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Es verdn Hilfsmittel der Nonstandard-Analysis entwickelt, die zur Untersuchung der Multi-
plikation von Distributionen geeignet sind. Wir befassen uns mit Produkten, die durch Regii-
larisierung und Grenzwertbildung definiert sind, und erhalten Nonstandard- Kriterienfür die 
Existenz der Produkte (diese Kriterien erweisen sich als vorteilhaft bei der Berechnung kon-
kreter Beispiele). Ferner leiten wir neue Vergleichsresultate für verschiedene Produktdefjni: 
tionen her. Als weitere Anwendung konstruieren wir Algebren von Distributionen - als Quo- 
tienten von-externen Ráumen glatter Funktionen -,-die ähnliche Eigenschaften wie die - 
Colombeauschen Algebren besit.zen. 

PaaBIlnaLoTcs ncrjoMoraTejII,HbIe cpecTBa IrecTaniaprHoro aIIaJl43a 11pi1rornnie x iiccrie-
joeainiio nponmeeiiita o6o6L1eHHh1x llyHHrIj-Ifl. Mbl 3alutMaeMcS flp011313eIeHusle11 onpe-
JieIeHHb1Mu peryinpiiaaiuet is-o6pa3oBanitem npeeiia it no.'iy'iaei uecTa1uapTHbIe Hp11TepI1II 
cy[IecTBoBaHI4n up 011313 eJje1ln1 (Tu KpuTepun - oIa3bTna1oTca flbIrOJ H b!Mu HH ubIqIscileHuht 
uoIILpeTHbIx npuMepou). BhInoHTcn TaIo+e HoBble peay.lbrarbl cpaeHeHuH jin pa3flblx 

IonpeeJleHMn npoH313eJeus1H. KaK gaJIbHet1wee npIIeeiietiiie siIl nocrpoItM aJire6pai o6o6-
I4CHHhIX yH1I[lt1 - IlaK 4laFcTop-aJu'e6pa nt(ewHLtx npocTpaucrH rjiaiioix {yIIHLHli - 
uMetoillue cxouiare C110f1CTBa a aire6patu Colombeau. 

Nonstandard tools are developed which are suitable for studying products of distributions 
defined by regularization and passage to the limit. We obtain nonstandard criteria for the 
existence of the products (which are demonstrated to be useful for calculating standard exam-
ples) as well as new stindard results clarifying the relationship between different types of 
such products. As an offspring we an able to construct algebras of distributions - as quotients 
of external spaces of smooth functions - which have properties similar to the Colombeau 
algebras. 

I. Introduction 

Let,S and T be distributions on lR. One way to multiply S and T isto define their. 
product as	-	 S 

(P1) lini (S * q') (T * f) 

provided the limit exists in '(lR") for all nets {v}>o which vary in certain 
classes of nets of smooth functions and converge to the Dirac measure (called delta-
nets). A strictly more general way is to take 

(P2) lim(S*ç)(T*q,') 

as the definition, and this, is the * product we shall be concerned here. Definition (P2) 
has become important recently because of its relation to Colombeau algebras: If 
the product of S and T in the sense of (P2) exists, then the eleiiient ST in the Colom-
beau algebra 3(R) admits an associated distribution [2, Thm. 3.5.7].
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We consider four successively smaller classes of delta-nets, leading to four succes-
sively more general definitionsof-the product (details in Se•ction 3): 

(1) delta-nets in the sense of HIRATA-OGATA [6] and M1KUSUSKJ [11]; 

(2) restricted delta-nets in the sense of SHIRMsHI [18, p. 91] , and ITANO [8]; 

(3) delta-nets in the sense of ANTosrK-MIKusIrSKI-S1KORSKI [1, P. 116] and KAMnSxI 

'[9, p.85];	 0	 / 

(4) model delta-nets in -the sense of KAMINsKI [9, p. 89]. 
It is well known that for definition ( p1), equivalent products are obtained by using 
any of the classes (2)—(4) (see ITAN0 [7], SHIRATSHI [18], KAans1u [9]), while class 
(1) produces. a more stringent definition [13, Appx]. it is also known (see TTAN0 

[7, p. 177]) that in dimension n = 1, the existence of the product (PI), of S and T 
with delta-nets of any of the types (1)—(4) implies the existence ^f the Tillmann 
product [20, p. 108] of S and T, which is defined by analytic regularization.* What 
concerns product (i'2), no comparable results have been available so far. We show 
here that the existence of product (112) with delta-nets of type (2) implies the existence 
of the Tillmann product. We give a nonstandard criterion for the existence ofthe 
product (P2) with delta-nets of type (3), which enables one to conclude in many con-
crete examples that if product (P2) exists with delta-nets (4), then it also exists with 
delta-nets (3). The question of equivalence of the products (P2) obtained by employ-
ing classes (2)—(4) remains oper; however, type (1) is seen to yield a less,general 
product. '	 S	

0 

olombeau has constructed (standard) commutative, associative differential al-
gebras of generalized functions on open subsets .Q of R" with the following properties:, 

(a) IY(Q) is a subspace; 
(b) the derivation in the algebra extends differentiation in the sense of distributions; 
(c) (Q) is a differential subalgebra (with respect to the pointwise product n 

(d) the algebras are invariant under superposition by smooth maps-of polynomial 
•	growth.	•	 ,	.	 -	 .	 - 

There are several possibilities to achieve such a construction [2-4]. For algebras 
with properties (a), (b),property ( c) is optimal (for instance, the continuous functions 
cannot constitute a subalgebra [16]). Turning nonstandard, we observe that '°°(Q), 
viewed as an internal set, is an algebra into which the standard distributions may be. 
imbedded'But this imbedding does not render the standard mooth functions a sub-
algebra. We show that a quotient of a certain external subalgebra of (&') does 
better: It contains the standard tempered distributions and has the standard smooth 
functions of polynomial growth as a sualgcbra with respect to their pointwise pro- - 
duct; it satisfies (b) and the standardized version of(d). A different nonstandard con-
sti'uetion of an algebra with properties (a)—(d) has recently been given byTODOROY 

[22] using ultrapower methods.  
We employ Nelson's version of nonstandard analysis: internal set theory [12]. In 

addition, we freely work with external sets, when appr'opi:iate. The plan of expositiOn 
isasfollows:  

Section 2 provides the necessary background on the nonstandard theory of distri- 
bution. We follow the ideas of STROYAN-LUXEMBURG [19, Chap. 104], translated into 
internal set theory, but develop some additional material (including structure theo-. 
rems) which is frequently needed in the sequel. We found it useful to collect these 
results together with short.proofs since they are not available in the literature 

in this 
form. Section-3 starts with a nonstandard definition of the product of any two stand-



Products of Distributions	349 

ard distributions as an internal smooth function. This construction serves as a tool, 
and also relates our approach to Li BANG-HE'S [10], RAJU'S [15] and T0D0ROv's 
[21]. Then the nonstandard characterizations of product (P2) are given, and the 
comparison results are derived. Section 4 is devoted to the construction of the differ-
ential algebras containing the standard tempered distributions. 

There are two appendices: In the first ore we put the results of Section 3 to use, 
completing the investigation of the 'example in [13, Appx]. The 'notions we need 
from internal set theory - some of which go beyond Nelson's excellent introduction 
[12] - are collected in the second appendix. 

2. Background on the nonstandard theory of distributions 

For the following -basic vocabulary the reader is referred to Nelson's article [121: 
standard; internal, external formula; internal, external set; infinitesimal (real, 
complex) nunber; limited (real, complex) number; infinitely large (natural, real, 
complex) number; standard part (of a limited number).: Let a, b € c. We write 
a '—i b if a - b is infinitesimal; a ''oo if ais infinitely large; for limited a € C, °a 
denotes the standard part of a. We use the quantifiers	 - 

stX for x (x standard) and VSLX for Vx (x standard). 

By abuse of notation, we shall employ the setbrackets { } and the elementhood "h" 
for internal and external sets alike, stating only verbally when a set is to be considered 
as external. Finally, if X is an internal set, we define the external set 

Stj = jx € X: x is standard). 

In what -follows,, ?, C, ', are the usual spaces of functions and distribu-
tions on RP (n a fixed standard natural number); for these and all other internal 
spaces of distributions we use the notation of SCHWARTZ [17]; Ok = IT E : (x) = 0 

•for jxj	k) fork E N. Following STROYAN-LUXEMBUEG [19, Chap. 10.4] we introduce 
several external subsets (actually vectoi spaces over Ste) of the internal set	of

smooth functions on IR'. 

Definition 2.1: (a) A function ip € 2i is called D-limited if' ip E	for some stand-




ard k € N and sup { I a'(x) I : x € 1R') is limited, for all standard a E Non . We define 
the external set B	ip E	: ip is D, -limitedl. 

(b) y. € .7) is called B-infinitesimal, denoted as v' D 0, if ip E2Jk for some standard 
k E'IN and sup {Jav(x)j: x.€ IR') —0 for all standard-a €1N0'. 

(c)'A çunction ip E T is called S-limited if stip ((1 +'IxI)' a'ip(x): x € IR'} is limited 
for all standard 1 € IN and-all standard a € No n . Wedefine theexternálset S = (ip € Y: 
p is S-limited).	 -	 - 

(d) tp E X is called S-infinitesimal, denoted as ip	0, if sup {(1 + IxI)' 'v(x)l: 
x E IR'}'–. 0 for all standard I € N and all standard -et € Non. 

(e) An element T € '°° is called a limited distribution, if fT(x) ip(x) dx is limited for 
all ip € B; T is called an infinitesimal distribution, if f T(x) V(x) dx	0 for all 
ip € B. We define the external sets D' = IT €	: T is a limited distribution) and


= T € ': T is an infinitesimal distribution). 
(f) An element T €	is called a limited tempered distribution if Tip € L'(R') and 

fT(x) ?p(x) dx is limited for all ip € S; S' = IT €	: T is a limited tempered dist-ribi-
tion}.	 -.	 -



350	M. OBERGUGGENBERcER 

Notation: Given 1p € B, T E B', we shall write (T, ) for fT(x) ip(x) dx. 
Remark 2.2: It is clear that St.7) B and St,f S. Also, if D 0 (respectively p s 0), 

then ip is contained in every standard neighborhood of zero in 2) (respectively Y). in case of 
.7), the converse is not true. Indeed, using the characterization of the neighborhoods of zero of 
SCHWARTZ [17, p. 651 and the idealization axiom [12, p. 11661, one sees easily that for every 
infinitely large co € IN there is an element op € 2) with suppoit () {x € Rtm: Co IxI v + 1) 
which is contained in every standard neighborhood of ze10 in 2). On the other hand, if.V € -7)k 
for some standard k € IN-and is contained in every standard neighborhoodof zeroin .?ik, then 
-/D0.	 - 

--- The next proposition characterizes the limited distributions as the "continuous" 
• elements with respect to the infinitesimality relation introduced above. 

Proposition 2.3: Let T € 60o Then the following are equivalent: 

(b) It E J6 and ip	0, then (T, )	0.  

Proof: (a) = (b): If p € 2) and	0 then wçv	0 for all stanIard w E IN and

• so there is an infinitely large co E iN such that cop D 0 by Robinson's lemma (cf. 

•	

- .Appx 2). In particular, w € B, and so I(T, ww)} <sw for all standard a > 0, since 
•	aa is infinitely large. Thus KT, p)	0. 

(b)	(a): Let V € B. Then	'	0 for all infinitely large x EN, thus 

(T, - )	I for all such x. By the permanence principle (cf. Appx 2) there is 
I  •	a standard kE IN such that T, 

1 
-- \ .. ̂  1, that is, T€ B' I	 - 

' Our next goal is to identify the standard distributions as elements of B'. To this 
end we fix a standard "mollifier' 0 € `J) With f 0(x) dx = 1 and an infinitesimal 

- real number	0 We set - 

0(x) =	
0 ()	

•,	 (2:1) 

•	and want to show that the map T T * 0. is an imbedding of st2)' into B'. 
LemIna 2.4: Let ip € B and 0 E St2),	0 as above. Then V * 0 € B and p * 

D0.	 . S 

•	Proof: it is clear that p * °e belongs to some 2) with k standard. Let a E stNn 
Then.	 -	 S 

	

p* 0,) (x) = f 0(y)	(x - y) dy; 

and this integral is limited independently of x, since sup {I & (z )l : z € lRm} is limited. 
Thus p * 0 € D. Next, 

-	' 0 — p) (x)I = If 0(y) (e(x — y) ---	x) dy 

S	

kl I y0(y) dy . sup (Igradient ,p(z)l: z € 1R'} 

- which is infinitesimal independently of x I 

Lemma 2.5: Let T € st2)', p € B. Then (T, ) is lirnited.I/ ip	0, then (T, ) ' 0. 
S

	

	 Proof: There is a standard k € N such thiit 1p E 2)k On the other hand, since

T. E St2)', there is a standardna € N such that if q, € Y k and 

m() = sup (l(x)l : x € a", a € N0, jal < m}	,	-• ni
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then I(T, q)l ^ I. But Sm( 1JJ) ^ Al for some standard M E IN, thus we have tht 
KT, )I 5 mM, which is a limited number. 

If v' D 0, we take an infinitely large CO'  E N such that e	0. With Ic and m as 
above we have that Sm(wlp) < -.--, and thus (T, e) <	0 1 

Proposition 2.6: Let T € st', U €	0 as above. Then' we have: 
(a) T*05 € ID'.	 0 

(b) (T * O, v') —. (T,) for all V. € B. 
(c) If (T * O, ).	0 /or all V € sl.D, then T = 0. In particular, if T * O E d', then 

T=0. - 

Proof: (a) Let € I. Then (T * Oe, )= (T, * O) where O(x) = O5(—x).

Lemma 2.4, vp * be € D, by Lemma 2.5, (T, ip * be) is limited. (b): (T *O, p) - .(T, 
= (T, 'ip * — ). The conclusion follows again from Lemmas 2.4 and 2.6. (c): If 
(T * O, tp)	0, then (T, ) '--'0 by (b). But (T, i) is a standard complex number, 
thus'(T, ø)	0 for all 1p € sJ By transfer (cf. Appx 2) this implies that (T, o) = 0 
'for all €2 I	: 

Remark 2.7: The assertions of Prop. 2.3 through Prop.. 2.6 remain valid in the settingof 
tempered distributions, as is seen by a straightforward modification of the proofs. Specifically, 
the following version of Prop. 2.6 will be needed in Section 4: Let T € St,Y" and 0 € StJ' with 
f 0(x) dx = 1, -'O. Then (a) T * 0 ES'; (b) (T * O, ,) (T, ,) for all p E S; , (e) ii -T * 0, ) 
'—'0 for all  E st .D, then'T = 0. 
, Prop. 2.6 (c) shows that convolution by 0 produces an injective map St'	D'/d'. 
We are going to show that this map is actually surjective.	. 

Proposition 2.8: Let V € B. Then there is a unique standard 99 € .7Ywith ip D q'. - 
Proof: It follows from the mean value theorem and the fact that ' belongs to B 

that v,v is s-continuous at every standard a € IR". By the s-continuity theorem (cf. 
Appx 2), there is a standard, continuous function : IR" —* C such that q(a) = 
for all a € stn Moreover, we even have (x)	 JR. (x) for all x € ", because (x) — 
attains its maximum on IR", and this maximum is infinitesimal. An analogous con-
elusion holds for all standard derivatives of ,. Thus we have 

•	'V st € N" 3 st : R" '--->- C, q, continuous, with	
(2 2) sup {I e"v(x) --(x)I: x € &"}.-0. 

It remains to show that 99, 	3". Let first a = (1, 0, ..., 0), a € stJR,n , x € IR", x	a.

Then

q(x) — 99 (a) '-..' p (x)— i(a) '-.' (x, — a,)a"().	 - 
(x —a,).q(a) + (x — a) (q() — 

for some	• a. Since p. is continuous and standard, we have (x, — . a,)-" ((x) 
— (a))	(a). Thus T is differentiable in the direction a = (1, 0, ..., 0) at all 
• standard a ER", and e"q(a) = (a). By transfer, ø" = q. The same argument 

	

• works for all other standard derivatives, thus 92 €	Since 'ip belongs to some 
with- standard- Ic € N, so does T. That is, € st , a i'i d by (2.2)	. Uniqueness is

evident I - 

Proposition 2.9: Let T € B'. Then there is a 'unique standard U € JY, denoted by 
OT,. such that -(T,	(U, ) for all V € B.
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'Proof: Since T € D', °(T, ) exists for every 7p € D. By the construction priniple 
for maps (cf. Appx 2), there is a unique standard map .U: .O -* C such that (U, ) 
= °(T, ) for all q' € s• It is clear that U is linear (transfer). Fix k E St4• Prop. 2.3 
together with Remark 2.2 says that T is s-continuous at every standard element of 

k• The s'-continuity theorem implies that U i continuous on k• Thus U E st', 

and- (U, q)- (T, ç)'for all q' € StJ . 1f ED, then there is a ç' E,st with q'	by 
Prop. 2.9. 'But then (U; p) (U, q) - (T, q)	(1', ip) by Lemma 2.5 and Prop. 
2.31. 

'Fixing a U E SID and	0 as in Prop. 2.6 we have the (noncanonical) inclusions 

st'	p'	c-	'	 - '	 ,	(2.3) 

'where tle first one is given by convolution with 0e whereas the others are subspace 
relations.. Moreover, onvolutioii with O induces a bijection of 

st'	D'/d':	. 

as follows from Prop. 2.6(c) and 2.9. 
We now turn to structure theorems, which will be needed in Section 4. The first 

theorem is a counterpart to the classical structure theorem for ', asserting that 
limited distributions locally are finite derivatives of pointwise limited smooth func-
tions.  

Proposition'2.1O: Let T E' 00 . The/ollowing are equivalent: 

(b) For , all stañiard k € N-there exist an element S € 6100 with sup (IS(x)I: Jxj !E^ k) 
limited and a standard XE N, n such that T(x) = S(x) for all x E 1R, xl. k. 

Proof: (b)	(a): Let ip € D and let k € SIN such that V E D k. Then 

(T, ) = 'f &'S(x) (x) dx= (-1)'' f.S(x) 8(x) dx	 .	 S 

is limited. (a) =' (b): Let,k e s1N, and °T € st' as given by Prop. 2.9. By the classical 
structure theorem [17, p. 82] and transfer, there is, a € stN0n and a standard, contin-
uous function / with compact support, such that (°T,) = (_l) II (I, 8) for all 
ip €	Letting 0e be as in Prop. 2.6 we have that 

(8(/*0e ), tp)	(T, tp)	.	 (2.4) 

for all ip € D n All by Prop. 2.6 and 2.9. Let g(x) = T(x) - (/ * .Q) (x). It follows 
from (2.4) that sup flg(x): lxi -_̂' k} is infinitesimal. Set' 

= f g( X2 1 ..., 'xi) d	
.	S	 , 

and define Ig(x) inductively for all i E 
SIN. Clearly, sup {Ig(x)l: lxi	k} is infi-




\nitesimal as well; on the other hand, sup {/ * O(x)l: x'E 1R} is limited. If we set 
8(x)	Jg(x) + / * O(x), we have that' sup {IS(x)I: lxI	k} is limited and-,that 
T(x) = 8S(x). for Ix!	k I  

Corollary 2.11: Let' T € D' and e € & be a positive infinitesimal. Then. 

V stk € IN 3 Stj € IN such that sup {IT(x)l:	k} ^5
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Proof: Fix k  StiN . Let /,g and a he as- n the proof of Prop.. 2.10. Then T(x) 
= g(x) + (/ * O) (x) for lxi ;5 k; sup (g(x)i: lxi !E^ kj is infinitesimal, and 

* O) (x)l	I l/(x - y) T II &'O(y)l dy 
for some standard C >. 0 and all lxi	k. Thus sup {I T(x )l : lxi	k}	'' 1 

We remark that the assertion of Cor..2.11 is not,void': the constant function T(x) 
= w with to infinitely large does not satisfy the assertion with Q = (log w)-1. 

3. Products of distributions 

We start this section by introducing a nonstandard product of any two standard 
distributions., Let 0 E	with f0(x) dx = I and fix a real infinitesimal number n. 
Motivated by the inclusions (2.3) we make the following definition. 

Definition 3.1: Let S, T E St' Then  

M58 (S, T) = (5* 0) (T * 0)	 S


is called the M.0-product of S and T (with 8 defined by (2.1)). 

Remark 3.2: (a) M59(S, T) belongs to e 00 , but not to D', in general. Thé-M°-product is 
commutative and satisfies the Leibniz rule. (b) If we allow 0 to belong to StJ,0 n L', then the 
assertions of Prop. 2.6 are still true for T E St2Y. Thus in case S, T E St .,(lR) it makes sense 
to define the product M(S, T) where Lf is the Tillmann mollifier 4(x) [(1 +x2)]'. This 
is Li Bang-He's product [10, p. 5641 when applied to integrable distributions. (c) Raju's defi-
nition [15, p. 384] is in a similar spirit, but not related to ours. In our notation, Raju defines 
the product of two standard distributions S and T as (S • 0) T with 0 symmetric. The result is 
a noncommutative product valued in V. (d) In the framework of his "asymptotic functions", 
ToDoRov [21] has considered a product which leads to analogous formulas. Rather than choos-
ing a fixed mollifier, Todorcrv works with certain classes of "kernels"' representing a given 
distribution.	 S 

• Example 3.3: For the square of the Dirac measure ô in one dimension we have 

(M58 (, ô), ,)	(±-coâ + c 16', V	for all V € D,	 S 

LO 

where
CO = f 02(x) dx and c1 = -f x02 (x) dx. 

Indeed, .M5 0(5, 3), -p) = 1 f 02(x) (x) dx. The result follows by, Taylor-expanding 

around zero up to order two and observing that the third term only contributes an 
infinitesimal to the product. Taking in particular the Tillmann mollifier A, one has 

(Me , 6), )	
( --- , 

v) for all V E D,,' 

because in this case c0 = 1/21 and c 1 = 0. This is precisely Li Bang-He's result [10, 
p. 579]. A related formula involving the value of 6 at zero holds in certain distribution 
algebras introduced by BERG [I a, p. 267]. 

We now turn to investigate internal products of distributions defined by regulari- 
zation and passage to the limit. To fix notation, we introduce several classes of delta-
nets. 

23 Analysis Bd. 7, Heft 4 (1988)
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Definition 3.4: (a) A net{q}o<, 1	D(lR') with 

92. r 	0 and f (x) dx = 1 for All 'E'.
 

will be called a C 1-delta-net (i = 1, 2, 3, 4), provided it satisfies condition (C i ) as 
'follows:  
(C1)support (')	JO) . as e -±0;  
(C2)support ()	{0} as e	0 and 

V  E O A > 0 such that f I x I I I I JaIT I (x)j dx :5,- A for all e; 
(C3)support (q)	{x E 'lR: lxi	e} and 

V  E NO 3A, > 0 such that e11 f l(x)j dx :!z-̂  A, for all s; 

(C4) (x) = c- n(-f-) for some € (lR). 

•	(b) Let S. T E 2Y(lR). We say that the M 1-product (i	l,' 2, 3,4. ) of S and T 
exists if	 -	 - - 

lim(S * q)(T*ç) = M(S,T) '	 - 

exists in .IY(1R") for all Cdelta-nets''}o<;g and is independent of the particular 
C,-delta-net chosen (the last sentence is redundant für i r= 4). - 

o

	

	Notation: The lower index notation 99, will b6 reserved for C4-nets in accordance

with (2.1), the upper index notation q for general delta-nets.' 

Remark 3.5: (a) CI -nets were introduced by HIRATA-OGATA [6] and MiRusnisKi [11], C2- 
nets by SmRAIsHI [18], called "restricted delta-net's" there, the condition f 99c(x) dx	1

actually being replaced by urn I çlx)dx = 1, which obviously yields an equivalent product. - 

The M 2-product was studied by ITANO [8]. C3-nets were introduced by ANTosrK-Mixu-
s1ilsKI-SrK0RsKI [1] and were studied by KAMnisKI [9] together vith , C4-nets (called "m odel 
nets" there), which appear at many places [2, 3, 5, 7]. We remark that all authors quoted 
above use sequences instead of - nets, but our definitions are equivalent. (b) In [1, 9] C 3-
and C4-nets are definçl without requiring 99 1	0. So it is important to note that the 
- 1\I3 and M4-product remains unchanged' when this condition is deleted. For the M 4-prod-

uct this follows immediately from [14 Prop.]; in the case of the M 3-product'we observe 
that (C3 ) implies that sup {i°(x)l : X  &} ;^ e"A 0 . I Thus if we take x  .(lR'), x 0, x(x) 
= 0 for IxI ^ 2, (x) ^ A for lxi ;5 1, then q° + x ^ 0 for all e, and the same arguments 
as in the proof of the Prop. in [14] apply. (c) Let q' € 2(lR), q' ^t 0, f ç(x) dx	1, p (0 ) rt= 0, 

1 /1	/x\	1	/x—e't\ 
support (q)	[-1/2, 1/2]. Then q'(x)	— i — i — i + —q'l-------lI is an example of a 

2\e2	\2/	e	e // 

2	2 )net which satisfis (CO but not (C3), while (x) = --
(X  92 is a. net which satisfies ( C 1 ) - 

but not (C2). On: the other hand, ( C11 )	(C 1 ) for all i, and therefore the existence-of the M1. 

• product implies the existence of the M1+1-product. 

The following nonstandard characterization 'relates the M4:product and the M e

 product.' 
Proposition 3.6: Let S, T E	The /ollothing are equivalent:, 
(a) MO, T) exists.  
.(b) There is W € B' such that (Me O(S, T), )	(W, ) br all TP E Ste, all g 	0, and 

all OEst2 with fO(x)dx= l and OL^0.	 . -. 
(c) There is WE B' such that MQ 0(S, T) - WEd' for all e —0 and all 0€ st 

with f0(x) dx = 1 and 0 ^ 0.	•	- '	 •1 

In this case we have M 4 (S, T) = °W. -
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Proof: (a) 4 (b): Let V = M 4 (S, T) = urn (S * 04 (T * 04. Then V is standard, 
'—.0 

and the characterization of the convergence of 1 a standard net (cf. Appx 2) gives 
(MQ°(S, T), ) ' (I', ,) for all E st2) and all	0. Thus (b) holds with W = V * O. 
(b) = (a): We show that urn (S * q),) (T * q,,) = °W for all C4-nets	By trans-




fer, we may assume that (9'4< is standard. Then (b) holds with 0 = , and we have 
((S * q) (T * q), )	(W, )	(0 W , o) for all	E st2) and all	0 (see Prop.

2.9). By the characterization of convergence of a standard net this means lirn ((S * 

x (T * ), tp) = (O W, p) for all ip E St2). Applying transfer again, we have (a). 
(c) means that (b) holds not only for, all standard ip E 2), but for all E B. Thus it 

remains to prove (b) => (c). Let ip E. B. Since , is the sum of a standard test function 
and an infinitesimal one (Prop.' 2.8) it suffices toprove the assertion (c) with V RDO. 

First, the net {(S * 0,) (T * 04}o<t1 2)' is pointwise bounded (this follows from its 
convergence and the support properties of 04, and hence equicontiriuous. By transfer 
this means 

V so> 0 neighborhood ,V of zero in 2) such that	 . 

Ve,0<e:E^1;VEJV:((S*0,)(T*0,),q)I<ô. 
But belongs to every standard neighborhood of zero. in 2). Thus we have 


	

VS, o> 0Ve,0 <	I((S* 0,) (T* 04,)I <,  

implying that (M e°(S, T); )	0. On the other hand we also, have (W, ) , 0 by

Prop. 23 I 

According to Remark 3.5 (b) the equivalence of (a) and (b), (c) in Prop 3.6 remains 
valid when the condition 0 ^ 0 is dropped. Enhancing criterion (b) by requiring it 
to be fulfilled for all B-limited mollifiers 0 we obtain the existence of the M3-product. 

Proposition 3.7: Let 5, T E St2)' 1/ there exists a W E B' such that (MQ°(S, T), tp) 
V) for all V E st2), all	0 and all 0 E B with f0(x) dx.= 1 and 0 O, then 

M3(S, T) exists, and it equals 9W.	 - 

Proof By Prop. 3.6, wehave that. M4(S,T) = O W exists. let iq"}o<	beastan-




dard C3-net. We have to show that lim (S * q') (T * ') = °W. As in the proof of 
'—+0 

Prop. 3.6- it 'suffices to show that ((S * qQ) (T 4'pe), )	(°W, ) for all V E St2) and 
all	From (C3) we obtain by transfer: 

- VsI E N0 tA >0 such that &I f q(x)dx <Aa, for Ve, 0< E :E^: 1,, 

in particular,	 dx. is limited for all a E stlN0 n. Setting 0(x) = q(x) we 
• infer that f !0(x)I dx is limited for all a € 6tN0 T . Since 0(x)	0 for lxi ^ 1, this


implies that 0 € B. But 99e = 0 and so the hypotheses imply that ((S *q) (T * 
(0W, ) for all	St2) I	 . 

Corollary 3.8: Let I E.L°(1R). 1/ M 4 (6, I) exists, then-M 30, /) exists, too. 

Proof: We may-assume that / is standard. Let 0 € D be as in Prop. 3.7. We write 
0 = 99 + q with 99 standard and B-infinitesimal. Let V E St2), Lo 0. We will show 

• that (0e(/ * 04, ') ' ((/ * 9,4, v,), from where the assertion follows by Prop. 3.6 
and 3.7. This amounts to showing'that -

 

 
I	

'*	+ 1)Q (f *	) + 1e(/ *	0.  

23*
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But the first term. 

* 7)), ) = f 	(x) f(y) , i (x - ) V(x) dy dx 

is infinitesimal, because integration extends over a standard compact region in 1R2", 

, /, andy are bounded by a standard number, and 7 1 is infinitesimal. A similar esti-
mate applies to the other terms U	 I 

To demonstrate that the criteria of Prop. 3.6 and 3.7 are useful in concrete calcula-
tions, we continue the investigation of the example of [13, Appx] with regard to the 
products M 1 —M 4 in Appx 1.It is seeh that the M 2-product may exist while the M 1 -
product does not. No example distinguishing the products M 2 , M 3 , M 4 is known. 

Our next goal will be to prove that the existence of the Shiraishi-Itano product M2 
implies the existence of the Tillmanii product. For S € .'(R) there exists a function 
(z), analytic in C \ support (5), such that S = tim & in	'(1R), where	(x) - 

= (x + is) - (x	is), see [20]. is unique up to an entire function. 

Definition 3.9: Let S, T E '(R). The Tillmann, product or M5 -product Of S and 
T is said to exist if lim j'. = M5(S, T) exists in '(1R). 

For S € ..(1R), a particular choice for A is	 - 

• .	=	1	
5 27r1\ 

Letting A(x) = [(1 ± x2)]' it is easily seen that, for AS', T € 2Y(lR), Def. 3.9 is 
equivalent to lim (S * z1) (T * A) = M5(S, T) in J'(lR). 

r-O 

Proposition 3.10: Let' 5, T E	(R). 1/ U= Urn (8 * ') (T * ) exist. for 
all symmtric C2-nets {}o<,<, then the Tillrnann product M 5(S, T) exists also and 
coincides with U. In particular, ii M2(S, T) exists, then so does M 5(S, T). 

Proof: By transfer we may assume that 8, T und U are standrd. By the struc-
ture theorem for	we have 

1	 m 

j=o	 j=o	 S 

for some standard 1, m E N and standard /, g i E L'(IR). Let o 0. We wish to 
show that ((S * zl) (T * Li0), p) -..'(U, V) 'for all ip E SI(R). The idea is to construct 
a standard C2-net {I7L}	such that	 .	. 

'P {I a'( b e() - q0(.)):	E IR} '-.. 0	 (3.1) 

for 0:!E^	n=l+rn+1.We then have 

• .	

((S*Li)(T*Li0),)—(U,)	.	 . 

((8 *	(T * A c), ) - ((S * ç20) (T *e), )	 •	 S 

= ((S * Li 0 ) (T *	- 92)), ip) + ((s * (4 - q,e)) (T * çQ, v').	 S -
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The first term of the last line equals - 

f f f /(z) aA(X z) g1 (y) (a)J(x - y) -	- y)) (x) dx dy dz 
tO )=O 

£	m 1+1 l 	 r r r 	
-) I I I /(z) - arctan 	 g,(y)

'=0 j=0 k=O 	'' I J .1 .1	 ? I 

-	 X	 - y) -	- y)) ai+I_kip(x)dxdyd. 

•	Givei (3.1), the part ,9xi+k(/1e(x - y) - 7(x -, y)) is infinitesimal independently of 
.x,y,while all three integrals tare limited, since /, gi and ai+1kp are standard L'-

functions. Thus the first term is infinitesimal. The second term is estimated similarly, 

the part i arctan(X - Z) being replaced by f e(d which s also bounded by 
one.	 • 

Thus it remins to construct {}0<tI. We take a standard € (lR), symmetric, 
O	Z	1 ,x(x ) =1 for IxI!!E^1, ft) =O for I xI 2 , and set 

•	(x) =	(x)x(). 
We shall show that TI has the desired properties if we choose 2 = e h / ( + 3) . To this end 
we need some preliminary estimates. We first observe that	- 

aA(x) = (1 + à2)-i_1 P 1 (x),	i	0, 

for some jolynomials Pi of degree i, and	- 

z1 € (x) = (e2 + x2)'	
(--) 

Using the fact that degree (P) = i arid that E < 2 one deduces immediately the 
estimates (0	i	n) 

t4(x)j <C( 2 + )2)i1 2 t	 for 2 ^ IxJ ^ 22	 (3.2) 
and	 S 

laizl ^ (X)I ^ x!i(x2 + e2)/2'
I Mi 

^ C2 2 for IxI .	22;	
5	

(3.3) 

here and henceforth C denotes a generic positive constant. Next, ' (zi(x) (1 - 
x (+))) 

equals zero for I xI'2 and equals z1(x) for lxi	22. For 2	I xI	22 we-infer 
from (3.2) that	 • 

af (X (1	
()))=	()	

x) 81 1 (i - 
Z ( 

-	

( ) (e2)
	^ CE).-J- 2	 (3.4) 

for 0	:!5: n For lxi	22 the expression is estimated by (3.3) and we have 

sup flaL1,(x) - a(x)l: x € R) ;5 C,-;,-"-1 -	 -	 (3.5) 

for 0 5 j !E^: ii. Therefore, if we take 2	eh/(n+3) and evaluate (3.5) at	0, we

obtain the desired infinitesimality assertion (3.1).

\
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It remains to prove that {q1<	isa C2-net. First, q > 0 and support () [-22, 
•	22] -^ {0} as  -*0. Second, 

CO 

f
t(x) dx	J(x) dx +fJ(x) (') dx. 

-	 -	 IzIA 

Due to the relation between a and 2, the first-integral on the right-hand side tends to 
1, the second toO as a	0. Therefore,	 1 

lim f(x) dx =1.	
5 

.which is not quite the condition required of C-nets, but one which leads to a product 
equivalent to the M2 -product (cf. Remark 3.5(a)). Finally, we have to show that for 
every L, O,. 

'S	 S

 

sup I Ixa(x)I dx < co.	 S	 (3.6) 

-	 O<ei -	 -	 S 

For x	22 the integratid vanishes. For2	Ix 	22 an estimate similar to (3.4) 
yields, for fixed j	0,	 - 

ai (J(X) x(+))I
	

C52_3_2, 

'thus 

fIxiaixdx ^ C2a2- = C -
	
-±O.	

S 

AIzJ2A 
as E —k 0. For jxj ^5A,. the integrand equals Jxazl(x)j, and 

fX
ia4()j (IX = f x7(x2

	E2) - j - 1	
() 

dx 

f x'(x2 ± 1)' P,(x)I dx < oo 

-	-	 S / 
since degree (P,) = j, and (3.6) is-proved I 

Rem ark 3.11:({p}0.<e1 is not a C 3-net. Indeed, 

A	 -	Alt 

2Af a'q (x)I dx ^ 22 f a'A	

. 

(X)I dx =	f	12x1 

A 
dx -^ oc 

 raj (1±x2) 
- 00	 —1	 —Alt 

as a	0. It remains open whether the existence of the M- or M 4 . pr6duct implies the existence

of the Tillmann product. 

Corollary 3.12: Let S, T E .D'(&). 1/ U = M2 (S, T) exists, then the Tillmann 
product M5 (S, T) exists also and coincides with U.	5 

Proof: We may assume that 8, T, U are standard. Letting	0 and ip E st . (iI) , - 
we have to show that	, p) (U, ). Take € st(&) y th 1 in a standard 
neighborhood of support (v). Then both T(1— z) and S(1 -	are analytic in 

/	S	 S	 -	 S
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C\support (1 -	so T(1 - y) and 8(1 - x) vanish on support (v) . Since

(.) is a linear operation and (Sy) = (Si) * J, we are reduced to showing that 

* 4e) (T7 * z1), ) (U, If,we take {ç'}o<j as constructed in the proof of 
Prop. 3.10 with Sy, Ty in the place of 8, T, it follows from the proof of Prop. 3.10 
that

((Sy * Li e ) (Ty * A c), )	((Sy * ç). (Ty * q ), ). 

But y =, 1 in a standard neighborhood of the support of ip, so  

((Sy * qQ) ('y * ,e), )	((S * 99 e) (T* ,e), )	), 

and the proof is complete I 

4. Algebras containing the standard distributions  

We fix a positive infinitesimal number and start by introducing an external spice 
E0	(R") of smooth functions as follows.  

•	Definition 4.1: Ee is the external set of all  E	(R") With the following prop-




erty:  
Vx E IN0" Vstk E IN 3 s, j E IN such that sup { I T (x ) l : jxj ;;5 k} ;5 i. 

It is clear from Cor. 2.11 that D'	Ee; 'E is a cohmutative and associative - 
differential algebra over st• If 0 E st D with f 0(x) dx = 1, then S —/ S * 0 is an 

• imbeddingof St' into E. However, this imbedding does not preserve the pointwise 
product on StoO, because (/ *0) (9 * 0e) 4 (19) * 0 for f, g E st' ill general. We shall 
now construct a quotient of E 0 and an imbedding ofà°' which turns aOM, the stand-
ard smooth functions of polynomial growth, into a subalgebra. This is a non stand- 
ard counterpart to Coiombeau's construction of his algebra ',(&"), see [4].	- 

Definition 4.2: N is the external set of all T E	(R") with the following prop-
erty:	 S	

- 

Vsta € N0" V tk€ IN V5t i € IN-: sup {I T (x )I : j xj ^5 k}	.	 (4.1)


It is clear that Ne is an ideal in Ee closed under differentiation. Therefore, 

GeEeINe '	 - 

is a differetitial algebra . (commutative, associative) over St• If T € Ee, we shall 
write [T] for its equivalence class iii G. We now fix a standard 0 € (&") such that 

fO(x)dx=1,	
5	 (49) 

I	f xaO(x) dx = 0, for all a € Stfl, H ^ 1. 

The existence of such a 0 follows by Fourier transfor	nd Borel's theorem (cf.

TREVES [23, p. 390]).  

Lenima4.3: III € st M (& n ), then f * 0— / E N, 

Proof: We deduce condition (4.1) for a=(0, ..., 0), the proof for general a being 
similar. Let i E StIN. By Taylor's theorem and (4.2), 

/	

/ * 0(X) - /(x) =. f (/(x----- y) — /(x)) O (y) dy 

r (—y)

	

	•	 ,- -!

afi/()O(y).dy 
I=i+tJ	-	'S	

'	 S
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with	between x and x	y; in particular,	^ jxj ±Ioy i	lxi ± l y l . . Since

/ E SLM, a f()l is bounded by C(l + x i)' (1 + i) l for some standard C > 0 and 
some standard 1 E N. Since 0 E StJ, the integrals are bounded by C' for some other 
standard'C > 0, uniformly for lxi 5 k for every standard k E N. Since o is infinites-
imal we have C	< o i, proving the assertion I  

Proposition 4.4: Let o be a positive infinitesimal and let 0 E stJ'(lR u ) satisfy (4.2). 
Then:

(a) The map S --[S * 0] defines an imbedding of str'(&n) into G which preserves 
differentiation. 

(b) 11O M (& ?2 ) is a subalgebra of G9 ; more precisely 
* 01 [g * 0] = [(/g) * OeI for /, g E st(&n). 

(c) If P € 11 9M( 1J 1 ) and [T1 ], ..., [Tm ] E Ge, then [P(T,, ..., T,,,)] is a welide/ined 
element of (. 

Proof: (a): We know from Remark 2.7 that S - S * 0 is an injection'of 8t' into 
E. with (S * 0) = (S) * 0. Thus it remains to show that if S E St0 and S * °e E N, 
then S = 0. Let p E st.D. If S * O o E N 0 , then (S * °e ' 0 since ip E for some 
standard k. By Remark 2.7,S = 0. (h) follows immediately from Lemma 4.3. (c) is 
a simple application of the definitions and the fact that N. is an ideal 

Finally, since N d' we can introduce an infinitesimality relation on G. by 
calling [T] G,-infinitesimal if TEd' for some representative T of [T]. This infinites- 
imality relation may serve the same purpose as the notion of an "associated distri-, 
bution" in the (olombeau algebras [2, Def. 3.5.2]: Tndeed, multiplication in G 
generally does not preserve distributional products other than the multiplication of 
St M. For instance, x(x) = 0 iii the sense of distribution theory, but the product 
[x] [0(x)] of the images of its factors is not equal to zero in G. We have however, 
that [x] [O(x)] is G,-infinitesimal. A general result showing that many distributional 
products concide with the corresponding product in G on a macroscopic level will 
now be stated. Let S, 7' E Y"(lR"). Call U E Y'(&") the M6-product of Sand T, if 

lim(S * ) (T* q) = U 
I

in .'(IR), for every 97 E (1R") with f (x) dx	1. $ 

Proposition 4.5: Let 8, T-€ St $• ' 1/the product U = M6(S, T) exists, then [S * 0] 
x [T * 01 - [U * OeI is Geinfinitesimal. 

Proof: Along the lines of the proof of Prop. 3.6, one first deduces that


((S * Oe) (T * Oe),p)	(U, ) '' (U * 0, ) for all ip E St; 

next one employs an equicontinuity argument to obtain ((S * Oe) (T * 0e) ' )	0 for 
all	D 0. Then Prop. 2.8 gives that (S * Oe) (T * 0) - U * Oe E d' 1 

Appendix 1. We consider here -. in one dimension - the products of the Dirac 
measure ô and the distributions Tr defined by 

T,(x) = ' - ô (x -o m
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with r> 1. The following assetions hold: 
(a) M 4(ô, T,) does not exist for r < 2;	 . 

(b) M3 (3, Tr) exists for r	2, and we have: . M 3 (6, T2)= 4- ô, M3 (ô, Tr) = 0 /br. 
r> 2. 

Proof. : We begin by showing that M 4 (o, T2 ) = -- ô. Let 0 E st be as in Prop. 3.6, 

o ' 0, V E sIA We may assume that support (0) c [— 1/2, 1/21. First, 

• (M.0 (6, T2),	
fmi 02m2 (.-) o(-- - 

__)P(x)dx 

00 f
	

0(x) 0 (x —	 x) dx.
om 

Writing	x) = i(0) + ox'() it suffices (Prop. 3.6) to show that 

V	

(Al)	- 
In=1 QM2 f	QM)'	2 

and

fxo(x)o(x_ )dx0	 (A2) 

Since support (0) [-1/2, 1/2], the iiitegralsvanish if rn [I/a] where [l/p] denotes 
the largest integer in l/. But [l/] is infinite, thus the expression (A.2) is infinitesimal 
(because E 7n 2 converges). To estimate (A. 1) we rewrite it as 

1I • 'l'
	
1/i	'

o*oi E	—1----	o
rn=Il/Q+l 01 ,no	m + 1/ 

1	I 
+ 

r - ________ 

,n=iiel±l	m2 (na + 1)	kom 

Again, the second term is infinitesimal, because. 

bo	I	Cdx	 (A3) -. —'-- I ----.0.  
m=Il/p)+l 0	J OX3	.	 - 

l/e 

The first term is recognized as a step function with infinitesimal step size 

supl' ( - m	
):,nj	[-I-] + i} ^ , which may be interpreted as the 

0 -th meniber of a standard net of step functions converging to 0 * 0 on [0, 1]. Thus 
the first term , is infinitely close to 

/	 I	 V 

fO*0(y)dy.	•	 V	 V 

A simple calculation using the fact that 0 * 0 is an even function shows that this inte-
gral equals 1/2.	-•
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To show that M3 ((5, T) exists also, we use Prop. 3.7 and proceed as in the proof of 
Cor. 3.8. if 0 E B is as in Prop. 3.7 we write 0 = q' -J-. j with standard and D 0. 
We have to show that all the three sums 

!(±..)	
,,,E1flz21'(Cflfl); m 

2 99T= 1 L9M 

are infinitesimal. But if the support of 0 is contained in [-- 1/2, 1/2] so are the supports 
00 

of ç' and i.So all sums actually stait with m = [ l /t1 + 1. But E l/Qm2 is a limited 
S	 m=111e1+1 

numbr (similar to (A.3)) and all, con volutidns are uniformly bounded,hy an infinite-, 
simal number. In the case r> 2, already E llemr 0, so 

m'=(IfeJ+1 
00	 N 

for every 0€ M =	Onz,	OM) 

By Prop. 3.7, M(ö, T,) = 0. In the case r < 2 we take p	1 near zero and 0 E St 

such that 0 * 0(y)	c for some standard c > 0 and jyj 5 1/2. Then 
00 

	

00 rl	/	1	 00	1 
M= 

I J - 0(x)0 (x — -)

	

	 m 
tp(x)dx c E — '-' oo, 

om	 rn—[2/QJ+I  
—00 

thus M4 (6, Tr) does not exist.The proof of (a) and (b)- is complete I 
Additional remarks: (a) The product M(6, T) = O exists and equals zero for r > 2.-This 

• follows from the remarks in the Introduction 'concerning the product (P1) and the fact that the 
corresponding assertion for the product (P1) of 6 and T, has been verified in [13, Appx]. It is 
not clear whether M2(6, T2) exists. However, the product (P1) of (5 and T2 does not exist, be-
cause 6'. T2 does not have a value at zero in the sense of Lojasiewicz (cf. [18, Prop. 4 and 5]). 

(b) The-product M 1(ô, Tr) does not exist for any r> 1: We exhibit a sequence {Xj}j.2^1 of type 
(C1) such that ((6 • x,) (Tr * Xj) ' ,) does not converge if 'p	1 near zero. Let X €2), support (x) 

•	[-1, 1], > 0,1 7(x)dx = -, andset  

x,(x)

	if	(if
	

(X
')) 

± x(i" ( 
+ 

 

Then 	 - 

	

00	 00	- 00 1 r	/	

1 f 
.^ —,IX)(x)x)(x--)dx,j nij	 fll/	JT 	 - H 

	

—00	I	
---00	 - 

/	

iT2fX2(i!:1(X_))difX2(Y)dY00 as- y	cc. --

Appendix 2. We 
'
collect hre some basic notions from Internal Set Theory 

which are frequently employed in this paper; otherwise we refer to Nelson's article 

Transfer axiom: Let A(x, 1, .. . t) be an internal formula with the free variables 
X, t 1 , ..., t and no other free variables. Then	-	- 

-	(Vstx A(x, t 1 ,	1k)) => (Vx A(x, t, ..., tk))	-
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whenever the parameters t 1 , ..., tk take standard values. Equivalent to this is 

(x A(x, t j , . . ., ti))	(3stx A (x, t i , . . ., tft)) 

provided t 1 , ..., tt take standard values. '	 I 
•	

• The other axioms - idealization and standardization - are rarely applied here 
•	except via the following principles. They can be found in [12, p. 1166]. 

• Construction principle for maps:.Let X, Y be standard sets, let A(x, y) be a 
formula, internal or external, with free variables x, y azd posibly . others.' Supp9se that 
for all standard x E X there is a unique àtandard y E Y such that A(x, y). Then there is a 
unique standard function /: X -+ Y such that A (x, 1(x)) holds for all standardx E X. 

Proof: See [12, Thm. 1.3] I	 • 

Permanence principles: Let A(n) be an internal formula over n E Th4, possibly 
containing other free variables.	 S	 S	 - 

(1) If A(n) holds for all standard n E IN, then there is an infinitely. large- co E IN such 
that A(n) holds for 1	n	w.	 S 

•	(2) If A(v) holds for ' all infinitely large v E N, then there is a standard no' € IN such 
that A(n) holds for all n ^! n0.	 . 

Proof: (1): S n€N:A(k) holds for 1 k :E^ n} is anintérnal set with S5tN. 
Since "N is not a set (12, Thm. 1.11, S must contain an infinitely large number w. 
(2) .is proved similarly, see also [12, Example 6, p. 1177] I 

We also need more general versions of these permanence principles. Let (A, ) be 
a standard directed set. An element co E A is called infinitely large if	co. for all 
• -standard ).€IA.  

Rob inson's lemma: (1) Let Abe as above and let A(A) be ',h internal formula or 
a formula of the form A (2) = (Vsty: BO., y)) with B internal (A, B may contain other 
free variables). If A (A) holds for all standard A € A, then there is an infinitely large 
w € A such that A(w).  

(2) Let Co.) be internal or of the form Co.) = (]sty: D(2, y)) with D internal. If C(o)) 
o 

holds for all infinitely large w E A, then there is a standard 2 € A such that C(2). 

Proof: (1): In the more , general case A(A)	(Vsty: B(2, y)) we have tosliow that 

Bv € A(V8t2 E AV81y: A	wand B(w, y)).	•	 • 

The validity is obtained from the idealization axiom, the hypothesis, and [12, Thm. 
1.1]. (2) follows from (1) by negation I	• 

We now need some facts about topology. Let X be a standard topological space, let 
a € St x E I. We say that x is infinitely close to a, denoted as x r a, if x is con-
tamed in all standard neighborhoods of a. Let again (A, 5:) be a standard directed 
set.	-	 S 

Characterization of the convergence of a standard net: LetX, A be as
•

 •	above, let {a}Ae,-1 be a standard nel, let a € StX. Then, a2 converges to a if and only if 
a,,,• 1 a for all infinitely large co € A.	,	

S	 S 

Proof: If a2 --> a and V is a standard neighborhood of a, then a,, € V for all inf i-
• nitely large to € A. Thus a,,	a. Conversely, let a —a for all infinitely large co, let	. -
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V be a standard neighborhood of a, and consider the assertion V1u ^; co: a E V. This 
is an internal formula which holds for all infinitely large w. By Robinson's lemma, 
there is a standard , such that Vu	a E V. By transfer,. a2 -* a I 

Of course, by reversing ;5, "infinitely large" maybe replaced by "infinitely small". 
We remark that if a standard net converges, then its limit is standard. 

Finally, we discuss the notion of s-continuity. Let X, Y be standard topological 
spaces, 9: -* Y a (possibly nonstandard) map, a E StX . Then g is called s-continuous' 
at a iff

Stb E Y such that Vx E X: x xa=g(x) 

In the case of Y = C this implies that g(a) is limited and b= °g(a). We only need - 
the following special version of 

- The s-continuity theorem: 'Let X be a standard topological'space, g: X - C 
a map which is s-continuous at every standard a E X. Then there is a unique standard 
map f: X - C -such that /(a) = °g(a) for all standard a E X, and / is continuous. 

- '	Proof: Consider the formula A(x, y) = (g(x) '-._-y). By the construction principle 
for maps, there is a unique standard f: X -* C such that g(a) /(a) for all standard 
a E X, i.e. /(a) = °g(a).. By transfer, it suffices to prove that'/ is continuous at any 
standard a E X. For this we let {a 2 } A be a standard net converging to a and show 

Vsts > OtA € AVStJL > A: f(a)	f(a)J	s.	'	(A4) 

By the s-continuityof g, g(a) '—.--f(a) for all infinitely large 1u. In particular, if r is 
standard and A infinitely large, then g(a,4 - /(a)l < e for all	A. By Robinson's 
lemma the latter assertion holds for some standard A. If z	2. is standard, then 
g(x,)	/(x) by the construction off. Thus /(x) — /(a)l < e which proves (A.4) I 
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