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'

Es wird die Existenz eines Koinzidenzpixnkte§ z fir die Inklusionsbezichung
j\ L:z:'é I’(:t) . B . ) : . . (*)

untersucht wobei L: D(L) = E — F ein linearer hyperbohscher Operat,or und T: E - 2F eine

konvex- mengemvertlgc Abbildung ist. Es wird gezeigt, daB jede solche monotone halbstetige . .

Abbildung I' schwach A-eigentlich ist. Es werden verschiedene Existenzsitze fir (») bewiesen
und die Resultate auf eine Randwertaufgabe fir die Ink]uswnsbeznehung Uy — u” € g(t, z, u)
angewandt . .

U3yyaerca CyUIECTBOBAHIE TOYKI KONHUHACHTHOCTH Z NJIA BHIIOYEHH

LzeT(@), . S o (+)

rne L: D(LYyc E — F - runep60ml-lecxuﬁ JuHelinbill onepaTop M F E —2F — BLIMYKIIO-
MHOECTBO3HANHOE. oroGparkenne. ITokaspiBacTCA, 4TO Kam[0€ TAaKOe MOHOTOHHOE MOJY-
HenpepuiBHOE oToOpaskenue I apnserca ciabo 4- cO6CTBEHHBIM. Y CTAHABJIHBAIOTCH HECKOIIbKO
TeopeM CYWIEeCTBOBAHHA [ (#) M OTH PE3yJbLTATH MPHUMEHAIOTCA K I'PAuUYHON 3amauu AdA
BRJIIOYEHHUH Uy — U, € 9(¢, 2, u). .

The existence of a coincidence point z for the inclusion.
. : 3

¢ ., . \

. » ixel’(x) B . oo . (#)

is studied where L: D(L) — E — F is a linear hyperbolic operator and T': £ — 2 is a convex-
valued map. It is shown that any such monotone demi-continuous map I” is weakly A-proper.
Some existence theorems for (¢) are established and ‘the results are uppllcatcd to a boundary
value problem for the inclusion Uy — Ugg € g(t z, u). )

0. Let E, F be Banach spaces, L D)= E — F alinear operatm and I E > 2F a
convex-valued map. The aim of this pnper is to establish some e\Jstence theorems for
the coincidence inclusion’

Lz € F), : - o (0.1)

“and to present an application of those resulis to a boundary value pr(;blem for the
inclusion’ _ . _ :

uil — U € g(t z, u ) . o ’ (02)

For a Fredholm operator L, the problem (0.1) has been studied by many authors,

see [4, 9, 17, 19]. That case can be apphed for e\ample to dlfferentlal inclusions of -
the type Lu € g(x, u, Du) where L is elliptic or, in partlculal =u" (see [10, 18))

~
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but not to hyperbolic operators, as it is the case with (0.2). Of our interest is to extend
to the multi-valued case some of the results presented in [11] where L was a closed
operator with dim Ker L = codim Im L = co, and where I'=f: E - F was a
- single-valued map. We refer the reader to [11] for the extensive references to that
topic.

The main result of Section 1, Theorem 1.3, is an analogue of thc Lelay Schauder
‘Theorem on a priori bounds. The proof is based on

a) the method of Topologlcal Transversality introduced and developed by GRaNAS

. [6, 8],

b) the coincidence theory of Fr edholm operators of index zero with multl valued
maps presented in [9],

¢) adopting, to multi-valued maps, the bechmque of A proper maps orlgmally due
to PETRYSHYN ([15]; see also [16]) who was later joined by BrowDER [2] in the re-
search of that class of maps.

‘In Section 2, we show that any monotone demi-continuous convex-valued ma.p is
- weakly A-proper. For a single-valued map, results of this type appear in most of

papers using, explicitly or not, A-proper mapping techniques, c.g. in [11—14, 20].
. Our direct approach, however, scems to be particularly simple.

In Section 3, we study generalued solutions of a periodic-Dirichlet problem for the
inclusion (0.2)." Its formulation is modelled on a result of Mawmix [12].

InSection 4, we derive the existence of a generalized optimal solution of the period-
ic-Dirichlet problem for the equation u, — u,, = f(t, , u), where f is discontinuous -
in all variables (normally, f is assumed measurable in (¢, ) and continuous in u).
The growth ‘condition on f in Corollary 4.2 comes from [12]. Differential inclusions of
first order, as a- tool for investigating equations with discontinuous right-hand side
had been first considered by FiLrerov [7] and they became a frequent tool in the
optimal control theory (see e.g., [1: Chapter 1I]). For the elliptic boundary value
problems, the concept of what, we call optimal solution (also called solution in the
sense of Filippov) has been used by CuHaxc [3]. To the authors’ best know ledge,
optimal solutions of hyperbolic equations with dlscontmuous right-hand s1dc have
not been previously studied. N

_ 1. In what follows, E, F are Banach spaces and L: D(L) < £ — F is a densely defined

linear (not necessarily bounded) operator. We assume the following conditions on L:
(L1) L is closed (i.e. the graph of L is closed in £ x ¥);
(L2) . Ker L and R(L) are closed and topologically complemented, i.e. E = Ker L
@ Eo, F = Fy @ R(L), E, and F, closed;

(L3) dim Ker L = codimR(L) = oc. : : .
With the decomposition given in (I.2) we associate the linear pPOJGCLIOI]S P E — K,

Q: F — R(L). By K: R(L) » E, we denote the nght inverse of L, i.e. the inverse of

the operator Lig,nn: g 0 D(L) — R(L). Since L is closed, K is a linear bour?ded

operator, '

We associate with L a Fredholm Factorization IT = {E,,, P, F,, Q) x defined in . .

[11]. We recall what this means. First, by {E,’} and {F,’} we denote the dense finite-
dimensional filtrations of Ker L,and Fo respecbively, ie. E,c K, and F,— F,,,
for ne N, UE, = Ker L, UF, and dim E, = dim F, < co, n € N. We
suppose that -there exist linear prOJectlons P, :Ker L — F,,', Q. : Fy — F,’ such
that - ,

]P,,x-— x”=d(x) ,.),ZGKOY‘L, a'nd ”Qn?/'—?/”=d(?/;FnI)1?/EF03

(1.1)
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where d(-, -) denotes the distance from apointtoaset. We fina}iy define £, := E,'DE,,
Fn:: Fn,‘®R(L):Pn:= P + Pn’(l - P) E_)Ean:=Q +Qn,(1 _Q)-F'_)Fm
n € N. Thus IT = {E,, P,, F,, Q,}acx-is defined. From (1.1) it follows that

‘Pz —>2x for xe€KerL; = Q,y —~y for yeFy; - (1.2)

Pa-—z for ze€E; . Qu-—y for yeF. -
We also note that, for any n, the ope}ab_or o ‘
. L” = LIB’lnD(L): En n D(L) ‘-)‘F”

is a Fredholm operator of index zero. If J,: E,’ - F,’ is any isomorphism, then
T.=J,(I — P): E, - F, is.a Fredholm resolvent of finite rank of L,,i.e. anopera-
tor of fihite rank such that L, + T, is bijective. We note that (L, -+ Tt

= KQ +J,7'({ —@): F, — E, is a bounded operator which is compact whenever K is .
compact. -* . : : . ~
" Let us recall that a multi-valued map I": X — 2% is called upper semicontinuous

if {x € X |-I'(x) < U} is open for any open U in Y. We are concerned with maps
I': X - 2F, where X © E or X — E x [0, 1] has a non-empty intersection with
E,nD(L) (respectively with (E, n D(L)) x [0, 1]) for all but finitely many n. In /-
general, I" is not' assumed upper semicontinuous but we always assume that the
values of I" are non-empty closed and convex. We use the notation

"X,=XnE, (resp,X,= Xn(E,X][O0, m), Iy =Q,0I: X, — 2Fn,
A mapT: X — 2F is called L-compact if the map I',: X, — 2%~ is L,-compactinthe
sense of [9], for a.e. n. This means that (L, + T,)" o I,: X, — 2E» is upper semi-
continuous and it sends bounded sets to relatively compact sets, where 7', is defined
above. Let now 4 — X be a pair of closed bounded subsets of E and let I': X — 2F
. be an' L-compact map. We say that I" € K ,(X, 4) if, for a.e. n, I', has no coincidence
point with L, in 4, n (L), i.e. Lz ¢ I',(z) for all z € 4, n D(L). (We assume about
4 that. A, nD(Ly = A nE, nD(L) & @ for a.e. ».) Such I' is called L-essential if -
. I'y is Ly-essential in the sense of [9], for a.e. n. This meansthat every map @,: X, — 2F»
“with @, = I',,, has a coincidence point with L, in X, n D(L). We say that J¢:
X X [0, 1] — 2F is a homotopy between maps I', @ € K (X, A) if :

(i) - J(,0)=Tand H(-,1) = D; o

(ii) ¥, is L,-compact, for a.e. n; '

(iii) Lz § FHy(x,t) forallz € A, an D(L), t € [0, 1].

We write I ~ &. 1t is easy to show that ~ is an equivalence relation.

Pl'opositi011 1.1.(Topological Transversality '.l‘heorém): Suppose that ' ~ & in
H (X, A). Then I' is L-essential if and only if @ is L-essential. : S

The proofisan immediate consequence of [9: 1. 4.5] and the above definitions

Unlike in [9], an L-essential map may have no coincidence point with L on X nD(L). .

We must thercfore restrict our study to maps defined .below. A map I': X — 2F ig
~called A-proper (respectively weakly A-proper) with respect to the Fredholm factori-
zation IT of L if for any bounded sequence {z, € X,, n D(L)} with d(ka, I“M(x,‘)) -0
as n, — oo, there exists a subsequence {x;,} of {x} converging (resp. weakly converg-
ing) to an clement z € X nD(L) such that Lz ¢ I'(z). Although this definition
depends on 7, we will normally omit saying “with respect to /7’ having a given
Fredholm factorization of L in mind. .

I
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N

. Proposwlon 1. 2 Let- U be an open bounded subset of E and let I': E — 2F be a
weakly A-proper/L-compact map. If I'g € K, (U, 2U), we suppose that it is L-essential.

' Then there exists an x € coU n D(L) such that Lx € F(x) 1f F,U is not in K (U, 8U),
then the same conclusion follows.

A Proof: If I'j is L-essential in JCL(U 8U), then, for a.e. n, there exists z, € U
" nD(L) with Lx, € I'y(x,). Since I" is weakly A-proper, there is a subsequence 2,
. =z € EnD(L) such'that Lz € I'(z). To reach the conclusion, we just note that a

weak llmlt ofa sequence of pomts inU belongs to the closed convex hull coU of U.

The condltlon Nz § KU, 6U) means that there exists a sequence ny = 00,
@ € (8U)g, 0 V(L), with Lz, € Iy, (2;). The conclusxon again follows from the defl-
nition of v&eakly A- propex map 1§ . :

T heorem 1.3:. Let 8: E-— F be an A-proper L-compact linear operator such tkat
L — 8 is injective and let I': E — 2F be.a weakly A-proper L-compact map satisfying
the following condition: There exists a constant M > O (called a priori bound) and

no € N such that every solution x € E, nD(L) of -. -

Lx e (1 — 2) S,z + Al,(x) : ' S - (1.3)

withn > ngand 2-€ (0, 1) must have norm less than M. The?z there existsanx € E n D(L)
_with ||jz|| £ M such that Lz € I'(x). - . o

Proof: Let U = {x € E | ||lz|| < M}. We may assume that I € J, (O, a0), since
otherwise the conclusion follows directly from Proposition 1.2. Next, we note that
S5 € (U, U). Indeed, the contrary would imply the existence of 7, — oo,
zy € En, n D(L), llzy]] = M, such that Lz, = S,z,. Since S is A-proper, a subsequence
of x; tends to an x with Lz = Sz, llll = M. This contradicts 1nject1v1ty of L—S. 1t
now follows from [9: II. 4. 9] that Sis L- essentlal in XU, 8U). It is easy to verify .
that the formula ‘

(xt)—(l )Sx+tF(x) xEUtG[O 1],

defmes a homotopy from S to I'in X (U, 8U). In fact, since we dlready kno“ that

S and .I" are in JC,(U, 8U), the property (iii) of homotopy must be only verified for

t€ (O 1) and that is exactly guaxanteed by (1.3). The conclusion riow follows from
Propositions 1.1 and 1.2

Remark 1.4: Analogous definitions and résults can be given for L-Gondensing
‘multi-valued maps, i.e.’'such I” that, for a.e. n, I'; is L, (,ondensmg with,respect to a
' given measure of noncompactness on-E, (see [9, 11]).

2. In this section B = F = H is a separable Hilbert space with a scalar product
(-, ), and L: D(L) = H.— H is a self-adjoint operator satisfying (L1)—(L3) of the
previous section. This implies that R(L) = Ker L. Let P be the orthogonal projec--
tion on H onto R(L), and let {v,}ncx be an orthonormal set spanmng adense subspace
of Kel L. We define o, . ‘

H,/ = Lm {vy, - .,v,,},

n

P KerL—>H,,,P x—Z(x,vk)vk,

H,— H,,"(—BR(L), P, —P+P’(I—P) H—H,.
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1f follows that. IT = {H,, P,, H,, P,} is a Fredholm factorization associated with L. -

- 'A map I': H — 2¥ ig called monotone if for any z,, ,, 2, 2, € H with z, € I'(z,) and . -

2, € I'(z,), we have (2, — 2,, 2, — z,) = 0. It is known that a. compact-valued map

~-I': H — 2F is upper semicontinuous if and only if I' sends relatively compact, sets

to relatively compact sets and the graph of I’is closed in H X H. Above, we mean the
strong (norm) topology on H x H. By considering either (H x H, weak topology) or ,
(H, strong topology) x (H, weak topology), we arrive with the following definitions:
Let I': H — 2H be a map with non-empty closed convex values whlch sends bounded
sets to bounded sets. Such I'is called : _

weakly continuous if for any sequences x, -z, 2z = z with 2, € 1"'(:1:,), k€N, we
have z € P(x), ‘ . ,

demz-contmuous if for any sequences T >, 7, >z with z € I’(xk), .k € IN we

‘ have z € I'(z).

Theorem ¢ 1 AnJ weakly contmuous map I': H > 27 45 weakly A-proper.

Proof: -Let {x, € H,, nD(L)} be a bounded sequence with d(Lx,,, ,,t(x,)) — 0 as
n, — oo and let {z;, € I'(x;)} be a sequence with Lz, — P,..zk - 0. Since {(z;, 2;)} is
bounded and H x H reflexive, we may, dssume by passing to a subsequence that
{xy, 2x) — (z, z). Therefore z € I'(x). We need to show that Lz = 2. First note that

Lz, = PL#, = P(Lt, — Poj) + Pz = Pz ‘

~

as k — oo. Smce Lis closed it xs weakly closed hence Lz = Pz. Tt remams to show

that N

~

I —P)z=0. | : R @

- Indéed, since z; — z and Pj (I — P)w — (I — P)w for all wc H, we have

(Pill = Pysy = Pl = PYz,w) = (2 £ 2, Pl — Pyu) >0 -(2.2) -

for all w. Next, it is'verified that P, (I — P)2z, = (P — I) (Lzy, — Pp2) -—>.0, so by
(2.2), Pp(l — P)z —~ 0. On the other hand, P, (I — P)z—> (I — P)z, and (2.1)
follows 2 . ' : _ o .

Theorem 2.2: Let I': H — 21 be a demi-continuous map such that either T’ or
—I' is monotone. Then I‘ s weakly continuous. Consequenth , I is weakly A-proper. -

"Proof: Since the weak continuity of F is equnvalent to that of I', it is enough to
give the proof for " monotone. Let z, — x, z, — 2z, 2, € I'(x,), k't N. We have to
show that z € I'(x). Suppose for contradlctlon that z ¢ I'(x). I'(z) is closed and convex,
so the Hahn-Banach separation theorem implies the e\lstence of ye¢ Hand « € R
such that

(y, 2) < & < (y, w) for all w € I'(z). - ~ (2.3)
We put y,, = . — t,y, where ¢, > 0, t,;, >0, and we choose Z, € I'(y,). Without
loss of generality, Zm = 29 € H. Since y,, >z and I" is demi-continuous, we have
zg€ Mx). T is monotone, t;he:efoxe (zk — Zm T — + tny) = 0 for all k, m € N
and consequently, .

Oshm(zk_zm’xk_x‘*'t?/)—hm (z_zm’tm?/)) . ) t
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for all m € N. Thus 0 g lim (z, — z,,,, y) for all m € IN. Smce Zm = 24, passmg to the
limit as m — oo gives 4= .
0 < lim (5 — 2,9). p C(24)

k—00

By comparing (2.3) with (2.4) and using the fact that z, — z, we get
0 < lim (2, ) — (20, %) < lim (4, %) — & < lim (2, y) — (2, 9)
k—qo. * k—o00 k—00 -
S '=‘len (2 —2,9) =, lim (21: - 2, =0

and the contradlctnon is reached. The second conclusnon now follows from Theorem
2.1 1

We complctc this section by showing a relation bet“een demi- contmuous and
upper semicontinuous maps.

Lemma 2.3: If A: H - H is a compact linear operator and I': H — 24 g demi-
continuous map, then A oI’ is upper semicontinuous and compact. Consequently, if -
the right inverse K of Lis compact and I’ demi-continwus then I' is L-compact.

Proof: Since 4 o I sends bounded sets to relatively compact sets, we must only
show that the graph of this map is closed in H x H. For, let z, — z and Az, — Y,
where 2, € I'(z;), k € N. We.have to show that y ¢ A( (x)) Since {z;} is bounded,
there is a subsequence zi, = 2. I' is demi-continuous, so z € I'(z). Any continuous
linear operator is weakly continuous, hence Azy, -~ Az. Consequently y = Az~
€ A(P(x)) The second conclusion follows from the first one by the comment on.the
Fredholm resolvent 7T, in Section 1 8 * 7 . :

Remark 2.4: For simplicity of the presentation we have restricted the study to
E = F = H a separable Hilbert space. However, the above ‘definitions and results
can be easily extended to self-ajoint operators L: D(L): E <> E*, where E is a sepa-
rable reflexive Banach space of n.-type, E* its dual and the scalar product isreplaced .
by the duality product, sce [11].

3 Let us recall that a multifunction g: D= IR™ > 2R is called measurable if
{x.€ D | g(x) = U} is Lebesgue measurable for any open U in IR?. By a single-valued
selection of g we mean a function s: D — R? such that s(z) € g(x) for all . It is known
that any measurable multifunction has a smgle-valued selection, c.f. [3]. A multi-
function g: R? — 2% will be called monotone if it is monotone in the sense of Section 2
with respect to the Euclidean scalar product (-, -). 'The Euclidean norm is denoted
by |- | We use the notation |g(z)| := sup {|z| | z € g(z)}. Let J = (0, 27) X (0, 7) and
let g:J X R? — 2R be a multifunction with non- empty closed convex values. Such
g is called a Carathéodory multifunction if

- (a) (¢, ) — g(t, x, u) is measurable for all we R?;
(b) w — g(t, z, u) is upper semicontinuous for all (t,x) € J.

We let H = L¥J, RY). A Nemitskii (multivalued) operator for a Carathéodory multi-
—functlon g, Iy H — 2%, is defined by

- To(w) = {v € H|o(t, x) € g(t, , u(t, x)) forac(t:céJ}

Lemma 3.1: Let g be a Carathéodory multz/unctzon (with non-empty closed convex .
values) and suppose that there exist an h € L%J, R) and a constant ¢ > 0 such that
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~ ' . -
, .

for all u € RY and ae. (z,t) € .J,
lg(t, 2, w)| < h(t, 2) + clul.

* (5.1)

Then F H 28 45qa demz-contmuous map.

Proof We refer the reader to Lemma 4.2 in [7]. This result was proved there for
functlons with values in IR but it 1mmed1ately follows in thls formulation since
. H = L¥J,R) X --- X L¥J, R) (q copies) 1

We are concerned with the e\lstencc of solutlons u of the mclusnon ]
Uy — uz:: E g(t x, u) ' ‘ V . - (3 2)

We say’ that u'€ H'is a generalized solution of the pernodlc—Dxrlchlet problem for
(3.2) if there e}ustsa selection s € H of the multlfunctlon (¢, x) —>g(t x, u(t, x)) suchv
that

f (U, vy’ — vz5) = f (s, v) , - 3.3)
for all v € 02(J, RY) satisfying the boundary conditions

v(0, 7) = v(27, 2), 0(0, ¥) = vi(2, 7), z.€ [0, 7] 54
u(t,0) = v(t, ) =0,  te€[0,2n] ] |

It i‘s verified that the following set of functions is orthonormal in H:

>

. ! ) . . - ,
Umonk(t, ) = — e""'\sm (nx)e,meZ,neN,k=1,2,...,q,"
: 4 .
where {¢;} is the standard basis of IR%. We define L: D(L) = H — H by

f 'Z} l 2<00};

Lo D(L)={u€H
. ’ ' k=1 (mn)EZXN

(n2 - 7"'2) (ur vm,n,k)

€

q . ’
IA"—Z 2 (n® — m?) (U, Vpuon.m) Vmono -
k=1 (mmeZXN:

By standard arguments (see [15J)» it follows that D(L) is dense in H, L verifies
assumptions which were made in Section 2; the spectrum of L is o(L) = (n? — m?|
m € Z,n € N} and the right inverse K: R(L) — H of L ‘is compact. Moreover,
w € H is a generalized solution of the periodic-Dirichlet problem for g — Ugz = h(t, x),
h € H, if and only ifue€ D(L) and Lu € Iyu).

Theorem 3.2: Let g: J X RY — 2“" be a Carathéodory multz/wzctzon satzsfymg the
following conditions:

(1) Either u — g(t, z, u) or u — —g(t x, u) is monotone for a.e. (t, z) €.

(1) . There exist r € R N o(l), 0S8 < d(r a(L) ) and h € L2(J R) such that
' lg(t, =, w) — rul < 6 jul +h(t, 2), for all u € R and a.e. (t,z) € J. ‘

" Then there exzsts u € HnoD(L) with Lu €T (%) -

_ Proof: We shall use Theorem 1. 3 for the map I', and the operator S = rI From
(i) it follows by integration that I, or —TI7 is monotone and, from (ii), (3.1) follows.
Hence, Lemma’3.1 and Theorem 2 2 1mply that I' is weakly A-proper. Since K is
compact, both I" and S are L-compact, by Lemma 2.3. By the choice of », L — S is
bijective with the bounded inverse of norm ||(L'—rI)~Y|| = (d(r, a(L))) (=g In
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particular; it easily follows that S i is A- prope1 It remains to determme an a priori
bound M. on solutions u € H, n D(L) of (1.3). For, let n ¢ N, 2 €(0,1) and u € H,
nD(L) satisfy Lu € (1 — 2)7Pyu + 2P,(T, (u)) Since P,u = u, we obtain u € i
X (L —rI)1 P, (F (u) — ru) Hence, by using-the condition™(ii), we get |lu|| = ||(L :
— rl)“[[ (0 lfull + IRl = «d {lul —{— o ||h||, therefore |ju|| £ « [|A||/(1 — «d). It remains
to choose for M any number great(n than the right-hand side of the last inequality 1

t
Remark 3.3: In the definition of Carathéodory multifunction, the condltion (a)v
can be replaced by the following weaker condmon
b S : l
(a ), ,' (t, ) — g(¢, x, w) is measurable for all u from a dehse subset of RY.

The conclusmn of Lemma 3.1 will remain true, see [10]

-

4 In what follows, f: J XIR - R is a functlon which does not satlsfy, a priori, any
continuity condition. In this case, there is no hope of solving any boundary value
. problem for

'uu—uu—ftxu)-- o o @

in the usual sense but we may look for optlmal solutions in the followmg sense: Let
b / 'J XR - R be defined by

/(t z,u) = lim f(t, z,v),  J(t, x, u) = li;m/(t, :.z:, v). ‘

v—>u
An optimal solution- of (4.1») is a function u.-verifying
/(t:tu)Su“-—uuS/txu) - g C . (42)

for a.e. (t z) € J. A generalized solution of the periodic-Dirichlet problem for (4.2) is
such » € L*J, R) that - .

f/(tru vsfu (v.,—vu)<f/txy)v ‘ C(43)

- for all v € C%J, R) sa_tlsfymg the boundary conditions (3.4);

Theorem4.1: ]Sdpp;)ae f ;xR — R verifies the following conditions:

(1) The set of those’ (., x)ed Umt a < [, =, u) < f, =, y) <b zs ‘measurable for all
a,b,u € R. ‘

(n) u —> f(t, , u) is ether non-decreasmg or non-increasing for a.e. (t,x) € J.

(iii) T'here exist r € R\o(L); 0 < 6 < d(r o(L)) and b ¢ L3(J, R) such that, /or all -
u € Rand a.e. (t, z) € J, |f(t, x,u)—ru[£6|u1+ ¢, z). -
* Then there.exzsts a genemlzzed solution u 6 L2(J R) of the penodzc Dirichlet problem
for (4 2).

Proof Let g(t, z, u) = [/(t x, ), f(t, z, u)]. The problem (4.2) is equiva]enb to
(3.2), and (4.3) to (3.3) with ¢ = 1. Tt follows from Proposition 4.4 in [10], from (i)
and (iii) that g is Carathéodory multifunction. It instantly follows that g satisfies
the hypotheses of Theorem 3. 2, hence the conclusion Il

.. Corollary 4. 2: Let f be as in Theorem 4.1 wzth the condmon (i11) replaced by the
. following two: '
‘a) For any M >'0 there exists h.€ L*(J, ]R) such that

- @, 2, w)| < R(L, x) for a.e. (t, z)€Jand all u € R with ju| < M.

/
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' . .
b) There ezists ari a < b with (a, b) n o(L) = 9 such that |
' > . Lo '

ft.z,w) _ — f(t, z, w)

a<hm

Jup—o0 w ’|u|—>co u

< b'v for a.e. (¢, z) € J.

Then the conclwsion of Theorem 4.1 remains true.

Proof: For verification that a) and b) imply the condmon (m) of Theorem 4.1,
_we refer the reader to [11] §
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