 

In particular, for it Markov process with independent increments the Y 1 are independ-
ent (see below). 

The following limit theorems with rates will be formulated for three instances, 
•	namely for sums of Markovian dependent random variables, for Markov processes 

with dependent as well as with independent increments. 

4.1 General limit theorem and central limit theorem 

At first to the general result.  
Theorem 2: Let (X)W be Markov-dependent and Z be a (p-decomposable random 

variable with E[Z] = 0 such that (3.1i) or (3;lii) hold for i E N and'r ^ 2. . 1/ the se-
quences (X 1 )IEN and (Z 1 ) 1€s together satisfy the generalized pseudo-Lindeberg condition 
(2.11 i). or (2.11 ii) of order r, as well as condition (3.121) or (3.12 ii), then any / E C 
again implies the estimate (3.4i) or (3.4ii). 

The proof follows immediately from Theorem 1 and Lemma 3 I 
Now to a handy, vers ion of the central -limit theorem for Markov processes. Here 

we will apply Theorem 2 to a concrete limiting random variable Z, namely to X*. 
Theorem-3: Let (XIYIEN be a sequence of random variables which form a Markov 

process. such that E[I X 1I 1'] < , i € N, for any r > 2 as well as satisfy a generalized 
Lindeberg condition (2.10) of order r. Assume further that (a4)EN is any sequence of 
positive reals wich satisfies a Feller-type condition	- 

a-	 '	I "\1f2 
- lim max	= 0 with A,, = (E a,) .	 (4.3) 

-+	A	.._	 \i=i	/ 

If E[IZ ,I T ] < 00 as well as (3.12i) holds with 'Pz	Pai xs, then f € Cr yields for each 
fixed uElk	 •	 .	 ..	 -	'	- 

E [f (A 1 X 1 +	— EU(X* +-u)] = 1(A TM(n)) (n oo) (4.4) 

Concerning the proof, X* is (p-decomposable, for each n- € N into n independent. 
normally distributed random variables Z i with Pz,. = Pox* since	- 

PX. =	 -' E Z 
with (p(n) = An-' 

A 
	--

' 
(see [14]). Further, (4.3) .in connection with Lemma 1 yields the generalized pseudo- - 
Lindeberg condition (2.11i). So Theorem 2 may be applied I
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Remark 4: There exists a further version of Theorem 3 in case the finiteness of the r-th 
absolute moments of the X i and Z 1 is replaced by the finiteness of the r-th pseudo-moments of 
(X i - Z 1 ), and the generalized Lindeberg condition for X j together with , the Feller condition 
for a i is replaced by	 .' 

n	r 
'	!'	I Ixi r d(F(x) - Fax-(x))	 (43*) 

for each (5>0, where V'(n) :=E E[jX;— aX*n] If moreover (312ii) takes the place of	- 

(3.12i) with V(n) replaced by V'(n), then assertion (4.4) reads; 

E I(A.- 1 Zn ^ X j +	E[/(X*+ u)} _,(A_TV'(n))	(n .- 00).
 

'Corollary 2'i a) 1/, in-addition to the assumptions of Theorems 3, the X i are iden-
tically -distributed, then /or / E C'and each u E IR	-' 

E [1'(A 1, X +	_E[/(X* + u)i = 1(nA T )	(n oo). 

b)1/ further a':= VarX 1 , I	i :^n, then for /E C' and uE JR 

I (( Z
n	 \-112 a 

E / 	Var X,)	E X . + u) I - E[I(x* 5± u)] =

\i = i ,' I  

e) If in particular Var X = I,"l < i < n, then for'/ E C2 andu € JR 

E[f (n- 1/2 V, X, +	_,E[/(X* + u)] = ,(!) 	(n	00). 

Apart from the papers [5, 24,'26] mentioned in the introduction, there' exist many further 
ones dealing with the central' limit theorem for Markovian dependent random variables. 
Generally homogeneous Markov chins are studied. Thus NAOAEV [28, 291 considered Conver- 
gence in regard to the central limit theorem for chains, comparable to Corollary 2c) with 
0-rates. Additional papers in this respect are BOLrHAtJSEN [6], GUDYNAS [20) and LirsiriTs [25]. 

4.2 Processes with dependent increments  

This subsection 'is devoted to the behaviour of the process (n) X,, = !' (n) Y 
for n —* oo, the increments Y 1 being assumed to be dependent. 

• Theorem 4: Let (X 1 )IE be a Markov process with dependent increments (Y) i e N as 
in (4.2) with X0 := Oa.s. Let. Z be a 99-decomposable random variable (with respect to 
(X) 1 ) such that E[Z] = 0 and v := E[IY, —i- Z 1 ] < 00, r 2. If the* sequences rt 

( Y ),EN and (Z 1 ) 1 , together satisfy a pseudo-Lindeberg condition (2.1 lii) of order r as 
well as	 S 

— Z),j	] =	(n)" V*(n))	(1 ;5 j 5 r;, n	oo) a.s.	(4.5) 

with	:= 91(Y 1 , ..., Y) and V*(n) :=E v,then/or / E Cr and each u E JR 

E[/((n) X ± it)] — E[/(Z + u)] = ,((n)' V*(n))	co).


The proof follows directly from Theorem 1 and Lemmata 2 and 3 1
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4.3 Processes with independent increments 

If in the results of Section 4.1 the increments Y 1 = X - X 1 _ 1 are assumed to be 
independent, which is often the, situation in applications (e.g. queueing theory and 
simulation), then our problem reduces to a study of the rate of convergence for sums 
of independent random variables. In this sense Markovian dependency is a generali-
zation of independency, as Cl-LUNG [16, p. 10] remarks. Now it is 

quite surprising that 
the results obtained by BUTZER and HAHN [8] for sums of independent random 

• •'-	 variables (by , means of Trotter ,operathr-theoretic arguments) resemble those of 
• ' 

Theorem 4 both in regard to the hypotheses and conclusion; there one managed to 
get along with a pseudo-moment condition instead of a conditional condition of this 
type and the convergence was uniform in u € R. In this situation one has the follow-
ing result; it is comparable to [8, Theorem 12]. 

Theorem 5: Let (Xi)ieN be a Markov process with independent increments 1'. Then 
the conclusions of Theorem 4 even remain valid if the conditional pseudomoment condi-
tion (4.5) is replaced by 

E E[( Y - Z)J =	(n)T V*(n))	(ii - oo),	 (4.5*) 

the others remaining unchanged.  

In fact, (4.5) reduces to (4.5*)'in case the Y j are independent in view of (2.8) I 
I. 

5. Pseudo-moments and generalizations 

If one looks at the proof of Theorem 1 more closely one sees that the main problm is 
the estimation of the first term (3.6), thus to show that; the double sum of (3.6) is in 
some way or other of the maximal order c'j(p(n)T M(n)) or c.1((n)' V(n)). This was 
achieved there by employing condition (3.3i) or (3.3'ii) together with properties of 
conditional expectations in connection with the admissible dependency and measur- 
ability properties. In order to simplify this proof, thus to estimate (3.6) with the 
desired order, it obviously suffices to assume the difficult looking condition 

E[/(i)((n) R i + u)(X - Z1)JI = j((n)r M(n))
 

(uEIR;1	j;5r;i-.-).oc), 

the V(n)-version being analogous. This is an implicit pseudo-moment condition in the 
sense that there is a "weighted" difference of the random variables X1, and Zj j . Now 
many estimates of pseudo-moments are known in the literature. Let us first define 
some types of pseudo-moments and consider their properties (compare ZOL0TA.REV 
[37]).	 - 

Definition 4: Let X, Z be two random variables. The pseudo-moment v(X, Z), is. 
defined by v(X, Z),= E[X - Z] 1, and the conditional pseudo-moment. T(X, Z; i) by 
T(-,T, Z; ) = IF-[(X - Z) 103]1 where 3 is a sub-a-algebra' of 9f.	,	•	 - 

Lemma 5: For c E JR there hold - 
I)	'(cX,c.Z).:!z^ IcIi'(X,Z), 
ii) v(X,Z) = E[r(X, Z; )], "
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•	 / 

iii) r(c . X, C	Z; 03) 5 I CI r(X, Z; 0), 
iv) t(c 1 X, c 1Z; 	r(c2X1 c2Z; (M),	C l	c2. 

Proof:	We have i)	EEc. X — c .	cl E[IX — Zj]	and ii)	IE[X — 
= IEIE[(X - Z) I @3]]1 = E[r(X, Z; @3)];	iii)	follows	as	in	i);	iv)	follows from' 

]E[(c 1X - c1Z). I @3]! = c 1 E[(X — Z) I @3]1	ic2 E[(X — Z) I (B 11 =' r(c2X, c2Z; ) • 
•	In this terminology condition (5.1) reads (each u E IR) 

R 1 + u) X,'/(i)((n)	.+ n).Z j) = c,((n	M(n)): (5.2) 

•	Let us now give some conditions which are sufficient for condition (5.2) to hold, and 
so suffice, for the proof of Theorem 1. - 

•	
'	Lemma 6: Let / E C, il(n) := M(n, r) = E {E[jXI T] + E[!Zfl}. There hold:  

i) 1/ /or the pseudo-moment	 . 
v(X', Z 1 ) =	(n'9(n)' M(n))	(n -* c,o)  

then	•	, 

' v(X, Z) =	(q(n)' M(n)). (5.4) ,	 , 

ii) There exists a constant NP ) , 1	r, such that	 • 

v(/(i)((n) R	+ u) X, /O)(9(n) R	± u) Z) ;5 IN?I	v(X, Z1). 

v(IW(p(n) R 1 + u) X, /O)(q,(n)	± u) Z,1) 

= E[/0)((n) R 1 + u) r(X, Z; 
•	

'	iv) There exists a constant NiP, 1 :!z^	!E^: r with 

E[(/((n) R	± u) X, /()(() R 1 + u) Z;	t)J 

NY y(X{,Z). '	 -ns• 

v) 11 /or the conditional pseudo-moment 

TG j, Z;	=	(n'q,(n)rM(n))	a.s.	(n 
-±	)

(5.5) 

then (recall condition (3.31) of Theorem 1) 

E T(X, Z; 91) =	(q(n)" M(n))	a.s. (5.6) 

vi) 1/(5.5) holds, so does (5.3), and if (5.6) holds, so does (5.4). 
•	

,

 

Proof: i) We have	 • 

E v(X, Z) =	(n'ç(n)r. M(n)) =	n) M(n)).
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ii) Since / E C', /)(x) is bounded by a constant NiP, and there holds 

Ly v(/W(q(n).R+ u) X, /i)((n) R 5 ± u) Z1) 

< E v(N/iX, N1'iZ 1 ) ;5 IN1 i I' v(X, Z,,). 

iii) There holds with Lemma 5ii) and (2.7) that 

•	 v(/'i)q(q(n) R, + u) X, /(i)(q,(n) R, + u) Z) 
= E[r(/(i)(p(n) Rni+ u) X, /(i)(9(n) R 1 ± u) Z, 1 ; 9tn1)] 
= E[/W(p(n).R + u)	Z,1; 9X)}. 

iv) follows' as does ii); v) follows as i); vi) follows by Lemma 5ii) and (2.3) I 
- 

Lemma 6 could obviously be formulated also for the V(n)-case; whereas Lemma ,6 
re, fers to Theorem 1, versions attached to Theorems 3 and '4 are also possible. So 
one can see that conditions (5.2), (5.4), (5.5) and (5.6) suffice for (5.2) or (5.1), and so 
one can formulate a weaker version of Theorem 1. The weakest alternative condition 
to (3.3) (or (5.1)) is condition (5.4), and will now be employed. 

Theo rem 6: Under the assumptions of Theorem 1 there holds, in case condition (3.3) 
is replaced by

	

((r)! M(n)) or	 (5.71) 
' v(X, Z) =	r	 (n. —* co) 

(r-1)! J(n))	 (5.7 ii) 

for each / E Cr the estimate

	

M(n)) or	 (5.81) 
sup E [/( T + u)]	E[/(Z ± u)]J	 r	 (n — oo). 
uelR 	

"( (r-1)! V(m))
	 .	( 5.811) 

Proof: Checking the proof of Theorem '1, one just needs to re-examine the esti-
mate of the first term of (3.5), namely (3.6). But it follows by Lemma 6ii) and condi-
tion (5.7) that (3.6) is of order . ((m)' M(n)) (-(q(n)' V(n))) uniformly for all u E IR, 
as desired.-So the proof is complete I  

Remark 5: 1. in the particular casd of independent random variables 'X i Thcoren1.6 coin-
cides , with Theorem 12 in [8] so that the former is a true generalization of our earlier results for - 
the independent case. Pseudo-moment conditions are again of decisive importance. 2. As the 
proof of Theorem 6 reveals, all of the estimates derived in Sections 3 and 4 are valid not only 
for each individual u E R but uniformly in uE Rprovided condition (5.4) of Lemma 6 wduld 
be employed throughout. 3. Stzoov and ULYANOV [33] established an O . -estimate for the rate 
in the multidimensional central limit theorem for independent identically distributed random 
variables also in terms of pseudo-moments by using a Taylor expahsion for functions / E C3(Rk). 

G. Probability metrics;' comparisons with known results 

, The exploitation of pseudo-moments i h the case of limit theorems in probability theory 
is part of the'theory of probability 'metrics (see e.g. [17, 38]). In this section we will 
give a short' survey in connection with different probability metrics.	•
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• Definition 5: The distance z of two random variables X, 1', with ,u: 3(Q, t) 
• x 3(Q, ) -i [0, co], is called a probability metric if 
• i) P(X =1') = 1. implies (X, 1') =0, 

ii) 4u(X, Y) = ,u(Y, X)•,	- 
iii) 1u(X, Y) ^5\1u(X, Z) + p.(Y; Z)for a random variable Z € 3(Q, ). 

Lemma 7:.ln regard to the above definition one has: 
a) The pseudo-moment v is a probability metric.	 - 

• .h) The conditional peudo-mome'nt r is a pseudo-probability metric, i.e., conditions 
ii) and iii) of Definition 5 are fulfilled, but condition 1) holds only a.s. 

Proof:Concerning part a), the proof is evident. Concerning b), we have: 
° i)P(X = 1') =l= °r(X, Y; 3) = Ifxd(Fx i a -	(x)I = 0 a-s. since Fxia 

=	
a.s.;

 

ii) evident, since IfX d(F 1 - F y j )(x)I = fxd(Fy i a - Fx j a) (x)I; 
iii) r(X, Y;	)	If x d(FxjQs 	Fz10' ± Fzjos - Fy 1 j) (x)I :!E^ °r(X, ,Y; 

±°r(Y,Z; ) I 
In the following, we will establish two results to be compared with Theorem 6; they 

will be deduced by well-known results of other authors. 

i)efiniion 6: Let X, Y E 3(Q, vt). The law of X, L(X), is defined by 

• L(X) = (YE 3(Q,9[); P = P}.	 • 

If d is. a classical metric, then y(X, Y; d) := E[d(X, Y)] defines a probability metric; 
the so-called minimal metric with respect to y is defined by 

(X, 1'; d).= inf {y(X, Y; d); L(X, Y) € 3(Q, 21) x 3(92, 21), 

L(X)=Pr and L(Y)=Py}.	S 

In the particular case d(x, y) = x - 'ye, s > 0, P is called a Wasserstein metric, and 
is denoted by W8 (P, Pr). The metric isdefined by	• 

(X, Y; F) = sup (111(x) d(P. - P) (x)I},	•	 I 
IE F	 - 

where F is any function-class. A particular ersion of is given by 

(X, Y) = (X, Y; D3 ),	 - 
where

D _L	1€ Cn Lip s},	• •	 •	 0<s ^ 1, 3JE '/( r)€CnLipa},8r+r€Na€(Ol]	s>1, 

and (see e.g. '[38]) Lip a := := (f € C; 11(x) - J(Y)I	Ix —'yI). 
tJider these notations, the Kantorovitch-Rubinstein-Dudley Theorem reads (see 

e.g. , [371)	-	•	 • 

Theorem 7: For any measurable metric d and any X, Y € 3(Q, 21); there holds 
(X, Y; d) = (X, Y; 0(d)), where 0(d) = (I € C; 11(x)	/()I ;5.d(x, y)}. 

For the application of Theorem 7 to our reults, another property of metrics is 
important.	•	 •	 •	 •	 S
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Definition 7: A metric u is called ideal of Orders > 0 if for any random variables 
X, Y,Z€ 3(.Q, 9[) and any constant c€ lR,c=0Y 

'	) iz( + Z, 1' + Z) ;^; i(X, Y), 
ii) (c . X, c . Y)	1c1 8 a(X, Y), 

whereZ is independent of X and F. 

In this respect there holds (see [36, Lemma 3]) 

Lemma 8: For any s > 0, is an ideal metric of order s in the maximal subset of 
3(Q, 21) within which the values of are finite. 

Since for the Kantorovitch-Rubinstein theorem the function class G(d) is needed, 
and since the metric is ideal only for the particular function class D5, s > 0, for our 
application our function class has to fulfil both conditions. This means that D3 n G(d) 
= D3 , 0 <s <1. So our application of the Kantorovitch-Rubinstein theorem is 
only valid.for the metric with 0 <' 8 :5, 1. 

Theorem 8: Let X,YE3(Q,91) and fED3 ,0<sf,-1. Then ' 

sup {I E [f(X ± u) - f(Y + u)]}	E[X -	 (6.1) 
UE& 

Proof: One has by Lemma 8 and Theorem 7 that the left-hand side of (6.1) is 
estimated by 

sup sup {I E[/(X + u)] - E[/(Y ± u)]I}	sup {I E[/( X)] - E[/(Y)]j} 
fED, UEfi	 -.	 fED. 

= 3 (X, F) = W5 (P1, P) E[ I X - Y 1 8] I 

Observe that Theorem 8 is somewhat comparable to the V(n)-version of Theorem 6 
with X = T, F = Z. However, the function class i) = C r Lip s is larger than that 
in Theorem 6, namely C, r	2; the large-0 order is replaced by little-c.. In this 

respect see also a further concretization in Theorem 9. From another point of view - 
there states a lemma of ZOLOTAREV (see [36, Lemma 2]) that 

8 (X, F)	 B8(X, Y)	(s > 0),	 -(6.2) 

where	- 
B8 (X, 17 ) := {E[1X1 8] + E[1 Y1 8]}, S >0, S = r + a rE N, a E (0, 1], 

(6.2) being valid provided	 - 

i) B3(X,Y)<oc, 
ii) E[X'] = .E[Yk]	(1 !E^ k	 (6.3) 

Theorem 9: Let s > 0, s = r + a, a. (0, 1], r € N. For two sequences of inde- 

pendent randrn variables with T = E T(n) X i and Z E ç(n) Z, for which the 

X 1 , Z,,, satisfy (6.3), one has for f € D. (recall Definition 6), 

up {JE[/(T + u)] - E[f(Z + u)]l} 	
+ a) (Z 	B3 (X,	(6.4) 

uE	 P(1+s)
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Proof: It follows by Lemma 8, (6.2) and a further Theorem of ZOLOTAREV [36, - 

- Theorem 2], namely .(T,,, Z) :!^ I(n)l3Es(Xe, Z,), that  

	

sup (I E [/(T + u)] - E[/(Z + u)]I}	3 (T, Z) 
U (lR . 

ke(n )1 8 E 3 (X,'Z) < ke(n )I 8 E r	B8(X;, Z 1 ) I 
S	 (1 + s)	 - 

	

Remark 6: If one would replace the pseudo-moment condition (5.2) by	 K 

•	
-	i,= o.(?!

 

	

M(n))	/	 (6.5). 

'it could be shown (compare [12]) that for functions / from Lip''	: = If E C; /(r—I) E Lip a}, 
a E (0, 11, and for possibly dependent random variables X i there holds	 - 

/1	r	 - 

	

- sup {I E [I( T + it)] - E[/(Z + u)]I} =	
(n)	M(n)	 ).	(6.6) 

UER	 \(2(r - 1).  

Comparing now (6.6) with the estimate in Theorem 9, the right-hand side of(6.4) in the parti. 
cular case s = (r - 1) + 1 would be equal o EBr _ j (X j, Z) = M(n, r 1.), and the 

function classes in both results, namely Dr and Lip(r–i)a with a = 1, would also be equal. ; like-
wise are the orders, namely ()t M(n, r)' (noting I - (1 - (x)/r = 1 there). Howver, the 
estimate in (6.6) is more general in the sense that it does not only hold for independent random 
variables X- as in the case of Theoren 9 but also for possibly dependent ones. Further, the 
pseudo-moment condition (6.5) is much weaker than (6.3), namely E[X] = E[,1 ] 1 1	j 
iEN.  

oncluding1y one can say that our results of Sectiors 3-5 generalize known results 
on the distance of random variables to the ease of general limit theorems for depen-
dent random variables. 

Thauthors would like to thank Dr. 1)ietmar Pfeifer, Heisenberg Professor, Aachen, 
for his critical reading of the manuscript and valuable suggestions. 
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