
-

	

	 Zeltschrift für Analysis

und Lhre Anwendungen 

-	 Bd. 7(4) 1958, S. 337-346 

•	Solvability of Boundary Value Problems for the Inclusion 
- u € g(t, x, u) via the Theory of 'Multi-Valued A-Proper Maps 

T. KACZYNSKI and W. KaAwcEwIcz') 

Es wird die Existenz eines Koinzidenzpiinktes x für die Inklusionsbeziehung  

LxE F(x)	 .	.	 S	 (•) 

untersucht, wobei L: D(L) E -+ F cin linearer hyperbolischer Operator undf: E -* 2' eine 
kon vex- mengenwertigo Abbildung ist. Es wird gezeigt. daB jede solche monotone halbstetige. 
Abbildung F schwach A-eigentlich ist. Es werden verschiedene Existenzsätze für (s) bewiesen 
und die Resultate auf eine Randwertaufgabe für die Inklusionsbeziehung u t , — u E g(t, x, u) 
angewandt.  

I43yMaeTcs! CyUec'rBoBaHne TO1K11 KOHHUH(eHTIIoCTU X (J1H i3tuito tielifIFT - 

LxEF(x),	 .	.	S...,	() 

re L: D(L)	E -* F — rllnep6oJm'IecHuli JlMIIeüIlblü onepaop 11 1': E-* 2 F
— BblIIyXJIo-

MIIoecTB03Ha'lnoe oTo6pa)+eHl1e. 11oHa3blBaeTce, q roaioe TaIoe MOnOToIIH	H Oe oTly- 
llerlpepblBHoe oTo6palleHMe PNBJIBeTcH cna6o A-CO6CTBeHFIMM. YCTaHaBJIHBaIOTCH HecHoJlbKo 
Teopem cyL1eCT13013aH1lH JJ1H (s) If Wit pe3y.nbTaTbl upItMeusIloTcH H rpauwsiio aaaa'm gjrn 
BKJ1I0'leuHH Ujf - u	€ g(t, x, u). 

The existence of a coincidence, point x for the inclusion	 .	 .	. 

Lx € F(x)	 .	 .	.	.	(•) 

is studied where L: D(L) E F is a linear hyperbolic operator an 'F: E - 2k' is a convex-
valued map. It is shown that any such monotone demi-continuous map F is weakly A-proper. 
Some existence theorems for (.) are established and the reults are applicated to a boundary 
value problem for the ihclusion 'u — u € g(t , x, u).  

O.'Let E, F be Banach spaces, L: D(L) E -* F. a linear operator, and F: 2F a 
convex-valued map. The aim of this paper' is to establish some existence theorems for 
the coincidence inclusion 

Lx E F(x), ,	 .	 .	.	 (0.1) 

and to present an application of those results to a boundary value problem for the 
•	inclusion	 .	 . 

u — u E g(t, x, u). 	 .	 (0.2) 

For a Fredholm operator L, the problem (0.1) has been studied by many authors, 
see [4, 9, 17, 19]. That case can be applied, , for example, to differentiai inclusions of 
the type Lu € q(x, u, Du) where L is elliptic or, in particular, Lu —: u" (see [10, 18]) 
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but not to hyperbolic operators, as it is the case with (0.2). Of our interest is to extend 
to the multi-valued case some of the resultspresented in [11] where Ii was a closed 
operator with dim Ker L = codirn Im L oc, and where F = /: F - F was a 
single-valued map. We refer the reader to [11] for the extensive references to that 
topic. 

The main result of Section 1, Theorem 1.3, is an analogue of the Leray-Schauder, 
Theorem on a priori bounds. The proof is based on 

a) the method of Topological Transversality introduced and developed by GRANAS 
[6, 8],

b) the cbincidene theory of Fredholn, operators of index zero with multi-valtied 
maps presented in [9], 

c) adopting, to multi-valued maps, the t)echnique of A-proper maps originally due 
to PETRYSHYN ([151; see also [16]) who was later joined by BROWDER [2] in the re-
search of that class of maps. 

'In Section 2, we show that any monotone demi-continuous convex-valued map is 
weakly A-proper. For a single-valued map, results of this type appear in most of 
papers using, explicitly or not, A-proper mapping techniques, e.g. in [11-14, 20]. 
Our direct approach, however, seems to be particularly simple. 

In Section 3, we study generalized solutions of a period i c-Di richlet problem for the 
inclusion (0.2): Its formulation is modelled on a result of MAwJIIN [12]. 

In Section 4, we derive the existence of a generalized optimal solution of the period-
ic-Dirichlet problem for the equation Ut, - u 1. = /(t, x, u), where / is discontinuous 
in all variables (normally, / is assumed measurable ill (1, x) and continuous in u). 

o The growth condition n / in Corollary 4.2 comes from [12]. Differential inclusions of 
first order, as a tool for investigating equations with discontinuous right-hand side 
had been first considered by Friiov [7] and they became a frequent tool in the 
optimal control theory (see e.g., [1: Chapter II]). For the elliptic boundary value 
problerns,'the concept of what, we call optimal solution (also called solutiii in the 
sense of Filippov) has been used by (JHANO [5]. To the authors' best knowledge, 
optimal solutions of hyperbolic equations with discontinuous right-hand side have 
not been previously studied. 

1. In what follows, F, F are Bana.ch spaces and L: D(L) _ F - F is a densely defined 
linear (not necessarily bounded) operator. We assume the following conditions on 
(Li)	L is closed (i.e. the graph of L is closed in F XE); 
(112)	Ker L and R(L) are closed and topologically complemented, i.e. E = Ker L 

E0 , F = F0 R(L), E0 and F0 closed; 
(L3)	dim Ker L = codim'R(L) = oc. 
With the decompositiongiven in (1,2) we associate the linear projections'P: B - 
Q: F. -* R(1). By K: R(L) -*E0 we denote the right inverse of L, i.e. the in'erse of 
the opera;tor LIE,n(L): E0 n D(L) -o. R(L). Since L is closed, K is a linear bounded 
operator. 

We associate with L a Fredhoim Factorization 17 = E,,, P,,, F,,, Qfl},,E- defined in 
[11]. We recall what this means. First, by {E,,') and {F,,'} we denote the dense finite-
dimensional filtrations of Ker Land F0 respectively, i.e. F,,	E, 1 and F,, 
for n E N, UI!],, = Ker L, LiE,, = F0 and dimE,, = dim F,, <cc, n E N. We - 
suppose that there exist linear projections P,,': Ker L	F,,', Q,,': F0 - F,,' such 
that

I/,,'x'— x li = d(x, E,,'), X  KcrL, and	lQ,'y - iI = d(y, F,,'), y  F0, 
(1.1)
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where d( . , .) denotes the distance from a point to a set. We finally define E : = 
F:= F'R(L),P := P + P'(I - F): E-* E,Q:=Q +Q'(J — Q)F - F, 
n E N. Thus 11 = {E, P,,, F,,	defined. From (1.1) it follows' that 

P" 'X -* x for x € Ker L;	Q'y -->'y for y € F0;	
2 P,x --> _x for x E E;	Q,,y -> y for y € P. 

We also note that, for any n, the operator 

Ln := L EflD(L) : E, n D(L) -^F 
is a Fredhoim operator of index zero. If J: E' --> F' is any isomorphism, then 

= J(I - P): E -* F,, isaFredholm resolvent of finite rank of L,,, i.e. an opera-
tor of fiiiite rank such that L,, + T. is bijective. We note that (L,, + T,,)" 
= KQ+ J,, - '(I —Q): F-*E,,is abounded operator which is compact whenever K is 
compact. 

Let us recall that a multi-valued map F: X -± 2' is called upper .semiconhinuou.s 
if jX € X 1 r(x)	U} is open for any open U in Y. We are concerned with maps

F: X -* 2, where Xc E or X ,E x [0, 1] has a non-empty intersection with 
En n D(L (respectively with (E,, n D(L)) x [0, 1]) for all but finitely many n. in - 
general, I' is not assumed upper semicontinuous but we always assume that the 
values of F are non-empty closed and convex. We use the notation 

X,,= XnE,, (resp.,X,, = Xn (En x [0 , 11)),	F,,	Q,,oI'X,, ->2A" 

A map -F: X --> 2' is called L-compact if the map F,,: X,, -* is L,,-compact in the 
sense of [9], for a.e. n. This means that (L,, + T,,) o F: X,, - 2En is upper semi-
continuous and it sends bounded sets to relatively compact sets, where T,, is defined 
above. Let now A X be a pair of closed bounded subsets of E and let F: X _2F 
be an L-compact map. We say that FE XL(X, A) if, for a.e. n I',, has no coincidence 
point with L,, in A,, n .D(L), i.. Lx q F,,(x) for all x E A. n D(L). (We assume about 
A that. A. n i)(L) = A n E,, n 1)(L) r= 0 for a.e. n.) Such P is called L-essential if 
F,, is L,,-essential in the sense of [9], for a.e n. This means that every map Q,,: X,, * 2 F_ 
with	-_- FflIA, has a coincidence point with L, in X,, n D(L). We say that X: 

X x [0, 1] -k 2' is a homotopy between maps F, 0 € XL (X, A) if 

(i) 7e(.,0)	Fand 7e(. 1) 
(ii) H?,, is L,,-compact, for a.e. n; 

(iii) -Lx 0 de,, (x, t) for all x € A,, n D(L), t € [0, 1]. 
We write F- 0. It is easy to show that '-..' is an equivalence relation. 

Proposition 1.1 (Topological Transversality Theorem): Suppose that r  in 
XL (X, A). Then F is L-essential if and only if 0 is L-essential. 

The proof is an immediate consequence of [9:11. 4.5]and the above definitions I 

Unlike in [9], an L-essential map may have no coincidence point with L on X n D(L). 
We must therefore restrict our study to maps defined below. A map F: X -* 2" is 
called A-proper (respectively weakly A-proper) with respect to the Fredholm factori-
zation 11 of L if for any bounded sequence (Xk E X,, n D(L)) with d(Lxk, F,,(xk)) - 0 
as nk -.* cc, there exists a subsequence (Xk,} of {Xk} converging (resp. weakly converg-
ing) to an element x E X n D(L) such that L± E F(x). Although this definition 
depends on IT, we will normally omit saying "with respect to 17" having a given 
Fredholrn factorization of L in mind. 

• 

22 *
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Proposition 1.2: Let U be an open bounded subset of E and let F: L' - 2F be' a 
weakly A-properiL -compact map. If 

F
l u E XL(U, EU), we suppose that it is L-essential. 

Then there exists an x E coU n1(L) such that Lx E P(x). 1/ Fl u is not in XL(U, eU), 
then the same conclusion follows. 

Proof: If FlU is L-essential in XL(U, EU), then,for a.e. n, there exists x E U,, 
n 13(L) with Lx,, € P,,(x,,). Since I' is weakly A-proper, there is -a subsequence x 

x € B n D(L) such , that Lx E F(x). To reach the conclusion, we just , note that a 
weak limit of a 'sequence of points in U belongs to the closed convex hull coUof U. 

The condition I' XL(U, M means that there exists a sequence nk - 00, 
Xk € (aU)flk n V(L), with Lxk € Ffl k (xk) . The conclusion again follows-from the defi-
nition of weakly A-proper map I 

Theorem 1.3:. Let 2: E.- * F be an A-proper L-compact linear -operator such that 
L - S is injective and let F: B -* 2' be a weakly A-proper L-compact map satisfying 

• the following condition:, There exists a constant M > 0 (called a priori bound) and

no € IN such that every solution x, € B,, n 13(L) of 

•.	 -	 - 

Lx € (1 - A) S,,x + )P,,(x)	 '	-	 (1.3) 

with n > no and) € (0, 1) must have norm less than M. Then there exists an x € E n D(L) - 

- with Mxl :!z^ M àuch that Lx € F(x). 

•	P'roof:-Let U = x € B I IIx I < M). We may assume that F1	(U, € XL	st]), sináe 
- otherwise the conclusion follows directly from Proposition 1.2. Next, xv6 note that 

Sl u € XL (U, EU). Indeed, the contrary would imply the existence of nk - 00, 
xk € Enk n D(L), ltxklJ = M, such that Lxk = Sfl xk . Since S is A-proper, a subsequence 
of xk tends to aii x with Lx = Sx, lIx il = M. This contradicts injectivity-of L -_ S. It 
now follows from [9: II. 4.9] that S is L-essential in XL(U, U). It is easy to verify 
that the formula  

X(x, t):= (1 + t) Sx + tP(x),	x -€. U, t € [0, 1],,  

defines a homotopy from S to F in XL (U, EU). In fact, since we already know that 
S apdj' are in XL(U, aU), the property (iii) of homotopy must he only verified for 

€ (0, 1) and that is exactly guaranteed by (1.3). The conclusion iiow follows from 
Propositions 1.1 and 1.2 I 

Remark 1.4: Analogous definitions and results can be given for L-óondensing 
- multi-valued maps, i.e. 'such P that, for a.e. n, F,, is L,,-condensing %Yith, respect to a 

• given measure of noncompactness on E,, (see [9, 11]).	 - 

2. In this section E = F = H is a separable Hilbert space with a scalar product 
(., .), and L: 13(L) c: H--> H is a self-adjoint operator satisfying (L1)—(L3) of the - 
previous section. This implies that R(L) = KerL 1 . Let-P be the orthogonal projec--
tion on if onto R(L), and let {v} fl , be an orthonormal set spanning a dense subspace 
of'Ker L.-We define	• • .	 •	 S 

= Lin {v 1 , ..., v,,},
 

-, -	• -
	 P': Ker L - H,,', P,,'x	

k'	

vk) v . ,	•	 ,	 S 

H..= H' R(L),	P = P•-+ P(F P): H H. -
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If follows that. 17 = {H, P,, H, P} is a Fredhoim factorization associated with L. 
'A map I': H-* 2" is cäiled monotone if for any x 1 , x2 , z 1 , z2 E H with z 1 .E f(x1 ) and 
z2 E P(x2) we have (z 1 - z2 , x 1 - x0 Z; 0. It is known that a compact-valued map 
P: H, -* 2 H is upper semicontinuous if and only if I' sends relatively compact _sets 
to relatively compact sets and the graph of P is closed in H x H. Above,. we mean the 
strong (norm) topology on H x H.' By considering either (H x H, weak topology) or 
(H, strong topology) x (H, weak topology), wearrive with the following definitions: 
Let P: H -' 2" be a map with non-empty closed convex values which sends bounded 
sets to bounded sets. Such P is called	.	 . 

weakly continuous if for any sequences Xk - x, z - .z with zk E P(x), k € N, we 
have 	'P(x);	 .	 .	. 

demi-continuous if for any sequences Xk - x, z -k z with Zk E I'(Xk), k € N, we 
have z E P(x). 

Theorem 2.1: Any weakly continuous map P: H - 2" is weakly A-proper. 

Proof: Let {Xk € Hfl k n D(L)} be a bounded sequence with d(Lxk , J'flk(xk )) -* 0 as 
- and let { Zk € P(Xk)} be a sequence with L - P,,zk _>' O. Since {(Xk, Zk)} is 

bounded and H x H reflexive, we may. assume by passing to a subsequence that 
(Xk, Zk) - (x, z). Therefore z € P(x). We need to show that Lx = z. First note that 

Lxk PLx = P(Lxk - Pflkzk ) + PZk - Pz 

as k -+oo. Since L is closed, it is weakly closed hence Lx	Pz. It remains to show 
that	 .	 . 

(I - P)z= 0.	 .	..	-..-	 (2.1)


Indeed, since Zk z and P,k(I - P) w -> (I - F) w foi all w E H, we have 
•	

(P(! - P) z - P(1— F) z, w) = (z zk,P,k(I - P) w)	Q	(2.2) 

for all w. Next, it isverified that P(I - P)zk = (P— 1) (Lxk - Pik) 0, so by 
(2.2), P k(! - F) z 0. 01) the other hand, P(I - P)z -> (I - F) z, and (2.1) 
follows I 

Theorem 2.2: Let I': H --^ 2" be a demi-continuous map such that either P or 
- P is monotone. Then P is weakly continuous. Consequently, I' is weakly A -proper. 

Proof: Since the weak continuity of -r is equivalent to that off, it isenough to 
give the proof for P monotone. Let xk - x, Zk - z, zk € P(xk ), kE N. We have to 
show that z € P(x). Suppose for contradiction that z q P(x). 1(x) is closed and con ' vex, 
so the Hahn-Banach separation theorem implies the existence of y € H and a € R 
such that

(y, z) < <(y,w) for al l w € P(x).	 (2.3) 

We put y = x— ty, where Im > 0, t, '- 0, and we choose m € P(y). Without 
loss of generality, m z0 € II. Since y,,, - x and P is demi-continuous, we have 
z0 € 1(x). P is monotone, therefore (Zk - Z,,,, X - X ± tmY) ^ 0 for all k, m € N 
and, consequently,	.	. 

0 ;	( - Zm, Xk - X + ty) = lim (z - Zm, t,y), -	 k-.o	 •	 - k-,cd
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for all m E N. Thus 0	tim (Zk - 2., y) for all m € N. Since m	z0 , passing to the

limit as m -± oc gives k-oo 

0	tim (zk - z, y) .	 (2.4)' 

By comparing (2.3) with (2.4) and using, the fact that zk - z, we get 

0 5	y) — ( z0 , y) < !irn (Zk, y) — a	jj (Zt, y)	(z, y) 
k-ço	 k-.cc	 k-.co 

=lim ( Zk - Z, y) = urn ( Zk - z, y) = 0 
k-+oo	 koo 

and the contradiction is reached. The ' second conclusion now follows from Theorem 
2.11 

We complete this section by showing a relation between demi-continuous and 
upper semicontinuous maps.  

Lemma 2.3: If A: H --* H is a compact linear operator and F: H 2 11 a demi-
continuous map, then A o F is upper semicontinuous and compact. Consequently, if 
the right inverse K of L is compact and 1' demi-continuous, then, F is L-compact. 

Proof.: Since A o F sends bounded sets to relatively compact sets, we must only 
show that the graph of this map is closed in H x H. For, let Xk -* x and Azk - 
where Zk € f'(Xk), k E N. We-have to show that yE A(F(x)). Since {Zk} is bunded, 
there is a subsequence Zk,	z. F is demi-continuous, so z € 1(x). Any continuous

linear operator is weakly continuous, hence Azk, - Az. Consequently y =Az 
€ A(F(x)). The second conclusion follows from the first one by the comment on.the 
Fred holm resolvent T in Section 1 I	 -. 

Re m ark 2.4: For simplicity of the presentation we have iestricted . the study to 
E = F = H a separable Hilbert space. However, the above definitions and results 
can be easily extended to self-ajoint operators L: D(L): E - E* , where E is a sepa- 
rable reflexive Banach space of -type, E* its dual and the scalar product is replaced 
by the duality product, see [11]. 

3. Let its recall that a multifunction g: D c Rm 2'1 is called measurable if 
{x.€ D I g(x) c U} is Lebesgue measurable for any open U in IR. By a single-valued 
selection of g we mean a function 5: D -* ERq such that s(x) E g(x) for all x. it is known 
that any measurable multifunction has a single-valued selection, c.f. [3]. A multi7 
function g: 1R -* 2 1 will be called monotone if it is monotone in the sense of Section 2 
with respect to the Euclidean scalar product (., .). 'The Euclidean norm is dnoted 

We use the notation Ig(x) := sup (I z i I z E g(x)}. Let J = (0, 2i) .x (0, 'r) and 
let g: J x IR -> 2 1R ' be a multifunction with non-empty closed convex values. Such 
g is called a Carathéodory multi/unction if 

(a) (t, x) -* g(t, x, u) is measurable for all u € JR; 
(b) u -* g(t, 'x, u) is upper sernicontiiuous for all (t,,x) € J. 

We let H = L2(J, 1R). A Nemitskii (multivalued) operator for a Carathodory multi-
-function g, Fg : H - 2H, is defined by 

F9 (u) = {v E H I v(t, x) E g(t, x, u(t, x)) for a.e. (t, x) E.J}.. 

Lemma 3.1: Let g be a Caraihéodory multi/unction (with non-empty closed convex 
values) and suppose that there exist an h € L2(J, IR) and a cons/ant c > 0 such that 

F'
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for all u E iq and a.e. (X, t) E J, 

g(t, x, u)I !!^: h(t, x) ± cjuI .	 (3.1) 

Then J': H -* 2" is a demi-continuoits map.	 - 

Proof: We refer the reader to Lemma 4.2 in [7]. This result was proved there for 
functions with values in JR but it immediately follows in this formulation since 
H	L2(J, IR) x . . . x L2(J, IR) (q copies) U	- 

We are concerned with the existence of solutions uof the inclusion 

uu	u E g(t, x, ü).  

We say' that WE His a generalized solution of the period i c-Diri chlet problem f9r 
(3.2) if there exists a selection  H of the multifunction (t, x) - g(t, x, u(t, x)) such 
that	'	 S 

• f Ku, Vj — v1.)	f (s, v)	 (3.3) 

for all v € C2(J,IRQ ) satisfying the boundary conditions 

v(O, x) =v(2'r, x), v,(O,x)	v 1 (2i, x), x.€ [0, r])	
3 

v(t, 0) = v(t, r) = 0,	t E [0, 2z]	 J 

It is verified that the following set of functions is orthonorinal in H: 

X) =	etmLsin (nx) ek, m E 71, n € N, k = 1, 2,	q,' 

where {ek} is the standard basis of 1R. We define L: D(L)	H - H by 

• "
	 D(L) = {u € H ' ,'	(n2 — In' ) (u, v,n. fl ) < 

k=1 (mn)EX 

q  
(n2 — m2 ) (u, Vn.n.m) 

•	 k=I (m,n)EXN'  

By standard arguments (see [15]), it follows that: D(L) is dense in H, L verifies 
assumptions which were made in Section 2 the spectrum of L is a(L) = , (n2 — m2 

• rn € 71, n € N} and the right inverse K: R(L) -> H of L 'is' compact. Moreover, 
€ H is a generalized solution of the periodic-Di rich let problem for U - u = h(t, x), 

h € H, if and only if U €-D(L) and Lu € f'g(u). 

	

Theorem 3.2: Let g: J x JR -*	be a Carathéodory multi/unction 'satisfying'the 
following conditions:	S	 - 

(i) Either u - g(t, x, u) or u -+ —g(t, x, u) is monotone for a:e. (t, x) € J. 
(ii) ' • There exist r  JR \ a(L), 0	6 < d(r, ci(L)), and h € L2(J, IR) such that 

g(t, x, u) - rul ^ 6 Jul +h(t, x), for all u € IR" and a.e. (t, x) € J. 
Then there exists u € H n D(L) with Lu €	 - 

Proof: We shall use Theorem 1.3 for the map I' and the operator S = ri. From 
(I) it follows by integration that Pg or —P9 is monotone and, from (ii), (3.1) follows. 
Henc,, Lemma'3.1 and Theorem 2.2 imply that I' is weakly A-prtper. Since K is 
compact, both rand S are L-compact, by Lemma 2.3. By the choice of r, L - S is 
hijective 'ith the bounded inverse of norm II(L '— rI)'jj = (d(r,'c(L)))' =: o. in
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particular, it easilyfollows that S is A -proper. It remains to determine an a priori 
bound M. on solutions u E H n D(L) of (1.3). For, let n € IN, 2 € (0, 1) and u € H,, 
n D(L) satisfy Ln € (1 - ).) rP,,u 4- 2Pfl (PQ(u)). Since P,,u = u we obtain u E A 
x (L - rI)' P,,(.T'0(u) - rü). Hence, by using-the condition(ii), we get l lull	ll(L 
- rJ)_ h ll (6 l lull + thjI) =	hull + a Il h Il, therefore huh	hlhlh/(1 - x6). It remains

to choose for M any number greater than the right-hand side of the last inequality I 

Remark 3.3: In the definition of Carathéodory multifunction, the condition (a) 
can be replaced by the following weaker condition:	- 

(a');	(t, x) -* g(t, x, u) is measurable for all u from a dense subset of W. 
The conclusion of Lemma 3.1 will remain true, see [10]: 

4. In what follows, I: J x  -* JR is a function which does not satisfy, a priori, any 
continuity condition. In this case, there is no hope of solving any boundary value 
problem for	- 

Utt - u = /(t, x, u)	.	-	 (4.1) 
in the usual sense but we ma look for optimal solutions in the following sense: Let 

-'	 xIR-->IRbe defined by .	 . 

!(t, x, u) = lim/(t, x, v),	J(t, x, u) = lirn/(t, x, v). 

An optimal solution of(4.1.) is a function u-verifying	 -	 - 

/(t, x, u) ;5 Ut - u L_—/(t,- x, u)	 g	 (4.2) 

•	fora.e. (1, x) € J. A generalized solution of the periodic-Iiirichlet problem for (4.2) is 
such u E L2(J, IR) that  

fi(t,x,u) . v	fu . (V - v) <fj(t,x,y) v	 (4.3) 

for all v € C2(J,IR) satisfying the boundary conditions (3.4)	 - 

•	Theorem 4.1 :Supose /: Jx JR -- JR verifies the following conditions: 
(i) The set of those *(t, x) € J that a < /(t, x, u) < /(t, x, y) < b is measurable for all 

a,b,u€Ili.	.	 .	.	.	. 
(ii) u -* /(t, x, u) is either non-decreasing or non-increasing for a.e. (t, x) € J. 
(iii) There exist r E IR\a(L), 0< 6 < d(r, a(L)) and h EL 2(J, IR) such that, /or all 

U € JR and a. e. (t, x) € J, J/(t, x, u) - rut	6lul + h(t, 4	- 
- Then there .exists a eneralized solution u € L2 (J, IR) of the eiodic-Dirichlet problem 
for (4.2). 

Proof: Let g(t,x, u) = [! ( t , x, u), J(t, x, u)]. The problem (4.2) is equivalent to 
(3.2), and (4.3) to (3.3) with - q = 1. It follows from Proposition 44 in [10], from (i) 
and (iii) that g is Carathéodory multifunction. It instantly follows that g satisfies 
the hypothese of Th e'orem' 3.2, hence the conclusion I 

Corollary 4.2: Let / he as in Theorem 4.1 with the condition (iii) replaced by the 
following two:	 -	 - 

a) For any M>0 there exists h-€ L2(J, JR) such that	 - 
•	 /(t,x,u)I^5h(t,x) for a.e. ( t , x ) EJ and all u€IR with lul<M.
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b) There exists an'a <b with (a, b) n a(L) = 0 such that 

a	lim 
/(t, x, w)	/(t, x,	

< b for a.e. (1, x) E J. 
juj-^o	it	.IuI—.c	U 

Then the conclusion of Theorem 4.1 remains true 

Pro'of: For verification that a) and b) imply the condition (iii) of Theorem 4.1; 
we refer the reader to [11] I 
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