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Spaces of Continuous Sesquilinear Forms Associated 
with Unbounded Operator Algebras 

K. SOHMUDGEr	 - 

Sei 4 eine abgeschlossene s-Algebra unbeschranktcr Operatoren auf einem dicten invarianten 
Bereich 0 eiñes Hilbert-Raumes und !,,(2), 2)') der Vektorraum alter stetigen Sequilinear-
formen auf 2) x2) bezuglich der Graphtopologie von 4. Wir vorallgemeinèrn cinige grund- 
legende Resultate aus der Theorie der von-NeumannAlgcbren (das von-Neumannsche Bi-
kommutantent.heorem, (las Kaplanskysche Dichtetheorem) auf gewisse lineare Unterräume 
von .Y(2), 

llycTb Jt 3001InIyTaa s-aJii'eOpaHeorpaHnuelIuhIX onepaopoa 3JH1Ib1X Ha flJI0TH0ft 
IlIlBapIlalITuOlt o6JlacTll 2) a HexoTopoM rwm6epT0B0M rlpocTpaucTne, LI nyCTb %(2),V) 
BCKTOHO I]OCT85ICTI3O acex noJlyTopaJ!HHeflHux ())opMua 2) x 2), iienpepuanaix OTHOCI!-
TeJmuo TOHOJI0I'}In nopoamënHoi1 rpai)u}aMn . onepaopon 143 4. Mimi o6o6IuaeM. IIeC}{OJlbKO 
OCII013IIbIXpe3yJIL.T3T0B Teopn aire6p oii Heftsiatia ('reopeMa oii HeftMaHa 0 6HIoMMy-
'raIITe,-reopeMa Haniiaiici-coro 0 nJloTIlocTH) sia ueoopue 3nIs1elHbIe nognpocTpaIICTBa	- 
rlpocTpallcTna .)4(2),  

Let 4 be a closed *-algebra of unbounded operators on a dense invariant domain 2) of a Hit-' 
bert space, and let .T,A(2), 2)') be the vector space of all continuous sequilinear forms on 
2) x 2) relative to the graph topology of 4. We generalize some basic results of the von Neu-
mann algebra theory (von Neumann bicommutant theorem, Kaplansky density theorem) to 
certain linear subspaces of !(2), 2)'). 

Introduction 

I  this paper we prove some results whici could 'be interpreted as generalizations of 
the two fundamental theorems in von Neumann algebra theory, the von Neimann 
bicommutant theorem and the Kaplansky density theorem, to certain vector spaces 
of continuous sesquilinear forms which are associated with unbounded operator 
algebras.'Precise definitions of these spaces will be given later. 
• The attempts to generalize the bicommutant theorem, for instance, to unbounded 
operator algebras meets serious difficulties in general. We shall illustrate this by a 
very simple example:Let 4,be the *-algebra of all polynomials in the multiplication 
operator by the independent variable t on the dense domain	E L2(R); t'(t) 
E L2 (R)foi- all n E N} 9f the Hilbert spac&L 2(R). Then the strong-ôperat9r topology 
on 4 is equal to the finest locally convex topology OIl the vector space A (see e.g. 
[16]), so that  is closed in L+ (0) with respect to the strong-Operator topology. Since 

• the bicommutant of cit (in any reasonable definition) certainly contains all multipli-
cation operators by bounded functions, -4 is different from its bicommutant. 

In order to get versions of the bicommutant theorehi, there are (at least) two ways 
to overcome the difficulties met by the preceding example. The first one is to replace 
the strong-operator topology by a weaker locally convex topology where we take 
only the seminorms x -+ IIx II for certain "well-behaved" vectors T E D. For instance,
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we could take all vectors op E 2) ' for which the O*algebra	is essentially self-
- adjoint on its domain But for general 0*algebras4 on 2) it is not known if there 

exist such vectors E 2) except, of course, zero. The second way is to enlarge the 
*-algebra 4. For instance, in the above example, a bicommutant theorem holds if 
we replace the *-algebra 4 by the *-algebra on 2) which is generated by the multi-
plication operators determined by the functions t and (t + i)'.	 - 

One naturaLcandidate for a generalization of the theory of-von Neumanti algebras 
to the unbounded case is the class of EW*algebras which were invented by DixoN 
[4] and studied also by IN0UE [6]. EW*algebras strongly resemble W*algeras, in 
a number of ways. But, in the author's opinion, this class is too restrictive for most 
of the interesting unbounded operator algebras. For instance, it is' easy to see that 

• , there is no O*algehra,t on -D:=  cT(R) which is an EW*algebra and which contains 
the restrictions to 2) of the position* operatOr t and the momentum operator —id/dt. 
A general result which supports the above conviction is contained in [9]. Roughly 
speaking and somewhat simplified, it says that if ,4 is an EW*algebi;a which is 
"realized" as an *-algebra of operators on a Hilbert space and which contains at 
least one unbounded operator, then the bounded part of A is necessarily a finite 
W*algebra. 

In the present paper we go the second way by incorporating more general objects, 
than-operators: continuous sesquilinear forms. To describe a typical object, suppose 
't and /t2 are O*algebras on domains 2 and A, respectively, of a Hilbert space 7C. 
If a E 4. 1 , a2 E '-42, and x E B(X), then c(, )	Kxa 1 p, a2 p), q E 2) and ip E 
defines a continuous sesquilinear form on 2) 1 [t,] x 2)2[t] . We shall denote this' 
form by The form c - c000, is generated by an operator on 2 (in the sense 
that there is a linear operator T defined on 2) such that c( * , v) = (Tq, ) for all 

E 2 and 1p € 2), if and only if xa11 !D((a2'4')*). The latter condition is, in gener-
al, not fulfilled and difficult to check. The basic objects investigated if) this paper 
are .Vector spaces L of sesquilinear forms which are generated by the forms Cb4.oXob.1 

211x E and j € . Here is a (fixed) *-subalgebra of B(7) and (b 1 ; j E and 
{b9; j € } are indexed subsets of 4, and '-2, respectively, which satisfy some addi-
tional assumptions. One crucial assumption requires that for all .j € and k = 1, 2 

bkjYik is dense in X and that b ki has a bounded inverse which belongs to 2.	- 
The paper is organized as follows. In Section 1 we collect the basic definitions and 

some general facts needed in the sequel. In Section 2 we obtain two versionsof the 
von Neumann bicommutant theorem for spaces of sesquilinear forms. In Section 3 
we shos that the vector space of all •) = (x . , ., x E 2, is dense in 1[r]. 
This result is essentially used in Section 4 to prove a generalization of the Kap-
lansky density theorem to spaces of sesquilinear forms. 

Vector spaces of continuous sesquilinear forms which are associated with un-
bounded operator algebras have been already considered in several papers stIh as 
[1, 7, 10, 11, 131. Condition (I) (in a slightly stronger form) first appeared in [1]. 

1. Preliiñinaries 

Let 3C be a complex Hubert space. The scalar product of X is always denoted by 
(. .) and it is assumed to be linear in the first variable. Let 2) be a dense linear sub-
space of X and let 1(2)) := {iz € End 2); 2) 2)(a) and a*2) 2)}. Then !(2) 
becomes an *-algebra if we take the composition of the operators as the multiplica-
tion and the involution a -* a+ := a* r . An 0*a1gebra 4 on the domain 2)is an 
*-subalgebra of 1(2)) which contains the identity map I of 2). Suppose that it is an
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O*algehra on 2). The graph topology t is the locally convex topology on 2) which is 
defined by the family of seminorms op -^IIa II, a € 4. We let 1(2)) he the set of all 
a € .°(2)) for which,a and a map the locally convex space 2)[tI continuously into 
itself. Clearly,	(2)) is an Q*algcbra on 2). The O*algebr 4 is said to be closed on 
.7) if 2) = fl 2)(a); a € 4}. Further, let 4	{a €4; J I T11 ;S IIa II for (p E 2)). 

Now we introduce some spaces of sesquilinear forms associated with unbounded 
operator algebras. In what follows suppose that al and a2 are O*algebras on domains 
1) and .2, respectively, of the same Hubert space X. Let	denote the complex-
conjugate vector spaêe of the vector space 2 ' = 2)2[t ,I' . That is, V2 equals 2 as a 
set, the addition in 2' is the same asin 2', but the multiplication 'hyscalars in 2' 
is replaced in	by the * mapping (A, ) -^ . 	2 E C and T E	The mapping 
99 -^ (•,	is a linear injection of the Hilbert space de into the vector space 0'.

Having this in mind, we usethe notation(, q,) also to denote the value of an arbitrary 
linear functional 99 from 0, ' at ip E A and we write (, ) for	Let	02') 
be the vector space of all linear mappings of .7)' into	for which the associated 
sesquilinear form c defined by	V) :=	), q9 E 2) and V E 2), is continuous 
01 .1 	x 2)2[tj, that is, there are a 1 E ,al and a2 € 4 2 such that 

lc(, v)I = Kx, v')I	. lla1I I!a2v. 11 for all 99 € 2) i , p E	 (1.1) 

(By asesquilinear form on 01 x 2 we mean a complex-valued function on	x D2 

which is linear in the first and conjugate-linear in the second variable.) The mapping 
x - cx is a linear bijection of .2') onto the vector space of all continuous 
sesquilinear forms on2) 1[t,1 x 2)2[t,]. (We prove the latter:It suffices to check that 
this map is surjective. For let c be a continuous sesquilinear form on 2) 1 [t4 ,J x 2)2t,J. 
Then, for each T.E	,	IS in 2, so that c(, v2) = (v), ) for some q5 € 2 it 
is obvious that ip is uniquely determined by . Putting xp =ip for p €	, x is in


2) and c = c.) 
We need some morenotatin conderning the spaces 4,4,(2) j, 2). Let 4 he an 

O*algehra n 2). We write '(2), 2)') for . 4 42), 2)') and .42), 7e.) for ' B(X)( 2) ; X). 
(Thisnotation is not ambiguous, since if 2)' =X, then all operators in 4 are bounded, 
so that 142), .7)') = .'4B(x)(2), 7C) in this case.) For a 1 € 4 1 and a2 € 42, let 

	

{x € I,4.,(2) j1	2), (xi; v')I ;;^; 1 1a,T11 11a2vII for op € D,, ip € 2)} 
We abbreviate '11a := Uoa, a € 4.	 5	 5 

Next we define some locally convex topologies which are needed in the sequel. 

	

The weak-operator topology on	 2) is the loca lly convex topology which 

is generated by the family of semiriorms 

	

- x -/ (x, v)j,	q € 2) and	€ 0, 
For an O*algebra 4 on .7), let 12 (4) denote the set of all sequences (; n € N) from 2) 
for which (IIa IJ; n € N) is in 12 (N) for all a €4. The ultraweak topology on 
02') is the locally convex topology which is defined by the seminorms 

X	(x,	 () € l()	and	() € 1 2 (42 ).	 (1.2) - 

(Since; by definition, each x € 2'). satisfies (1.1) for some a 1 € 4 and 
a2 .€ a2, it follows from the Cauchy-Schwarz inequality that the infiiiite sum in (1.2) 
converges.) If ambiguities can occur, we speak about the weak-operator topology or 
the ultraweak topology with respect to 2) x 0, If	X and N2 g X, then the



312	K. S1TMUDGEN 

• weak-operator topology on B() with respect 'lb S, x ', is defined by the semi-
norms x —*	q' E	and ip E N2. Let 4 be an O*algebra on D. The strong-
operator topology and the ultrastrong topology, on	X) are defined by the families 
of seminorms .	 . 

	

-.	 /..	\1/2 

x — IIx I, q' E 2, and x —> (	'I Ixq II 2 ) , () E 12 M,), 
\n=i  

respectively. 
Suppose I is a linear subspace of	 2'). For a 1 E ít and a2 E a, let


1a,,a, be the-set of all x E I for which there exists a positive number 2. such that 

Kx9', N	2. Ha 'II Ila2I1 for all	€ 2 and p E 2.	 (1.3) 

If x € Y,,	let 4,,,,(x) be the infimum of all 2 > 0 for which (1.3) is satisfied. Ob-
viously,	is a linear subspace of I and 'a,a.( • ) is a norm on .t'0 , • ,,. Because of the

definition of 44A,Pl, A'), we have I = U {l'a,.a,; a 1' € 4 1 , a2 .E 42}. Let r 1 ,, denote 
the inductive topology on I with, respect to the embedding maps i0 , 0 ,:	 , 
--- I, a € and a2 € A, That is, x i ,, is the finest locally convex topology on I for 
which all mappings i, a1 E 4 1 and a2 € 42, are continuous. The tpologies e and 
2. as defined in [2] appear as special cases of this topology T i" . This and some other, 
aspects of the topology -r l ,, will be discussed elsewhere. 

As in [1] and in [10], we define a partial multiplication in	 2)• Suppose 
that y €	 2'), a 1 E I,(2)) and a2 € I(2)2). Obviously, c(9', ø) := (xa1, 

	

E%D 1 and E	defines ' a continuous sesquilinear form on 2) 1 [t,] x 2)2[t,]. 
Hence there is an x €	 2) such that c = c. Define a2 3 o y o a 1 := x. That 
is, by definition, we have •	 .	. 

((a2 oy ,o a 1 ) q', ) = ya19',a21p)	for 99E 0 and ip E 2. 

Let'a 1 and a 2 be aaboveaiid let y € B(X). Since, in particular, y r	€	 2),

a2 '4' o (y 2)) o a 1 is well-defined by the preceding. For notational simplicity we' write 
a2'4' 0 y o a 1 instead of a2 o (y 1 2)) o a 1 . If c	B(1(), then a2 '4' o 2 o a 1 denotes the

set of all a2 '4' o y o a 1 , where y EJ9. 

The following simple lemma will be needed several tinres. In the special case a 1 = a2 
it is stated as PropositiOn 5.1 in [10.]. The proof in the general case can be given by a 
slight modification of the proof of Proposition 5.1 in [10], so it will be omitted. 

Lemma 1: Suppose x E Y A,Aj01, 2), a 1 E (4 1 ) and 'a2 E ( 42)1 . Assume that 
there is a constant 2 such that (1.3) is satisfied. Then there exists an operator y E B(X) 
suchthatx=a2 '4'oyoa1 .	 - 

2. The von Neumann hicoinmutant theorem for spaces of sesquilinear forms 

Let A be an O*algebra on a domain 2). For subsets 41 Y(2), 2)') and jV 
we define "commutants" CJJV and ,V'- by 

{z. E I,(2));'xoa= aox for all xE iJt} 
and

4rc:{x€ I(2),2)'); x o a = aox for lla € ,jV}. 

Further, let '4tb denote the set of all bounded operators in M°. (it should be noted that 
the notation concerning commutants of unhouhded operator algebras is not yet



Sesquilinear Forms and Unbounded Operator Algebras '	:313 

standard. For instance, our notation differs from the one used in [1, 5, 14]). In the 
above notation, we have	 S	 - 

Theorem 1: Suppose 4 is a closed O*algebraon 2). Suppose that there existà a sub-
set {b 1 ; j E If of operators from Jtj such that b 12) is dense in 3' for each j € I and such 
that I • IIbj j € 3, is a directed family of seminorms which generates the graph topology t 
on D. Suppose c) is an *-subaljebra of B(X) which contains all operators (_1, j E 3. 
Let . be the linear hull of	o	o b 1, j € J, in  

Then (Y coincides with the ultraweak closure of within !(2,V). Moreover, 
(13)C	(f3)c = U b o JV o b1. 

We first prove the following simple 

Lemma 2: Let ,it be an O*algebra on 2) and let a and b be operatorsfrom cit such that 
a2) and bJ) are dense in X. Let c € B(M)-Suppose that c 2) € ."(2)) and acp = cap 
and bc*q, = c'bç for T € 2). Let z := b o xoa, where x € B(X).	 S 

Then c o z = z o c if and only if cx = xc. 

Proof: For. p, 1p € 2), we have by definition, 

(c o vp, ) = (z92, c*lp) = (xwp, bc*p) = (aq, x*c*bip)	 (2.1) 
and  

(z o cq7, ,) = (xacp, bp) = (wp, c*x*btp).	 I(2.2) 

Here we used. 6sentially the commutativity assumptions concerning, a, ,c and b, c*. 
Since aJi and b2) are assumed to be dense in X, we conclude from (2.1) and (2.2) that 

—coz'= z o c if and only if x** = c*x*, that is, if ex = xc I	 S 

Proof of Theorem 1: First we check that c' 2) i(2)). Fixx € '. Since 
(bj)' E 2, x(bj) 1 = (b 1 x and hence 4	for j € 3. In par,ticular, x2) 
cx2)(b j )	2)(bj ) for j E I. Since 4 is closed on2)and the family of seminorm's 
€',iA directed and generates t we have 2) = fl {2)(b); j	}. Therefore, xfb c


Because 2 is an *-algebra, x*2) c and so x 2) €J (2)). Since x and x* commute 
with b, j E , on 2) and since f4 is generated by 11-11b i , j € , it follows that x E 

Next we prove that c' 2) = .. Let j € . It is straightforward to verify that 
o (b j ' o b = b 1	and b'' o ((b)_ 1 )* o b = b. Therefore, because	is an 

*-algebra and (by' o c, the operators b 1 and	are in .Y' n 0(2),). Suppose x E '°b•14

Then x commutes with b i and	on 2). Sincex € ''(2)), this implies that x = (x)*

commutes with b 1 as well. Therefore, applying Lemma 2 in case a = h = b, we get 
x E k. This shows that ' 2). Conversely, suppose x € c71'. As shown above, 
x ' 2) € Y. t(.D) and x 2)'conimutes with b 1 and b 1'oti 2) for each j € c3. , The iame is 
true for x* 2). Thus, again by Lemma 2, x 2) € 1. Hence J3' r 2 = !. 

Suppose that z € (1. From Lemma 1.1 and the assumptions, there are an 
- index' j € I and a bounded operator x on X such that z = o x o b 1. Applying 
Lemma 2 once more, we conëludc that x commutes with the closures of the operators, 
from Y b = 2' . 1 2). Hence x € 2". Siice (j_1 € 39 for j € J, 2 is a non-degenerate 

• *-subalgebra of B(X), so that the von Neumann density theorem applies (see e.g. 
[17, p. 74]). There exists a net (Xt} of operators from2 which converges to x in the 
ultraweak topology on X. This implies that the net {b o xt o b 1} converges to 
o xo b = z in the ultraweak topology on 2). Since bç4- o x ( o b 1 € I for all t,'z belongs 
to the ultraweak closure ''° of Y within I,4 (2), 2)'). Thus we have shown that
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(.)t'	
U b o	o b 1 9 JUW: Since .	.° and so (1 3 ) c	(r)c, we have 

- 
(13 ) c	(I	ç 'Uw. Since obviously ..'	(i	and (.3)c is ultraweakly closed in 

2Y), the preceding gives (2')' = (.f()c = U b 1 o " o b1 
jEa 

The next theorem contain a similar result for the ultrtrong-operator topology. 
For a subset jV of	let	 - 

{x E	X): (xap, ) = (xp;ap) for all qq, p €, a € iY}. 

Theorem 3: Leta, {b; j E } and satisfy the assumptions of Theorem 1. Assume 
in addition that I € J9. Let I be the linear span of xb 1, where x € 59 and j E a. 

Then (I is the ultrastrong closure of I in I(2, X) and (I)	(I°) = U f/3"b. 
ie3 

Proof: As in the proof of Theorem 1, we have '	I() and xb j = 

gg € .Z,for x E 'and j € . Since I € J6, b 1 € I for each j E . Therefore, applying 
Lemm 2 in case a = b 1 , h = 1, we get ' . = I similarly as in the proof of 
Theorem 1. 

• Suppose z € (I. Since z € ), there are j € c3 and x € B(X) such that 
z,= xb 1. Employing again Lemma 2, we get x € s". By the von Neumann density 
theorem, there is a net {x1} from c59 converging to x in the ultrastrong topology on X. 
Then the net {xib} from I converges to xb 1 = z in the ultrastrong topology on 
This shows that (I,	U 2" . b	I'-, where	is the closure of I in	7C) 

jEa 
with respect to the ultrastrong topology. Since 7	(I°)	(I) and since (I) 
is obviously ultrast.rongly closed in	X), the assertion follows I 

3. Density of the bounded part 

Let 4, and 42 be O*algebras on domains 2 and D, respectively, of the same Hil-
bert space X and let 2 he an *-subalgebra of B(X). Let 3 be an index set. In order 
to formulate- Theorem 1 below and the results in Section4, we need the following 
condition: 
(I) For k € {1, 21 there exist a set {a ft ; j E' J) of symmetric operators from 4k and 

a set {akj; j € } of complex numbers such that b k : = akj ± a,;I belongs to 
( 10I, bk2 is dense inX and B 1 := (be,)-' € 2 for each j € I. 

Note ' that (1) implies that the operators aki , j € and k € (1, 2), are maximal sym-
metric, i.e., at least one of the deficiency indices of aki vanishes. -. 

Theorem 1: Let 4 1 , il and 3 as above. Assume that (I) is fulfilled. Let I denote'- 
the linear span of b o 2 a b 11 , j € , in	2)2'). Then 2 t .7) is dense in 

The proof of Theoreip 1 is based on two auxiliary lemmas. 

L em m a'2: Let a be a symmetric operator and let a be a complex number such that 
+ al has a bounded inverse on the underlying Hilbert space X. Then, for each e> 0 

and pEX,. 

II(a + aI)_ 2 II2	E2 11 q 11 2 ± e	II(a + aI)' 9'11 2. •	 (3.1)
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Proof: Upon extending a to a self-adjoint operator in a possibly' larger Hubert 
space, we can assume without loss of generality that a is self-adjoint. Fix 's> 0 and 
let e be the spectral projection of a associated with the set {. E R: ± a12 
By the spectral theorem, 

2 11pJ 1 2	C. 2 IIe0I 2	j(a + aI)"2 eq112 
and

' II(a + aI)	I1 2 	e' II(a + aI)	(I - e) 9, 111  

ll(a + fl -2 (1 - e) p1 12 

for p E X which implies (3.1) I 
The next lemma is a generalization of Lemicia 6.1 in [1]. 

	

Lemma 3: Let c 1 and c2 be positive operator's 'from an -suhalgebra	of B(X).

Suppose a 1 ,a2 E R., 0 < a :!E^ 1, 0 < a 2 < 1. Let z be an operator from2 satisfying 

Kz99 , v')I 2 ^ (c 1 + a 1 1) q, ) ((c2 ± a21) tp, ip) for 9,, p € '.	(3.2) 
Then there are operators z 11 z2 €	such that z = z, ± z2, 

(z,q,	12	(c1q, p) (c21P, P) 	 (3.3) 
and

J^Z299, 01 < 2((a ia)1I2 - ( a l 116211)1/2 + (a2 Ilc1ID'/2) JIT 1 1 IIlI	 (34)5 

for q, ip .€ X. Moreover, there is an operator Yi € 2 such that z 1 = c2y,c1.  

Proof:The proof is nothing but an adaptation of the p'oof of Lemma 6.1. in [1] to 
the present situation. Let,). := 1/max (1, 11c i ll, 11 c211) . Upon replacing z, c, 62, A l l	by 
2z,c2 , 2a 1 , a2 , respectively, we can assume that II c ll ^ I and 11 c211 I. Fix 
a'E R, 0 < a :!!^; 1. Let f' denote the function on [0, 1] which is defined by f(t) 
= (t(t + a))_ 1 1 2 if t € [a, 1] and 1(t) = (e(a + a))_ 1 1 2 if t € [0, el, where a is a positive 
'number satisfying 4e	a l /2 and a	a. We approximate the real continuous fiinc-
Lion f - ron [0,1] by areal polynomial p such that; Ip(t) - f((t) -	a fort € [0, 11.

Put q(t) := t'p(t). It is easy to check that for t € [0, 1]  

o	q(t)	th/2(t + a 112	'	 '	' 	(3.5) 
and	' 

0	(t -f- a) 1!2 (i - q(t)) !:–, 2a 1 1 2 .	,	 '	(3.6) 

Suppose k E {1, 2}. Let qk he the polynomial q defined above in case a	a t and let 
q(c). Define z 1 := b 2zb 1 and Z2 := z - z 1 . Since q 1 and q2 are polynomials with 

vanishing constant coefficients, b 1 = q 1 (c 1 ) € J3, b 2 = q2 (c2 ) € W and z, = c2y 1c 1 for 
some'y 1. € h. In particular,z 1 € 2 . and z2 € 09 . If (p, V E de, applying (3.2) and (3.5), 

(z 19 , v')1 2	I(zbi, b2)I 2 5 ((c 1 -f a l l) b i g,, b 1 q) ((c 2 + a 2 1) b2 , b2

^ (cq, cp) (c2p, ). 

From (3.2), (3.5) and (3.6)	'	 S 

(z2 , v)I'5 (zb i p, (I -- b2) )I ± I(z(I - b 1 ) (p, ')I 
^ ((C l ± a ll) b 1 92, b 1 q)112 ((c 2 + a 21) (1 - b2 ) V , (I - b2) 0I/2 

+ ((c, + a 11) (I - b1) q, (I— b1) ,)I12 K(cz + a21) ,, ip)112' 

^ (cj; 0)1I2 20'2 112 110 + 2a 1 12	(11C211' 12 + 0'2h12)' J4 
for all q, p E X. This implies (3.4) I  

-	S

I
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Proof of Theorem 1: First note that 3 2) 9 .°. Indeed, if b E 3, then BjbBl 
E 3 and , sob f 2) = bo (BbB . 11 ) o b 11 E for any'j E . Fix an index j E and an, 
operator y € 3 and let x = b o y o b 11 . It suffices to show that x belongs to the 
closure of 3 t 2) in 1[r]. For notational simplicity we omit the index j throughout 
the following proof. 'rake a 'positive number E satisfying e(1 + Ily Il)	1. Applying

Lemma 2 in case a = Uk, k = 1, 2, w I e get for arbitrary T, V E X 

•	-	-	((B22) yB 12, v)J	JIy I[2 IIB 1 2 II IIB22II 

tIy2 ( e2 'IIII2 + e - ' I!B!I2) (e2 IIII2 ± e' IB2 "PI I2). 

That is, the assumptions of Lemma 3 are satisfied in case z = (B22) yB12, a '= 2 IIII 
• and Ck =	C (B 3) Bk3 for k = 1, 2. By Lemma 3, there exist. operatois Z 1, 22 and


j, in 3 such that z = (B22)* yB 1 2 .= z 1 + z 2 , z 1 = B2y 1B1 and 

< j I for 99,	€ X,	-	 •	,	(3.7) 

where A is a certain constant depending only on the norms Of y, B 1 and B2 . (We do 
not need the inequality (3.3) from Lemma 3.) Since B1 and B2* are in 2, there is an 
x 1 E',2 such that z1 = (B23)* x 1 B 1 3 . Define X2:= (b2')3 0 220 b 1 3 . Then 

x = (b2 ')3 0 ((B22)* yB i 2) 0 b 1 3 '= (b2 ) 0 Z ob 1 3 ± (b2 ) 3 0 z2 o b 1 3	. 
= 

	

(b2+ )3 0 ((B23 )* x iB i 3) 0 b 1 3 -f- x2 = x 1 r.	+ x2. 

Therefofe, from (3.7),  

•	I(( - (XI r .2)))	N	KX292, 01 = (z2b i3ç, b23)I 

	

<As" 2 IIb 1 3 II JJb23 II for all op,	€ X. 

Since x 1 € 3 and A depends only on y, B 1 and B2', this implies that x is in the closure 
of 3 t 0 in	I  

4. A generalization of I{apiansky's density theorem to spaces of sesquilinear forms 

We keep the assumptions and the' notation from the beginning of Section 3. Besides 
'condition (I) from Section 3, we need the following condition: 

(II)

	

	The family of serninorms 11-11b,,i, j € j, is directed and generates the graphtopo-




logyton2)k /or k= 1, 2. 

Im1'case it = .= B(X) we have 2)3) = B(X) and 'll, is the unit ball 
of B(M). Therefore, the following theorem can be coiisidcred as a generalization of the 
Kaplansky density theorem to some spaces of sesquilinear forms. .-

Theorem 1: Let 4 1 and 42 be closed O*algebras on domains	and 2)3 , respectively,

of a Hubert space X and let 3 be an -subalgebra of B('): Assu'ñze that conditions (I) 
and (11) are satisfied. Let . be the linear span of b 0 3o b, 	€ , and let J be 
another linear subspace of	2)3') which' contains Y. 

If •2' is in the weak-operator clbsure of I in	 2'), then I ,n 1b21.b11 is'

ultraweakly dense in 1' n ?Jb0.b11 for each j € . 

Proof: Fix an index j € . Let j denote the closure of8 in B(X) in the weak- - 
operator 'topology with -respect to b 112)x b2 Ji Clearly, 3"	j. We show that


= 3". For let x € . Then there is a net {xt} from 2 converging to x in the weak- -
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operator topology with respect to bJ x	Suppose y E 2 ' .and k E (1, 211. Since 
B 1 E - by assumption, y commutes with Bkj and hence with bj for each j E . 
Therefore, YYik	fl (JJ'(bkj); j E ). Since c4 is assumed to be closed on . k , condi-
tion (II) implies that, the latter equals .D k, so that Yjik	2. Becaise ' is an 
*-algebra, y*Sbk	2. Therefore, if q9 E 2 and ip E,2, then yb 11 p = b jjyço E b 11 2 1	• 

and y*b2ip = b21y*ip E b2 2 2 and hence 

(xyb 1 p, b21ip) = urn (xtyb i p, b2jp) = urn (xib i1q; y*bp) 

-	= (xb 1 9,, y*boiip) = (xy6 1jq, b2). 

Since b 11J 1 and b212 2 are dense in X by (I), this yields xy = yx. Thus x E JV and 
S	

/ 

By Lemma 1.1, for each x E (2'i)b21.b11 there is an operator y E B(X) . such that 
x = b o y o b 11 . Let h i denote the set of all such operators y if x runs through 
(11)621.b11. Since bkjJk is dense in X for k = 1, 2, b o y ' o b li	b o	o bli for 

Yi ' Y2 E B(X) implies that Y' = Y2• From b.o V o b 11	t8'2b11	(!i)2.bj,

= bj o 2i o b 11 we therefore conclude that JW A. 

We prove that 2i a". By Theorem 1 in Section 3, 2 . is iii .'[r] and hence, 
of course, dense in Y in the weak-operator topology. Since .T is weak-operator dense 
in Y by assumption, J9 . is weak-operator dense in 11 . Suppose\y E h i . Then 
b2i o. y o b li E ., so that there exists a net (xi 1' .) from	. which converges to 

	

o y o b li in the weak-bperator topology with rspect to	X .. Let q E b11Ji 
and 1p E b2j2 . Then Bli p E	and B2j p € A and hence 

urn (xtBj 1 p, B21ip) = lim (BxiBjjp, v)) 
t	 .1 

= ((bo y•o b 1 ) B 11q, B21tp) = (yq', ). 

Since Bx1B 11 € a for all 1, this shows that'y € j. Beausé = cs" as shown above, 
we have y €". Thus ai 

Let hi denote the *-subalgebra of B(X) which is generated by 9 i. Since j 
That is, the *-algebra 2 is dense in the *-algebra in the weak-

operator topology of B(X). LtU 1 be the unit ball of B(X). Kaplansky's density 
theorem (see e.g. [8, p. 329]) states that 2 r M I is ultraweakly dense in 1i fl 24 

• and so in c$j n 2t. This implies that the subset bj\o (2 n ?f) o b11 of .n 

ultraweakly dense in b o (j n ?1) o b 1 . Since b o (2j n ?t) o b 11 =	n

by the density of b 112 1 and b2j2 in X, this proves the assertion I 

A by-product of the preceding proof is 

Corollary 2: Let dt, A21 c, .' and (bk; j € }, k = 1, 2, be as in Theorem 1. Then 
the closures of ' in the weak-operator topology and in the ultraweak topology within 


	

2) coincide and they are equal to U bj o " o b 1 .	'• 

	

Proof: Let Y,' denote the weak-operator closure of	:= U b o " o bit within

ka 

2) and let ("), € 3, be the corresponding subsets for Y, as defined in 
the proof of Theorem 1. The proof of Theorem 1 (with I and a replaced by I and 
s", respectively) showed that cd" 9 (ff')i 9(c.")". That is,	" = (") for


E 3. Thus I = .T, so that Yo is weak-operator and hcnce ultrawéakly closed in
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. 2). On the'other hand, by the von Neumann density theorem; is ultra- 
weakly dense iii ". 'This implies that .Y' is ult .raweakly and hence weak-operator 
dense in 1. Combined with the preceding, the assertion follows I 

An immediate consequence of Corollary 2 is 

Corollary . 3:, Under the assumptions and notations of Theorem 1, the following 
three conditions are equivalent: 

(i)	.Y' is weak-operator closed in  
• '. - (ii)	I is ultraweakly closed in	22). 

•	(iii)	Ji'is a von Neumann algebra. 

In case where Jt2 = * B(de) and	X we have similar assertions for the ultra-




strong\topology.  

Theorem '4: Suppose	'is a closed O*algebra on 01 such that (1) and (II) are 
fulfilled in case k	1. Let I be the vector space-of operators on 0, generated by xb11, 

where x E J9 and j € j. (Here the set {b 1 ; j E } and the *-subalgebra c^9 are as in (I) 
and (II) for k = 1.) Let Y, be a linear subspace of	9e) such that I si I. 

•	

'	 if I is dense in I in the weak-operator topolgy with respect to . x 7C, then, for 
each j €	Y , n ?lb iiis dense in I n?4 in the ultrastrong topology. 

Proof: The proof is very similar to the proof of Theorem 1 in case	= B(X),

= X. At the end of this proof it suffices to replace the ultraweak density Of •	n ?/ in cj a 'l1 by the ultrastrong density which follows also from the Kaplansky 

•	density theorem for von Neumann algebras I 
Assume that 91, ii, I and {b 1 ; j E } are as in Theorem 1. Then the following two 

corollaries can be derived in a similar way as Corollaries 2 and 3 above. 

Corollary 5: The closures of I with respect tot he weak-operator topology, the ultra-
weak topology (both with respect to !Z x 7C), the trong-operator topology and the ultra-
strong topology in	X)coincide. They are equal to U " . b11. 

IEZI 
Corollary 6: The following three conditions are equivalent: 

(i) I is weak-operator closed (with respect to . x 7) in	X). 
(ii) ' I is ultrastrongly closed in.',(JJ 1 , X). 

(iii) J29 is a von Neumann algebra. 

•
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