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Products of l}istrihuti_ons: Nonstandard Methods’
M. OBEBGUGGENBERC;ER

\

. .

Es werden Hilfsmittel der Nonstandard-Analysis entwickelt, die zur Untersuchung der Multi-
plikation von Distributionen geeignet sind. Wir befassen uns mit Produkten, die durch Regu-
‘larisierung und Grenzwertbildung definiert sind, und erhalten Nonstandard-Kriterien fiir dic
Existenz der Produkte (diese Kriterien erweisen sich als vorteilhaft bei der Berechnung kon-
kreter Beispiele). Ferner leitcn wir neue Vergleichsresultate fiirr verschiedene Produktdefini-
' tionen her. Als weitere Anwendung konstruieren wir Algebren von Distributionen — als Quo-
tienten von'-externen Rdumen glatter Funktionen —,-die iihnliche Eigenschaften. wie die

Colombeauschen Algebren’ besitzen. .

Passunaioréa BcrmomoraresibHble CpPeLCTBA HECTAHTAPTHONO aHAAM3a OpUrOfHbIE K HCCIe- .
. ROBAHHIO NPOU3BENCHHA OGOOUIEHHRX QYHKUNI. Mbl 3aHMMAEMCA NPON3BEACHIAMA onpe- -
TICHICHHBIMK PeryJIApnaaluell 1-06pa3oBaniteM Mpejea it NoxyuaeM HeCTAHAAPTHEE KpUTEpUH
CYMECTBOBAHMA MPOU3BENleHItit (9TH KPUTCPHH  OKABBIBAIOTCA BHIFOJHBIMU ‘[P BHIYMCACHHH
KOHKDETHLIX NpHMepoB). BHIBOXATCA Talke HOBHE pe3yAbTATH CPABHEHHA JNA Pa3HBIX
lonpenesienuit mpoussencnuua. Kak nanbHefillee npuMeHenie Mul nocrpoum anrebpsr 0606-

" WEeHHHX QyHKUMA — kax (GakrTop-aarefpa BHCIUHHX TIPOCTPAHCTR [IIATKUX Ppyurguii —
MMEIOLINe CXOdHLIe cBoflcTBa ¢ aareGpasmu Colombeau. - ’ - '

Nonstandard tools are developed which are suitable for studying products of distributions
defined by regularization und passage to the limit. We obtain nonstandard criteria for the
existence of the products (which are demonstrated to be useful for calculating standard exam-
ples) as well_as new standard results clarifying the relationship between different types of
such products. As an offspring we are able to construct algebras of distributions — as quotients
of external spaces of smooth functions — which have properties similar to the Colombeau
algebras. ’

1. Introduction - , .
) : ' . - . .
Let S and T be distributions on R”. One way to multiply S and 7 is'to define their.
product as . . ) '
(P1)  lim (S % ¢%) (T % y%)

t—0

pr(;vided_the limit exists in D'(R") for all nets {¢}.s¢, {¥}eso Which Qfary in certain
classes of nets of smooth functions and converge to the Dirac measure (called delta-
nets). A strictly more general way is to take ' :

(P2) - lim (S * ¢°) (T * ¢%) : ' f

. . =0 . I .
ag the definition, and this is the product we shall be concerned here. Definition (P2)
has become, important recently because of its relation to Colombeau algebras: If_

the product of § and T in the sense of (P2) exists, then the element ST in the Colom-
beau algebra $(IR") admits an associated distribution [2, Thm. 3.5.7]. :

’ . -
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. . T
- We consider four successively smaller clagses of delta-nets, leading to four succes-

sively more general definitions of the product (details in Section 3): '

(1) delta-nets in the sense of Hrrata-OcaTa [6] and MixusiXsky [11];

(2) restricted delta-nets in the sense of SHIRAISHI [18, p. 91] and ITaxo [8];

(3) delta-nets in the sense of ANTOS_IKfl\IIKUSINSKI-SIKORSKI (1, p. 116] and KaMINSKE
(9, p. 85]; _ ‘ , ’ -

(4) model delta-nets in the.sense of KamixNski [9, p. 89].

It is well known that for definition (P1), equivalent products are obtained by using
any of the classes (2)—(4) (see ITaxo [7], SHIRAISHI [18], KaMINSKI [9]), while class
(1) produces. a more stringent definition [13, Appx]. It is also known (see ITAaxO
" [7, p. 177]) that in dimension n = 1, the existence of the product (P1)-of S and T

with delta-nets of any of the types (1)—(4) implies the existence &f the Tillmann
- product [20, p. 108] of § and 7', which is defined by analytic regularization. What

-

‘concerns product (P2), no comparable results have been available so far. We show

. here that the existence of product (P2) with delta-nets of type (2) implies the existence
of the Tillmann product. We give a nonstandard criterion for the existence of -the
" product (P2) with delta-nets of type (3), which enables one to conclude in many con-
_crete examples that if product (P2) exists with delta-nets (4), then it also exists with
delta-nets (3). The question of equivalence of the products (P2) obtained by employ-
- ing classes (2)—(4) remains open; however, type (1) is seen to yi¢ld a less.general
product. S ' o b
Colombeau has constructed (standard) commutative, associative differential al-

gebras of generalized functions on open subsets 2 of IR* with the following properties:

(a) D'(Q)is a subspace; " .
(b) the derivation in the algebra extends differentiation in the sense of distributions;
(c) 8°(R2) is a differential sui)algebra (with respect to the pointwise product ‘on
£2(Q); - : - S
(d) the algebras arc’invariant under superposition by smooth maps-of polynomial
growth. | ) I : :

There are several possibiiibies to achieve such a construction .[2—4]. For élgebras
- with properties (a), (b), property (c) is optimal (for instance, the continuous functions
cannot constitute a subalgebra [16]). Turning nonstandard, we observe that (<),

" viewed as an internal set, is an algebra into which the standard distributions may be.

imbedded>But this imbedding does not render the standard smooth functions a sub-
* algebra. We show that a quotient of a certain external subalgebra of £=(IR*) does
better: It contains the standard tempered distributions and has the standard smooth

- functions of polynomial growth as a subalgebra with respect to their pointwise pro- -

duct; it satisfies (b) and the standardized version of-(d). A different nonstandard con-
struction of an algebra with properties (a)—(d) has recently been given by, Toporov
[22] using ultrapower methods. = ) . ’ =
We employ Nelson’s version of nonstandard analysis: internal set theory [12]. In
addition, we freely work with external sets, when appropriate. The plan of exposition
is as follows: - . - ‘ .
Section 2 provides the necessary background on the nonstandard theory of distri-
butions. We follow the ideas of STROYaN-LUXEMBURG [19, Chap. 104], translated into

internal set theory, but develop some additional material (including structure theo- .

_rems) which is frequently needed in the sequel. We found it useful to collect these
results together with short proofs since they are not available in the literature in this

form. Section-3 starts with a nonstandard definition of the product of any two stand-
’ : : LR " o ' :
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ard dlstrxbutlons as an mternal smooth functuon This constructlon serves as a tool
* and also relates our approach to.L1 Baxe-HE’s [10], Rasu’s [15] and ToDOROV’s
.[21]. Then the nonstandard characterizations of product (P2) are given, and the
comparison results are derived. Section 4 is devoted to the construction of thc differ-
ential algebras containing the standard tempered distributions.

There are two appendices: In the first ofic we put the results of Section 3 to use,

completing the investigation of the ‘example in (13, Appx]. The notions we need

from internal set theory — some of which go beyond Nelson’s excellent introduction
[12] — are collected in the second appendn . :

N

.

2. Background on the nonstanda‘rd theory of distributions

N

For ﬁhe following -basic s‘rocabulary the reader is referred to Nelson’s article [12‘]:'

standard; internal, external formula; internal, external set; infinitesimal (real,
complex) number; limited (real, complex) number; infinitely large (natural, real,
complex) number; standard”part (of a limited number) Let a,b € G. We: write
ca~bifa—bis mﬁmteSJmaI a ~ oo if a is infinitely large for llrmted ac C %a
denotes the standard part of a. We use the quantlflers , . -

. Itz for 32: (x standard) and Yoz for Va (z standard). ~

By abuse of notation, we shall employ the setbrackets {} and the elementhood E”
for internal and external sets alike, stating only verbally when a set is to be considered
as external. Finally, if X is'an mtemal set, we define the external set

S‘X = {x €EX:xzis standard}

\ In what follows, D, &, £=, D', J" are the usual spaces of functions and distribu-

tlons on R? (n a fmed st;a,ndard natural number); for these and all other internal
spaces of distributions we use the notation of SCHWARTz [17]; D, = {p € D: p(x) = 0
- for |z|. =k} for k € N. Followmg STROYAN-LUXEMBURG [19, Chap. 10.4] we introduce

several e\ternal subsets (actually vector spaces over tC) of the internal set £ of
smooth functions on IR”,

‘ Deflmtxon 2.1 (a) A function yp € D is called D-lzmzted ifye .‘Z),, for some stand-
ard k € N and sup {|2*p(x)|: x € R7} is limited. for all standard « € IN0 We define
the external set D = {y € D: y is D-limited}.

(b) y € D is called D-infinitesimal, denoted as y ~p 0, if p € Dy for some standmd
k € N and sup {|e*p(z)|: z.€ R"} ~ 0 for all standard. o« € N,".

(¢) A function y € & is called S-limited if sup {(1 +|z])" |°p(z)|: € R"} is limited
for all standard ! € IN and-allstandard « € lN0 Wedefine theexternalset 8 = {y € J:
v is S-limited}.

(d) p € & is called S-infinitesimal, dcnoted as p a5 0, if sup {(1 + Ix] ¥ otp(z))
. x € R" '~ 0 for all standard ! € IN and all standard.x € IN,".

(e) An element 7' € €= is called alimited distribution, if fT(x) y(x)dz is llmlted for

- all pye D; T is called an infinitesimal distribution, if fT(x) y(z )dx~0 for all

. w €D. We define the external sets D’ = {T' € £*: T is a limited distribution} and
={T e¥>:Tisan mfmltesunal distribution}.

(f) An element T € €= is called a limited tempered distribution if Ty € L‘(R”) and

‘ fT(x) w(x) dx is limited for all p€8;8 = {7 € °: T is a limited tempered dlst{lbu-
tion}. . ~. ) ot

A
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Notation: Given p € D, T € D', we shall write _(T, y) for [T(z) p(z) dz.

Remark 2.2: 1t is clear that 2 < D and st < 8. Also, if y ~p 0 (respectively y ~5 0),
then y is contained in every standard neighborhood of zero in D (respectively ). In case of
D, the converse is not true. Indeed, using the characterization of the neighborhoods of zero of
ScuwarTz [17, p. 65] and the idealization axiom [12, p. 1166], one sees easily that for every
infinitely large w € IN there is an-element ¢ € D withsupport (p) c z € R*: 0w < [z] £ 0 + 1}
which is contained in every standard neighborhood of zero in D. On the other hand, if y € D,
for some standard & € IN and is contained in every standard nelghborhood of zerosin .‘D‘., then

'W ~p 0.

-The next propos1t10n charactcrlzes the hmlted dxstnbutlons as the “continuous”

- elements with respect to the mflmtesnmahty relation introduced above

Proposition2.3: Let T € £, Then the followzng are Pquwalent
«(a) T e D', , . :
(b)I/we.‘Z)andri,Othen(T py ~ 0. o Y

Proof: (a) = (b): If p € D and y ~p 0 then wy ~p 0 f01 all standard w € N and

80" there is an infinitely large w € N'such that wy ~p 0 by Robinson’s lemma (cf.

App\ 2). In particular, wy € D, and so (7', wtp>l < ¢ for all standard &> 0, since
ew is infinitely large. Thus (7', v)| ~ 0. :

(b) = (a): Let p € D. Then l.‘,, ~p 0 for all infinitely large % € N, thus
T, —1p>‘ =1 for all such- . By the permanen(,e prmcnp]e (cf. Appx 2) there is
X .
(n2v)

a standa.yd"k € ]N such that

.Our next goal is to ldentlfy the standard distributions as elements of D’. To this -
end we fix a standard “mollifier” 0 € D with f0(:c) dz ='1 and an infinitesimal
real number o ~ 0. We set

0,(x) = 070 (—) ' o ' T20)
. 0 . ) ’ ‘ o
and want to_ show that the map 7' — 7' x 0, is an imbedding of $'2’ into D’.

Lemma 2.4: Let y € D cmd 065‘.@ g~0 as above. Then zp*() €D and p x 6,
_'WNDO N

Proof: 1t is clear that y * 0, be]ongs to some D, with k sbandard Let & € tNy".

Thcn
&y 0 = [ 0(y) yp(x — oy) dy;

and this mtcg,ral is limited mdependently of z, since. sup {|&*p(z)|: z€ R"} is limited.
Thus y * 09 € D. Next,

185w # 0 — v) (@) = [ 6) (@p(z — oy) — () dy]
< lol [ 1¥6(»)! dy - sup {|gradient é°y(2)|: z € IR")

<1, that 1, Te D' 1 IV -

whlch is infinitesimal mdependently ofz 1
Lemma2.5: Let T € StD',p € D. Then (T, ) is limited. If yp ~p 0, then (T, ) ~ O.
Proof: There is a standard &€ IN such that p € D,. On the other hand, since

T € stD’, there is a standard-m € N such that if ¢ € D, and

'

1
sm(®) = sup {10°(@)]: = € R", & € N, Ja| < m) < —,
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- then- (7', @)| < 1. But s,(yp) < M for some standard M ¢ N, thl‘JS we have that

KT, p)| < mM, which is a limited number.
‘If v ~p 0, we take an infinitely large w € N such that’ wy ~p 0. With kand m as

. 1
above we have that s, (wy) < niz’ and thus K7, )| < — ~0 @
, . ) w

Proposition 2.6: Let T € D', 6 € 5D, o ~ 0 as above. Then we have:
(a) Tx0,¢ D" . : .
(b) (T % 0y, ) ~ (T, forall p€ D. : . '
(€) If (T % 6,, ).~ 0 for all p € D, then T = 0. In particular, if T * 6, € d, then’
r'=0 . .. . . ‘

7

. v

Proof: (a) Let y € D. Then (T % By, wy= (T, p + f,) where ,(z) = 0,(—z). By,
Lemma 2.4, v % 0, € D, by Lemma 2.5, (T, » * be) is limited. (b): (7' % 0,, p) — (T, )
=(T,px* be ~— ). The conclusion follows again from Lemmas 2.4 and 2.6. (c): If
(T % 04, ) ~ 0, then (T, p) ~0 by (b). But (T, y) is a standard complex number,
thus'(T, y) = 0 for all y € 2. By transfer (cf. Appx 2) this implies that (T, y) = 0 .

forallye D1

Q

Remark 2.7: The assertions of Prop. 2.3 through Prop..2.6 remain valid in the setting of
tempered distributions, as is seen by a straightforward modification of the proofs. Specifically, -
the following version of Prop. 2.6 will be needed in Section 4: Let T € St and 0 € St& with’

Nz)dx = 1,0~ 0. Then (2) T #0,€8; (b) (T = Ops w) =~ (T, y) for all p € S; (c) if (T = 0, ¥)
~0 for all y € StD, then' T = 0. S

7

Prop. 2.6 (c) shows that convolution by 0, produceé an injective map 9’ — D'/d".
We are going to show that this map is actually surjective. > .

A}

Proposition 2.8: Let y € D. Then there is a unique standard @ € Dwithy ~pep.

Proof: It follows from the mean value theorem and the fact that v belongs to D’
that y is s-continuous at every standard a € R*. By the s-continuity theorem (cf.
Appx 2), there is a standard, continuous function ¢: R* — € such that p(a) = Ow(a),
foralla € stIR". Morcover, we cven have p(z) ~ y(z) forallz ¢ IR, because o(x) — p(z)
attains its maximum on R*, and this maximum is infinitesimal. An analogous con-

- clusion holds for all standard derivatives of . Thus we have,

Vst € N» I stg,: R*—> €, @, continuous, with 2.2)
sup {[0*p(x) — @a(x)]: x € R7).~0. - o -

It remains to show that ¢, = . Léb first « = (1,0, ..., Oj, a€R" z € R" z ~a.-
Then ' ' . i

1

@) — pla) ~ p(x) — p(a) ~ (@, — a,) Fp(E).
~ (1 —a1).@ala) + (2, — a,) (‘Pa(f) - (Pa(a))

for some & ~ a. Since @, is continuous and standard, we have (x; —a,)* ((p(x)
— @(a)) ~ @a(a). Thus ¢ is differentiable in the direction « = (1,0,...,0) at all
standard a € IR", and &p(a) = p.(a). By transfer, ¢ = @s. The same argument
works for all other standard derivatives, thus ¢ € S%6*. Since y belongs to some D,
with'standard & € N, so does ¢. That is, '€ &9, and by (2.2) w ~p ¢. Uniqueness is

" evident 1

Proposition 2.9: Let T € D'. Then there is a unique standard U € D', denoted by

07, such that(T, y) ~ (U, y) forallp € D.

-~
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A
\

+ . “Proof: Since T € D', T, v) exists for every y € D. By the construction principle
for maps (cf. Appx 2), there is a unique standard map U: D — C such that (U, ¢)-

= YT, @) for all @ € *D. It is clear that U is linear (transfer). Fix k € &'N. Prop. 2.3
together with Remark 2.2 says that 7' is s-continuous at évery standard element of
D,. The s-continuity theorem implies that U is continuous on ;. Thus U € D,
and (U, @) ~ (T, ¢) for all p € D 1f yp € D, then thereis a ¢ €stD with ¢ &~ py by
Prop. 2.9. But then (U, y) ~ (U, @) ~(T, ¢) ~(T',y) by Lemma 2.5 and Prop.
230 . : ; ‘

‘Fixing 8 6 € D and ¢ ~ 0 asin Prop. 2.6 we have the (noncanonical) inclusions

P s D > E° > D : ST (2.3)

where the first one is given i)y convolution with 0,, whereas the others are subspace
_relations. Moreover, ‘convolution with 6, induces a bijection of
st ~ D'jd’ .

as follows from Prop..2.6(c) and 2.9. . .
We now turn to structure theorems, which will be needed in Section 4. The first
theorem is a counterpart to the classical structure theorem for D', asserting that
limited distributions locally are finite dérivatives of pointwise limited smooth func-

“ tions. ' ’ : - . 4

Proposition-é.lO: Let T € 6. The:followi;ng are equibaient:
(a) TeD.. ~ '

o (b) For-all standard k € N-there exist an element S € £ with sup {|S(x)]: |z} < k}
limited and a standard « € Ny* such that T(x) = 0°S(x) for all x € R?, |z] = k.<

4

Proof: (b) = (a): Let v € D and let k € *IN such that y € D;. Then
(T, ) = o 8(z) pla) dz.= (=D [ S@) Pp(@)de .

is limited. (a) = (b): Let k € N, and °T € $tD’ as given by Prop. 2.9. By the classical
structure theorem [17, p. 82] and transfer, there is.« € StINy" and a standard, contin-
“uous function f{ with compact support, such that (°T', y) = (—1)*'(/, &) for all
w € Dyur. Letting 0, be as in Prop. 2.6 we have that = ‘ . :

(@(f % 00), v ~ (T, ) T - (2.4)
for allp € Do Dyyy by Prop. 2.6 and 2.9. Let g(x) = T(z) — &(f * 9,) (z). It follows
+ from (2.4) that sup {lg(z)|: |z| < k} is infinitesimal. Set® C

. P

o I0seg) = [ gz B dE

0. i

and define I%g(x) inductively for all g € stIN». Clearly, sup {[I°9(z)|: |z] < k} is infi-
\nitesimal as well; on the other hand, sup {|f * 6,(z)i: z°€ R7} is limited. If we-set .
S(x) = I*g(x) + f * Op(x), we have that.sup {IS(@)]: |z| < &} is limited and' that
T(x) = &S(z) for |z < k 1 S : . C

' Coroliary 2.11: Let T € D’ and p € R be a positive infinitesimal. Then .
Vsth € IN 3% € N such that sup {|IT(2)|: 2| < k} < o'

-
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Proof: Fix k¢ IN. Let f, g and « be as'in the proof of Prop. 2.10. Then T'(x)
= g(z) + &*(f % 8,) (x) for |z| < k; sup {|g()]: |z| < k} is infinitesimal, and

|2°(f * 6,) ()] < [ If(x — oy) =™ 20(y)| dy = Co="!

for some standard C > 0 and all |z| = k. Thus sup {IT ()] 2} < k} < o l0i-1 1

We remark that the assertion of Cor.2.11 is not,void": the constant function 7'(x)
= w with w infinitely large does not satisfy the assertion with o = (log w)~!.

" 3. Produects of distributions

)

" We start this section by 1ntroduc1ng a nonstandard product of any two standard

dlstrlbutlons 'Let 0 € D with f0(:z:) dxr = 1 and fix a real infinitesimal number 0.
Motivated by the inclusions (2.3) we make the following defmltlon

Definition 3.1: Let S, T € D’. Then !
MAS, T) = (S % 0,) (T % 0,)
is called the M 2-product of S and T' (with 6, defined by (2.1)).

Remark 3.2: (8) M (S, T) belongs to £, but not to D’, in gencral The M 2-product is
commutative and satlsfles the Leibniz rule. (b) If we allow 8 to belong to St joo n L‘ then the
assertions of Prop. 2.6 are still true for T € 7. Thusin case S, T € S‘$L|(IR) it makes sense
to define the product M,4(S, T') where A4'is thie Tillmann mollifier 4(z) = [a(1 - z°)]-". This

‘is Li Bang-He's product [10 p. 564] when apphed to integrable distributions. {¢) Raju’s defi-

nition [15, p. 384] is in a similar spirit, but not related to ours..In our notation, Raju defines
the product of two standard distributions S and T as (S  6,) T with 6 symmetrié. The result is
a noncommutative product valued in 2’. (d) In the framework of his “‘asymptotic functions”,
Toporov [21] has considered a product which leads to analogous formulas. Rather than choos-
ing a fixed mollifier, Todorov works with certain classes of ‘‘kernels” representing a given
dlstnbutlon h o

Example 3.3: For the square of the Dirac measure d in one dlmensmn we have

1]

> <M9°(6, 9), y) ~ <? b + €46, 'P) for all peD,

where

Co — f 02(x)dx and ¢ = —f x0%(x) dx.

Indeed, {M0(6, 9), v) = :) f&z(x) y(oz) dx. ‘The result follows by, Taylor expanding

v around zero up to order two and observmg that the third term only contributes an
infinitesimal to the product. Takmg in pa.rtlcular the Tillmann mollifier 4, one has

. <M0A(6: 6)’ 1/’) -~ <% d, 'P> for all L4 é D"\

because in this case co = 1/2n and ¢, = 0. This is precisely Li Bang-He’s result [10,
p- 579]. A related formula involving the value of ¢ ‘at zero holds in certain distribution
algebras introduced by BERG [1a, p. 267].

We now turn to investigate internal products of distributions defined by regulari-
zation and passage to the limit. To fix notation, we introduce several classes of dclta.-
nets.

23 Analysis Bd. 7, Heft 4 (1988)

[N
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Defi nition 34:(a) A net {ploce<s = D(R™) with
=0 and f<p(x)d:v=l foxalle.

will be ca]led a C; -delta net (¢ =1,2,3,4), provided it sa.tlsfles condltlon (C’) as
follows: . :

(C,) support ((p‘) — {0} as ¢ > 0; . . /
(C, ) support (<p ) = {0} as ¢ — 0 and

Va € INO"3A >0 such thatf ziel} |8og () | dz < A, for all &;

. v’

VaGINo 34, >OSuch that e'“'f|0“<p (z)| dz < A, for all ¢;

(C4) @ (x) = & "p ( ) for some @ € D(IR").
(b) Let 8, T € .‘D (IR"). We' sa,y that the M; -product (i = 1, 2 3 4) of § and T
exists if ..

lim (S % g*) (T ) = M (8, T)" ‘

L e—=0 .
exists in 2 (TR") for all C; -dclta.'netsx{q) Jo<e<i and is mdependent of the partxcular
C;-delta-net chosen (the last sentence 1s redundant fiir ¢ 5= 4). - .

Notation: The lower index notation @ will be reserved for C;- nebs in accordance
with (2.1), the upper index notation ¢* for general delta-nets.-

Remark '3.5: (a) C,:nets were introduced by HiraTA-OGATA (6] and MIRUSINSKI [11], C,-
nets by SHiraisur [18], called ‘‘restricted)delta- nets” there, the condition f P (x)dr =1~

actually being replaced by hm [ ¢t(z)dx = 1, which obvnous]y yields an equivalent product. *

"The M,-product . was studlcd by Itaxo (8]. C,- -nets were introduced by .ANTOSIR- MIKU-

SINSKI-SIKORSKI [1] and .were studied by KamIsskr [9] together with C,-nets (called * ‘model

* nets” there), which appear at many places (2, 3, 5, 7]. We remark that all authors quoted
_above use sequences instead of nets, but our defmmc_ms are equivalent. (b) In [1, 9] C,-

and C,nets are defined without -requiring ¢* = 0. So it is important to note that the

. M;- and M,-product remains unchanged when this condition is deleted.. For the M,-prod-

uct this follows 1mmed1ately from [14, Prop.]; in the case of the M;-product we observe

' that (C,) implies that sup {lp(z)| 1 x € IR"} < e "A,. "Thus if we take y € D(R"), x = 0, y(z)

= 0 for |z| = 2, ,{(x) = A, for jz| < 1, then ¢f + g, = 0 for all ¢, and the same arguments
as in the proof of the Prop in (14] apply. (¢) Let ¢ € D(R), ¢ = 0, fq:(x) dz = 1, p(0) &£ 0,

support (q’) [ [—1/2 1/2]. Then @ (z) = -;— (—El?l‘p (:;) + iq,(

is a. net which satisfies (Cl)

net which satlsﬁes (C,) but not (Cs), while y*(z) = —21;:

but not (C,). On: the other hand, (Ciy,) = (C;) for all 4, and therefore the existence- of thc M;-
product imiplies the existence of the M;,,- product C

The following nons\tandard characterlzatlon relates the M4:product and the M,¢-
product. . .

Proposition 3 6: Let S TeD. The jollowmg are eqmvale?zt

(8) My(S, T') exists. ' S

(b) There is W € D’ such that (} (VI (S, T), v) ~ (W y)) forall y € $tD, all o ~0, and
all 0 € s‘.?)wztth(z)dx =1land 6 > 0.

(c) There is W€ D' such that M o8, T)— We d' for all ¢ ~O and all 6 €D "
with f 6(z)dx =1and 6 = 0. . . .

~In this case we have M oS, T) = °W

— 8)) is an example of a -

\

Y
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Proof: (a) = (b) Let V= ‘VI,(S T) = hm (S x 6,) (T * 0,). Then V is standard

and the. characteruatxon of the convergence of a standard net (cf. Appx 2) gives
UAMA(S, T), p) ~(V, y) for all y €D and all p ~ 0. Thus (b) holds with W = V x 0,.
~(b) = (a): We show that llm (8 * @) (T * @) = °W for all Ci-nets {pelo<e<i- By trans-

fer, we may assume that {(p,}0<,§, isstandard. Then (b) holds \Vlth 0 =g, and we have .
{8 = @) (T * @), w) ~ (W, p) ~ (W, ) for all p¢€ st9 and all o ~ 0 (see Prop.
2.9). By the characterization of convergence of a standard net th'is means ljm ((S * @)
x (T * @), ) = (°W, ) for all y € *D. Applying transfer agaln we ha.ve (a).

* (c) means that (b) holds not only for all standard y € D, but for ‘all y € D. Thus it
remains to prove (b) => (c). Let v €. D. Since y is the sum of a standard test function
. and an infinitesimal one (Prop. 2.8) it suffices to.prove the assertion (c) with y ap 0.
First, the net {(S % 0,) (T * 0.)}o<e<1 = D’ is pointwise bounded (this follows from its
convergence and the support propertles of 6), and hence eqmcontmuous By transfer
this means

Vst > 03 neighl)orhood N of zero in D such that .
' Vs,O<eSl Ve K(S * 60) (T % 6.), )| < 6.
.But Y belongs to every standard neighborhood of zero.in D. Thus we have
Vs‘6>0Ve,0<eSl KIS % 0,) (T *6,), 9y <6, ¢

implying that (M4(S, T'); V)) ~O On the other hand we also. have (W,y) ~0 by
Prop. 23 ]

Accordmg to Remark 3.5 (b) the equlvalence of (a) and (b), (c) in Prop 3.6 remams C- V

valid when the condition 8 = 0 is dropped. Enhancing criterion (b) by requiririg it
to be fulfilled for all D-limited mollifiers 6 we obtam the existence of the M3-product

Proposwlon 3.7: Let S, T € D" If there exists @ W € D’ such that (M, "(S T), vy
~ (W, ) for all € D, all p ~0 and all 6 €D wzth fO(x)dx = 1 and 6 =0, then
\43(8 T) exists, and it equals °W.

Proof: By Prop. 3.6, we -have that. M,(S, T) = OW exists. Let;{ }0<5§l be a stan-
dard Cy-net. We have to show that llm (S * ¢*) (T % ¢¢) = OW. As in the proof of

Prop 3.6-it ‘suffices to show that ((S * q)t’) (T = ¢2), y;) ~ ("W, w) for a.ll peSDand -
all p ~ 0. From (C;) we obtain by transfer: . - -

¢

Voo € N, 34, > 0 such that el"lf |0“ Idx < 4,, for Ve 0<e=sl,,

'm partmular g"“fla“(p?(x)l dz. is limited for all & € S‘JNO". Setting 6(z) = o"¢e(px) we
- infer that f |2°0(x)| dx is limited for all « € 5tIN,". Since 6(z) = 0 for |x| = 1, this
implies that 6 € D. But g¢ = 0,, and so the hypothcses 1mply that (S * ¢¢) (T * <p9) )
~ (°W, y)) for ally € D 1 ’

Corollary 3.8: Let f € L53.(IR"). If M,(é f) exists, then M3(6 ) exists, too.

< Proof: We may-assume that f is standard. Let 0 € D be as in Prop. 3.7. We wrlte

6 = @ + 7 with @ standard and % D-infinitesimal. Let y € 3D, p ~ 0. We will show

" that (B,(f * 6,), ¥) ~ (pe(f * @;), ¥), from where the assertion follows by Prop 3.6
and 3.7. ThlS amounts to showing that-

‘ (@elf * 716) + mell * @) + elf * e, ¥) ~ 0.
23% . ' ,' - | ' )
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But the .first term-

(pelf * me), ¥) = [ [ @) floy) nix — y) v(er) dy dx

is infinitesimal, because lntegratlox1 extends over a standard compact region in IR2%;
®, f, and'p are bounded by a standard number, and 7 is infinitesimal. A similar esti-
‘mate applies to the other terms 0 - _ '

To demonstrate that the criteria of Prop. 3.6 and 3.7 are useful in concrete calcula-
tions, we continue the lnvestlgatlon of the example of [13, Appx] with regard to the
products M,—M, in Appx 1.,Tt is seen that the M,-product may exist while the M,-
product does not. No example distinguishing the products M,, M,, M, is known.

.Our next goal will be to prove that the existence of the Shiraishi-Itano product My
implies the existence of the Tillmann product. For S ¢ 2’ (lR) there exists a function
. S(z), analytic in €\ support (S), such that S = llm 8. in D(R), where S.(z)

= S(x + ie) — S(x — le), see [20]. 8 is umque up to an entire function.

‘

Definition 3.9: Let S, T € D'(R). The Tzllmann product or M,- product of ‘S and
T is said to exist if llm S. 7' = My(S, T') exists in D'(R).

For S € D(R), a partlcular choice for § is

L
8z _=2Ln,<3(x), —_—Z> o

‘ i .
Letting A(x) = [n(1 + 22)]7! it is easdy seen that, for S, T € D.(R), Def. 3.9 is
equivalent to’ llm (S*4)(T *4.) = My(S,T)in D’ (IR) :

Prop031t10n 3.10: Let' S, T€ D(R). If” U = lnm (S*(p‘) (T*q;‘) exists for

all s Jmmetrzc CQ-nets {Po<et, then the Tzllmann product M,(S, T) exists also and
—cotncides with U. In particular, if M2(S T') exists, then so does My(S, T'). '

Proof: By transfer we may assume that S, T und U are standard By th(, struc-
- ture theorem for 97, we have : » .

{
j=0

?

for ‘some siahdard l,m €N and standard f;, g; € LY(R). Let o ~0. We wish to
_show that ((S * 4,) (T * 4,), ) ~ (U, ) for all p ¢ 5‘_‘D(]R) I‘he ‘idea is to construct
8 standard C,-net {(p Joze<y such that

sup {7/(4 ) = g (E)]: § € R} ~ 0 o (3.i)
for0 <j<mn=1+m+ 1. We then have
(S % 4) (T % 40, 9 — (U, w)
~ (S * 40) (T 4o), 9) — (S * g0) (T % 92), ) |
={(S*4) (T * (4, — ¢§)), W)+ (S * (4 — 99) (T 5 g2, ¥).
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s

The first term of the last line equals -

Z ?ffff(?«)a ‘A (27—2)9;(./) (a T Ao(x — y) — ¢z —y )w(x)dxdjdz »

_ﬁm~
><67 ( (x—J)—‘P"(x—J)) 9/ t1- kw(x)dxdjdz

'leen (3.1), the part 2,7+¥(A,(x — y) — Pz — y)) is infinitesimal mdependently of

- z,'y, while all:three integrals’are limited, since f;, g; and 8**'-¥yp are standard L!-

functions. Thus the first term is mfmltes1mal The second term is estimated similarly,
4 T—2 Y

1 . : , ) - .
the part = arctan (x > z) béing replaced by f @°(&) d which ‘is also bounded by
one. e 7 : ,

. -0 - .
Thus it remains to construct {¢*lo<es1. We take a standard y € D(R), ysymmetric,
071, yz) =1for|z| £ 1, y(x) = 0 for |z| = 2, and set . -
. ) . . :
¢(x) = delx) 1 (—)

We shall show that ¢¢ has the desired propertles if we choose ) = glln+d) To thls end
we need some prellmmary estimates. We first observe that p

o' A(x) = (1 + &%)~%! Py(x), 1 =0, .
for some polynomials P; of degree i, and '
o' (x) = (e + 232)"-"“1 e LP; (i)
e/
Usmg the fact that degree’ (P )=1 arid 'that; e < 2 one deduces immediately the

estimates (0 < ¢ < n) '} ) , »
10id.(z)] < C(e® + ;2) i- lw < Cei-i-2 for 1< |x; 2j . (3.2)
and

I (2)

04.(@)] S |27 (a? + e g -
< Cei " for |al2 225 v . (3.3)

here and hencefor't,hC’denotesa, generic positive constant. Ne§t ai( () (1 —X (%))) :

equals zero for |z|. <2 and equals 1 A.(x) for |lz| = 2) For 4 £ |x] < 24" we.infer

from (3.2) that .
ool £ o)
| <c z" (z ) (.s;.'—i-z) H-i < Cer-i-? | (3.4)
i=0 L.

for 0 <7 < n. For |z} = 22 the expression is estimated‘ by (3.3) and we have _ i .
sup {|ofd.(x) — 8’(;) (@)]:z € R} < Cea- -2 . (3:5)

for0 <j == Therefore, if we take 2 = gl/tn+® and eva]uate 3. 5) ate = p ~0, we
btmn the desired infinitesimality assertlon (3. 1) s ’
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It remains to prove that {p}g<.<, isa C,-net. First, ¢* = 0 and support (¢*) = [—24,
- 24] — {0} as ¢ = 0. Second, . : -

. o . 1 - ‘
,bfqo‘('x)da:‘:fdc(x)dx-}-fA;(x)z(%)dx. .
—o ‘ 2 Cmza o

 Due to the relation between & and 2, the first- mtegra,l on the rnght hand side tends to
1, the second to Oase—0. Therefore B

lim f.(p‘(:z:) dz =1 .

0 —oo N
.which is not quite the condition requlred of C,-nets, but one whlch leads to a product
equlvalent to the M,- product (cf Remark 3.5(a)). Finally, we have to show that for
everyy =0,.- - ’ :

sup flx’aftp(wldx<oo | e

0<est —o©

For |z| = 24 the mtegrand vamshes For ) =zl = 2) an estlmate smular to (3 4)
yields, for fixed j = 0, : ‘ .

o (A,(x) P (;—))’ < Ceii?]

thus . . ’ '

‘[ |xidipt(x)| dx < C/’“e/'f‘- = 0— = O

1<|x1§u .

as ¢ = 0. For |z| <4, the integrand equals ]xf@izl,(xA)l, and
- : R ¢ : ) .

) o
’ f (2181 /,(z)]| dz = dz
. —a S

' . o z
2 -71-1 D

< [120(2? + 1)1 Pyz)| dz < oo
since degree (P;) = j, and.(3.6) is~'pr6ved | \
R-emark~3;ll:{{-(li‘lo<,*<‘1 is not a C;-net. Indeed, . : _— '

“Ale
{2z|

(1 + 22 )z
—A/: .

dx — oo *

2Af]3' “(z)| dz = 21[16‘Az(x)|dx %

v
as ¢ = 0. It remains open whether the existence of the M,- or M,-product 1mpl|es the existence
of the Tillmann product. \ . :

Corollary 3.12: Let S, T ¢ .@(IR) If U = My(S, T) exists, then the Tillmann
produot M,(S, T) exists also and coincides with U. :

‘Proof: We may assume that S, T, U are standald Letting p ~ 0 and p € StD(IR),
“we have to show that (8,1, v) ~ (U, v). Take ,( € s*D(R), .= 1 in a standard
neighborhood of support (). Then both 7T'(1'— )" and S(1 — z)° are analytic in

§
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' .C\suﬁport (L — »), 50 T(1 —%)," and S(1 — y)," vanish on support (y). Since"

(-)e" is.a linear operation and (Sy)," = (Sy) * 4, we arc reduced to showing that

((Sy * Ag) (Tg * Ag), v) ~ (U, p): If we take {p}o<e<1 as constructed in the proof of
Prop. 3.10 with Sy, Ty in the place of S, T, it follows from the proof of Prop. 3.10

that _ - ' - - .

Sy dg) (T * o) w) ~ Sy + 9°). (Tt * 9°), ¥)-
But » E/ 1 in a standard neighborhood of the support of , so )

- ((Sz % 9 (T % 90), 9) = (S * 9) (T * 90), v) ~ (U, ),
and the proof is complete P ‘ ' )

1
N
N .

4. Algebras containing the standard distributions

/

. Wefixa positive infinitesimal number g.and start by introducing an external space
E, < £2(R") of smooth functions as follows. - | L N
Definition 4.1: E, is the external set of all 7' € £*(R") with the following prop-
erty: ' : ' B ' :
N\ . . .
Vst € INo” otk € IN 3¢5 € IN such that sup {|&°T(2)|: |z < &} =07
It is clear from Cor. 2.11 that D' < E,; E, is a commutative and associative -
differential algebra over StC. If 0 € stD with fO(z) dx =1, then S — Sx0, is'an_
- imbedding of t9’ into E,. However, this imbedding does not preserve the pointwise °
product on st because (f*0,) (g% 6,) == (fg) * 6, for f, g € 6= in general. We shall
: now construct a quotient of E, and an imbedding of st which turns $t@,, the stand-
ard smooth functions of polynomial growth, into a subalgebra. This is a nonstand-
‘ ard counterpart to Colombeau’s construction of his algebra §,(IR"), see [4]. .

Definition 4.2: N, is the external set of all 7' ¢ g(IR") with the following pfép-
erty: ’ to- ’ , ’ o o o
CVstx € Ng" Votk.€ IN Vet € Nesup {|8°T(@)]: o] S b} < of. -~ (41)
It is clear that N, is an ideal in E, closed under differentiation. Therefore,

) G, = E,/N, ) i
is a differeiitial algébra (commutative, associative) over SC. If T ¢ E,, we shall
write [T'] for its equivalence class in G,. We now fix a standard 6 € S(IR") such that .
. J o) dz = 1, L (4.9 .
‘ f:v‘O(x) dr =0, forall « € SINg", || = 1. ° L S '

The existence of such a 0 follows by Fourier transform é\md/Borel’s theorem (cf.
- Treves [23, p. 390]). -~ . o ’

- Lemma4.3: Iff¢ 5‘0;,(111”), then f * 09‘ — [ € N,.

Proof: We deduce condition (4.1) for « ='('0, ..., 0), the proof for general « being
. * similar. Let ¢ € *IN. By Taylor’s theorem and (4.2), : i

T fx0@) — f2) = [ (fz= ey) — f(x)) O(x) dy
= 3 | —— %1 0(y) dy
ABl=i+1 ‘ ﬂ ) ‘ - _
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with & between z and z — oy; in particular, |§ < |z| + |oy| = |x| -+ |y|.. Since
f € 8Oy, |0%(£)| is bounded by C(1 + |z|)! (1 + fy|)* for some standard C > 0 and
some standard ! € N. Since 6 € ¥, the integrals are bounded by Co*! for some other
standard C > 0, uniformly for |z| < k for every standard keN. Smce o is infinites-
imal] we have Co'*1 < o, provmg the assertion i .

Proposition 4.4: Let o be a positive zn/mueszmal and let 0 € stF(IR¥) satzsfj (4 2
Then:

~(a) The map S =[S * 0,] defmca an zmbeddzng of stf’ (]R") nto G which preserves
differentiation.

(b) 5‘031(111?) 18 a_ subalgebra of G,; more precisely
[f % 6,1 [g = 0] = [(fg) % 6,] for f, g € Oy(R").

(c) If P € stOy(R™) and (T1), ..., [Tn) € G, then [P(T,, ..., T,)] is a welldefined
element of G,. ' : . '
/ . .

- " Proof: (a): We know from Remark 2.7 that § — S % 8, is an injection’of st%” into

E, with &%(S % 6,) = (2°S) * 8,. Thus it remains to show that if S € st and S * 0, €N
' then S =0. Let p € &tD. ]f S x 8, € N, then (S * 0,, p) ~ 0 since p € D, fon some
standard k. By Remark 2.7, S = 0. (b) follows 1mmedlatcly from Lemma 4.3. (¢) is
' a qlmple applncation of the definitions and the fact that N, is an ideal B

Finally, since N, = d we can mtroduce an mfmlt,eslmahty relation on G, by
calling [T G -mjzmtesmzal if T'¢d’ for some representative T' of [T] This lnfimtes-
imality relation may serve the same purpose as the notion of an “associated distri-.
bution” in the Colombeau algebras [2, Def. 3.5.2]: Indeed, multiplication in G,
generally does not preserve distributional products other than the multiplication. of
t0y. For instance, zd(x) = 0 in the sense of distribution theory, but the product
[2] [0,()] of the images of its factors is not' equal to zero in G,. We havé however,
that [] [0,(z)] is G,-infinitesimal. A general result showmg that many distributlonal
products concide wnth the corresponding product in G, on a macroscopic level will
now be stated. Let S, T ¢ J'(IR"). Lall Ues (IR") the 1\16 product of Sand T, 1f

2 hm (8% 9) (T %) =

- in D’ (IR"), for every ¢ € S(R") with f(p(:v) de = l .

Proposxtlon 4.5: Let S, T € 5. If the product U = Ms(S'T) exists, then [S * 0 ]
X [T * 0,] — [U % 0,] is Go-infinitesimal.

Proof: Aiong the lines of the proof of Prop. 3.6, one first deduces that
(8 % 6,) (T % 0,); %) ~ (U, 9) ~ (U % 6,, ) for all y € D; ;.

- next one employs an equncontimnty argument to obtain ((S * 0,) (T * 0 ), 9) ~ 0 for
all'y ~p 0. Then Prop. 28g1vesthat S*O)(T*B )= Ux0,ed R

/

Appendix 1. We consider here —.in one dimension — the products of the Dirac
measure ¢ and the distributions T, defined by  #

® 1

m=1
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" with 7 > 1. The following assertions hold:
(a) My(6, T,) does not exust /or r <2 _
(b) My(8, T,) exists for 7 = 2, and we have: \1;,(5, T,) =

5 (6 T ) =0 for
r> 2

Proof We begin by showmg that ! \14(6 T, = _— 6. Let 0 € 5D be as in Prop. 3.6,

0 ~0,y € tD. We may assume that support (6) = [—1/2, 1/2]. First,

Mo T = [ 5 =g APV () dz —
PR me1 @®m? "\ g o om
o —‘i)g,’ ! H(x) 0 |z i‘(:t:dac -. . ‘
T m1J om? om) V' yde. ' )

Wntmg plox) = 1p(0) + gxzp (&) 1t sufflces (Prop. 3.6) to shos\ that -

‘00 . i . o

© .l . . 1 ) 1 " E -
,réxem2f0(x)e(x_07n)dx~§ o - V(Al)
and . o | | ) o
.. 2 1x10(x)0(x-—)dx~o, : . -(Az)

Smce support (6) = [—1/2, 1/2], the integrals’ vanish if m < [l/o] where [l/g] denotes
.the largest integer in 1/p. But [1/o] is infinite, thus the expression (A.2) isinfinitesimal
(because I m~2 converges). To estimate (A.1) we rewrite it as -

E‘» 6*6( )A— }5 1(1 L )0*
‘m=tife1+1 0m? “\om) w=(To+1 0 \m m +1

© 1 (1
LR L_ ()
o m=l‘;_/’el+l 9 mz(nl + 1) om

Again, the second term is infinitesimal, because.

-—'~0-.‘ ’ | DL 7(A3)"

The first term is recognized as a step function with infinitesimal step size

1 (1 1\ . - _
sup{g (71— ey l) m =[ ]—{— 1} <o, which may be interpreted as the

o-th member of a standard net of step functions convcrgmg to 0 6 on [0, 1] Thus
the first term is infinitely close to

/

f()*@(/)d? -
A simple calculation using the fact that 0 * § is an even function shows that thls inte-
gral equals 1/2. '
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’

To show that Ms(é T) exists also, we use Prop 3.7 and proceed as in the proof of
Cor 3.8. 1f 0 € D is as in Prop. 3.7 we write 0 = ¢ + i with ¢ standard andr; ~p 0.
We have to show that all the three sums

i (1 5\1 (1) © (1);
pm1 OM om)’ me1 Om om)’ 2em T em)

-are infinitesimal. But if the support of § is contamed in [— 1/2, 1/2] so are the  suppor ts .

of ¢ and 7..So all sums actually start with m= [1/0] + 1. But Z' 1/om? is a limited _
m=[1/el+1
number (smnlar to (A. 3)) and all convolutions are umformly bounded, by an mflmte-
simal number. In the case r > 2, already l/gmf ~ 0, so ‘
. m=[1/e]+1

.
o0

‘oo i 1 . . )
Z )0 (:t — —) yloz) de ~ 0 for every BeD.
m=1\ ) ) Qm . o

By Prop. 3.7, My(6, T ) = 0. In the case r < 2 we take tp ='1 near zero and 0 € D
such that 6 * 0(y) = ¢ for some standard ¢>0and |yl < 1/2. Then

o

Z

1 ' 1 :
x dx >c — ~ 00,
m=1 \m) (0 ) m= ["%‘4—1 Qm

x)B(x—
4

— 00

_ bhus M,(6, T,) does not exist. The proof of (a) and (byis complete LB

Additional remarks: (a) The product \12(6 T,) = 0 exists and equals zero for » > 2. This
follows from the remarks in the Introduction ¥ concerning the product (P1) and the fact that the
corresponding assertion for the product (P1) of 6 and 7, has been verified in [13, Appx]. It is -
not clear whether My(d, T',) exists. However, the product (P1) of 6 and 7T, does not exist, be-
cause §'+ 7, does not have u value at zero in the sense of Lojasiewicz (cf. [18 Prop. 4 and 5]).

. (b) The- product M,(6, T,) does not exist for any 7 > 1: We exhibit a sequence {y;};z of type

(C ) such that (0 » ;) (T, * ¥;), ‘p) does not converge if y = 1 near zero. Let 1 €.D, support (x)

c(—1,1), =0, fl(x)dx_ 12,(mdsctv
. . \

~ ] ' ” v ' 1
#itz) = (f‘ \(""" (? "%)) '“(”' (x +"27)))f ~

o0 o ' l
2 I,JVI(x) Xi (‘” __> éiff (:c)y, (z ——) dx
m=1 M j

—eo !

J

(.

. ) : \ ’ . 'l
s, = j’*2fz2 (7",'*'1 (z—;))dx—yfr(y)dy»oo as' j — oo.
; 7

P .~

Appendix 2. We collect here some basnc hotions from Internal Set Theory
which are frequently employed in this paper; othcrwnse we refer to Nelson s article

2. - , _ .

- Transfer axiom: Let A(x,t,, ..., t) be an mternal formula with the free variables
z, by, ..., t, and no other free varzables Then

(Vs‘x A(z, t,,_..., )) (Vx A(x,tl,...,t,,))

\



“except via the followmg principles. They can be found in [12 p. 1166].
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whenever the parameters t,, ..., t; take standard values. Equivalent to this is

(33: Az, ty, ..., z,)) = (35‘9: A(x, by s )
promded tl, cen by take‘standard values ‘
The other axioms — 1dea.llzat,lon and standardization — are rarely applxed here
Constructlon prmcnple for maps: Let X, Y be standard sets, let A(:v y) be a
formula, internal or external, with free variables z,y and possibl y others. Suppose that

- for all standard = € X there is a unique standard y € Y such that A{z, y). Then there is a
- unique standard function f: X —>'Y such that A( x)) holds for all standard zeX.

Proof See [12 Thm. 1311

Perma.nence principles: Let A(n) be an internal /ormula over n € N, posszbly
containing other free variables.-

(I f A(n) holds for all standard n € lN then there s an m/rmtely large-w € N such

that A(n) holds for 1 £ n < w.

(2) If A(») holds for all infinitely large v € N/ then there is a standard ny € N such -

that A(n) holds for all n = N,

Proof: (1) S = {n € IN: A(k) holds for1 <k < n}isan mtemal set with SDS‘IN
Since SN is not a set'[12, Thm. 1.1], S must contain an mflmtely large number .

(2) is proved similarly, see also {12, Example 6, p. 1177] §

We also need more general versions of these permanence principles. Let (4, <) be
a standard directed set. An element w € A is called m/muely large if 2 < w for all

.standard 2 €\ A1.

Robinson’s lemma: (1) Let A be as above and let A(2) be an internal formula or

a formula of the form A(2) = (¥*y: B(2,y)) with B internal (A, B may contain other

free variables). If A(A) holds /or all standard i€ A, then there is an znfzmtel y large
@ € A such that A{w).

(2) Let C(2) be internal or o/ the /orm C()) (BS‘y D(2, y)) with D mtermzl If Clw) .

kolds for all infinitely large w € A, then there is a standard 2 € A such that C(Z).
lProof. (1). In the more general case A( /.) = (sty. B(2, y)) we have to show that

Jw € A(VH2 € AV A < wiand B(w, y)).

. The validity is obtamed from the 1deallza.t10n axiom, the hypothesm, and [12, Thm

1.1]. (2) follows from (1) by negation 8

We now need some facts about topology. Let X be a standard topologlcal spa(,e let
a € %X, z ¢ X. We say that z is infinitely close to a, denoted as z a a, if z is con-
tained in all standard nelghborhoods of a. Let again (4, S) be a standard dlrected
set.

Characterl/atlon of the convergence of a standard net: Let X, Abeas .

above let {a;}ieq be a standard nei, let a € tX. Then, a; converges to a if and onlg/ if
Aya ,‘or all infinitely large w € A.

Proof: If a; —a and V is a standard neighborhood of a, then a % for all infi-

i mtely large w € A. Thus a, NA a. Conversely, let a,, ~a for all infinitely large w, let

‘o

~
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V be a standard neighborhood of a, and conSIdel the assertion Vu = w: a,, € V. This
is an internal formula which holds for all infinitely large w. By Robinson’s lémma,
there is a standard 2 such that Vu = i:a, € V. By transfer,a; >a B ~

Of course, by reversing <, “infinitely large” may be replaced by “infinitely sma.ll” :
We remark that if a standard net converges, then its limit is standard.

Finally, we discuss the notion of s-continuity. Let X, ¥ be standard topological
spaces,g: X > Y a (poss1b]y nonstandard) map, a € X. Then g is called s-continuous’
at a iff

FeY such~-that Vee X:ax~ya=g(x) ~yb.

In the case of Y = € this implies that g(«) is limited and b'= %(a). We only need -
the following special version of . :

The s-continuity theorem: "Let X be a standard topological space, g: X — €
' a map which is s-continuous at every standard a € X. Then there is a unique standard
map f: X - Csuch that f(a) = °g(a) for all szandard a € X, and f is continuous.

Proof: Consider the formula A(z, y) = (g(x) ~ y) By the construction principle
- for maps, there is a unique standard f: X — € such that g(a ~/ ) for all standard
a € X, iec. f(a) = %(a).. By transfer, it suffices to prove that'f is continuous at any
standard @ € X. For this we let {a;},c 4 be a standard net converging to a and show

Vste ~ 03t € AV > i |f(a,) — f( a)] <s. | . (A 4)

By the s-continuity of g, g(a,) ~ f(a) for all infinitely large u. In partlcu]al if ¢is
standard and 1 infinitely large, then |g(a,) — f(a)| < ¢ for all 4 = 4. By Robinson’s :
lcmma the latter assertion holds for some standard A. If u = 2 is standard, then
g(x,) ~ f(x,) by the construction of f. Thus |f(z,) — f(a)| < ¢ which proves (A.4) B
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