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- P.L. BUTZER and 'H. KIRSCHFINK

[ . ’ - -
L, o

N

-,\'Ilt, -Hilfe dcr Dvoretzkyschen Erweiterung der Trotter- Opcratorcn Methode wird ein all-
gemeiner Konvergenzsatz mlt, 0:Ordnung fiir abhiingige, reellwertige Zufallsvariable, "die einer
'Pseudomomentenbedmgung geniigen, bewicsen. Dieses Ergebnis wird auf allgemeine Grenz.
wertsitze, einen zentralen Grenzwertsatz sowie auf ein schwaches Gesetz der groien Zahlen

fir Markovsche Prozesse.mit dlskretem Zeitparameter angewandt. Ferner werden Pseudo-’
momentenbedmgungen diskutiert und die Materie mit Ergebmssen aus der Theone der Wahr- ~

.scheinlichkeitsmetriken verglichen.

C nomouwpio pvag:u.mpemm IBopenxoro meroaa oneparopos Tporrepa nokasniBaeTcs oﬁluaa
TEOpeMa CXOAMMOCTH C'0-MOPAJKOM JUIA HE3ABUCUMLIX BelECTBEHHO-3HAYHHIX 'cnyqanﬂux

BEJN4MH YIIOBJICTBOPAIOUIMX OJHOMY .YCHOBHIO MNCEBAOMOMEHTOB. DTOT Pe3YJbTAT ‘MPHMEH-

AeTCA K OOLIMM TEeopeMaM CXOXMMOCTH, K- OMHOI uempanbuoﬁ npcuenbuoti TeopeMe i K
ocaabaénHomy 3aKoHy GombUIMX 4Kcel JIIA mpoueccoB MapkoBa.c JUICKPETHLIM BPEMEHHbIN
napaverpom. [lasee, 00CYy*MalOTCA OETANBHO YCIOBUA MCEBAOMOMEHTOB M’ peaynb’raTu
- cpammnanorcn c 'reopneﬁ Bepomuocmu}\ METPHK. \

.Makmg use of the Dvoretzky extension of the Trotter-operator method, a general convergence
‘theorem with o-rates for dependent, real-valued random variables satisfying a pseudo-moment
condition is established. Applications are to general convergence theorems, a central limit
theorem as well as a weak law of lirge numbers for Markov processes with discrete time param-
eter. Further, pseudo-moment conditions arc discussed in detail and the results are compared
with the theory of probablhty metrics.

AN

- 1. Introduction

The fundamental limit theorems of probability theory are genera.lly concerned: with
the convergence of sums of random variables towards a given limit random variable.

Apart, from the type of convergence, the dependency structure of the random varia- .

. bles'in questions as well as the particular limit random variable have to be specified.
~ This. paper is devoted to limit theorems with o-rates of convergence for sums of not
necessarily independent nor identically distributed random variables, thus for
arbitrarily dependent. random variables. In order that the approach is rather broad,
the results will be based upon a general limit theorem with rates in form of conver-
gence in distribution (Theorem 1), thus

(BT, + )] = BIAZ + 0l = offpln) Vi) (>o00), . (L1

for each fixed»u € R; here the normalized sums T, Z X ( ‘),E\ belng an
=1
arbitrary sequence of real, possibly dependent random varla.bles, p: N R is a

normalizing function with g(n) = ¢(1), n = o0, Z a ¢- decomposable random variable .

(i.e. for each n € IN-there exist lndcpcndent random variables Z; (= ,,,),/l <i<Zn,
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such that for the dlstrlbutlon P, of Z one has Pz =P ot )Z ; ), f belongs to the con-
vergence dete'rmining class C7(IR) for any r € IP = {0, 1 2 ..} (see (2.1) for the
‘definition), and V(n) is defined in terms of the absolute pseudo -moments of order r-
of the random variables in question (see (2.12ii) for the definition). This general
theorem will-be applied in particular to (sums of) random variables X, ¢ € N, which
" forin a non-homogeneous Markov process with a discrete time parameter.(Theorern 2),
" namely to a stochastic process dlstmgmshed by the Markov property (see (4 1)).

Until 1975 most of the results known in this direction, at least in the particular case of the
central limit theorem (for which the limit random variable Z = X*, the normally distributed

. mndom variable with mean 0 and’ variance 1 and g(n) = ( 2 Var (X; )) ), dealt yvxth not
i=1
. \
necessanly mdependent random variables that satisfy Doeblm s condition or the so-called
<p mixing condition. Both additional assumptions roughly mean ‘that the random variables are
“asymptotically independent’’; they are rarély satisfied for Markov processes. In this respect
for example, LirsarTs [26] established under a condition upon the maximum coefficient of the
correlatxon (related to the above assumptions [27]) the result sup |F, (:z) — Fxe(z)| = o(l),
ze[R N
n — oo, where ¥, (z) is the dlstnbutlon functlon of Z (X; — EX;) / Var (): X) Then in
i=1
1976 LAVDLRS and RoOGGE [24] studled the central limit theorems for Markov chains for the

convcrgence of the distribution function of ( 2 H(Xilw)) = mzk) Var Vnzg, where 7, is defin--

ed as the recnprocal of the mean recurrence tlme of thestate k and/ = L;;, towards F e, obtam
ing the order O(n—2) for each « < 1/4 under just a'weak third moment condition. In thisregard
BOLTHAUSEN [5] established the rate o(n~¢) for ¢ <..1/3 — 1/6(c + 1) and some ¢ = 3 for which
E[1X;|] < co. Both papers actually deal with positive recurrent irreducible Markov chains
wnth countable state space.

Our version of the central limit theorem for Markov processes (Theorem 3) gives’
for each fixed u € R the estimate .

lE [/ (A;-‘ ‘—\:"1 X; 4+ u)] — E[f{(X* + u)] = of(dn fM(n)) (n — o0)

. ) n 1/2 ’ C
for f € C7, where 4, = Za-2 , the a; being positive reals and M(n) asin (2.12i).

In the particular case of Markov processes having statibnary, independerit mcrements
with mean 0 (thus for 1dentncally distribited randomr varlables) thls estimate turns
out to be A B N '

TN

Blr(wr £+ u)| - Bipxs +

. i=1

= ¢(n?"2) (n > c0) L
- 1Y .

)

for each u € R with 4, = n”z ) : :

Concerning the assumptions needed for our results, moment type conditions WJll
also be required, namely the conditional pseudo-moment condition (3.3) of order r as
well as a pseudo-Lindeberg condition (2.11) of order r. Whereas the dependency
. structure of the random variable is unrestricted, it will depend indirectly upon mo-
ment conditions, in particular upon our pseudo-moment condition. 1t will in any case
cover Markov processes (and martingale difference sequences) for both of which the
dependency structure “‘depends” on the past, i.e., the random variables depend only
upon their predecessors; they will be said to be dependent from below. This aspect
will especially be dealt with in Section 3.2. Alternative conditions to the weak pseudo-.
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moment condition (3.3) will also be examined (Section 5); it can indeed by replaced -
- by the same non-conditional moment condition already used in BuTzer’and HaHN

[8], noting that the functlons of Cr are bounded. In fact, (3 3) can be replaced by the
condltlon .

i=1

SEix D 2 — (w» ZEx - zim) C=isn.
This will enable one to extend assertion (1.1), valid pointwise inu€ IR to the uni- -
form assertion (5.8) of Theorem 6.
It is rather interesting to note that results such as these may also be deduced from
. the well-known Kantorovitch-Rubinstein-Dudley theorem (see e.g: [17, 37]), or for
the analogous M(n)-version by a lemma and & theorem of ZoLOTAREV [36]. The
" Kantorovitch- Rubmstem theorem gives for the distance of two random vanables the
estimate ' :

, Sup IBAX + w) — E(f(Z + ) = E[IX — zr), 0<s=1, (12

. 'where / ¢ D,, D, as in (6.5)..Applying it to our situation, one has for X = T, and
" Z = Z the estlmat,e (compare Theorem 8) .

sup ([T, + u) — /(2 + Wi} < 5 oloy E[X, = zi.

-

N
However, it is important that this version of (1.2) is only valid for independent ran-
dom variables X; and Z;. Thus our Theorem 6 can be regarded as a certain generali-
zation of the Kantorovntch Rubinstein-Dudley theorem to the case of dependent.
random variables and stochastic processes. This matter is elaborated upon in Sec-
tion 6. It should be mentioned that BERGSTROM [4] used pseudo-moment conditions
in the case of independent identically distributed random variables already in 1953.

- The recent papers by Papirz [30] and Sazoxov and ULYANOV [33] re- emphasme the
importance of such conditions.

Not only w111 limit theorems be studied for. the sums T', = th(n ) X; but also

for the processes X, themselves for n — oo, as indicated. The ]a.tter m]l depend upon
the structure of the increments. Whereas the literature abounds with results concern-
ing the rate of convergence of sums of random’ variables which are connected in &
Markov process, at least in the case of the central limit theorem, the results for the
X, mostly deal with the behaviour of n-step transition probablhtles (cf. CHUNG [16,
pp- 10} or GiiMAN and SKOROHOD [19, Pp- 282]) whereby in the instance of independ-
ent and. statnonary increments there is a direct connection between the increments
of Markov chains and 1- -step transition probabilities (cf. Cmuxe [16, p. 10]). It is
interesting to observe that in the particular:case of independent increments the pre-
sent résults practically coincide with those of Butzer and HanN-[8] of 1978 on the
. convergence of sums of independent random variables towards a ¢-decomposable
limit random variable (Section 4.3). The latter were generalized to the case of not
necessarily mdepeudcnt random variables which form martingale difference sequen-
ces or arrays in BuTzer, Haux and RoECKERATH [10, 11], and to more general types
of dependent random va.nables in BuTzER and ScHULZ [13—15] as well as to arbi-
trary sequences for the particular case of identically distributed random variables in
BuTzER and KiRsCHFINK [12]. Asfaras the authors are aware, there are no comparable
gencnal limit theorems with rates in the literature.

. 19*
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" The type of convergence considered in this paper is more general than that in
ButzER, HAHN and ROECKERATH [10], or in ButzER and ScHurz [13] where the
dependency structure is of type of martingale difference sequences. In fact, the con-
vergence considered in (1.1) is that for the difference '

J He + w) dFr (2) — [ f(= + u) dFy(z) - - (1.3)
R : R

pointwise in u € R, and not just for the particular case u = 0 treated in the papers
mentioned above. This is.even gencralized to uniform convergence for % € R in
Section 5. Although both assertions are equivalent in case of convergence, at least in
“the case of independent, identically distributed random variables, this equivalence
need not remain valid for convergence with rates. If the assertion (1.3) is equipped
with the rate O(n~"~272) for f € C", then'it is equivalent to

[ @) dF1,(@) — [ [() dF (@) = On==2)  (n - oo)
R R v
or even to each of the two-
@ dFr(x) — [ 2 dF(x) = O(n—v-2R)  (1<j<r—1),
R - "R ! . i
EXi]=E[Z/]. (1<j<r—1)
in the independent idehticallyvdistributed case (éee BuTzer and Hamx (9]). How-
- ever, ‘nothing secms to be known in this respect if the random variables are not

necessarily independent identically distributed or if the @(n~~2/2).rates are replaced
by e-rates, which is the situation of the present paper. . :

2. Notations and preliminaries’

’

Let C = C(R) denote fhe class of all real-valued, bounded, uhifbrmly continuous
functions defined on the reals R, endowed with norm ||f|| := sup |f(z)|. For r € TP
€R .

= N u {0} set X A z
=0, C"=QgeC;g0eC,1sj=sn, : (2.1)°
‘the seminorm on C* being given by lgler = ||g(’)|[.\Concerning the random variables

in question, the class 3(£2, %) plays an importent role. If (2, %, -P) is a probability
‘space, then B(Q, A) := {X; X is A-B-measurable}, where B is the Borel o-algebra on
R. If X € 3(2,%), and € a sub-s-algebra of A, then the G-measurable function
E(X | €], d?fined by fE[X | €}dP = f XdP for every F ¢ €, is known as the

- F . F : N -
conditional expectation of X, given §. Its properties will also be needed. Let X, Y
€ 3(2, A) such that E[X] < oo, E[Y] < 400, and € — . They read: o

X = Y a.s. implies E[X | C] = E[Y | €] a.s. , (2.2)
)E =cas. (¢ a.constant)' implies E[X | €] %'c a.s. - ' (2.3)
E[«X + BY | €] = «E[X | 6] + BE[Y | €] as. (v, f € R). 2.4)
E[EX| 6] = E[(X]. o | (2.5)
Let X be €-measurable; then E[X | ] = X a.s. (2.6)

P . . ,
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Let X be G-measurable and E[X¥] < oo, then E[XY | €] = XE[Y | G
a.s. ‘ ; C 2.7) -

' Let %(X) and & be independent; then E[X | 6] — E[X] a.s.. (2.8)

- Let QI(‘)[(X '(E ) and (52 be independent for two sub-c-algebras N

&, G, < . Then E[X | €] = E[X | G] as. with € =AG, ).  (29)

l‘or the proofs of these properties see LATIA and RoHareI [23, pp. 358], BAUER [3
pPp. 289] or GAE\SSLER and StutE (18, pp. 185].

© The followmg generalwatlons of the “ell known Lmdeberg condmon will play an
nmportant role in the proofs. : '

Definition 1: The sequence (X;)iex of real random variables having a finite
~.mément of order 7, some 0 < 7 < oo, is said to satisfy the generalized Lmdeberg
- condztzon of order r 1f for every 6.> 0,

-

. s J ]x['dFX‘(x) T ’
| =1 x2detn -0 (n — o). . . (2.10)

| S E0X)

i

-

.. . o
The case r = 2 with o;(n) (2 E[X; 2]) reduces to the usual Lmdeberg condl-

tion (cf BuTzER, HarN and WESTPHAL [70. _
: - Definition2 2: : Two sequences. (X; ).e\ and (Z; ),e\ of real random varlables w1th
1) ftmte absolute moments of order r or )

E[|X — 2z < o,
are.said to satlsfy a generahzed pseudo Lmdeberg condmon o/ order r if, for every
“60>0, . B
' (2.111)

n VoL . ‘ . ) _ “b(M('n)) or . o .
| =Z 2{Iw(")lzl d(Fx(z) — Fz.}(x)) = {e‘,(V(n)) (n — 00);‘ @t
where’ ' - ' '
Mn) =)§ (BUX") + {121, - iz
‘(n) = 2 E[IX, — ZI'] | o S - (2.12ii)

=1

There is the following trivial connection bet\veen the generalized Llndeberg and ‘the
: generah/ed pseudo Lindeberg condition (2.111i).,

Lemma 1: Let (Xi)iex and (7 Diex betwo sequencesin B(2, A) hamng finite absolule
moments of order r, 0 < r < oco. If each of the sequences fulfils a generalized Lindeberg .
condition of order r, then both together fulfil a genemhzed pseudo-Lmdeberg condm(m :
(2111 of order r. . : ‘
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. E} General limit thcorelils with o-rates

The following main approximation theorem for sums of not necessarily independent,
random variables will be established by a modification of the Lindeberg-Trotter
operator-theoretic approach as tailored to the situation of dependent random variab-
les by means of Dvoretsky’s telescoping argument. For this purpose the assumptions
are the generalized pseudo-Lindeberg condition of order r for the random variables
X; and the decomposition components Z; as well as a conditional pseudo -moment
condltlon of order. 7. .

Theorein 1: Let (Xi)iex be.a sequence of (82, A) (not necessarily zdentzcatty distrib-

uted nor independent) and Z a <p-decomposable random variable with E[Z] = 0, such

that - \ )
ti=E(X N < oo and’ & = BZ{" < oo, , . (3-10)

or- N E

i = B|X; — Z|'] < o0 o I (3-1ii),

- for some r = 2. Assume further that the sequences of random vanables (X; ).e\ and de;
. composition components (Z; ).E\ together satzsf Y .

the generalized pseudo- Lmdeberg condition (2 11i) : . © (3.21)
or . R )
the generalzzed pseudo Lmdeberg condition (2 1111) : (3.21)

of orders r, as well as
LB =20 1 %) () = |

/where Wi = (X, .. X, 1 Ziiry ives Ly
Then for any f € Cf there holds for each fixed u E R the estimate

o[y M(n)), or | (3.31)

BT, + ] = BYZ + )l = { -

slrtor Vin) o —’.°°)f

Proof Regardmg the first case, set,tmg R,,,_ L,,Xk—i- Z Z, 1 Sz> n,

k=i+1
n E N, the telescoping argument and a double a.pplx(,atlon of Taylor s formula for

f € cr ylelds for each '€ R the identity and estimate - : .
|E/(T, + )] — E[(Z + w))|

- E[f(Z #(n) X, +u) —f(.éf"‘"’ Z *“)} |

E[f( (n) Rpi + u + @(n Xi) o) Ry; + u + @(n) Zi)]l
\ | .
5 ‘”‘"’ [/(f)( (m) Rus + ) (X' — >]‘

1 ;=1

~ -

-l
.

t

[
-

A
[\1:

1 . : .
.ff — ) f (r—= t)’_" E[/"’(w(r_») R, 4w + top(n) X;) (p(n) X,)

(]

- - f(r)(qo(n) Rni +- u) (<p(n) Xi')f] dt

Aoty V), s (3.3ii).

er(p(m)r M(n)) . (3.41)

-~
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/

év . f(l —ty- 1E[/(r)((p(n) Rm + u + tep(n) Z) o v .

X ((p(ﬁ) Zi)f - f(r)(q;(n) R,,'i. —}—‘u) (gp(n) Zi)'] dt). . (3.5) ‘
To estlmate the first term namely
f r (n) E[/(f)(tp(n) R, + u) XJ - Zl)] ' I _ (3.6)

i=1 j=1

one 'has on account of (2 4)—(2. 6), notlng the Q[,,,-measurabtllty of the R,;, and that
x)| < NP, 2z € R, for 1 £j < r since / € Cr, t,ogether with condition"(3.3), for
each u 6 R, -

.ZIAEV":"(?(?L) Rug 4 u) (X4 — 2]~ c

E B0l Ry + ) B~ 20 .0)

LY

< N zlEIE[(X' 2 %) @)]] -

- = NDo(p(n) M(n)) as. _
Multiplying this estimate by ¢p(n)’/7' and summing over 1 <j<r ylelds that (3.6)
‘is of the.order v(N/(T <p) (p'(n) M(n)) with Nyr, 9) := Z @(n) ’ N/(’)/]' Concerning

i=
the second and thnd terms of (3.5), let us show that they are of order o(1) after being
Multiplied by @(n)~* M(n)=t. Indeed, since f¢€ C', |f"Ng(n)Ry; + u + tg(n) X;)
— fNpn) Ry + u)| < e for | X} < 6/<p(n) since 0 < ¢{ < 1. Hence

~,

DE(t) := E[{/?(p(n) Bu; + v + tg(n) X)) — /(’)(qo(n) Ro; + u)} X, |
X ALz <o10tm + Lazoeml] S & + 2 [flcr [z dFx(2):

. T z=éen)

Th.is gives

1.2 .
();(T_l)'f(l—t 1 DE(t) dt

'
n -

s §M(n) & (r—l)'

f (1 — e deds + 2 e [t et a

tz| 26/@(n)

R | ‘ '
= |/lc Ry Z : f lxl' de‘(:r) A (3.7)
' |z dlp(n)

On account of the estimate of (3.6), as well as of (3.7) and its counterpart for Z;, this
" yields for each u € R in view’of the generalized pseudo-Lmdeberg condition (2 11i)
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for the random ‘va-ria,bl(‘:s X;and Z

1 2 Iflc'
—— (E — . £

1 .
XW : |z|" d(l«’x‘(x);-— Fz(x)) = o(1)

|zl 2 é/@(n)

The proof for the second case follows similarly as above by replacmg conditions
(3.11),.(3.21), (3.3i) by (3. ln), (3.2i1), (3.3ii), and M(n) by V(n), respectively 1 ‘

Remark 1: An analogous proof for the same result could also be carried out by using the
random variables /

- l—l . ; ’ 3
RN =S 7+ 5 X, A= m(zl, ceor Zicas Xicgs oo r X 1) :
k=1 k=i+1 .

.

instead of the R,;,-U,; and, in p]a,ce of Londxtlon (3 3i),

)" E[Xl — Zl | ‘JI 7] = o{@(n) M(n)) a.s. (n — 00). ) . (3.31*)

g =1 .
A V(n)-versnon follows analogously Both results are due to the AY;-measurability of the RY;

-Corollary L: If the random variables, X ; as well as the decomposition componenls
Z;, i € N, are in addition identically Y dzstnbuted and @ is such that p(n) = o(1), n — oo,
then under assumption (3.31) one has for f € CT and each u-€ R ' :

IBUCT, + ) = BUZ + 9l = efotny ntes + 60) = & (%F) (> oo).

The result follo“s from Theorcm 1 if the pseudo- Llndeberg condition for the X ; and
Z; can be shown to follow for @(rn) = o(1). But for identically distributed random
varlables thls condition reduces to f |z|" dF x,(x) = 0 .for each § > 0, which is

lzlzo/etn)
satisfied’ automatlcally since 6/p(n) — 0o, n — oo 11

Remark 2: 1. The term |E[f( ’1‘ + u)] — E[{(Z) + «]] in (3.4) tends to zero for n — oo |f
p(n)r M(n) (or @(n)T V(n)) is bounded In the.identically distributed case this is fulfilled for
@(n) = n~1". 2, According to our knowledge, no results directly comparable to those of Theo-
" rem 1 scem to be contained in the literature. However, results are known for more particular
" sequences of random variables for which the dependency structure is fixed (which are also
subsumed under Theorem 1). In the case of martingale difference sequences let us refer to the
papers of Basu (2]. KaTo [21], Prakasa Rao [31], RycHLik [32], Scort [34] and STROBEL [35].
3. The constant 2 |fl¢cr/r! in the estimate (3.7) has in the case of mdependcnt random variables

¢

._r

in regard to O-estimates been improved by the factor ¥ ll/‘"llc/? + "L,/r' where L/ is the
Llpschltz constant of f=1), by ANasTassiou [1]. j=0 \

" Since most of the appllcablc structures are actually dcpendencles upon the past,’

the following differentiation is meaningful, especially for Markov processes. P%rt c)
was formulated in the case of Banach-valued - random variables in [12] in connection
with Donsker’s weak invariance principle.

Definition 3: Let (X;)iex be a.sequence of real random_variables on some prob-
ability space (2, U, P). It is said to be

a) dependent from below if, for each 1 st=n,n€eN, Lo
P(X €B| Xy, .., Xy, Xigy o Xo) = P(X, € B| Xy, ..., Xiy) 5. (BESB). (3.8)
b) dependent from above if, for each 1 < ¢ < n,n € N, . - .
P(X;€B|Xy, ... X, X, oo, X,) = P(X; € B Xiu1, ..., X,) a5 (B€®B). (3.9)
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'c) expectatimu;lly dependeni from below orfrom aboveif, foreach1 <7 < n,n € N,
EX;| Xy, ..., X;a] as (3.10)
, B X, Xl (311)

Examples for random variables that are expectationally dependent from below
are martingale difference sequences (seé [12]) and Markov processes (see below); -

dependent from above are inverse martingale difference sequences and inverse Mar- -
kov chains. :

/ E[Xl ] Xl:'--: Xi-b XAH!"--: n] = {

Lemma 2: Examination of condition (3.3) in the light of De/zmtwn 3 leads to the .
" following statements: :
a) If X s dny random vanable G, § are two sub-g-algebras of U, then P(X €B | €) .
= P(X € B| ) for all B € B itmplies E[XI@] E[X | &] a.s.
b) If (X,)iex ts a sequence of random variables that is dependent from below, then it is
‘expectationally dependent from below.
c) If (X,)iex @5 dependent from above, then it is expectatzonatly s0.-

Proof: The hypothesrs gives in ‘particular for. B = (—oo,¢] that P(X <t | G)
=PX <t | %), so that Fy(t | €) = Fy(t | §). This yields E[X | €] = f z dFy(x | €)

~

. = E[X|§) which completes the proof of part a). Parts b) and c)-follow, directly
from a) §

* Lemma 3: If the sequence (X )iex i$ expectationally dependent from below such that,

forl<7<rn-—>oo ,

o(ptn)y Mm), or (3.12i)
(p(n) V(n)), R T (3.12ii)

- where G2, = WX, ..., X;_1), and Z; are the decomposition components of Theorem 1,
then condition (3.31) or (3.311) zs satzs/zed

S E[(X— zzi) |Gl = {

Proof: By Lemma 2b, and the independence of the Z; from ‘)I,,,, one has w1th

.

(2.4), (2.8) and (2.9), -

2Bl - 2) 1%, = poiecy ¥,] — B(Z| %)

‘-.f E[X'mi-.]—F[zz])— (E[ Xi = 2) | §) 8

Remark 3: 1. On account of Remark 1 onc'can also formula.te both versions of Lemma. 3 for
sequences of random variables that are expectationally dependent from above, employing
condition (3.3)* in place of (3.3). 2. The conditions *‘dependent from below” or ‘‘dependent
from above’ are rather severe restrictions upon dependence. For a sequence (X;)icx that is de-
pendent from below it means that for each X, the past is not influenced by the future. In this
sense dependence from below may be more restrictive than (general) Markov dependence. In the
next section, where only a specm.l Markov-property is allowed, Markov- -dependence is an example ’
of dependence from below. .

Tt

4. General limit theorems for Markov processes

A Markov process with discrete time parumeter.is a sequence of random variables

(X;)iex on some probability space (2, U, P), where each random variable X; is only .

restricted by the Markov property ' ' . ,
P(X;€B|Xy,...Xi))=P(X;€B|X;,) (Be®B;i=2).  (41)

’

/
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It is obv10us that such a V[arkov process is dependent from belo“ according to Defi-
nition'1. A Markov process with (possibly) dependent mcrements isa process (Xi)iew
for which' the sequence of mcrements Y; with . \

Yii=X,— X2, X,=0 as ' o 42)

is (possnbly) dependent. Whereas for a Markov process the mcrements are not neces-
sarily dependent, they are nevertheless expectationally so as is seen by the following

Lemma-4: If (X\)ien ts @ Markov process, tken/the sequence of mcrements (Yi)ien
* s expectationally dependent from below.
~ In fact, (X;) being a Markov process,. ,

E[Yi| Yy .o, Yiny, Yiny 255 ¥, = ELX, (Yy oo Yis, Yiers ooy YT
o ‘.—E[Xi—ll Yl’--': Yi—l: YH-D" Yn]"“E[X I Yl l]—F[Xt 1| Yl 2 i—}]
—E[(X—X- ) Yio, -1]—E[Y|Y:2, Yial.

‘In partlcular for a Markov process with independent mcrements the Y, aremdepend-
ent (see below).

The following. limit theorems w1th rates will be formulated for three lnstances
namely for sums of Markovian dependent random variables, for Markov processes
with dependent.as well as with independent increments.

4.1 General limit théorem and central limit theorem

* At first to the general result. ' N

Theorem 2: Let (X;)iex be Markov-dependent and Z be a p-decomposable random

. variable with E{Z] = 0 such that (3.1i) or (3:1ii) hold for i € N and r = 2. If the se-
quences (X,)iex and (Z,)iex together satisfy the generalized pseudo-Lindeberg condition
(2.111). or (2.111i) of order r, as well as condition (3 121) or (3. 1211), then any f € CT
agarn implies the estimate (3.41) or (3.4ii).

The proof follows nnmedlabely from Theorem 1 and Lemma 3

Now to a handy, version of the central limit theorem for \/Iarkov processes Here
we will apply Theorem 2 to a concrete limiting random variable Z, namely to X*.

Theorem 3: Let (Xiiey be a sequence of random variables which form a Markov
process. such that E[IX il < 00,7 ¢ N, for any r > 2 as well as satzs/y a generalized
Lindeberg condition (2.10).of order 7. Assume further that (a;)icN ts any sequence of
positive reals wich satisfies a Feller-type condition

. ‘ 12 o . '
 lim max 2L —0 with - A, -——(Za) . (4.3)
>0 1SiSn An = .. .

If E[|Z;]") < oo as well as (3:12i) holds with Pz, = P, xs, then f € CT 4 _/zelds for each
fized u € R

e ('An-‘é SX + u)] — BIX* +)

Concerning the proof, X* is (p-decomposa.ble for éach n € N into n independent -
normally dlstrlbuted random variables Z; wnt,h Pz,.= P4 x« since

PX.__P PN \\1th<p(n)— -t

= o,(A,,_"M(n)) (n = o0) (4.4)

'\ (see [14]). Further, (4.3) in connectlon with Lemma 1 yields the generalued pseudo- .
Lindeberg condition (2.11i). So Theorem 2 may be apphed | I
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)

Remark 4: There exists a further version of Theorem 3 in case the finiteness of the r-th
absolute moments of the X; and Z; is replaced by the finiteness of the r-th-pseudo- -moments of

(X; — Z;), and the genera]ned Lmdeberg condition for X; t,ogethcr with the Feller condition

for a;is replaced by

1
V'(n) ;

s f lel” d(F x(z) — Farxe(2)) = os(1) (4.3%)
iz dlem : ) ‘

‘ 'for each & > 0, where V’'(n):= ): E[|X —q; A*|'] If moreover (‘*)‘1211) takes the place of
(3.121) with V(n) replaced by V’(n) then assertion (4.4) reads '

- |E [/ (A..“ 2 X+ u)] — E[/(X“-{- u)] _=;cl(A'u—"V'(n)) (n'—> o).

“Co rollal y 2 a) If, in-addition to the assumptwns of Theorems 3, the X are iden- "
tically- dzsmbuted then for f € Ctiand eachu € R~ -.

= o,(nA,,"") (n — o0).

|E f'(A,."‘- SX o+ u)] — B[(X* + w)]

b) 1f [urthera‘ =VarX;, 1 < 1, é n, then forjé Cr andué R

.

[ —1/2 0

|E ((Z‘ Var X) 2 X, + u)] — AE[}(X* & u)] = oy(n2-"12),
L i=1 . i=1 . . -

¢) 1f in particular Var X; = 171 < i < n, then for'j\e Clandu e R . .

E |/ (n' TX+ u)] — E[f(X* + )]

i=1

i

= ;,(1') (> 60).

Apa.rt from the papers (5, 24 '26] mentioned in the mt,roductlon, there exist ma,ny further

ones dealing with the central- limit theorem for Markovian dependent random variables. .

L Genemlly homogcneous Markov chains are studiéd. Thus NaaaEev [28, 29) consxdered conver-
gence in regard to the central limit theorem for chains, comparable to Corollary . 2c) with
0- rates Additional papers in this respect are BOLTHAUSL\' (6], Gupy~as [20] and LirsuHrTs [25].

. . N

4.2 Processes with dependent mcrements

- This subsectlon i8 devotcd to the behaviour of the process @(n) X Zq)(n) Y
for n — oo, the increments Y; being assumed to be dependent. A

" Theorem 4: Let (X Yiex be a Markov process with dependent increments (Y, ).ew as
in (4.2) with X, := 0'a.s. Let. Z be a p-decomposable random variable (with respect to
(X)ien) such that E[Z] = 0 and +¥:= E[|Y; ~ Z;|'} < oo, r = 2. If the sequences

(Yiiexs and (Z;)iex together satisfy a pseudo-Lindeberg condmon (2.11ii) of order r as’

well as

Z” E[(Yi— Z)| GL,] = ofp(n) V*(n)) (1Sjs7;n - ) ws. (;.5)

with %, = WYy, ..., )f;:,) and V’;(n) = Z" v,‘;; tkevivforf € C"and each u € R
|Elf(p(n) X, + @)] — BIZ + w]| = offpln) V*m) (0 — o0).

- ’lfhe .pr;)of follows directly from Theorem 1 and Lemmata 2 and 3 1 '

\ .
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4.3 Processes with independent increments
!

1f in the results of Section 4.1 the increments ¥; = X; — X;_, are assumed to be
_independent, which is often the situation in applications (e-g- queueing theory and

simulation), then our problem reduces to a study of the rate of convergence for sums

of independent random variables. In this sense Markovian dependency is a generali-

zation of independency, as CHUNG [16, p. 10) remarks. Now it i§ quite surprising that

the results obtained by BurzEr and Hamx [8] for sums of independent random

variables (by means of Trotter operator-theoretic arguments) resemble those of
~ Theorem 4 both in regard to the hypothes';"es and conclusion; there one managed to
get along with a pseudo-moment condition instead of a conditional condition of this
" type and the convergence was uniform in % € R. In this situation one has the follow-
ing result; it is comparable to [8, Theorem 12]. '

Theorem 5: Let (X iJiex be @ Markov process with independent increments ¥ i Then
the conclusions of Theorem. 4 even remain valid if the conditional pseudomoment condi-
tion (4.5) is replaced by o :
D E(Yi— Z)] = elpn) VHm) (i >oc0), . (4.5%)-

i=1 . ’ o

the others remaining unchanged.

.+ In fact, (4.5) reduces to (4.5*)in case the Y, are independeht‘;in view of (2.8) 1 v

5. Pseudo-moments and genérali'zatio_ns

If one looks at the proof of Theorem 1 more closely one sees that the main problem is
the estimation of the first term (3.6), thus to show that the double sum of (3.6) is in
some way or other of the maximal order o/(p(n)” M(n)) or of(gp(n)" V(n)). This was
achieved therc by employing, condition (3.31) or (3.31i) together with propertics of
conditional expectations in connection with the admissible dependency and measur-
ability properties. In order to simplify this proof, thus to estimate (3.6) with the
desired order, it obviously suffices to assume the difficult looking condition

- : ! . o
2 [ElfPpn) Bui + u) (X} — Z8)]| = e/[p(ny M(n) )
(weR; 1 SjSmn—>o0), |
the V(n)-version being analogous. This is an implicit pseudo-moment condition in the
sense that there is a ““weighted’” difference of the random variables X and Zi;. Now
" many estimates of pseudo-moments are known in the literature. Let us first define

some types of pscudo-moments and consider th\eir properties (compare ZOLOTAREV
[371). ‘ : ;

Definition 4: Let X, Z be two random variables. The pseudofmomeni X, Z)is_ .
defined by (X, Z).= |E[X — Z]|, and the conditional pseudo-moment.©(X, Z; @) by
X, Z; ®) = |E[(X — Z) | )] wherc @ is a sub-g-algebra' of A. =~ -

.Lemma5: Force€ R tke;'e hold
1) vcX,c-2).< el vX, 2), o
i) »(X,2)=E[x(X,Z;0), o



General Limit Theorems with o-Rates 301

4
/

) iii) 7(c- X, ¢+ Z; 6) < o] (X, Z; ®), 4
' 1v) (¢, X, aZ; @) < 1(c, X, 022 @5), ¢ < c,.

Proof: We have i) |E[c- X —c- Z) < e E[IX — Z]] and ii) |E[X —2Z)]

C = |E[E[(X Z) | @]]I = E[t(X, Z; ®)]; iii) follows as in i); V) follows from’
1El(e:X — ¢12) | 8]] = |6.E[(X — Z) | 8)] < |,E[(X — 2)| 8] = T(CzX cZ; @) 1
In thls termmology condltlon (6.1) reads (each u € R)

.

v(/<'>(q><n) Rn.+u)X fD(@(n) Ry; + n).Z], )—v/(w(n)' M@):  (5.2)

. Let us now give some condltlons which are suffxclcnt for condition (5 2) to hold and
s0 suffice for the proof of Theorem 1. .

Lemma 6: Let | € C7, M(n):= M(n,7) = )_7 (E[1X:I] + ElZ.")- Thére hold:

1) 1f for the pseudo-moment

0 . ¢

(X4, Z{") = (n lp(n) M(n)) (n — ;yo) . / : (5.3)
then _ : . .
' Z w(X1, Z1;) = o(p(n) M(n)) . (5.4)

=1 ,
i) There exists a constant"N‘i’, 1 <j <7, such that
5 o{fP(p(m) Rus + ) X, fO(p(n) Ras + u) Zhs) < INP| 5 o(X, 2
i=1 . . . ) =l )
i) (f‘”(«pf wi + ) X, fD(p(n) Ryi + u) Ziy) -
' = F[/(I)( Rm + u) ‘Z(X Z{n'; ani)]' ’

iv) There exists a constant N}", 1 <9<, with
n . ) i 2
Z Efz(/9(e( n) Rai + u) X7, [N g(n) Ry; + u) Ziy; Uni)]
< 3 IN9| (X, 24).
r=] . ,

v) If for the conditional pseudo-moment
(X0, Zis; W) = o(n~'p(n) M(n)) as.  (n — o) (5.5)

,

then (recall condition (3.31) of Theorem ‘1)

3 oX, Zhs W) = olpl)y M) as.  (56)
i=1 .
© vi) If (5.5) holds, so does (5.3), a;nd if (5.6) holds, so does (5.4). .

 Proof: i). We have

\

—

: )f WX, Ziy) = 21 o(np(n) M(n')) = o(p(n)” M(n)). . !

;:y, t= 1=
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" < 1i) Since f € C", fiNz) is bounded by a constant N"’ and thexe ho]ds

{19t Bus + ) X IOot) Bus+9) 22)

=1

< 3N, N2 < |V 2 -

iii) There holds with Lemma_5ii) and (2.7) that

([ Pe(p(n) Rai + u) X1, f9(p(n) Ros + w) Zi)
= E[T(f(”(‘P(n) Rni + u) X f(’)(?’(n) Rni T u) Znn 2 )]
o= E[f9(p(n) Ry; + u) (X' Zig; W) :
iv) follows' as does ii); v) follows as i); vi) follows by Lemma 5i.i) and (2.3) #
- Lemma 6 could obviously be formulated also for the V(n)-case; whereas Lemma 6
refers to Theorem 1, versions attached to Theorems 3 and 4 are also possible. So
one can see that conditions (5.2), (5.4), (5.5) and (5.6) suffice for (5.2) or (5.1), and so

one can formulate a weaker version of Theorem 1. The weakest alternative condition -
to (3.3) (or (5.1)) is condmon (5.4), and will now be employed.

Theorem 6: Under the assumptwns of Theorem 1 there holds, in case condition (3 3)
-is replaced'by - .

" e (((’i)—lv M(n)) or - B (5.7?‘)
‘g X ’ \m) ) ('l?,)' (n - 00) ! .
= v ‘ ((T 3 I;(n)), c : ~ (5.7ii)
for each f € C* the estimate - 4 - . ‘ ’
R £ (%")1)‘ M(n)) or Vo (5.8i)
sup |E[f(Ts + w)] = E[{Z + w)]] =, my . (n—>00). .
weR ) q,( (T_¢_T)! ) V(n)) _ ' (5.8ii)

" Proof: Checking the proof of Theorem'1, one just needs to re-examine the esti-
matc of the first term of (3.5), namely (3.6). But, it follows by Lemma 6ii) and condi-
tion (5.7) that (3.6) is of. order ¢(@(r)” M(n)) («(¢(n)" V(n))) uniformly for all u € R,
as ojesrred ~So the proof is comp]ote | ) , Lo :

Remark 5: 1. In the particular cas¢ of independent random variables 'X; Theorem. 6 coin-
cides with Theorem 12 in [8] so that the former is a true gcncmhzatlon of dur earlicr fesults for ~
. the. mdcpcndcnt case. Pseudo-moment conditions are agam of decisive importance. 2. As the

-proof of Theorem 6 reveals, all of the estimates derived in Sections 3 and 4 are valid not only
for each individual ¢ R but uniformly in % € R provided condition (5.4) of Lemma 6 would
be employed throughout. 3, SazoNov and ULYaxov [33] established an @-estimate for the rate
in the multidimensional central limit theorem for independent identically distributed random
variables also in terms of pseudo-moments by using a Taylor expansion for functions f € C*(IR¥)..

I’rob.lblhty metrlcs comparisons w 1th lmown results

, The exploitation of pseudo-moments in the case of limit theorems in probabxlnty theory
. is part of the‘theory of probability metrics (see e.g. [17, 38]). In this section we will
give a short' survey in connection with. different probability metrics. RS

-
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Definition 5- The distance x4 of two random variables X, Y with u: B(£2, 91)
- X 3(.Q A) — [0, o), is called a probabzlzty metric if

i) PX = Y) = 1 implies ,u(X Y)=0,. T
Vi) (X, Y) =Y, X), ) NN
m) WX, Yy (X, Z) + u(Y, Z) for a random variable Z € 3( Q QI)

Lem ma 7:.In regard to the above de/zmtwn one Ms :
i a) The pseudo-moment v is a probability metric.
. .b) The conditional pseudo-moment v ts a pseudo-probability metnc i.e., conditions
il) and iii) of Definition 5 are fulfilled, but condition i) holds only a.s. .
' Proof: Concernmg part a), the proof is evident. Concerning b), we have::

"NPX =Y)=1 =>‘t(.X Y;®) = |fxd(FX|@—Fy|g) (:c)| 0 a.s. since Fyg -
— FY|® aS

i) e,v1dcnt since |[z d qu» — Fyig) (@) = |[zd(Fyis — Fx0) ();

lll) T(X Y @) fxan@ — Fz[@r FZI(B —_ FY|®) (:t)[ < T(X Y @)

In the follo“ ring, we will estabhsh two results to be compared th,h Theorem 6; they
will be deduced by well-known results of other authors. .

Defmltlon 6: Let X, Y € 3( Q , A). The law of X, L(X), is defined by .
LX) = {Y € 3(2,%); Py = Py}. < .

If d is-a classical metric, then y(X Y;d):= E[d(X Y)] defmes a probablhty metnc
the so-called minimal metric with respoct to y is- defmed by

_ Y(X, Y;d) = inf {y(X, Y;d);L(X, ) € B(2,A) x B, A,
.~ L(X) = Pyand L(Y) = Py}. o ‘

~

In the particular case d(z, y) = |z —y|?, s > 0, 9 is called a Wasserstem metnc, and
"is denoted by W,(Px, Py). The metric ¢ is.defined by .

8X, Y3 F) = sup (1] ftz) d(Px ~ Py) @), T

w hele F'is any functlon class. A partlcular version of & i is given by
| &(X, V)= EX, Y3 D),

where _ : :

_er(}/eCnTips} . T 0<s g,

, - /"’ECnLlpa}s_r+c\r€]N,aE(0 11, s>1,

“and (Seeeg 138]) Lip o« := {f € C; If(=) — {(y ISIx—JP} <

Under these notations, the Kantorovitch-Rubinstein-Dudley Theorem reads (see
" eg. [37)

Theorem 7: For any measurable metric d and any X, Y € 3(Q, %); there holds
X, Y; d)_E(X Y; Gd)) where G(d) = {f € C; |f(z) — f(y) ISd(x, y)h

For the application of ’[‘heoxem 7 to our results, another property of metrics is
1mp01 tant. - A :
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Definition 7: A metric u is called ideal of order s > 0 lf for any random variables
X,Y,Z ¢ 3(2,U) and any constant c € R, ¢ == 0, ‘

i) (X+2,Y+42) gulX,Y), ’

n) ule- X,c- ¥) = e u(X, Y),

’

where Zis mdependcnt of X and Y. -
In this respect there holds (see [36, Lemma 3]) -

' Lemma 8: For any s > 0, &, is an ideal melric of order s in the ma,xzmal subset of
B3(2,N) within which the values of & are /zmte

t

Since for the Kantorowtch-Rubmstem theorem the function clags G(d) is needed,
and since the metric & is ideal gnly for the particular function class D,, s > 0, for our
application our function class has to fulfil both conditions. This means that D, n G(d)
= D,, 0 < s <'1. So our application of the Kantorovitch-Rubinstein theorem is -
only valid:for the metric ¢ with 0 < s < 1.

. Theorem 8: Let X, X €3, NandfeD,0<s=< 1 Then .
sup {|E[/(X + u) - Y -l = E[|X — Y}7). = Y
Proof One has by Lemma 8 and [‘heorem that the left-hand s1de of (6 1) 1sf
estimated by A ‘

Sup sup {IE(/X + u)] — E[/(Y + u)]l )= SUP {IE(X)] — E[f(Y))

feD, uelR

— &(X, ¥) = W,(Py, Py) < E(IX — YPI1°

Observe that Theorem 8 is somewhat comparable to the V(n)-version of Theorem 6

" with X = T, Y = Z. However, the function class D, = C n Lip s is larger than that _

in Theorem 6, namely C", r = 2; the large-O. order is replaced by little-c. In this
respect see also a further concretuatlon in Theorem 9. From another point of view
there states a lemma of ZOLOTAREV (see (36, Lemma 2]) that

(+a)

HX V) S Fry

B(X,Y) (s>0), - (6.2)
where - ' / o
B,(X, Y) = {E[|X|%] + E[IYI”]}, §s>0,s=7r+4 &, 7 €N, a € (0, 1],
(6.2) being valid provided - ' |
i) B:(X Y) < ‘ A .
1) E[X"]—L[Y"] y Isksn). S (6.3)
Theorem 9: Let §>0,s=7r+«, « € (0,1], r €'N. For lwo sequences 0/ inde- -
pendent mndom variables with T, = Z on) X; and Z = 2 @(n) Zy;, for which the
X, Y/ satzst (6.3), one has /or feD,. reoall Definition 6), -

I'a + o)

sup (|7 +u)]—E[/7+u)11 s

lpm)l* By(X:, Zp). (6.4)
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“«

Proof It follows by Lemma 8, (6 2) and a further Theorem of 70LOTABEV [36
i Theorem 2] namely 5,(’!’,,, Z) < |p(n)® Z E,(X,, Z,,,), that . ,

sop IE[/(T,, + u)] — Eff(Z + wl} = &(Tw 2) . . o

I
S ol 5 (X Z) < ool & T Bz 0

Remark 6: If one wou]d replace the pseudo-moment condition (5.2) by !

2E[\7 — 7, ] = 0(( ol )) M(n)) / . S (6.5)7 .

i=1 . .

/it could be shown (compare [12]) that for funct,lons ffrom Lipr—D = {f€ C; fr—D ¢ Llp a},

« € (0, 1], and for possibly dependent random variables X; there holds" v
1—a

" sup (BLAT, + ) ~ BUZ + u)]n ~0 ({2(L M(n)} " ) (6.6)

Compdrmg now (6. ()) with the estimate in Theorem 9, thc nght -hand side of (6. 4) in the partl :
cular case s =(r — 1) + 1 would be equal !;o Z‘B, (X Z ,) = M(n,r — 1), and the '

function classes in both results, namely D, .md Llp" 1’ « with o = 1, would also be equal; like-
wise are the orders, namely @(n)" M(n,r}! (noting 1 — (1 — x)/r = 1 there). However, the
" estimate in (6.6) is more general in the sense that it does not only hold for independent random
variables X; as in the case of Theorem 9 but also for possibly dependent ones. Further,.the
' pseudo moment condition (6.5)is much weaker than (6 3), namcly E[X’] = E[Z b1 g r,
1€ N. .

: Concludingly one can say that our results of Sections 3—5 gcnera!iro known results
on the distance of random variables to the case of general hmlt theorems for depen-
dent random varlables

The'authors would like to thank Dr Dietmar Pfelfer, Heisenberg Professor, Aachen,
for his critical reading of the manuscript and valuable suggestions.
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