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- Sei A eine abgeschlossene o-Algébi‘a unbeschrinkter Operatoren auf einem dicl:\it@n invarianten

‘Bereich D eines Hilbert-Raumes und £4(D, D’) der Vektoiraum aller stetigen Sequilinear-
formen auf D X D beziiglich der Graphtopologie von . Wir verallgemeinern einige grund-
legende Resultate aus der Theorie der von-Neumann-Algebren (das von-Neumannsche Bi-
kommutantentheorem, das Kaplanskysche Dichtetheorem) auf gewisse lineare Unterraume
von £ 4(D, D). ’

Ilycte A samMkHyTas s-aarebpa -HEOrpaHHYEHHKIX ONEPaTOPOB 3aNAHHEIX HA IJIOTHOM

HHBapHAHTHON oGnactn D B HeKOTOPOM TuILGEPTOBOM mpocTpaucrse, W nycrb £ (D, D)
BEKTOPHOE BPOCTPAHCTBO BCeX MOJyTOpaJnHeftHMX Gopm Ha D X D, HENPEPHBAKX OTHOCH-
TeJILHO TOMOJIOIHH nopomueimon rpaduKamu- oneparopos U3 A. \‘Im 06001maemM. HECKOJIBKO

* OCHOBHHIX  pe3yJiLTaToB Teopun anrebp Pou Heiimana (Teopema Pon Hefimana o Gnrommy-

TaHTe, Teopema HKanianckoro o nioTHOCTH) HA HEKOTOpLIE JHHeifHbie: NORUpOCTPaNCTEA
npoctpancTra £ 4(D, D). . ) -

Let A be a closed ¢-algebra of unbounded operators on a dense invariant domain D of a Hil-~

" bert space, and let £ (D, D’) be the vector space of all continuous sequilinear forms on

D x D relative to the graph topology of L. We generalize some basic results of the von Neu-
mann algebra theory (von Neumann bicommutant theorem, Kaplansky densnty theorem) to
certain linear subspdces of Lu(D, D’ )

Introduction o

To this paper we prove some results which could be inter preted as generah/a.tlons of
the two fundamental theorems in von Neumann algebra theory, the von Neumann
bicommutant theorem and the Kaplansky density theorem, to certain vector spaces
of- contmuous sesquilinear forms which are associated "with unbounded operator
algebras.’ Precise definitions of these spaces will be given later. /

The attempts to generalize the bicommutant theorem, for instance, to unbounded
operator algebras meets serious difficulties in general. We shall illustrate this by a
very simple example:-Let 4 be the x-algebra of all polynomials i in the multiplication
operator by the independent variable ¢ on the dense domain 2 := {p € L¥R); t"p(t) -
€ L¥R) for all n € N} of the Hilbert space’L*(R). Then the strong-operator topology
on A is equal to the finest locally convex topology on the vector space 4 (see e.g.
[16]); so that A4 is closed in L*(D) with respect to the strong-operator topology. Since

“the bicommutant of /£ (in any reasonable definition) certainly contains all multipli-

cation operators by bounded functions, 4 is different from its bicommutant.

In order to get versions of the blcommutant theorem, there are (at Ieasb) two ways
to overcome the difficulties met by the preceding e\a,mple The first.one is to replace
the strong-operator topology by a weaker locally convex topology where we take
only the seminorms ¥ — |jzg|| for certain “well-behaved” vectors ¢ € D. For instance,
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we could take all vectors g € D for which the O*-algebra «& | g is essentially self-
adjoint on its domain 4. But for general O*-algebras 4 on D it is not known if there
" exist such vectors ¢ € D except, of course, zero. The second way is to enlarge the
x-algebra &. For instance, in the above example, a bicommutant theorem holds if
we replace the x-algebra 4 by the x-algebra on D which is generated by the multi-
plication operators determined by the functions ¢ and (¢ + i)-!

One natural candidate for a generalization of the theory of-von Neumann a]gebras
to the unbounded case is the class of EW*-algebras which were invented by Dixox
[4] and studied also by Ixouk [6]. EW*-algebras strongly resemble W*-algebras, in
a number of ways. But, in the author’s opinion, this class is too restrictive for most
of the interesting unbounded operator algebras. For instance, it is easy to see that
+ . there is no O*-algebra £ on D := S(R) which is an EW*-algebra and which contains

the restrictions to 2 of the position operator ¢ and the momentum operator —id/dt.
A general result which supports the above conviction is contained in [9]. Roughly
speakmg and somewhat simplified, it says that if & is an EW*-algebra which is -

“realized” as an x-algebra of operators on a Hilbert space and which contains at

least one unbounded operator, then the bounded part of A is necessarily a finite
W*-algebra. :
In the present paper we go the second way by incorporating more gweral objects,
than-operators: continuous sesquilinear forms. To describe a typical object, suppose. .
A, and A, are O*-algebras on domains D, and .‘Dz, respectively, of a Hilbert space F.
If a, € Ay, a; € Ay, and z € B(F), then c(g, p) := (xa,p, ay), ¢ € D, and p € D,
defines a continuous sesquilinear form on 9 [t‘,¢ ] X Dy[tus,]. We shall denote this’
form by ¢,,+0z0a,- The form ¢ = ¢4,20704, is generated by an operator on D, (in the sense
that there is a linear operator 7' defined on D, such that c(p, ) (Tq;, 'P) for all
@ € Dy and y € D,) if and only if 24,9, S .‘D((a‘t2 )* ) The latter condltlon is, in.gener-
. al, not fulfilled and difficult to check. "The basic object’s investigated in this paper
are yector spaces L of sesquilinear forms which are generated by the forms c,: sozobyy? ‘

z€ R and i€ F. Here & is a (fixed) x-subalgebra of B(Jﬁ’) and {b)j;] € and
{boj; i € ) are indexed subsets of A, and A,, respectively, \‘vhlch satisfy some addi-
tional assumptions. One crucial assumption requires that for all j € Fand k =1, 2

biiDy is dense in J€ and that bii has a bounded inverse which belongs to 3.

The paper is organized as follows. In Section 1 we collect the basic definitions and
some general facts needed in the sequel. In Section 2 we obtain two versions of the |
von Neumann bicommutant theorem for spa.ces of sesquilinear forms. In Section 3
we show that the vector space of all crozos(-, ') = {x-, -), x € B, is dense in L[ry,)].
This result is essentially used in Section 4 to prove a generaluatlon of the Kap-
lansky densnty theorem to spaces of sesquilinear forms.

Vector spaces of continuous sesquilinear forms which are associated with un-
bounded operator algebras have been already considered in several papers sich as
[, 7, 10, 11, 13). Condltlon (I) (in a slightly stronger form) first appeared in [1].

1. Preliminaries
Let J¢ be a complex Hilbert space. The scalar product of J is always denoted by
(-, -y and it is assumed to be linear in the first variable. Let D be a dense linear sub-
space of ¥ and let £+(D):= {a € End D; D = D(a*) and a*D S D}. Then £+(D)
becomes an x-algebra if we take the composition of the operators as the multiplica-
tion and the involution @ — a* := a* | D. An O*-algebra A on the domain D'is an
*-subalgebra of ¥*(D) which contains the identity map I of D. Suppose that 4 is an
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O*-algebra on D. The graph topology t. is the locally convex topology on D whichis
defined by the family of seminorms ¢ — Jlag|, a € A. We let £4(D) be the set of all
a’e £+(P) for which.a and a* map the locally convex space D[t] continuously into
itself. Clearly, £ (D) is an O*-algebra on 9. The O*-algebra A is said to be closed on
Dif D= N{D(a);a € A}. Further, let 4; := {a € 4; |lp|| < |lag|| for ¢ € D}.

Now we introduce some spaces of sesquilinear forms associated with unboundéd
operator algebras. In what follows suppose that 4, and A, are O*-algebras on domains
D, and D,, respectively, of the same Hilbert space J. Let 0, denote the complex-
conjugate vector space of the vector space Dy’ := Dy[tu,]’. That is, D’; equals D, asa
set, the addition in 2, is the same as in D,’, but the multiplication ‘by'sca]ars in .‘D2

tis replaced in D,’ by the mapping (4, ¢) >2-¢, 2€C and ¢ € D,". The mapplng
@ — (-, ) is a linear injection of the Hilbert space J¢ into the vector space D,
"Having this in mind, we use'the notation’(y, @) also to denote the value of an arbitrary:
" linear functional @ from D, at p € D, and we write (p, p) for (y, p). Let L4, 4.(D,, Dy’)
be the vector space of all linear mappmgs of D, into D, for which the associated
"sesquilinear form c, defined by ¢ (@, v) 1= (x@, v), ¢ € D, and y € Dy, is continuous
on Dy[ta,] X Dylta,l, that is, there are al €A, and a, € A, such that

lexlp, w)| = (2@, v)| < llagll lagyll for all @ € Dy, p € Dy. ! C (L

(By a-sesquilinear form on D, x D, we mean a comple\ valued function on 9, x .‘Dz
which is linear in the first and conjugate-linear in the second variable.) The mapping
x — ¢, is a linear bijection of £.4,.4,(D,, D,') onto the vector space of all continuous
i sesqullmcar forms on, Dy[t.¢,] X Dyft4,). (We prove the latter. Tt suffices to check that
thls map is surjective. For let ¢ be a continuous sesqulhncar form on D[t} X Dyfte,).
T hen for each ¢ € Dy, c(p, -) is in Dy, so that c(p, ) = (y, ) for some & € D,". It
is obvious that @ is uniquely determined by @. Puttmg xp=§ for (p € D,, x isin
Lu, (D1, Dy') and ¢, = ¢

We need somé more notation concerning the spaces £ 4, 4,(D,, .‘Z)z ) Let A be an
O*- algcbraon.‘l) We write £ 4(D, D') for £ 4 4(D, D’) and f‘,g(.@ I) for £ 4 m5e)(D, F)-
(This'notation is not ambiguous, since if D' = J¢, then all operators in'4 are bounded,
so that ¥4 4(D, D) = Lune(D, J¢) in this case.) For a, € A, and a, € o, let

Uy, 1= {x € Lot (D1, Do'); [z, )] < llaagll llagyll for @ € Dy, p € Dy} .-

We abbreviate U, := %, ,, a € A. '

Next we define some locally convex topologies which are needed in the sequel.

The weak-operator topology on £ 4, 4,(D,, D,’) is the loca]]y convex topology which
is generated by the famlly of seminorms T ;

- x>z ),  @€D, and y€ Dy

- For an O*-algebra A on D, let l,(A) denote the set of all sequences (@, ; n € N) from D
for which (lla@all; 2 € N) is in [,(N) for all a € A. The ultraweak topology on £y, ‘,g,(.‘Dl,«
"Dy’ ) is the locally convex t,opology which is defined by the seminorms

- Zl (X@n, wuy|,
oyt

(Since; by definition,” each z € £4, .4,(D;, D,). satisfies (1.1) for some «, € Al and
@y € Ay, it follows from the Cauchy: :Schwarz inequality that the infinite sum in (1.2)
converges.) If ‘ambiguities can occur, we speak about the weak-operator topology or
the ultraweak topology with respect to D, X Dy. If 8§y S-J and &, S H, then the

(@a) € () and  (pa) € eda). < (2
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weak-operator topology on B(J) with respect to &, ><5’2 is defmed by the semi-

“norms x — [(t@, p)|, ¢ € &, and p € &,. Let A be an O*-algebra on D. The strong-

operator topology and the ultrastrong topology on £ (D, ) are defined by the families -
of seminorms .

: x—>|lx<pll €D, and " 2 >(lelx<p,.llz) > (ga) € lz(v‘l),
respectively. '

Suppose £ is-a linear subspace of Lu, (D1, Dy'). For a, €A, and a, € uiz, let
Za,.a, be the'set of allx € ¥ for which there exists a positive number /Z such that

Kz, p)| = 2 llu,@ll llagyll for all g € D, and y € D,. ‘ - (1.3)

If x € fa‘a,, let la, () be the infimum of all 2 > 0 for whjch (1.3) is satlsfled Ob- 3
viously, £q, 4, is a linear subspace of ¥ and lg,4,(-) isa norm on £, .. Because of the

“definition of £ 4,4,(Dy, Dy’), we have £ = U {£4,4,; @1 € A, @z € Ay} Let 71, denote

the inductive topology on £ with respect to the embedding maps ia a,: (£arap lara,)
— ¥, a, € A, and a, € A,. That is, 7, is the finest locally convex topology on £ for
which all mappings iq, 4, a; € A, and a, € A,, are continuous. The topologies ¢ and

- 2 as defined in [2] appear as special cases of this topology i,. This and some other

aspects of the topology i, will be discussed elsewhere.
Asin[1]and in [10], we define a partial multiplication in £ 4, (.‘Z),, D,’). Suppose'

that Y € Lt Dy, Do), @y € £34,(Dy) and ay € L4, D). Obv1ous]y, c(p, p) := (xa,p,

a.y), ¢ €D, and p € D,, defines a continuous sesquilinear form on D,{t.¢,] X Dylt.e).
Hence thereis an z € £, 4,(D), D,') such that ¢ = ¢,. Definea,’ oyoa,:= x. That

is, by definition, we have -

{(as* oyoa) @, p) = (?/al% ay) for @€ D, and p € D,.

. Leta, and a, be asaboveand let y € B(J€). Since, in particular, y PDe ,‘t",( Ay (2,, D,'),

-

" and

o (y } D)o a, is well-defined by the preceding. For notational simplicity we write
a2 o0yoa, instead of a,* o (y4 D)o a,. T B & B(J’f) then a,* 0o B oa, denotes the
set of all a,* o y 0 a, where y € 3.

The following simple lemma will be needed several tlm’es In the speual cased, = d,

it is stated as Proposition 5.1 in [10). The proof in the general case can be given by a

slight modificatiqn of the proof of Proposition 5.1 in [10], so it will be omitted.

' T,emma 1: S;/,m;ose x€Lu.a (.‘D,, D), a, € (A); and a, € (A,y);. Assume that
there is a constant ). such that (1 3) 18 satzs/zed Then there exists an opemtor y € B(X)

suchthat:z:—a2 oyoa. T,

1

2. ’l‘he von Neumann hicommutant theorem for spaces of sesquilinear forms

Leét A be an 0*-algebra on adomain 9. For subsets ME LD, fD ) and JV < £4(D),
we defme “commutants” > and #¢ by

;A= {a E_‘.Y’;,t(.ﬁ)‘;xoazaoxfor a,llx.e M}

'L/V ={z € Lu(D, m,xoa—aoxforauaem

Further, let My, denote the set of all bounded operators in . (It should be noted that . -

the notation concerning commutants of unbounded operator algebras is not yet

~ . -
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.standard. For instance, our notation differs from the one used in[1, 5, 14]) In the
' above notation, we have -

‘Theorem 1: Suppose A is a closed O*-algebra on .7) Suppose that there exists a sub-

- set {b; 1 € Sy o/ operators from A; such that b;jD is dense in J for each i € ¥ and such
" that ||- ”°i’ 1 €S, ts adirected family of seminorms which generates the graph topoiogy tu

on D. Suppose B is an *-subalgebra of B(J]f ) which contains_all operators (b,) Lie§
Let £ be the linear hull of b* 0 Bo bj, 1 € S, in Lu(D, D).
Then (¥3)¢ coincides with the ultmweak closure of ¥ within X 4(.‘2) .@) Moreover,
(£ = (£ = UbFoB ob. - ]
L5 .. ~ \
We first’ prove the fo]lowmg SImple

‘Lemma 2: Let A be an O"‘-algebra on D andletaand b be opemiors jrom A such that
aD and bD are dense in J. Let ¢ € B(I). Suppose that ¢ } D € £4(D) and acp = cap
and bc*p = c*by for ¢ € D. Let z:= b* o x 0'a, where x € B(JK).

Thencoz:zocz/andonljz/cx-—xc . - .

Proof: For ¢, v €D, we have by definition, )
(co zp, w) = (o9, o*y) = <mp, bery) = (ag, a*c*by) .oy

\ N -

(ZOC% Y = (zafxp, by) = (agp, C*x*bw o g (2:2)

and -

Here we used. essentially the commutatlvxty assumptions concermng a,c and b, c*.

Since a2 and b2 are assumed to be dense in ¥, we conclude from (2.1) and (2 2) that

—C0z=20C¢C lf and only if a*¢* = c*x*, that is, if cx = z¢c 1" oy

[

Proof of Theorem 1: First we check that &%’ P S f‘l(.‘D) Fix 'z € B'. Since
(b))t € B, 2(b;)"! = (b)) 'z and hence zb; & b,x for j€ 3. In particular, 22
S xD(bj) S D(b;) for i € I. Since A is closed on .Z)and the family of seminorms ||- “llos

j € 3, isdirected and generates t ¢, we have D= N {D(bi); i € ). Therefore, 2D & .@ :

Because 7 is an *-algebra, 2*D S D and so 2’| D 6.2’ 2) Sinc¢ z and z* commute

with bj, ] € 8 on D and since t,¢ is generated by ||- “llogs j € g, it followsthat x € .2":2(.‘2))
Next we prove that B’ f D = #3. Let j€ Q. It is straightforward to verify that

bt o (Bto b; = b;* and bi* o ({b)"1)* 0 b; = bj. Therefore, because B is an

- * a]gebxa and ( )lo $ the operators b; and b;* are in £ n £4(D). Suppose z € Ly

Then z commutes with b; and b;* on D. Smce z € X ;(D), thisimplies that z* = (2)*'D
commutes with b; as well. Therefore, applying Lemma 2 in case a = b = b, we get
x € AB'. This shows that 5, & B’ I D. Conversely, suppose z € &B’. As shown above,
ztDe L4(D)and z } D commutes with bj and b;* on D for each j € &.The same is
true for z* | 9. Thus, again by'Lemma 2, 2z | D € 1’” Hence &' | D = £3. ’

~ Suppose that z € (£7)¢. From Lemma 1.1 and the assumptions, there are an-

. _index j € ¥ and a bounded operator 2 on J¢ such that z = b;* o x 0 b. Applying

Lemma 2 once more, we conclude that x commutes with the closures of the operators.
from £, = B’} D. Hence z € B". Since (b))~! € B for j € I, P is a non-degenerate

- %-subalgebra of B(J), so that the von Neumann density theorem applies (see e.g.

[17, p. 74)). There exists a net {21} of operators from & which converges to = in the
ultraweak topology on J€. This implies that the net {b;* o z(0 b;} converges to b;*

' 020 by = z in the ultraweak topology on 2. Since bj* o 20 b; € £ for all 'z belongs

to-the ultraweak closure ¥uo of £ within £,4(D, D). Thus we have shown that

4
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(£3)° S Ubf 0 B"0b; & ¥ Since £ S £° and so (1’°)CD (£°)°, we have

i€y
(£2)° S (£2)° S £uv. Since obvidusly ¥ & (£°)° and (£°)° is ultraweakly closed in
.2’(4(.@ D), the preceding gives (£°)° = = (£3)° = U bj* o B" 0 bj = I’““’ 1
i3 .
" The next theorem contains a sn:mlar result for the ultrastrong operator topology
For a subset N of £4(D), let

LNy i={z € Lu(D, 36’) (wagp, w) (vp;atyy for all g, p € D, a € H}.

Theorem 3: Let A, {bj; j € ) and B sutisfy the assumptions of Theorem 1. Assume
in addition that I € B. Let ¥ be the linear span of xb;, where x € B and j € §

Then (L), is the ultrastrong closure of £ in £ D, IH)and (£3)%, = (L)% = U Jf”b

i€

Proof: As in the ploof of Theorem 1, we have %’ f D S La(D) and zbjp = bixy,
p €D, forxe B and jeF. Sincel € LZ? bi € X for each j € . Therefore, applying
Lemma 2 in case a = bl, b=1, we get ﬂ’ } D = £, similarly as in the proof of
Theorem 1. .

" Suppose z € (£2)S,. Since z € £ 4(D, 276’), there are j € & and .z € B(J) such that
z,—= zb;. Employing again Lemma 2, we get x € B"’. By the von Neumann density
theorem, there is & net {z(} from B converging to x in the ultrastrong topology on ¥.
Then the net {zib;} from ¥ converges to zb; = z in the ultrastrong topology on 2.

This shows that (£3)}, S U R - b < Fus, where f“s is the closure of 7 i in L (D, F)

with respect to the ultrastrong topology Slncc L S ()5 S (£3)s and since (£°)S
is obviously ultrastrongly closed in £ 4(D, J), the assertion follows

3. Density of the bounded part - ' ’ - SN

Let A4, and A, be O*-algebras on domains _‘Z)1 and .‘Dz, respectlvely, of the same Hil-
bert space J and let & be an *-subalgebra of B(Jt?) Let & be an index set. In order
to formulate. Theorem 1 below and the results in Section 4, we need the following
condition:
(0 For k€ {1, 2} there exist a set {ayj; 1 € I} of symmetric operators from A, and
@ set {ogg; ] €} of complex numbers such that byj:= ax + oxil belongs to
(A)1, bigD is dense in.J and Bjj:= (bi)™* € B for each j € I.
~ Note ‘that (1) implies that the operators a;;, j € & and k€ {1 2}, are mammal sym- '
metric, i.e., at least one of the deficiency indices of ai aij vanishes. '
'l‘heorem 1: Let A, A, and B as above. Assume that (1) is fulfilled. Let X denote~
" the lmear span of bz,o Bobyy, €, m Lu, u (D1, D). Then B D is dense in

L] .
The proof of Theorem 1 is based on two auxiliary lemmas. (

Lemmar2: Let a be a symmetric -opérator and let « be a complex number such that
a + «I has a bounded inverse on the underlymg Hilbert space J€. Then, for each ¢ > 0,
andp € X, . . A

@ + aI)? gl < o “‘P“z-ra"l @ + o) <pnz. . ’ @1
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Proof: Upon e\tendmg a to a self-adjoint operator in a possibly larger Hilbert
space, we can assume without loss of generality that a is self-adjoint. Fix'¢ > 0 and
let e be the spectral projection of a assocnated w lth the set {7 € R: |1 + |2 = &71}.
By the spectral theorem, )

e Pl = & llegli? = (@ + oI)~2 eql®
and .

e @ + D) gl 2 el + al) S (L — e) gl . AT

| T zla D — e gl '

for p € ¥ whic}; implies (3.1) 1 ) '
- The next Iemma isa generallzatlon of Lemma 6.1 in [1].

Lemma3 Let ¢, and ¢, be posmve operalors from an x-subalgebra B of B(JH )

. Suppose 1 % €R 0<a; £1,0 <y =< 1. Let z be an operator from B satisfying

(zqv, WIF =6 + oud) @, ) (e S xod)y,y) for @, pe€ . (3.2)
_ Thcn there are operator.s 2, 25 € B such that z = z, + z,, ' '
_ K, VI < (10, ) (o, " o (3.3)
and ’
2o, W) < 2((0v10x5)V/2 +[ (a1 fleall)? R GE llealDV2) llpll Tlwll - (3.4)°

for @, w.€ J. Moreover, there is an operator y, € B such that z, = c2y,b,

Proof: The proof is nothing but an adaptation of the proof of Lemma 6. i.in 1] to
" the present situation. Let} = 1/max (1, |lcf], |lcell). Upon replacing z, ¢y, ¢g, &y, x5 by
/z 2cy, ACo, )a,, Jxg, respectively, we can assume that |jc)|| < 1 and lleo]] = 1. Fix
"x€R,0< &< 1. et f denote the function on [0, 1] which is defined by f(t)
= (t(t + o))" V2 if t € [e, 1] and f(t) = (e(e + a))~12 if ¢ € [0, €], where & is a positive
" number satisfying 4¢ < «V/2 and ¢ < «. We approximate the real continuous func-
tion f — £ on [0, 1] by areal polynomial p such that [p(t) — f((t) — e)| < efort € [0, 1.

Put g(t) := tp(t). It is easy to check that for ¢ € [0, 1]

TO0 < g) S8R+ a)M ' - o : (3-5)
and : _ ’

0= (t+ )2 (1 — qt)) < 2002 ‘ (3.6)

Suppose k € {1, 2}. Let g, be the polynomial ¢ defined above in case « = &, and let
b 1= qi(cy)- Define 2, := byzb, and 2z, := 2 — z,. Since ¢, and ¢, are polynomials with -
vanishing constant coefficients, b, = q,(c,) € B, by = qy(cy) € B and 2z, = coy,c, for
some'y, € B. In particular;: 2 € B and z, € B. If ®, p € ¥, applying (3.2) and (3.5),

Kz, )12 = |<2b1‘P’_b2'P>|2 = <(61 + &, I) by, byg) ((c2 + 0‘2_1) by, bz@
< (e, @) (cw, ¥)-
From (3 2), (3 5) and (3. 6) '
(z29, W)'= I<zbltp, (= b)) + =L — b)) o, w)l
= (e + 0‘11) b,p, by 2 ((c; + apI) (1 — b 2) ¥, (I — by) '/’)”2
+ <(Cl ‘o) (L — b)), (I —b )‘P)l/2< (C2 + anT) '{’ iz
< (e PV 20,112 |yl + 20,12 |l (IICell"2 + 0‘2”2) 7]
for all g, y € J. This lmplles (3.4) 8 o N

\\

.
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Proof of Theorem 1: First note thatcﬂ ' D & L. Indeed if b € B, then B3bBy;

€ B and sob r.‘Z) = bjj0 (lebB,,)o by € ¥ for any'j € 3. Fixanindex j € Jand an_ =~

operator y € B and let * = bj;oy o by;. It suffices to show that z belongs to the
closure of B I D in £[z;,]. For notational simplicity we omit the index j throughout
the followmg proof. Take a ‘positive number & satisfying (1 + |lyll) = 1. Applymg
Lemma 2 in case a = q;, k = 1, 2, we get for arbitrary P v € 36’

- K(Ba2)* yByre, vl < 1yl IBgll | Byl
< Iyl (e llpl® 4 &7t IBll?) (¢ llpll® + 7% 1B2%I) -

That is, the assumptlons of Lemma 3 are satisfied in case z = (B,2)* yB,?, ap = &% |yl
. a,nd ¢ = |lyll e 1(B:3)* B2 for k = 1, 2. By Lemma 3, there exist, operators 2y, 2 and
: J, in & such that z = (BE)*yB\® = 2z, + 2,, 5 = B,y,B, and

Kzz% w)l < 2t ol iwll for o, w € ¥, - N GO

where 1 is a certain. constant dep(,ndmg onIy on the norms of ¥, B, and B,. (We do
not need the incquality (3.3) from Lemma 3.) Since B, and B,* are in 3, there is an
z, € B such that z, = (B,*)* 2,B8,° Define z,:= (b,*)*0 2,0 b,3. Then ’

x = (b*)30 ((B22)* .’/Blz) 0 b= (b,*)*0 2 0% + (by*)P 02,0, e
= (b2+)é o ((323)# xlB,“) 0bd -2, =2, 1D+ x,. V
R o

\

" Therefore; from (3. 7, S

|( z— (0 | D))o, W) = Ko, w)l = [(2ob:%p, b)) ,
< A6M2 ||b,3g]| |1bo3¢ll for all ¢, ¥ € Jf.

~ Since z, € B and 4 depcnds only on y, B, and By, this lmplles that zisin the closure
of B E‘.‘Z) in f[nn] 1

N

4. A generaliza.ﬁon of Kaplansky’s deﬁsity theorem to spaces of sesquilinear forms

~.

We keep the assumptions and the notatlon from the begmmng of Scctlon 3. Besides
" condition (I) from Section 3, we need the following condition:

(1I) " The family of seminorms || ”bk,, i€, s dzrected and genemtes the graph topo-
©logy tu, on Dy fork =1, 2.

In-case A, = A, = B(H) we have .2’,{,4 (2)1, D,') = B(FK) and ’Zl,, is the unit ball
of B(J¢). Therefore, the following theorem can be considered as a generalization of the
Kap]ansky density theorem to some spaces of sesqullmear forms. .—

. Theorem 1: Let A, and A, be closed O*atgebras on domains D, and D,, respectively,
of a Hilbert space J€ and let B be an #-subalgebra of B(J ): Assumne that conditions (I)
and (I1) are satisfied. Let £ be the linear span of bsj o ﬁo by, i € S, and let .!’, be
another linear subspace of £ 4, 4,(D1, Dy') which contains £.

If £, is in the weak-operator closure of ¥ in L u,u,(Dy, Dy'), then £ n u"ei-"xi is’

wltraweakly dense in £y 0 Uy, . for each j € ¥

- Proof: Fix an index j € §. Let §; denote the closure ofi B in B(J) in the weak- .

operator - topology .with respect to ;DX byiD. Clearly, & S €;. We show that

€ =" For let z € (S, Then there is a net {2} from B converging to z in the weak-
. . /
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operator topology with respect to by;D X by D. Suppose y € B and k € {1, 2}, Since
By € B- by assumption, y commutes with B,; and herice with by for each j € 3.
Therefore, yD, S N {D(by); i € J}. Since A, is assumed to be closed on D, condi-
tion (II) 1mplles that, the latter equals' D, so that yD, S D;. Because &' is an
x-algebra, y*D, & € D,. Therefore, if p € D, and y € .‘2)2, then 3 Jb,,(p = b,,y(p € bn.‘Dl
"~ and y*byy = bgly"w € bsi D, and hence

<x?/bll?’: baojy) = hm (x[ybuq;, bojy) = ]'m (xlbu‘P: *b-l'l)>
. . (0

v - <xbn% Y b°W> (x?/bu% o). : : . !

Since b,i?D, and bg,.?)g are dense in J€ by (I), this yields zy = yz. Thus z€ 2" and

. gl LZ,, ‘ : v / )

' By Lemma 1.1, for each z € (.?’ Joyi.by there is an operator y € B(J) such that
x = bsj 0 y 0 byj. Let B; denote the set of all such operators y if z runs through
(.Y’l),,21 by Since b, D, is dense in J for k =1, 2, bglo./lob,l = b3 0 5 0 by; for
7

Y1, Yo € B(F) implies tha.t, ¥ =y,. From bjo Bob; S fb?lbll S (.?,)02‘0“
= b3; 0 B;0 by; we therefore conclude that B o cﬂ

We prove that B; € &". By Theorem 1 in Sectnon 3,2t D isin Fltin] and hence,
of course, dense in .f{’ in the weak-operator topology. Since £ is weak-operator dense
in ¥, by assumption, & } D is weak-operator dense in £,. Suppose \y € Bj. Then
~ byjoyob, € £, so that there exists a net {z [ D} from B [ D which converges to .

_bsjoyoby in the weak-operator topology with réspect to -2, X .‘Z)2 Let @ € b;D)
‘ and y € byi D,. Then B,jp € D, and Byy € D, and hence

11m (x[B“<p, B-ntp) = hm (BQ‘Q:[B”(]), y;)

v . ={bfoyoby) Bug, Boiy) = Y 9)-

Since Bsz“ € & for all [, this shoivs that y €G Because(&l A" as shown above,

.we have y € B”. Thus B; & B".

. Let B denote the x- subalgebra of B(é7€) which is generated by B;. Since B; S 8",
A < (ﬂ < #”. That is, the x-algebra B is dense in the x-algebra </9 in the weak-

operator topology of B(J). Let ¥, be the unit ball of B(J¥). Ka.plansky s density

theorem (see e.g. [8, p. 329]) states that B n ¥, is ultraweakly dense in BFjn ¥,

and so in B n U,. ThlS implies that the subset b0 (ﬂ nU)objof £in f"m"u is

_ ultraweakly dense in bzl o (B n 'Zl,)o byi. Since bg,o (ﬂ nU)obyy=5n "‘02;0.
" by the denS|ty of b,,.@, and b,iD, in J, this proves the assertion 8

A by product, of the preceding proof is

Corolla,ry 2: Let A,, A,, ﬂ £ and {by; i € 3}, Ic =1, 2 be-as in Theorem 1. Then
the closures of £ in.the weak-operator topology and in the ullraweak topology within
- X (D1, D) comczde and theJ are equal to U bsjo B o bll o

. Proof: Let 1’, denote the weak- operator closure of Ly:i= U bsio B o bn within

La,a,(Dy, Dy') and let (B"), i € I, be the correspondmg subsets for £, as defined in
the; proof of Theorem 1. The proof of Theorem 1 (with ¥ and & replaced by £, and
B, respectively) showed that B Z (B"); S (B"”)”’. That is, B = (B"); for
i€ Thus £, = %, so that 7, is weak-operator and hence ultrawéakly closed in

)
A
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Lu, ‘,{ (D, Dy ) On the other hand, by the von Néumano deﬁsity theorem, & is ultra-

weakly dense in A".'\This lmplnes that ¥ is nltraweakly and hence wcak-opcrator

- dense in £. Combmed w |th the preceding, the assermon fo]lows ]

An immediate consequence of Corollary 2 is |

Corollary 3:, Under the assumplions and notatwns of Theorem. 1, the /ollowmg
three conditions are equwalent

(1) £ is weak- operator closed in £ 4, 4,(Dy, Dy').

(iii) Ais a von Neumann algebra.

In case where 4, = B(J) and ,‘Z)Z,':,J("we have SEmitlaxj assertions for the ultra-

' .strong\topology s

Theorem’4: Suppose A, -is a closed O*-algebm on D, such that (1) and (IT) are

- fulfilled in case k = 1. Let £ be the vector space:of operators on D, generated by xbyj, .
- where x € B and j € §. (Here the set {b”, i€} and the x-subalgebra B are as in ().

and (1X) for k = 1.) Let £, be a linear subspace of £ 4,( (D), H) such that £ < £,.
1f .2’ ts dense in £y in the weak- -operator topology with respect.to D, X Jf’ then, for
each j € J,.4'n 'Zt’,,l ~is dense in £, n 'lé’,,l in the ultrastrong topology.

Proof The proof is very similar to the proof of Theorem 1 in case Ay = B(J),
D, = JE. At the end of this proof it suffices to replace the ultraweak density of
B n ¥, in Bj n U, by the ultrastrong dénsity which follows also from the Kaplansky
densxty theorem for von Neumann algebras

Assume that %,, B, £ and {byi; ] € X} are asin Theorem 1. Then the following two
corollaries can be derived in a similar way as Corollaries 2 and 3 above.

Corollar y 5 The closures of X with respect to.the weak-operator topology, the ultra-

weak topology (both with respect to D, X X), the Strong-operator topology and the ultra- -

strong topology in £ 4,(D,, IH) coincide. They are equal to \J B" - by;.
e

Cor ollar y 6: The following three conditions are equivalent:
(1), £ is weak-operator closed (with respect to Dy X I ) mn £ 4,(2D,, J).
(it) £ is ultrastrongly closed in. £ 4 (D, H).

(iii) & is a von Neumann algebra.

Acknowledgment. This work was done in I*all 1985 while the author was visiting t,he
University of Towa'in Iowa City and the University of Pennsylvania in Philadelphia.
He would 'like to thank Erofessors J. Cuntz, P. E. T. Jorgensen, ‘R. V. Kadison,.
P.S. Muhly and R. T. Powers for their hospltallty '

’

REFERENCES .
. -
[t} Araxki, H., and J. P. JURZAI\ On a certain class of o-algebras of unbounded operators.
Publ. Res. Inst. Math. Sci. (RIMS) Kyoto Univ. 18 (1982), 1013 —1044. - ‘
[2] Arxav, D., and J. P. Jurzak: Topological aspects of algebras of unbounded operators. J.
Funct. Anal. 24 (1977), 397—425.

(3] BorcuERs, H. J., and J. YNGvasoN: On the algebra of field operators. The weak commu-
tant and integral decomposition of states. Commun. Math. Phys. 42 (1975), 231 —252.

[4] Dixow, P. G.: Unbounded\ operator algebras. Proc. London Math. Soc. 28 (1971), 53—69.

t
- .



- Sesquilinear Forms and Unbounded Operator Algebras. - 319

-

(5] GUDDLR,:S P,, and R. L. HUDSO\ A noncommutative probabllxty theory Trans Amer.
Math. Soc. "40 (1978), 1 —41..
[6] INOUE, A.: A class of unbounded operator algcbras Pacific J. Math. 65 (1976), 77—96.
{7) Jurzak, J. P.: Unbounded Non -Commutative Integration. Dordrecht D. Reidel. Publ.
. Comp. 1986.
[8] Kapisox, R. V., and J. R. RINGROSE: Fundamentals of the, theory ‘of operator a]gebras -
Vol. I New York: Acad. Press 1983. :
[9] Kr6GER, P.: On EC*. algebms Preprint. Leipzig: Karl-Marx-Universitit 1978.
[10] KérsTEN, K. D.: The completion of the maximal Ops-algébra on a Frechet domain. Publ
Res. Inst. Math. Sci. (RIMS) Kyoto Univ. 22 (1986), 151 —175.
C[11} KirsTEN, K. D.: Duality for maximal Ops- algebras on }rechet dommns Preprmt
Leipzig: Karl-Marx-Universitit 1986 (to appear).
(12] LassxEer, G.: Topological algebras of operators. Rep. Math. Phys. 3(1‘)79) 279—293.
fl?] LassNER, G Quasi-uniform topologies on local observables. Acta Univ. Wraticlaviensis
519 (1979), 43—60. . \
[14] MaTHorT, F.: Topological properties of unbounded bicommutants. J ‘Math. Phys 26
(1985), 11181124,
{15} PowErs, R. T.: Self- adjomt algebras of unbounded opcmtors Commun. Math. Phys.
' 21 (1971), 85—124.
[16] Scumipcex, K.: Two theorems about topologics on countably generated Ops- algebras :
.~ Acta Math. Sci. Acad. Hungar 35 (1980), 139—150. .
'[17] TakEesaxki, M.: Theory of Operator Algébras I. Ber]m—Hexdelberg New York: Sprmger-
Verlag 1979.

- ManuskriAptcingang: 08. 69. 1987

VERFASSER:

‘Prof. Dr. KoNRAD SCAMUDGEN
Sektion Mathematik der Karl-Marx- Umversxtat, N .
’ Karl-Marx-Platz 10 .
co DDR-7010 Leipzig



